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Pace and motor control optimization for a runner

We present a model which encompasses pace optimization and motor control effort for a runner on a fixed distance. We see that for long races, the long term behaviour is well approximated by a turnpike problem, that allows to define an approximate optimal velocity. We provide numerical simulations quite consistent with this approximation which leads to a simplified problem. The advantage of this simplified formulation for the velocity is that if we have velocity data of a runner on a race, and have access to his V O2max, then we can infer the values of all the physiological parameters. We are also able to estimate the effect of slopes and ramps.

Introduction

The process of running involves a control phenomenon in the human body. Indeed, the optimal pace to run a fixed distance requires to use the maximal available propulsive force and energy in order to produce the optimal running strategy. This optimal strategy is a combination of cost and benefit: a runner usually wants to finish first or beat the record but minimizing his effort. The issue of finding the optimal pacing is a crucial one in sports sciences [START_REF] Aragón | Tactical behaviour of winning athletes in major championship 1500-m and 5000-m track finals[END_REF][START_REF] Foster | Beating yourself: How do runners improve their own records[END_REF][START_REF] Hettinga | The science behind competition and winning in athletics: using world-level competition data to explore pacing and tactics[END_REF][START_REF] Hanley | Champions are racers, not pacers: an analysis of qualification patterns of olympic and iaaf world championship middle distance runners[END_REF][START_REF] Hanley | Successful pacing profiles of olympic and iaaf world championship middle-distance runners across qualifying rounds and finals[END_REF][START_REF] Thiel | Pacing in olympic track races: competitive tactics versus best performance strategy[END_REF][START_REF] Tucker | Nonrandom fluctuations in power output during self-paced exercise[END_REF][START_REF] Tucker | The physiological regulation of pacing strategy during exercise: a critical review[END_REF] and is still not solved. In tactical races, depending on the level of the athlete, and the round on the competition (heating, semi-final or final), the strategy is not always the same: the pacing can either be U-shaped (the start and the finish are quicker), J-shaped (greater finishing pace) or reverse J-shaped (greater starting pace) [START_REF] Casado | Pacing profiles and tactical behaviors of elite runners[END_REF][START_REF] Hettinga | The science behind competition and winning in athletics: using world-level competition data to explore pacing and tactics[END_REF].

In this paper, we want to model this effort minimization as a control problem, solve it and find estimates of the velocity using the turnpike theory of [START_REF] Trélat | Linear turnpike theorem[END_REF][START_REF] Trélat | The turnpike property in finite-dimensional nonlinear optimal control[END_REF]. We will build on a model introduced by Keller [START_REF] Keller | Optimal velocity in a race[END_REF], improved by [START_REF] Aftalion | How to run 100 meters[END_REF][START_REF] Aftalion | Optimization of running strategies based on anaerobic energy and variations of velocity[END_REF][START_REF] Aftalion | Optimizing running a race on a curved track[END_REF][START_REF] Aftalion | How to build a new athletic track to break records[END_REF][START_REF] Behncke | A mathematical model for the force and energetics in competitive running[END_REF][START_REF] Behncke | Small effects in running[END_REF][START_REF] Mathis | The effect of fatigue on running strategies[END_REF][START_REF] Mercier | A model for world-class 10,000 m running performances: Strategy and optimization[END_REF]. The extension by [START_REF] Aftalion | How to run 100 meters[END_REF][START_REF] Aftalion | Optimization of running strategies based on anaerobic energy and variations of velocity[END_REF][START_REF] Aftalion | Optimizing running a race on a curved track[END_REF] is sufficiently accurate to model real races. We add a motivation equation inspired from the analysis of motor control in the human body [START_REF] Bouc | Computational dissection of dopamine motor and motivational functions in humans[END_REF]. This is related to the minimal intervention principle [START_REF] Todorov | Optimal feedback control as a theory of motor coordination[END_REF] so that human effort is minimized through penalty terms. We have developed this model for the 200 m in [START_REF] Aftalion | How to build a new athletic track to break records[END_REF] and extend it here for middle distance races.

Let us go back to the various approaches based on Newton's second law and energy conservation. Let d > 0 be the prescribed distance to run. Let x(t) be the position, v(t) the velocity, e(t) the anaerobic energy, f (t) the propulsive force per unit mass. Newton's second law allows to relate force and acceleration through:

ẋ(t) = v(t) x(0) = 0, x(t f ) = d, v(t) = - v(t) τ + f (t) v(0) = v 0 ,
where τ is the friction coefficient related to the runner's economy, t f the final time and v 0 the initial velocity. An initial approach by Keller [START_REF] Keller | Optimal velocity in a race[END_REF] consists in writing an energy balance: the variation of aerobic energy and anaerobic energy is equal to the power developed by the propulsive force, f (t)v(t). He assumes that the volume of oxygen per unit of time which is transformed into energy is constant along the race and we call it σ. If e 0 is the initial anaerobic energy, then ė(t) is the variation of anaerobic energy and this yields -ė(t) + σ = f (t)v(t) e(0) = e 0 , e(t) 0, e(t f ) = 0.

The control problem is to minimize the time t f to run the prescribed distance d = t f 0 v(t) dt using a control on the propulsive force 0 f (t) f M . This model is able to predict times of races but fails to predict the precise velocity profile.

