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Pace and motor control optimization for a runner

Amandine Aftalion∗ Emmanuel Trélat†

Abstract

We present a model which encompasses pace optimization and motor control effort for
a runner on a fixed distance. We see that for long races, the long term behaviour is well
approximated by a turnpike problem, that allows to define an approximate optimal velocity.
We provide numerical simulations quite consistent with this approximation which leads to a
simplified problem. The advantage of this simplified formulation for the velocity is that if we
have velocity data of a runner on a race, and have access to his V̇ O2max, then we can infer
the values of all the physiological parameters. We are also able to estimate the effect of slopes
and ramps.

1 Introduction

The process of running involves a control phenomenon in the human body. Indeed, the optimal
pace to run a fixed distance requires to use the maximal available propulsive force and energy in
order to produce the optimal running strategy. This optimal strategy is a combination of cost and
benefit: a runner usually wants to finish first or beat the record but minimizing his effort. The
issue of finding the optimal pacing is a crucial one in sports sciences [5, 12, 18, 14, 15, 26, 31, 32]
and is still not solved. In tactical races, depending on the level of the athlete, and the round
on the competition (heating, semi-final or final), the strategy is not always the same: the pacing
can either be U-shaped (the start and the finish are quicker), J-shaped (greater finishing pace) or
reverse J-shaped (greater starting pace) [11, 18].

In this paper, we want to model this effort minimization as a control problem, solve it and find
estimates of the velocity using the turnpike theory of [29, 30]. We will build on a model introduced
by Keller [19], improved by [1, 2, 3, 4, 7, 8, 22, 23]. The extension by [1, 2, 3] is sufficiently accurate
to model real races. We add a motivation equation inspired from the analysis of motor control
in the human body [20]. This is related to the minimal intervention principle [27] so that human
effort is minimized through penalty terms. We have developed this model for the 200 m in [4] and
extend it here for middle distance races.

Let us go back to the various approaches based on Newton’s second law and energy conservation.
Let d > 0 be the prescribed distance to run. Let x(t) be the position, v(t) the velocity, e(t) the
anaerobic energy, f(t) the propulsive force per unit mass. Newton’s second law allows to relate
force and acceleration through:

ẋ(t) = v(t) x(0) = 0, x(tf ) = d,

v̇(t) = −v(t)

τ
+ f(t) v(0) = v0,
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where τ is the friction coefficient related to the runner’s economy, tf the final time and v0 the initial
velocity. An initial approach by Keller [19] consists in writing an energy balance: the variation
of aerobic energy and anaerobic energy is equal to the power developed by the propulsive force,
f(t)v(t). He assumes that the volume of oxygen per unit of time which is transformed into energy
is constant along the race and we call it σ̄. If e0 is the initial anaerobic energy, then ė(t) is the
variation of anaerobic energy and this yields

−ė(t) + σ̄ = f(t)v(t) e(0) = e0, e(t) > 0, e(tf ) = 0.

The control problem is to minimize the time tf to run the prescribed distance d =
∫ tf

0
v(t) dt using

a control on the propulsive force 0 6 f(t) 6 fM . This model is able to predict times of races but
fails to predict the precise velocity profile.

Experiments have been performed on runners to understand how the aerobic contribution varies
with time or distance [17]. Because the available flow of oxygen which transforms into energy needs
some time to increase from its rest value to its maximal value, for short races up to 400 m, the
function σ (which is the energetic equivalent of the oxygen flow) is increasing with time but does
not reach its maximal value σ̄ or V̇ O2max. For longer distances, the maximal value σ̄ is reached
and σ decreases at the end of the race. The longer the race, the longer is the plateau at σ = σ̄. The
time when the aerobic energy starts to decrease is assumed to be related to the residual anaerobic
supplies [9]. Therefore, in [2], to better encompass the link between aerobic and anaerobic effects,
the function σ is modelled to depend on the anaerobic energy e(t), instead on directly time or
distance. This leads to the following function σ(e) illustrated in Figure 1:

Figure 1: The function σ(e) from (1) for e0 = 4651, σ̄ = 22, σf = 20, σr = 6, γ2 = 566, γ1 = 0.15.

σ(e) =



σ̄
e

e0γ1
+ σf

(
1− e

e0γ1

)
if

e

e0
< γ1

σ̄ if
e

e0
> γ1 and e0 − e > γ2

(σ̄ − σr)
e0 − e
γ2

+ σr if e0 − e < γ2

(1)
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where σ̄ is the maximal value of σ, σf is the final value at the end of the race, σr is the rest value,
e0 is the initial value of energy, γ1e

0 is the critical energy at which the rate of aerobic energy starts
to depend on the residual anaerobic energy and γ2 is the energy at which the maximal oxygen
uptake σ̄ is achieved. Because the anaerobic energy starts at the value e0 and finishes at zero, it
depletes in time. We observe in our numerical simulations that e(t) decreases, so that σ(e(t)) and
σ(e) have opposite monotonicities. The function σ(e(t)) obtained in our simulations and illustrated
in Figure 2 is consistent with the measurements of [16] or of [17]. The parameters e0, γ1, γ2, σ̄,
σf , σr depend on the runner and on the length of the race.

