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Abstract

The marginal expected shortfall is an important risk measure in finance and actuarial
science, which has been extended recently to the case where the random variables of main
interest are observed together with a covariate. This leads to the concept of conditional
marginal expected shortfall for which an estimator is proposed allowing extrapolation out-
side the data range. The main asymptotic properties of this estimator have been established,
using empirical processes arguments combined with the multivariate extreme value theory.
The finite sample behavior of the proposed estimator is evaluated with a simulation experi-
ment, and the practical applicability is illustrated on vehicle insurance customer data.

Keywords: Conditional marginal expected shortfall, extrapolation, Pareto-type distribu-
tion.

1 Introduction

A central topic in actuarial science and finance is the quantification of the risk of a loss variable.
This is done by risk measures, the most basic among them is the Value-at-Risk (VaR), defined
as the p´quantile of a loss variable Y :

Qppq :“ infty : FY pyq ě pu, p P p0, 1q,

where FY denotes the distribution function of Y . We refer to Jorion (2007) for a review. The
main drawbacks of VaR are that it does not take the loss above this p´quantile into consideration
and it is not a coherent risk measure (Artzner et al., 1999). Recently, the conditional tail
expectation (CTE), defined as

CTEppq “ EpY |Y ą Qppqq, p P p0, 1q,

became a popular alternative to Value-at-Risk. It is more conservative than VaR and it is also
a coherent risk measure. This measure has been extensively studied in the literature, see, e.g.,
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Artzner et al (1999), Cai and Tan (2007) and Brazaukas et al. (2008). The conditional tail
expectation has also been extended to the multivariate context, leading to the concept of the
marginal expected shortfall (MES). For a pair of risk factors pY p1q, Y p2qq, the marginal expected
shortfall is defined as

θp “ EpY p1q|Y p2q ą Q2p1´ pqq, p P p0, 1q,

where Q2 denotes the quantile function of risk factor Y p2q. This measure was introduced by
Acharya et al. (2010), to measure the contribution of a financial firm to an overall systemic
risk. For a financial firm, the MES is defined as its short-run expected equity loss conditional on
the market taking a loss greater than its VaR. Cai et al. (2015) studied the MES in a bivariate
extreme value framework, and proposed an estimator for it when the Y p2q quantile is extreme,
i.e., when p ă 1{n, where n is the sample size, leading to extrapolations outside the data range.
We also refer to Landsman and Valdez (2003), Cai and Li (2005), Bargès et al. (2009), Cousin
and Di Bernardino (2013), Di Bernardino and Prieur (2018), Das and Fasen-Hartmann (2018,
2019).

Recently, Goegebeur et al. (2020) have considered the estimation of the marginal expected
shortfall, but this time in case where the random variables of main interest pY p1q, Y p2qq are
recorded together with a random covariate X P Rd. This leads to the concept of conditional
marginal expected shortfall, given X “ x0, and defined as

θppx0q “ E
”

Y p1q
ˇ

ˇ

ˇ
Y p2q ě QY p2q

´

1´ p
ˇ

ˇ

ˇ
x0

¯

;X “ x0

ı

.

Note that in the financial and actuarial setting where risk measures and in particular MES have
been introduced, one is often interested in positive risk factors. Thus, in the sequel, we consider
the case where Y p1q and Y p2q are positive. The extension to the case of a real-valued Y p1q is
complicated and this topic is moreover also an open problem in the much simpler case where
there are no covariates, but it will lead to further investigations.

In the sequel, we will denote by Fjp¨|xq the continuous conditional distribution function of
Y pjq, j “ 1, 2, given X “ x, and use the notation F jp¨|xq for the conditional survival function
and Ujp¨|xq for the associated tail quantile function defined as Ujp¨|xq “ infty : Fjpy|xq ě 1´1{¨u.
Also, we will define by fX the density function of the covariate X and by x0 a reference position
such that x0 P IntpSXq, the interior of the support SX Ă Rd of fX , which is assumed to

be non-empty. Considering pY
p1q
i , Y

p2q
i , Xiq, i “ 1, . . . , n, independent copies of pY p1q, Y p2q, Xq,

Goegebeur et al. (2020) proposed for the situation where the conditional distribution functions
of Y p1q and Y p2q given X “ x are of Pareto-type the following nonparametric estimator for
θk{npx0q