Experiments have been performed on runners to understand how the aerobic contribution varies with time or distance [START_REF] Hanon | Effects of optimal pacing strategies for 400-, 800-, and 1500-m races on the VO2 response[END_REF]. Because the available flow of oxygen which transforms into energy needs some time to increase from its rest value to its maximal value, for short races up to 400 m, the function σ (which is the energetic equivalent of the oxygen flow) is increasing with time but does not reach its maximal value σ or V O2 max . For longer distances, the maximal value σ is reached and σ decreases at the end of the race. The longer the race, the longer is the plateau at σ = σ. The time when the aerobic energy starts to decrease is assumed to be related to the residual anaerobic supplies [START_REF] Billat | Differential modeling of anaerobic and aerobic metabolism in the 800-m and 1,500-m run[END_REF]. Therefore, in [START_REF] Aftalion | Optimization of running strategies based on anaerobic energy and variations of velocity[END_REF], to better encompass the link between aerobic and anaerobic effects, the function σ is modelled to depend on the anaerobic energy e(t), instead on directly time or distance. This leads to the following function σ(e) illustrated in Figure 1: 

σ(e) =                σ e e 0 γ 1 + σ f 1 - e e 0 γ 1 if e e 0 < γ 1 σ if e e 0 γ 1 and e 0 -e γ 2 (σ -σ r ) e 0 -e γ 2 + σ r if e 0 -e < γ 2 (1) 
where σ is the maximal value of σ, σ f is the final value at the end of the race, σ r is the rest value, e 0 is the initial value of energy, γ 1 e 0 is the critical energy at which the rate of aerobic energy starts to depend on the residual anaerobic energy and γ 2 is the energy at which the maximal oxygen uptake σ is achieved. Because the anaerobic energy starts at the value e 0 and finishes at zero, it depletes in time. We observe in our numerical simulations that e(t) decreases, so that σ(e(t)) and σ(e) have opposite monotonicities. The function σ(e(t)) obtained in our simulations and illustrated in Figure 2 is consistent with the measurements of [START_REF] Hanon | Pacing strategy and VO2 kinetics during a 1500-m race[END_REF] or of [START_REF] Hanon | Effects of optimal pacing strategies for 400-, 800-, and 1500-m races on the VO2 response[END_REF]. The parameters e 0 , γ 1 , γ 2 , σ, σ f , σ r depend on the runner and on the length of the race. A runner, who speeds up and slows down, chooses to modify his effort. There is a neuromuscular process controlling human effort. The issue is how to model mathematically this control, coming from motor control or neural drive. In Keller's paper [START_REF] Keller | Optimal velocity in a race[END_REF], the mathematical control is on the propulsive force. But this yields derivatives of the force which are too big with respect to human ones. Indeed, a human needs some time between the decision to make an effort and the effective change of propulsive force in the muscle. Therefore, in [START_REF] Aftalion | How to run 100 meters[END_REF][START_REF] Aftalion | Optimization of running strategies based on anaerobic energy and variations of velocity[END_REF], the control is the derivative of the propulsive force. Nevertheless, putting the control on the derivative of the force seems artificial and it is more satisfactory to actually model the process going from the decision to the muscle. For this purpose, we use the model of mechanisms underlying motivation of mental versus physical effort of [START_REF] Bouc | Computational dissection of dopamine motor and motivational functions in humans[END_REF]. They define the motor cost of changing a force as the integral of the square of the neural drive u(t). Motor control theory has shown that optimizing this cost minimizes the signal-dependent motor variability and reproduces the cardinal features of movement production. In [START_REF] Bouc | Computational dissection of dopamine motor and motivational functions in humans[END_REF], the authors derive the equation for the derivative of the force which limits the variation of the force through the neural drive u(t):

• the force increases with the neural drive so that ḟ is proportional to u;

• the force is bounded by a maximal force even when the neural drive increases so that ḟ is proportional to u(F max -f );

• without excitation, it decreases exponentially so that ḟ is proportional to u(F max -f ) -f ;

• the dynamics of contraction and excitation depends on the muscular efficiency γ so that ḟ is proportional to γ.

Therefore, following [START_REF] Bouc | Computational dissection of dopamine motor and motivational functions in humans[END_REF], and as in [START_REF] Aftalion | How to build a new athletic track to break records[END_REF], we add an equation for the variation of the force. This leads to the following system:

ẋ(t) = v(t) x(0) = 0, x(t f ) = d, (2) 
v(t) = - v(t) τ + f (t) v(0) = v 0 , (3) 
ḟ (t) = γ u(t)(F max -f (t)) -f (t) f (t) 0, (4) 
ė(t) = σ(e(t)) -f (t)v(t) e(0) = e 0 , e(t) 0, e(t f ) = 0, (5) 
where e 0 is the initial energy, τ the friction coefficient related to the runner's economy, F max is a threshold upper bound for the force, γ the time constant of motor activation and u(t) the neural drive which will be our control. We observe in our simulations that, in order to minimize the time, the force f (t) remains positive along the race without the need to put it as a constraint. Let us point out that it follows from Equation (4) that f (t) cannot cross F max increasing. Therefore, with our choice of parameters (the value of e 0 is not large enough), we observe that f (t) always remains below F max without putting any bound on the maximal force. In this paper, we do not take into account the effect of bends because for long races, they have minor effects on the velocity.