A runner, who speeds up and slows down, chooses to modify his effort. There is a neuro-
muscular process controlling human effort. The issue is how to model mathematically this control,
coming from motor control or neural drive. In Keller’s paper [19], the mathematical control is
on the propulsive force. But this yields derivatives of the force which are too big with respect to
human ones. Indeed, a human needs some time between the decision to make an effort and the
effective change of propulsive force in the muscle. Therefore, in [1, 2], the control is the derivative
of the propulsive force. Nevertheless, putting the control on the derivative of the force seems
artificial and it is more satisfactory to actually model the process going from the decision to the
muscle. For this purpose, we use the model of mechanisms underlying motivation of mental versus
physical effort of [20]. They define the motor cost of changing a force as the integral of the square
of the neural drive u(t). Motor control theory has shown that optimizing this cost minimizes the
signal-dependent motor variability and reproduces the cardinal features of movement production.
In [20], the authors derive the equation for the derivative of the force which limits the variation of
the force through the neural drive u(t):

• the force increases with the neural drive so that ḟ is proportional to u;

• the force is bounded by a maximal force even when the neural drive increases so that ḟ is
proportional to u(Fmax − f);

• without excitation, it decreases exponentially so that ḟ is proportional to u(Fmax − f)− f ;

• the dynamics of contraction and excitation depends on the muscular efficiency γ so that ḟ is
proportional to γ.

Therefore, following [20], and as in [4], we add an equation for the variation of the force. This
leads to the following system:

ẋ(t) = v(t) x(0) = 0, x(tf ) = d, (2)

v̇(t) = −v(t)

τ
+ f(t) v(0) = v0, (3)

ḟ(t) = γ
(
u(t)(Fmax − f(t))− f(t)

)
f(t) > 0, (4)

ė(t) = σ(e(t))− f(t)v(t) e(0) = e0, e(t) > 0, e(tf ) = 0, (5)

where e0 is the initial energy, τ the friction coefficient related to the runner’s economy, Fmax is a
threshold upper bound for the force, γ the time constant of motor activation and u(t) the neural
drive which will be our control. We observe in our simulations that, in order to minimize the time,
the force f(t) remains positive along the race without the need to put it as a constraint. Let us
point out that it follows from Equation (4) that f(t) cannot cross Fmax increasing. Therefore, with
our choice of parameters (the value of e0 is not large enough), we observe that f(t) always remains
below Fmax without putting any bound on the maximal force. In this paper, we do not take into
account the effect of bends because for long races, they have minor effects on the velocity.
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The optimization problem consists in minimizing the difference between the cost and the benefit.
In [20], the expected cost is proportional to the motor control which is the L2 norm of the neural
drive u(t). On the other hand, the benefit is proportional to the reward, and can be estimated for
instance to be proportional to −tf . Indeed, one could imagine the reward is a fixed amount to
which is subtracted a number proportional to the difference between the world record and the final
time. Similarly, one could add other benefits or costs linked to multiple attempts or the presence
of a supporting audience. One could think of adding other costs, for instance in walking modeling,
the cost is proportional to the jerk, which is the L2 norm of the derivative of the centrifugal
acceleration [6, 10]. In this paper, we choose to model the simplest case where the benefit is the
final time and the cost is the motor control. This leads to the following minimization:

min

(
tf +

α

2

∫ tf

0

u(t)2 dt

)
(6)

where α > 0 is a weight to be determined so that the second term is a small perturbation of the
first one, and therefore both terms are minimized.

As soon as the race is sufficiently long (above 1500 m), one notices (see [17] and our numerical
simulations) the existence of a limiting problem where v and f are constant and e is linearly
decreasing. Therefore, it is natural to expect that the turnpike theory of [30] (see also [29]) provides
very accurate estimates for the mean velocity, force and the energy decrease. The turnpike theory
in optimal control stipulates that, under general assumptions, the optimal solution of an optimal
control problem in sufficiently large fixed final time remains essentially constant, except at the
beginning and at the end of the time-frame. We refer the reader to [30] for a complete state-of-
the-art and bibliography on the turnpike theory. Actually, according to [30], due to the particular
symplectic structure of the first-order optimality system derived from the Pontryagin maximum
principle, the optimal state, co-state (or adjoint vector) and optimal control are, except around the
terminal points, exponentially close to steady-states, which are themselves the optimal solutions
of an associated static optimal control problem. In this result, the turnpike set is a singleton,
consisting of this optimal steady-state which is of course an equilibrium of the control system.
This is the so-called turnpike phenomenon. A more general version has recently been derived in
[29], allowing for more general turnpike sets and establishing a turnpike result for optimal control
problems in which some of the coordinates evolve in a monotone way while some others are partial
steady-states. This result applies to our problem and we want to use it to simplify the runner’s
model for potential software applications.