The optimization problem consists in minimizing the difference between the cost and the benefit. In [START_REF] Bouc | Computational dissection of dopamine motor and motivational functions in humans[END_REF], the expected cost is proportional to the motor control which is the L 2 norm of the neural drive u(t). On the other hand, the benefit is proportional to the reward, and can be estimated for instance to be proportional to -t f . Indeed, one could imagine the reward is a fixed amount to which is subtracted a number proportional to the difference between the world record and the final time. Similarly, one could add other benefits or costs linked to multiple attempts or the presence of a supporting audience. One could think of adding other costs, for instance in walking modeling, the cost is proportional to the jerk, which is the L 2 norm of the derivative of the centrifugal acceleration [START_REF] Arechavaleta | An optimality principle governing human walking[END_REF][START_REF] Bravo | Keep right or left, towards a cognitivemathematical model for pedestrians[END_REF]. In this paper, we choose to model the simplest case where the benefit is the final time and the cost is the motor control. This leads to the following minimization:

min t f + α 2 t f 0 u(t) 2 dt (6)
where α > 0 is a weight to be determined so that the second term is a small perturbation of the first one, and therefore both terms are minimized.

As soon as the race is sufficiently long (above 1500 m), one notices (see [START_REF] Hanon | Effects of optimal pacing strategies for 400-, 800-, and 1500-m races on the VO2 response[END_REF] and our numerical simulations) the existence of a limiting problem where v and f are constant and e is linearly decreasing. Therefore, it is natural to expect that the turnpike theory of [START_REF] Trélat | The turnpike property in finite-dimensional nonlinear optimal control[END_REF] (see also [START_REF] Trélat | Linear turnpike theorem[END_REF]) provides very accurate estimates for the mean velocity, force and the energy decrease. The turnpike theory in optimal control stipulates that, under general assumptions, the optimal solution of an optimal control problem in sufficiently large fixed final time remains essentially constant, except at the beginning and at the end of the time-frame. We refer the reader to [START_REF] Trélat | The turnpike property in finite-dimensional nonlinear optimal control[END_REF] for a complete state-ofthe-art and bibliography on the turnpike theory. Actually, according to [START_REF] Trélat | The turnpike property in finite-dimensional nonlinear optimal control[END_REF], due to the particular symplectic structure of the first-order optimality system derived from the Pontryagin maximum principle, the optimal state, co-state (or adjoint vector) and optimal control are, except around the terminal points, exponentially close to steady-states, which are themselves the optimal solutions of an associated static optimal control problem. In this result, the turnpike set is a singleton, consisting of this optimal steady-state which is of course an equilibrium of the control system. This is the so-called turnpike phenomenon. A more general version has recently been derived in [START_REF] Trélat | Linear turnpike theorem[END_REF], allowing for more general turnpike sets and establishing a turnpike result for optimal control problems in which some of the coordinates evolve in a monotone way while some others are partial steady-states. This result applies to our problem and we want to use it to simplify the runner's model for potential software applications.

The paper is organized as follows. Firstly, we present numerical simulations of ( 2)-( 3)-( 4)-( 5)-( 6), then we describe our simplified problem and how to derive it. In Section 4, we study a more realistic V O2 and in Section 5, the effects of slopes.

Numerical simulations

Optimization and numerical implementation of the optimal control problem (2)-( 3)-( 4)-( 5)-( 6) are done by combining automatic differentiation softwares with the modeling language AMPL [START_REF] Fourer | AMPL: A mathematical programming language[END_REF] and expert optimization routines with the open-source package IpOpt [START_REF] Wächter | On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming[END_REF]. This allows to solve for the velocity v, force f , energy e in terms of the distance providing the optimal strategy and the final time. As advised in [START_REF] Trélat | Linear turnpike theorem[END_REF][START_REF] Trélat | The turnpike property in finite-dimensional nonlinear optimal control[END_REF], we initialize the optimization algorithm at the turnpike solution that we describe below.

We have chosen numerical parameters to match the real race of 1500 m described in [START_REF] Hanon | Pacing strategy and VO2 kinetics during a 1500-m race[END_REF] so that d = 1500. The final experimental time for real runners is 245 s. The runners are middle distance runners successful in French regional races. Their V O2 max is around 66 ml/mn/kg. Because it is estimated that one liter of oxygen produces an energy of about 21.1 kJ via aerobic cellular mechanisms [START_REF] Peronnet | Table of nonprotein respiratory quotient: an update[END_REF], the energetic equivalent of 66 ml/mn/kg is 66 × 21.1 kJ/mn/kg. Since we need to express σ, the energetic equivalent of V O2 in SI units, we have to turn the minutes into seconds and this provides an estimate of the available energy per kg per second which is 66/60 × 21.1 22. This leads to a maximum value σ = 22 of σ. From [START_REF] Hanon | Pacing strategy and VO2 kinetics during a 1500-m race[END_REF], the decrease in V O2 at the end of the race is of about 10% when the anaerobic energy left is 15%. Therefore, we choose the final value of σ to be 10% less than the maximal value, that is σ f = 20, and γ 1 = 0.15. To match the usual rest value of V O2, we set σ r = 6. The other parameters are identified so that the solution of ( 2)-( 3)-( 4)-( 5)-( 6) matches the velocity data of [START_REF] Hanon | Pacing strategy and VO2 kinetics during a 1500-m race[END_REF]: γ 2 = 566, α = 10 -5 , F max = 8, τ = 0.932, e 0 = 4651, γ = 0.0025, v 0 = 3. Let us point out that our model of effort is not appropriate to describe the very first seconds of the race. Therefore, we choose artificially v 0 = 3 which allows, with our equations, to have a more realistic curve for the very few points, than starting from v 0 = 0. Otherwise, one would need to refine the model for the start.