The paper is organized as follows. Firstly, we present numerical simulations of (2)-(3)-(4)-(5)-
(6), then we describe our simplified problem and how to derive it. In Section 4, we study a more
realistic V̇ O2 and in Section 5, the effects of slopes.

2 Numerical simulations

Optimization and numerical implementation of the optimal control problem (2)-(3)-(4)-(5)-(6) are
done by combining automatic differentiation softwares with the modeling language AMPL [13] and
expert optimization routines with the open-source package IpOpt [33]. This allows to solve for the
velocity v, force f , energy e in terms of the distance providing the optimal strategy and the final
time. As advised in [29, 30], we initialize the optimization algorithm at the turnpike solution that
we describe below.

We have chosen numerical parameters to match the real race of 1500 m described in [16] so that
d = 1500. The final experimental time for real runners is 245 s. The runners are middle distance
runners successful in French regional races. Their V̇ O2max is around 66 ml/mn/kg. Because it
is estimated that one liter of oxygen produces an energy of about 21.1 kJ via aerobic cellular
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mechanisms [24], the energetic equivalent of 66 ml/mn/kg is 66×21.1 kJ/mn/kg. Since we need to
express σ, the energetic equivalent of V̇ O2 in SI units, we have to turn the minutes into seconds
and this provides an estimate of the available energy per kg per second which is 66/60×21.1 ' 22.
This leads to a maximum value σ̄ = 22 of σ. From [16], the decrease in V̇ O2 at the end of the
race is of about 10% when the anaerobic energy left is 15%. Therefore, we choose the final value
of σ to be 10% less than the maximal value, that is σf = 20, and γ1 = 0.15. To match the usual

rest value of V̇ O2, we set σr = 6. The other parameters are identified so that the solution of
(2)-(3)-(4)-(5)-(6) matches the velocity data of [16]: γ2 = 566, α = 10−5, Fmax = 8, τ = 0.932,
e0 = 4651, γ = 0.0025, v0 = 3. Let us point out that our model of effort is not appropriate to
describe the very first seconds of the race. Therefore, we choose artificially v0 = 3 which allows,
with our equations, to have a more realistic curve for the very few points, than starting from
v0 = 0. Otherwise, one would need to refine the model for the start.

In [20], the equivalent of α is determined by experimental data. In our case, we have noticed
that, depending on α, either u is negative with a minimum or changes sign with a minimum and a
maximum. Also, when α gets too small, ḟ is almost constant. The choice of α is made such that
the second term of the objective is a small perturbation of the first one, and can act at most on
the tenth of second for the final time.

With these parameters, we simulate the optimal control problem (2)-(3)-(4)-(5)-(6) and plot
the velocity v, the propulsive force f , the motor control u, the energetic equivalent of the oxygen
uptake σ(e), and the anaerobic energy e vs distance in Figure 2. Though they are computed as a
function of time, we find it easier to visualize them as a function of distance. The velocity increases
until reaching a peak value, then decreases to a mean value, before the final sprint at the end of the
race. This is consistent with usual tactics which consist in an even pace until the last 300 m where
the final sprint starts. This final sprint takes place when the function σ(e(t)) starts decreasing.
The function σ is the energetic equivalent of V̇ O2. It increases to its plateau value, then decreases
at the end of the race when the anaerobic supply gets too low. The control u also has a plateau at
the middle of the race leading to a plateau for the force as well. The velocity and force follow the
same profile. The energy is decreasing and almost linear when the velocity and force are almost
constant.

In Figure 2, we point out that we obtain an almost steady-state in the central part of the race
for the motor control, the force and the velocity. We find from Figure 2 the central value for the
motor control uturn = 4.26, the force fturn = 6.48 and the velocity vturn = 6.04. We want to
analyze this limit analytically. We will also try to construct local models for the beginning and
end of the race.