In [START_REF] Bouc | Computational dissection of dopamine motor and motivational functions in humans[END_REF], the equivalent of α is determined by experimental data. In our case, we have noticed that, depending on α, either u is negative with a minimum or changes sign with a minimum and a maximum. Also, when α gets too small, ḟ is almost constant. The choice of α is made such that the second term of the objective is a small perturbation of the first one, and can act at most on the tenth of second for the final time.

With these parameters, we simulate the optimal control problem ( 2)-( 3)-( 4)-( 5)-( 6) and plot the velocity v, the propulsive force f , the motor control u, the energetic equivalent of the oxygen uptake σ(e), and the anaerobic energy e vs distance in Figure 2. Though they are computed as a function of time, we find it easier to visualize them as a function of distance. The velocity increases until reaching a peak value, then decreases to a mean value, before the final sprint at the end of the race. This is consistent with usual tactics which consist in an even pace until the last 300 m where the final sprint starts. This final sprint takes place when the function σ(e(t)) starts decreasing. The function σ is the energetic equivalent of V O2. It increases to its plateau value, then decreases at the end of the race when the anaerobic supply gets too low. The control u also has a plateau at the middle of the race leading to a plateau for the force as well. The velocity and force follow the same profile. The energy is decreasing and almost linear when the velocity and force are almost constant.

In Figure 2, we point out that we obtain an almost steady-state in the central part of the race for the motor control, the force and the velocity. We find from Figure 2 the central value for the motor control u turn = 4.26, the force f turn = 6.48 and the velocity v turn = 6.04. We want to analyze this limit analytically. We will also try to construct local models for the beginning and end of the race.

Main results using turnpike estimates

The optimal control problem (2)-( 3)-( 4)-( 5)-( 6) involves a state variable, namely, the energy e(t), which goes from e 0 to 0, and thus has no equilibrium. The turnpike theory has been extended in [START_REF] Trélat | Linear turnpike theorem[END_REF] to this situation when the steady-state is replaced by a partial steady-state (namely, v and f are steady), and e(t) is approximated by an affine function satisfying the imposed constraints e 0 at initial time and 0 at final time. In what follows, we denote the approximating turnpike trajectory with an upper bar, corresponding to a constant function σ(e) = σ. More precisely, we denote by t → (v c , ēc (t), fc ) the turnpike trajectory defined on the interval [0, tc ] so that vc and fc are steady-states (equilibrium of the control dynamics ( 2)-( 3)-( 4)) with vc = fc τ , and ēc (t) is affine: 

ėc (t) = σ -
The mean velocity vc can be solved from [START_REF] Behncke | A mathematical model for the force and energetics in competitive running[END_REF] to get

vc = e 0 τ 2d + στ + e 0 τ 2d 2 . ( 8 
)
We observe that the value of vc increases with e 0 , τ (which is the inverse of friction) and σ, but is not related to the maximal force. Indeed, the maximal propulsive force controls the acceleration at the beginning and end of the race, but not the mean velocity in the middle of the race. In the case of our simulations, vc = 6.2 which is slightly overestimated with respect to the simulation value v turn = 6.04.

We next elaborate to show how the turnpike theory can be applied to the central part of the race where σ is constant and allows to derive very accurate approximate solutions.

If one takes into account the full shape of σ(e), made up of three parts, then the velocity curve is made up of three parts. In the rest of the paper, we will derive the following approximation for the velocity:

v(t) =              v 0 e -t/τ + v max + t t 1 (v -v max ) (1 -e -t/τ ) if 0 t t 1 , v if t 1 t t 2 , τ F max 1 + (F max / f -1)e -γλFmax(t-t2) if t 2 t t f . (9) 
The parameters appearing in the formula are defined as follows: v 0 is the initial velocity in (3), v is obtained as the positive root that is bigger than

√ στ of d = vγ 2 v2 τ -σ r + v e 0 (1 -γ 1 ) -γ 2 v2 τ - σ + ve 0 γ 1 v2 τ -σ f , ( 10 
)
t 1 is given by

t 1 = γ 2 v2 τ -σ r , (11) 
v max = f 0 τ , where f 0 is the positive root of the trinomial

t1 0 f 0 + t v/τ -f 0 t 1 v 0 e -t/τ + τ f 0 + t v -τ f 0 t 1 (1 -e -t/τ ) e σ-σr γ 2 (t-t1) dt = γ 2 + σ r γ 2 σ -σ r 1 -e -σ-σr γ 2 
t1 ; [START_REF] Foster | Beating yourself: How do runners improve their own records[END_REF] from this, we compute

d 1 = t1 0 v(t) dt. We define d = e 0 (1-γ1)-γ2 v2 τ -σ
, the length of the turnpike, and

∆t end = d -d 1 - d v ; (13) 
λ is chosen such that, if A = σ-σr γ1e 0 , then there is an L 2 estimate for the velocity at the end of the race:

∆t end 0 τ F max (1 + (F max / f -1)e -γλFmaxt ) 2 e -At dt = τ σ f A (1 -e -A∆t end ) + τ γ 1 e 0 ; (14) 
moreover, the time t 2 is defined so that

t 2 -t 1 = 1 v d - t1 0 v(t) dt - ∆t end 0 τ F max 1 + (F max / f -1)e -γλFmaxt dt . ( 15 
)
and

t f = t 2 + ∆t end .
Let us explain the general meaning of these computations. Equation ( 10) is based on the hypothesis that v and f are constant values and uses the shape of σ and the energy equation to compute the duration and length of each phase. From the first phase, we derive the value of t 1 in [START_REF] Casado | Pacing profiles and tactical behaviors of elite runners[END_REF]. Then we compute the initial force that corresponds to the correct energy expenditure in the first phase through [START_REF] Foster | Beating yourself: How do runners improve their own records[END_REF]. This provides, through the integral of the velocity the distance d 1 of the first phase. We next approximate the distance and time of the last phase using the distance and time of turnpike through [START_REF] Fourer | AMPL: A mathematical programming language[END_REF]. Once we have the duration of the last phase, we again match the energy expenditure in [START_REF] Hanley | Champions are racers, not pacers: an analysis of qualification patterns of olympic and iaaf world championship middle distance runners[END_REF]. This provides the velocity profile of the last phase and therefore the distance of the last phase. In order to match the total distance, we have to slightly modify the length of the central turnpike part in [START_REF] Hanley | Successful pacing profiles of olympic and iaaf world championship middle-distance runners across qualifying rounds and finals[END_REF]. From the computational viewpoint, these steps correspond to the first successive approximations in the Newton-like solving of a system of nonlinear equations.

The velocity curve (9) goes from the initial velocity v 0 to a maximum velocity, then down to v, which is the turnpike value. At the end of the race, the velocity increases to the final velocity. This type of curve is quite consistent with velocity curves in the sports literature, see for instance [START_REF] Foster | Beating yourself: How do runners improve their own records[END_REF][START_REF] Hanley | Successful pacing profiles of olympic and iaaf world championship middle-distance runners across qualifying rounds and finals[END_REF], and with our simulations illustrated in Figure 2.

We see that t 1 increases with γ 2 , while t f -t 2 increases with γ 1 .

For the values of parameters of Section 2, we find from ( 10) that v = 6.06, which is to be compared to the value in Figure 2, v turn = 6.04. Then from (11) t 1 = 16.95, from (12) that f 0 = 8.2, d 1 = 111.84. We deduce from (13) ∆t end = 34.42, from [START_REF] Hanley | Champions are racers, not pacers: an analysis of qualification patterns of olympic and iaaf world championship middle distance runners[END_REF], λ = 0.39, from (15) t 2 = 210.76, t f = 245.19 (very close to the 244 s obtained in the numerical simulation in Figure 2 and to the experimental value of 245 s) and we find v f = 6.33 at the final time. We point out that in the turnpike region, this yields f = v/τ = 6.5 and ū = f /(F max -f ) = 4.34, very close to the values in Figure 2, f turn = 6.48 and u turn = 4.26.

We have illustrated in Figure 3 the approximate solution (9) together with the numerical solution of the full optimal control problem (2)-( 3)-( 4)-( 5)- [START_REF] Arechavaleta | An optimality principle governing human walking[END_REF]. We see that the duration of the initial phase is slightly underestimated, while the duration of the final phase is very good. The estimate of the sprint velocity at the end is also very good. Note that the simulation of the full optimal control problem produces a decrease of velocity at the very end of the race which is not captured by our approximation, but this changes very slightly the estimate on t f -t 2 or on the sprint velocity at the end and is not meaningful for a runner, so we can safely ignore it for our approximations.

The advantage of formulation [START_REF] Billat | Differential modeling of anaerobic and aerobic metabolism in the 800-m and 1,500-m run[END_REF] is that if we have velocity data of a runner on a race, and have access to his V O2 max , that is σ, then we can infer the values of all the physiological parameters: from the velocity curve at the beginning, we can determine τ and v max . The value of v and ( 8) yield e 0 . From the values of t 1 and t 2 , we deduce γ 1 and γ 2 . In order to have more precise values, we can always perform an identification of the parameters using the full numerical code, but from these approximate values, we have enough information to determine the runner's optimal strategy on other distances.

The rest of the section is devoted to deriving (9).

Central turnpike estimate

In the central part of the race, σ(e) = σ is constant. Therefore in this part, when e(t) is between e 0 -γ 2 and γ 1 e 0 , we can apply the turnpike theory of [START_REF] Trélat | Linear turnpike theorem[END_REF]. Then we have v

(t) v, f (t) f , u(t) ū with f = v τ , ū = f F max - f .
We have to integrate

ė(t) = σ(ē(t)) - v2 τ , ē(t 1 ) = e 0 -γ 2 ē(t 2 ) = γ 1 e 0 .
We find

e 0 (1 -γ 1 ) -γ 2 = (t 2 -t 1 ) v2 τ -σ .
This is consistent with ( 7) which is the same computation but on the whole interval, that is with

γ 1 = γ 2 = 0. The value for t 2 -t 1 is 194.64.
As a first approximation, we can assume that on the two extreme parts of the race, v and f can be taken to be constants. We will see below why this assumption is reasonable. Therefore we can solve

ė(t) = σ(ē(t)) - v2 τ ē(0) = e 0 , ē(t 1 ) = e 0 -γ 2 , ē(t 2 ) = γ 1 e 0 , e( t) = 0.
Therefore, t is the final time of the turnpike trajectory defined by ē( t) = 0. The initial and final parts of the race produce exponential terms, namely