3 Main results using turnpike estimates

The optimal control problem (2)-(3)-(4)-(5)-(6) involves a state variable, namely, the energy e(t),
which goes from e0 to 0, and thus has no equilibrium. The turnpike theory has been extended in
[29] to this situation when the steady-state is replaced by a partial steady-state (namely, v and f
are steady), and e(t) is approximated by an affine function satisfying the imposed constraints e0 at
initial time and 0 at final time. In what follows, we denote the approximating turnpike trajectory
with an upper bar, corresponding to a constant function σ(e) = σ̄. More precisely, we denote
by t 7→ (v̄c, ēc(t), f̄c) the turnpike trajectory defined on the interval [0, t̄c] so that v̄c and f̄c are
steady-states (equilibrium of the control dynamics (2)-(3)-(4)) with v̄c = f̄cτ , and ēc(t) is affine:

˙̄ec(t) = σ̄ − f̄cv̄c
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and satisfies the terminal constraints ēc(0) = e0 and ēc(t̄c) = 0, while d = v̄ct̄c. Integrating yields

v̄2
c

τ
− σ̄ = e0 v̄c

d
. (7)

The mean velocity v̄c can be solved from (7) to get

v̄c =
e0τ

2d
+

√
σ̄τ +

(
e0τ

2d

)2

. (8)

We observe that the value of v̄c increases with e0, τ (which is the inverse of friction) and σ̄, but is
not related to the maximal force. Indeed, the maximal propulsive force controls the acceleration
at the beginning and end of the race, but not the mean velocity in the middle of the race. In the
case of our simulations, v̄c = 6.2 which is slightly overestimated with respect to the simulation
value vturn = 6.04.

We next elaborate to show how the turnpike theory can be applied to the central part of the
race where σ is constant and allows to derive very accurate approximate solutions.

If one takes into account the full shape of σ(e), made up of three parts, then the velocity curve
is made up of three parts. In the rest of the paper, we will derive the following approximation for
the velocity:

v(t) =


v0e

−t/τ +

(
vmax +

t

t1
(v̄ − vmax)

)
(1− e−t/τ ) if 0 6 t 6 t1,

v̄ if t1 6 t 6 t2,

τFmax

1 + (Fmax/f̄ − 1)e−γλFmax(t−t2)
if t2 6 t 6 tf .

(9)

The parameters appearing in the formula are defined as follows: v0 is the initial velocity in (3), v̄
is obtained as the positive root that is bigger than

√
σ̄τ of

d =
v̄γ2

v̄2

τ − σr
+ v̄

e0(1− γ1)− γ2

v̄2

τ − σ̄
+

v̄e0γ1

v̄2

τ − σf
, (10)

t1 is given by

t1 =
γ2

v̄2

τ − σr
, (11)

vmax = f0τ , where f0 is the positive root of the trinomial∫ t1

0

(
f0 + t

v̄/τ − f0

t1

)(
v0e

−t/τ +

(
τf0 + t

v̄ − τf0

t1

)
(1− e−t/τ )

)
e
σ̄−σr
γ2

(t−t1) dt

= γ2 +
σrγ2

σ̄ − σr

(
1− e−

σ̄−σr
γ2

t1
)

; (12)

from this, we compute d1 =
∫ t1

0
v(t) dt. We define d̄ = e0(1−γ1)−γ2

v̄2

τ −σ̄
, the length of the turnpike, and

∆tend =
d− d1 − d̄

v̄
; (13)

6



λ is chosen such that, if A = σ̄−σr
γ1e0

, then there is an L2 estimate for the velocity at the end of the
race: ∫ ∆tend

0

(
τFmax

(1 + (Fmax/f̄ − 1)e−γλFmaxt)

)2

e−At dt = τ
σf
A

(1− e−A∆tend) + τγ1e
0; (14)

moreover, the time t2 is defined so that

t2 − t1 =
1

v̄

(
d−

∫ t1

0

v(t) dt−
∫ ∆tend

0

τFmax

1 + (Fmax/f̄ − 1)e−γλFmaxt
dt

)
. (15)

and tf = t2 + ∆tend.

Let us explain the general meaning of these computations. Equation (10) is based on the
hypothesis that v and f are constant values and uses the shape of σ and the energy equation to
compute the duration and length of each phase. From the first phase, we derive the value of t1
in (11). Then we compute the initial force that corresponds to the correct energy expenditure
in the first phase through (12). This provides, through the integral of the velocity the distance
d1 of the first phase. We next approximate the distance and time of the last phase using the
distance and time of turnpike through (13). Once we have the duration of the last phase, we again
match the energy expenditure in (14). This provides the velocity profile of the last phase and
therefore the distance of the last phase. In order to match the total distance, we have to slightly
modify the length of the central turnpike part in (15). From the computational viewpoint, these
steps correspond to the first successive approximations in the Newton-like solving of a system of
nonlinear equations.

The velocity curve (9) goes from the initial velocity v0 to a maximum velocity, then down to
v̄, which is the turnpike value. At the end of the race, the velocity increases to the final velocity.
This type of curve is quite consistent with velocity curves in the sports literature, see for instance
[12, 15], and with our simulations illustrated in Figure 2.

We see that t1 increases with γ2, while tf − t2 increases with γ1.
For the values of parameters of Section 2, we find from (10) that v̄ = 6.06, which is to be

compared to the value in Figure 2, vturn = 6.04. Then from (11) t1 = 16.95, from (12) that
f0 = 8.2, d1 = 111.84. We deduce from (13) ∆tend = 34.42, from (14), λ = 0.39, from (15)
t2 = 210.76, tf = 245.19 (very close to the 244 s obtained in the numerical simulation in Figure 2
and to the experimental value of 245 s) and we find vf = 6.33 at the final time. We point out that
in the turnpike region, this yields f̄ = v̄/τ = 6.5 and ū = f̄/(Fmax − f) = 4.34, very close to the
values in Figure 2, fturn = 6.48 and uturn = 4.26.

We have illustrated in Figure 3 the approximate solution (9) together with the numerical
solution of the full optimal control problem (2)-(3)-(4)-(5)-(6). We see that the duration of the
initial phase is slightly underestimated, while the duration of the final phase is very good. The
estimate of the sprint velocity at the end is also very good. Note that the simulation of the full
optimal control problem produces a decrease of velocity at the very end of the race which is not
captured by our approximation, but this changes very slightly the estimate on tf − t2 or on the
sprint velocity at the end and is not meaningful for a runner, so we can safely ignore it for our
approximations.

The advantage of formulation (9) is that if we have velocity data of a runner on a race, and have
access to his V̇ O2max, that is σ̄, then we can infer the values of all the physiological parameters:
from the velocity curve at the beginning, we can determine τ and vmax. The value of v̄ and (8)
yield e0. From the values of t1 and t2, we deduce γ1 and γ2. In order to have more precise values,
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we can always perform an identification of the parameters using the full numerical code, but from
these approximate values, we have enough information to determine the runner’s optimal strategy
on other distances.

The rest of the section is devoted to deriving (9).

3.1 Central turnpike estimate

In the central part of the race, σ(e) = σ̄ is constant. Therefore in this part, when e(t) is between
e0 − γ2 and γ1e

0, we can apply the turnpike theory of [29]. Then we have v(t) ' v̄, f(t) ' f̄ ,
u(t) ' ū with

f̄ =
v̄

τ
, ū =

f̄

Fmax − f̄
.

We have to integrate

˙̄e(t) = σ(ē(t))− v̄2

τ
, ē(t1) = e0 − γ2 ē(t2) = γ1e

0.

We find

e0(1− γ1)− γ2 = (t2 − t1)

(
v̄2

τ
− σ̄

)
.

This is consistent with (7) which is the same computation but on the whole interval, that is with
γ1 = γ2 = 0. The value for t2 − t1 is 194.64.

As a first approximation, we can assume that on the two extreme parts of the race, v and f
can be taken to be constants. We will see below why this assumption is reasonable. Therefore we
can solve

˙̄e(t) = σ(ē(t))− v̄2

τ
ē(0) = e0, ē(t1) = e0 − γ2, ē(t2) = γ1e

0, e(t̄) = 0.

Therefore, t̄ is the final time of the turnpike trajectory defined by ē(t̄) = 0. The initial and final
parts of the race produce exponential terms, namely

σ̄ − σr
v̄2

τ − σr
= 1− e−

(σ̄−σr)t1
γ2 and

σ̄ − σf
v̄2

τ − σf
= 1− e−

(σ̄−σf )(t̄−t2)

e0γ1 . (16)

Therefore, for the total distance d, we find, summing our estimates,

t̄ =
d

v̄
=
e0(1− γ1)− γ2

v̄2

τ − σ̄
− γ2

σ̄ − σr
ln

(
1− σ̄ − σr

v̄2

τ − σr

)
− e0γ1

σ̄ − σf
ln

(
1− σ̄ − σf

v̄2

τ − σf

)
. (17)

If the initial and final parts are not too long, then (16) can be approximated by

t1 '
γ2

v̄2

τ − σr
and t̄− t2 '

e0γ1

v̄2

τ − σf
(18)

and therefore, from (17), v̄ can be approximated by (10). For the values of parameters of Section
2, (10) yields v̄ = 6.06. The intermediate times can be computed from (18): t2 = 35.96 s and
t1 = 16.95 s. This also yields the distances of each part by multiplying by v̄. In the following, we
will keep this value of t1 but improve the estimate for t2.
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Note that this turnpike calculation can be used the other way round: if one knows the mean
velocity, d, τ and σ̄, it yields an estimate of the energy e0 used while running, as well as the aerobic
part which is σ̄d/v̄.