σ -σ r v2 τ -σ r = 1 -e -(σ-σr )t 1 γ 2 and σ -σ f v2 τ -σ f = 1 -e - (σ-σ f )(t-t 2 ) e 0 γ 1 . ( 16 
)
Therefore, for the total distance d, we find, summing our estimates,

t = d v = e 0 (1 -γ 1 ) -γ 2 v2 τ - σ - γ 2 σ -σ r ln 1 - σ -σ r v2 τ -σ r - e 0 γ 1 σ -σ f ln 1 - σ -σ f v2 τ -σ f . ( 17 
)
If the initial and final parts are not too long, then ( 16) can be approximated by

t 1 γ 2 v2 τ -σ r and t -t 2 e 0 γ 1 v2 τ -σ f ( 18 
)
and therefore, from [START_REF] Hanon | Effects of optimal pacing strategies for 400-, 800-, and 1500-m races on the VO2 response[END_REF], v can be approximated by [START_REF] Bravo | Keep right or left, towards a cognitivemathematical model for pedestrians[END_REF]. For the values of parameters of Section 2, (10) yields v = 6.06. The intermediate times can be computed from (18): t 2 = 35.96 s and t 1 = 16.95 s. This also yields the distances of each part by multiplying by v. In the following, we will keep this value of t 1 but improve the estimate for t 2 .

Note that this turnpike calculation can be used the other way round: if one knows the mean velocity, d, τ and σ, it yields an estimate of the energy e 0 used while running, as well as the aerobic part which is σd/v. The next step is to identify reduced problems for the beginning (interval (0, t 1 )) and end of the race (interval (t 2 , t)). The two are not totally equivalent since at the beginning we have an initial condition for the velocity v whereas on the final part the final velocity is free.

Estimates for the beginning of the race

The problem is to approximate the equations for v, f , e with boundary conditions

v(0) = v 0 , v(t 1 ) = v, f (t 1 ) = f , e(0) = e 0 , e(t 1 ) = e 0 -γ 2 .
Here, f (0) is free.

We integrate the energy equation and find

t1 0 f (t)v(t) dt = t1 0 ( ė(t) -σ(e(t))) dt.
In this regime, σ(e) is linear, and this equation can be integrated explicitly. Indeed, let A = σ-σr γ2 , then

-γ 2 = σ r γ 2 σ -σ r (1 -e -At1 ) -e -At1 t1 0 f (t)v(t)e At dt. (19) 
Because we are in a regime of parameters where At is small, we can expand the exponential terms.

The approximation which consists in assuming that the integral of f v can be approximated by the mean value of f v is good, and therefore this justifies the turnpike estimate of the previous section and this yields the estimate (11) of t 1 . Now let us assume t 1 is prescribed. If we fix the interval (0, t 1 ), we have the equations for v and f with v(0

) = v 0 , v(t 1 ) = v, f (0) = f 0 , f (t 1 ) = f . ( 20 
)
Here f 0 is unknown and we want to minimize the motor control only. For this part, we can assume that the minimization of the motor control leads to a linear function f as explained in the Appendix. Therefore, f (t) = f 0 +t( f -f 0 )/t 1 and v(t) = v 0 e -t/τ +τ f (t)(1-e -t/τ ) to approximate [START_REF] Aftalion | Optimizing running a race on a curved track[END_REF]. We plug this into [START_REF] Keller | Optimal velocity in a race[END_REF] and then we find that f 0 is a solution of ( 12). This can be integrated analytically or numerically to determine f 0 . In our case, f 0 = 8.2. This yields the first line of ( 9) with v max = τ f 0 .

End of the race

Once the beginning and central part of the race are determined, the duration of the end of the race is determined so that the prescribed distance d is run through [START_REF] Fourer | AMPL: A mathematical programming language[END_REF].

The problem describing the end of the race consists in solving the equations for v, f , e on the interval (t 2 , t f ) with initial and final values

v(t 2 ) = v, f (t 2 ) = f , e(t 2 ) = γ 1 e 0 , e(t f ) = 0. ( 21 
)
This yields the simulation in Figure 4. We observe that f (t) and v(t)/τ are very close, as expected.

In the following, we will assume that v is negligible in front of v/τ , so that v f τ , which removes an equation. Then using the specific shape of σ, the energy equation becomes, denoting

A = σ-σ f e 0 γ1 0.0028, e A(t-t2) d dt e(t)e -A(t-t2) = σ f -τ f (t) 2 .
Then we need to integrate this energy equation and find

τ t f t2 f (t) 2 e -A(t-t2) dt = σ f A (1 -e -A(t f -t2) ) + γ 1 e 0 . (22) 
The reduced optimal control problem for the end of the race is therefore min

t f t2 u(t) 2 dt ḟ (t) = γ(u(t)(F max -f (t)) -f (t)) f (t 2 ) = f , τ t f t2 f (t) 2 e -A(t-t2) dt = σ f A (1 -e -A(t f -t2) ) + γ 1 e 0 . (23) 
This problem can be kept as the full problem for the end of race. It provides a solution which is very close to that of Figure 4. Otherwise, one can try to reduce further the problem to have a simple expression for the velocity. In [START_REF] Bouc | Computational dissection of dopamine motor and motivational functions in humans[END_REF], an approximation for such a problem by a sigmoid function is used. In our case, as computed in the Appendix, this yields the following sigmoid

f (t) = F max 1 + (F max / f -1)e -γλFmax(t-t2) (24) 
where λ is chosen such that the L 2 norm of f satisfies condition [START_REF] Mathis | The effect of fatigue on running strategies[END_REF]. Then, since v = τ f , this provides the final estimate for the velocity. This estimate yields an increasing velocity at the end of the race. It does not capture the short decrease at the very end of the race. But this changes very slightly the estimate on t f -t 2 or on the sprint velocity at the end and is not meaningful for a runner, so we can safely ignore it for our approximations. Once we have this final approximation for the velocity, we have to match the length of the turnpike central phase so that the integral of v is exactly d, which yields [START_REF] Hanley | Successful pacing profiles of olympic and iaaf world championship middle-distance runners across qualifying rounds and finals[END_REF]. This reduces very slightly the turnpike phase from 194.64 seconds to 193.81 seconds for our simulations.