The next step is to identify reduced problems for the beginning (interval (0, t1)) and end of the
race (interval (t2, t̄)). The two are not totally equivalent since at the beginning we have an initial
condition for the velocity v whereas on the final part the final velocity is free.

3.2 Estimates for the beginning of the race

The problem is to approximate the equations for v, f , e with boundary conditions

v(0) = v0, v(t1) = v̄, f(t1) = f̄ , e(0) = e0, e(t1) = e0 − γ2.

Here, f(0) is free.
We integrate the energy equation and find∫ t1

0

f(t)v(t) dt =

∫ t1

0

(ė(t)− σ(e(t))) dt.

In this regime, σ(e) is linear, and this equation can be integrated explicitly. Indeed, let A = σ̄−σr
γ2

,
then

− γ2 =
σrγ2

σ̄ − σr
(1− e−At1)− e−At1

∫ t1

0

f(t)v(t)eAt dt. (19)

Because we are in a regime of parameters where At is small, we can expand the exponential terms.
The approximation which consists in assuming that the integral of fv can be approximated by the
mean value of fv is good, and therefore this justifies the turnpike estimate of the previous section
and this yields the estimate (11) of t1.

Now let us assume t1 is prescribed. If we fix the interval (0, t1), we have the equations for v
and f with

v(0) = v0, v(t1) = v̄, f(0) = f0, f(t1) = f̄ . (20)

Here f0 is unknown and we want to minimize the motor control only. For this part, we can
assume that the minimization of the motor control leads to a linear function f as explained in the
Appendix. Therefore, f(t) = f0+t(f̄−f0)/t1 and v(t) = v0e

−t/τ +τf(t)(1−e−t/τ ) to approximate
(3). We plug this into (19) and then we find that f0 is a solution of (12). This can be integrated
analytically or numerically to determine f0. In our case, f0 = 8.2. This yields the first line of (9)
with vmax = τf0.

3.3 End of the race

Once the beginning and central part of the race are determined, the duration of the end of the
race is determined so that the prescribed distance d is run through (13).

The problem describing the end of the race consists in solving the equations for v, f , e on the
interval (t2, tf ) with initial and final values

v(t2) = v̄, f(t2) = f̄ , e(t2) = γ1e
0, e(tf ) = 0. (21)

This yields the simulation in Figure 4. We observe that f(t) and v(t)/τ are very close, as expected.
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In the following, we will assume that v̇ is negligible in front of v/τ , so that v ' fτ , which
removes an equation. Then using the specific shape of σ, the energy equation becomes, denoting
A =

σ̄−σf
e0γ1

' 0.0028,

eA(t−t2) d

dt

(
e(t)e−A(t−t2)

)
= σf − τf(t)2.

Then we need to integrate this energy equation and find

τ

∫ tf

t2

f(t)2e−A(t−t2) dt =
σf
A

(1− e−A(tf−t2)) + γ1e
0. (22)

The reduced optimal control problem for the end of the race is therefore

min

∫ tf

t2

u(t)2 dt

ḟ(t) = γ(u(t)(Fmax − f(t))− f(t))

f(t2) = f̄ , τ

∫ tf

t2

f(t)2e−A(t−t2) dt =
σf
A

(1− e−A(tf−t2)) + γ1e
0.

(23)

This problem can be kept as the full problem for the end of race. It provides a solution which
is very close to that of Figure 4. Otherwise, one can try to reduce further the problem to have
a simple expression for the velocity. In [20], an approximation for such a problem by a sigmoid
function is used. In our case, as computed in the Appendix, this yields the following sigmoid

f(t) =
Fmax

1 + (Fmax/f̄ − 1)e−γλFmax(t−t2)
(24)

where λ is chosen such that the L2 norm of f satisfies condition (22). Then, since v = τf , this
provides the final estimate for the velocity. This estimate yields an increasing velocity at the end
of the race. It does not capture the short decrease at the very end of the race. But this changes
very slightly the estimate on tf − t2 or on the sprint velocity at the end and is not meaningful for
a runner, so we can safely ignore it for our approximations.

Once we have this final approximation for the velocity, we have to match the length of the
turnpike central phase so that the integral of v is exactly d, which yields (15). This reduces very
slightly the turnpike phase from 194.64 seconds to 193.81 seconds for our simulations.

Our distance is made up of 3 parts: the turnpike distance which is totally determined by γ1

and γ2 and the distance run in the initial and final parts. Of course, since the sum is prescribed,
only one of the two is free. So for instance, in the final phase if we determine the duration of
this final phase by some estimate like above, the initial phase has to match the total distance, but
nevertheless is safely estimated from the turnpike.

4 Comparison with a real 1500 m

The runners’ oxygen uptake was recorded in [16] by means of a telemetric gas exchange system.
This allowed to observe that the V̇ O2 reached a peak in around 450 m from start, with a significant
decrease between 450 and 550 meters. Then the V̇ O2 remained constant for 800 meters, before a
decrease of 10% at the end of the race. To match more precisely the V̇ O2 curve of [16], we add
an extra piece to the curve of σ, before the long mean value σ̄: after the initial increase, there is a
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local maximum before decreasing to the constant turnpike value:

σ(e) =



σ̄
e

e0γ1
+ σf

(
1− e

e0γ1

)
if

e

e0
< γ1

σ̄ if γ1 6
e

e0
6 γ+

σ̄ + 0.8
e− γ+e

0

e0 − γ2 − γ+e0
if

e

e0
> γ+ and e0 − e > γ2

(σ̄ + 0.8− σr)
e0 − e
γ2

+ σr if e0 − e < γ2

We take roughly the same parameters as before except for γ2 = 2000 and γ+ = 1−γ2/e
0−400/e0.

The others are σr = 6, σf = 20, σ̄ = 22, γ1 = 0.15, Fmax = 8, τ = 1.032, e0 = 4651, γ = 0.0025,
v0 = 1. Then we see in Figure 5 that the velocity has a local minimum in the region where σ has
a local maximum,which matches exactly the velocity profile in [16]. Small variations in σ always
provide variations in the velocity profile with the opposite sense.

It is well known that successful athletes in a race are not so much those who speed up a lot
at the end but those who avoid slowing down too much . We have noticed that if the maximal
force at the beginning of the race is too high, then the velocity tends to fall down at the end of
the race, leading to a bad performance. For a final in a world competition, it is observed in [15]
that the best strategy is J-shaped, which means reaching maximal speed at the end of the race.
But this is not available to all athletes. The runners profile of these simulations are not world
champions but only successful in French regional races. Therefore, their pacing strategy is either
U-shaped (the start and the finish are quicker) or reverse J-shaped (greater starting pace). This
is very dependent on the relative values of running economy τ , anaerobic energy e0 and profile of
V̇ O2. Moreover, top runners use pace variation according to laps as their winning tactics [5], but
this is not active on the level of runners we have analyzed in this paper.

5 Running uphill or downhill

Our model also allows to deal with slope or ramps. Indeed, one has to change the Newton law of
motion to take into account a dependence on the slope β(x) at distance x from the start, which is
the cosine of the angle. If we denote by g the gravity, the velocity equation changes into

v̇(t) = −v(t)

τ
+ f(t)− gβ(x(t)).

If the track goes uphill or downhill with a constant rate δ, then in the turnpike estimate, this
becomes

v̄ = τ f̄ − gτδ

where δ is positive when the track goes up and negative when it goes down. If the slope is constant
for the whole race, the turnpike estimate can be computed.

If we assume a slope β(x) which is constant equal to δ, the new turnpike estimate is

v̄ =
(e0 − dgδ)τ

2d
+

√
σ̄τ +

(
(e0 − dgδ)τ

2d

)2

.

11



If the slope is small, one can make an asymptotic expansion in terms of δ to find the difference in
velocity

4v = −gδτ

1

2
+

1√
τ̄
4 + σ̄

(
d
e0

)2
 .

But if the slope is constant for a small part of the race, then the variation of velocity cannot be
computed locally because the whole mean velocity of the race is influenced by a local change of
slope as we will see in the last part of the paper.

Nevertheless, because the energy is involved, a change of slope, even locally implies a change of
the turnpike velocity on the whole race. We have chosen to put slopes and ramps of 3% for 300 m.
We see in Figure 6 that without slope we have an intermediate turnpike value, but with a slope or
ramp even only for 300 m, the whole turnpike velocity is modified.

To illustrate further the slope effect, we have put a periodic slope and ramp of 200 m between
300 m and 1200 m. We use the same parameters as in the previous section. We see in Figure 7 that
the turnpike velocity is affected. When going down, a runner speeds at the end of the ramp, but
his velocity has a local maximum at the middle of the ramp. Similarly, it has a local minimum at
the middle of the slope. The variations in velocity are very small since they are of order of a few
percents. But this allows to understand that slopes and ramps are not local perturbations on the
pacing profile.