Our distance is made up of 3 parts: the turnpike distance which is totally determined by γ 1 and γ 2 and the distance run in the initial and final parts. Of course, since the sum is prescribed, only one of the two is free. So for instance, in the final phase if we determine the duration of this final phase by some estimate like above, the initial phase has to match the total distance, but nevertheless is safely estimated from the turnpike.

Comparison with a real 1500 m

The runners' oxygen uptake was recorded in [START_REF] Hanon | Pacing strategy and VO2 kinetics during a 1500-m race[END_REF] by means of a telemetric gas exchange system. This allowed to observe that the V O2 reached a peak in around 450 m from start, with a significant decrease between 450 and 550 meters. Then the V O2 remained constant for 800 meters, before a decrease of 10% at the end of the race. To match more precisely the V O2 curve of [START_REF] Hanon | Pacing strategy and VO2 kinetics during a 1500-m race[END_REF], we add an extra piece to the curve of σ, before the long mean value σ: after the initial increase, there is a local maximum before decreasing to the constant turnpike value: We take roughly the same parameters as before except for γ 2 = 2000 and γ + = 1 -γ 2 /e 0 -400/e 0 . The others are σ r = 6, σ f = 20, σ = 22, γ 1 = 0.15, F max = 8, τ = 1.032, e 0 = 4651, γ = 0.0025, v 0 = 1. Then we see in Figure 5 that the velocity has a local minimum in the region where σ has a local maximum,which matches exactly the velocity profile in [START_REF] Hanon | Pacing strategy and VO2 kinetics during a 1500-m race[END_REF]. Small variations in σ always provide variations in the velocity profile with the opposite sense.

σ(e) =                        σ e e 0 γ 1 + σ f 1 - e e 0 γ
It is well known that successful athletes in a race are not so much those who speed up a lot at the end but those who avoid slowing down too much . We have noticed that if the maximal force at the beginning of the race is too high, then the velocity tends to fall down at the end of the race, leading to a bad performance. For a final in a world competition, it is observed in [START_REF] Hanley | Successful pacing profiles of olympic and iaaf world championship middle-distance runners across qualifying rounds and finals[END_REF] that the best strategy is J-shaped, which means reaching maximal speed at the end of the race. But this is not available to all athletes. The runners profile of these simulations are not world champions but only successful in French regional races. Therefore, their pacing strategy is either U-shaped (the start and the finish are quicker) or reverse J-shaped (greater starting pace). This is very dependent on the relative values of running economy τ , anaerobic energy e 0 and profile of V O2. Moreover, top runners use pace variation according to laps as their winning tactics [START_REF] Aragón | Tactical behaviour of winning athletes in major championship 1500-m and 5000-m track finals[END_REF], but this is not active on the level of runners we have analyzed in this paper.

Running uphill or downhill

Our model also allows to deal with slope or ramps. Indeed, one has to change the Newton law of motion to take into account a dependence on the slope β(x) at distance x from the start, which is the cosine of the angle. If we denote by g the gravity, the velocity equation changes into

v(t) = - v(t) τ + f (t) -gβ(x(t)).
If the track goes uphill or downhill with a constant rate δ, then in the turnpike estimate, this becomes v = τ f -gτ δ where δ is positive when the track goes up and negative when it goes down. If the slope is constant for the whole race, the turnpike estimate can be computed.

If we assume a slope β(x) which is constant equal to δ, the new turnpike estimate is

v = (e 0 -dgδ)τ 2d + στ + (e 0 -dgδ)τ 2d 2 .
If the slope is small, one can make an asymptotic expansion in terms of δ to find the difference in velocity

v = -gδτ   1 2 + 1 τ 4 + σ d e 0 2   .
But if the slope is constant for a small part of the race, then the variation of velocity cannot be computed locally because the whole mean velocity of the race is influenced by a local change of slope as we will see in the last part of the paper. Nevertheless, because the energy is involved, a change of slope, even locally implies a change of the turnpike velocity on the whole race. We have chosen to put slopes and ramps of 3% for 300 m. We see in Figure 6 that without slope we have an intermediate turnpike value, but with a slope or ramp even only for 300 m, the whole turnpike velocity is modified.

To illustrate further the slope effect, we have put a periodic slope and ramp of 200 m between 300 m and 1200 m. We use the same parameters as in the previous section. We see in Figure 7 that the turnpike velocity is affected. When going down, a runner speeds at the end of the ramp, but his velocity has a local maximum at the middle of the ramp. Similarly, it has a local minimum at the middle of the slope. The variations in velocity are very small since they are of order of a few percents. But this allows to understand that slopes and ramps are not local perturbations on the pacing profile.

Conclusion

We have provided a model for pace optimization. This involves a control problem in order to use the maximal available propulsive force and energy to produce the optimal running strategy and minimize the time to run and the motor control. For sufficiently long races (above 1500 m), the optimal strategy is well approximated by a turnpike problem that we describe. Simplified estimates for the peak velocity and velocity profiles related to aerobic, anaerobic energy and effect of the motor control are obtained and fit the simulations. The effect of the parameters and slope and ramps are analyzed. The potential applications of this turnpike theory would be to derive a simpler model for pacing strategy that could be encompassed in a running app. Indeed, the advantage of our simplified formulation for the velocity is that if we have velocity data of a runner on a race, and have access to his V O2 max , then we can infer the values of all the physiological parameters and therefore predict his optimal strategy on a fixed distance.

Appendix: Simplified motor control problem

We want to study the simplified optimal control problem min

T 0 u(t) 2 dt ḟ (t) = γ(u(t)(F max -f (t)) -f (t)) f (0) = f and T 0 f (t) 2 e -At dt = α,
related to the one in [START_REF] Bouc | Computational dissection of dopamine motor and motivational functions in humans[END_REF] where there is no condition on the L 2 norm of f but a final condition on f (T ) = F and a cost T 0 u 2 -kF . In our case, we want to estimate f (T ) in terms of the parameters.

The corresponding simplified problem for the beginning of the race is where we want to estimate f (0) and understand why f (t) is almost linear. Actually, at the beginning of the race the integral constraint would rather be of the form T 0 f (t)v(t) dt = α but this does not change the arguments developed hereafter.

Because of the integral constraint on f , the above problem can be equivalently rewritten as 

Let us apply the Pontryagin maximum principle to the optimal control problem (25) (see [START_REF] Lee | Foundations of optimal control theory[END_REF][START_REF] Pontryagin | The mathematical theory of optimal processes[END_REF][START_REF] Trélat | Contrôle optimal. Mathématiques Concrètes[END_REF]). Denoting by p f and p y the co-states associated, respectively, to the states f and y, the Hamiltonian of the problem is

H = p f γ(u(F max -f ) -f ) + p y f 2 e -At - 1 2 u 2 . ( 26 
)
The condition ∂H ∂u = 0 yields u = p f γ(F max -f ). Therefore, the equation for ḟ can be rewritten as ḟ = γ p f γ(F max -f ) 2 -f .

In order to estimate the solutions, we can assume that p f is not far from a constant which allows an explicit integration of [START_REF] Todorov | Optimal feedback control as a theory of motor coordination[END_REF]. Indeed the equation p f γ(F max -f ) 2 -f = 0 has two roots f 1 and f 2 and the solution of ( 27) is thus the sigmoid function

f (t) = f 2 + f 1 -f 2 1 -f -f1 f -f2 e µ(t-T ) (28) 
with µ = p f γ 2 (f 1 -f 2 ). This allows to compute f (0). Furthermore, if one approximates e µ(t-T ) by 1 + µ(t -T ), then

f (t) f ( f -f 2 )( f -f 1 ) f 1 -f 2 µ(t -T )
which is the linear approximation we have made for the first part of the race.

For the end of the race, the problem is similar except that it is an initial condition f (0) = f and we look for a final estimate on f (T ). A similar computation leads to the equivalent of (28) which is the sigmoid function

f (t) = f 2 + f 1 -f 2 1 -f -f1 f -f2 e µt , (29) 
which can also be rewritten as [START_REF] Peronnet | Table of nonprotein respiratory quotient: an update[END_REF]. 2)-( 3)-( 4)-( 5)-( 6) and approximate solution given by (9) (red). There is a slope of 2% between 400 m and 600 m and then between 800 m and 1000 m. There is a ramp of 2% between 600 m and 800 m and then between 1000 m and 1200 m.

Figure 1 :

 1 Figure 1: The function σ(e) from (1) for e 0 = 4651, σ = 22, σ f = 20, σ r = 6, γ 2 = 566, γ 1 = 0.15.

  fc vc and satisfies the terminal constraints ēc (0) = e 0 and ēc ( tc ) = 0, while d = vc tc . Integrating yields v2 c τ -σ = e 0 vc d .

min T 0 u(t) 2 0 f

 020 dt ḟ (t) = γ(u(t)(F max -f (t)) -f (t)) f (T ) = f and T (t) 2 e -At dt = α,

min T 0 u(t) 2

 02 dt ḟ (t) = γ(u(t)(F max -f (t)) -f (t)) f (T ) = f , ẏ(t) = f (t) 2 e -At y(0) = 0, y(T ) = α.

Figure 2 :

 2 Figure 2: Velocity v, force f , energetic equivalent of the oxygen uptake σ(e), motor control u and energy e vs distance on a 1500 m. All functions (except e) display a plateau in the middle of the race corresponding to the turnpike phenomenon, except the energy which is affine. In this numerical simulation, the duration of the race is 244 s.

Figure 3 :

 3 Figure 3: Velocity v as a solution of the simulation (blue) of (2)-(3)-(4)-(5)-(6) and approximate solution given by (9) (red).

Figure 4 :

 4 Figure 4: Velocity and force solving the equations for v, f , e on the interval (t 2 , t f ) with initial and final values (21). The force f (t) is compared to the value v(t)/τ .

Figure 5 :

 5 Figure 5: Modified σ in four pieces and optimal velocity vs distance for a 1500 m.

Figure 6 :

 6 Figure6: Velocity vs distance for a 1500 m, on a flat track (red), on a track with a 3% slope between 700 m and 1000 m (orange) and on a track with a 3% ramp between 700 m and 1000 m (blue).

Figure 7 :

 7 Figure 7: Slope, velocity, zoom on the velocity and force for a 1500 m with slopes and ramps.There is a slope of 2% between 400 m and 600 m and then between 800 m and 1000 m. There is a ramp of 2% between 600 m and 800 m and then between 1000 m and 1200 m.