6 Conclusion

We have provided a model for pace optimization. This involves a control problem in order to use
the maximal available propulsive force and energy to produce the optimal running strategy and
minimize the time to run and the motor control. For sufficiently long races (above 1500 m), the
optimal strategy is well approximated by a turnpike problem that we describe. Simplified estimates
for the peak velocity and velocity profiles related to aerobic, anaerobic energy and effect of the
motor control are obtained and fit the simulations. The effect of the parameters and slope and
ramps are analyzed. The potential applications of this turnpike theory would be to derive a simpler
model for pacing strategy that could be encompassed in a running app. Indeed, the advantage of
our simplified formulation for the velocity is that if we have velocity data of a runner on a race,
and have access to his V̇ O2max, then we can infer the values of all the physiological parameters
and therefore predict his optimal strategy on a fixed distance.

Appendix: Simplified motor control problem

We want to study the simplified optimal control problem

min

∫ T

0

u(t)2 dt

ḟ(t) = γ(u(t)(Fmax − f(t))− f(t)) f(0) = f̄ and

∫ T

0

f(t)2e−At dt = α,

related to the one in [20] where there is no condition on the L2 norm of f but a final condition on

f(T ) = F and a cost
∫ T

0
u2−kF . In our case, we want to estimate f(T ) in terms of the parameters.

12



The corresponding simplified problem for the beginning of the race is

min

∫ T

0

u(t)2 dt

ḟ(t) = γ(u(t)(Fmax − f(t))− f(t)) f(T ) = f̄ and

∫ T

0

f(t)2e−At dt = α,

where we want to estimate f(0) and understand why f(t) is almost linear. Actually, at the

beginning of the race the integral constraint would rather be of the form
∫ T

0
f(t)v(t) dt = α but

this does not change the arguments developed hereafter.
Because of the integral constraint on f , the above problem can be equivalently rewritten as

min

∫ T

0

u(t)2 dt

ḟ(t) = γ(u(t)(Fmax − f(t))− f(t)) f(T ) = f̄ ,

ẏ(t) = f(t)2e−At y(0) = 0, y(T ) = α.

(25)

Let us apply the Pontryagin maximum principle to the optimal control problem (25) (see [21, 25,
28]). Denoting by pf and py the co-states associated, respectively, to the states f and y, the
Hamiltonian of the problem is

H = pfγ(u(Fmax − f)− f) + pyf
2e−At − 1

2
u2. (26)

The condition ∂H
∂u = 0 yields u = pfγ(Fmax − f). Therefore, the equation for ḟ can be rewritten

as
ḟ = γ

(
pfγ(Fmax − f)2 − f

)
. (27)

In order to estimate the solutions, we can assume that pf is not far from a constant which allows
an explicit integration of (27). Indeed the equation pfγ(Fmax − f)2 − f = 0 has two roots f1 and
f2 and the solution of (27) is thus the sigmoid function

f(t) = f2 +
f1 − f2

1− f̄−f1

f̄−f2
eµ(t−T )

(28)

with µ = pfγ
2(f1 − f2). This allows to compute f(0). Furthermore, if one approximates eµ(t−T )

by 1 + µ(t− T ), then

f(t) ' f̄ (f̄ − f2)(f̄ − f1)

f1 − f2
µ(t− T )

which is the linear approximation we have made for the first part of the race.
For the end of the race, the problem is similar except that it is an initial condition f(0) = f̄

and we look for a final estimate on f(T ). A similar computation leads to the equivalent of (28)
which is the sigmoid function

f(t) = f2 +
f1 − f2

1− f̄−f1

f̄−f2
eµt

, (29)

which can also be rewritten as (24).
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Figure 2: Velocity v, force f , energetic equivalent of the oxygen uptake σ(e), motor control u
and energy e vs distance on a 1500 m. All functions (except e) display a plateau in the middle
of the race corresponding to the turnpike phenomenon, except the energy which is affine. In this
numerical simulation, the duration of the race is 244 s.
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Figure 3: Velocity v as a solution of the simulation (blue) of (2)-(3)-(4)-(5)-(6) and approximate
solution given by (9) (red).
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Figure 4: Velocity and force solving the equations for v, f , e on the interval (t2, tf ) with initial
and final values (21). The force f(t) is compared to the value v(t)/τ .

18



Figure 5: Modified σ in four pieces and optimal velocity vs distance for a 1500 m.
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Figure 6: Velocity vs distance for a 1500 m, on a flat track (red), on a track with a 3% slope
between 700 m and 1000 m (orange) and on a track with a 3% ramp between 700 m and 1000 m
(blue).
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Figure 7: Slope, velocity, zoom on the velocity and force for a 1500 m with slopes and ramps.
There is a slope of 2% between 400 m and 600 m and then between 800 m and 1000 m. There is a
ramp of 2% between 600 m and 800 m and then between 1000 m and 1200 m.
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