θ k
n
px0q :“

1
k

řn
i“1Khnpx0 ´XiqY

p1q
i 1l

tY
p2q
i ěpU2pn{k|x0qu

pfnpx0q
,

where Khnp.q :“ Kp.{hnq{h
d
n, with K a joint density function on Rd, k an intermediate sequence

such that k Ñ8 with k{nÑ 0, hn a positive non-random sequence of bandwidths with hn Ñ 0
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if n Ñ 8, 1lA the indicator function on the event A, and pfnpx0q :“ p1{nq
řn
i“1Khnpx0 ´ Xiq

is a classical kernel density estimator. Here, pU2p.|x0q is an estimator for U2p.|x0q, defined as
pU2p.|x0q :“ infty : pFn,2py|x0q ě 1´ 1{.u where

pFn,2py|x0q :“

1
n

řn
i“1Khnpx0 ´Xiq1ltY p2qi ďyu

pfnpx0q
. (1)

The asymptotic behavior of θk{npx0q has been established by Goegebeur et al. (2020) and is
recalled in Theorem 5.1 in Section 5. Due to the conditions k, n Ñ 8 with k{n Ñ 0, the
Y p2q-quantile is intermediate, and thus the estimator θk{npx0q cannot be used for extrapolation

outside the Y p2q-data range. Extrapolation is relevant for practical data analysis, since often
we want to go beyond the range of the available data. With a classical empirical estimator like
θppx0q where p ă 1{n this is not possible, as it would always lead to the trivial estimate of zero.
The aim of this paper is to solve this issue and to define a new estimator which allows extrap-
olation and thus which is valid for p ă 1{n. This requires the intermediate estimator θk{npx0q

but also an estimator for the conditional extreme value index of the distribution of Y p1q given
X “ x0. Since we need to consider θk{npx0q and the conditional tail index estimator jointly, we
introduce a conditional tail index estimator, and we analyse it in terms of an empirical process,
related to the process needed in the analysis of θk{npx0q. Note that in Girard et al. (2021) a tail
index estimator is proposed in a location-scale model, and it is analysed with a tail empirical
process of residuals.

The Value-at-Risk and conditional tail expectation mentioned above have also been studied in
an extreme value framework with random covariates. As for the estimation of extreme condi-
tional quantiles we refer to Daouia et al. (2011, 2013). In El Methni et al. (2014), for the
framework of heavy-tailed distributions, the conditional tail expectation was generalised to the
conditional tail moment, and estimators were introduced for the situation where the variable of
main interest Y was observed together with a random covariate X. This work was extended to
the general max-domain of attraction in El Methni et al. (2018).

The remainder of the paper is organized as follows. In Section 2, we introduce our estimator
for the conditional marginal expected shortfall allowing extrapolation and we establish its main
asymptotic properties. The efficiency of our estimator is examined with a small simulation
study in Section 3. Finally, in Section 4 we illustrate the performance of our estimator on
vehicle insurance customer data. Some preliminary results are given in Section 5, whereas the
proofs of the main results are postponed to Section 6.

2 Estimator and asymptotic properties

We assume that Y p1q and Y p2q are positive random variables, and that they follow a conditional
Pareto-type model. Let RVψ denote the class of regularly varying functions at infinity with
index ψ, i.e., positive measurable functions f satisfying fptxq{fptq Ñ xψ, as t Ñ 8, for all
x ą 0. If ψ “ 0, then we call f a slowly varying function at infinity.
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Assumption pDq For all x P SX , the conditional survival function of Y pjq, j “ 1, 2, given
X “ x, satisfies

F jpy|xq “ Ajpxqy
´1{γjpxq

ˆ

1`
1

γjpxq
δjpy|xq

˙

,

where Ajpxq ą 0, γjpxq ą 0, and |δjp.|xq| is normalized regularly varying at infinity with index
´βjpxq, βjpxq ą 0, i.e.,

δjpy|xq “ Bjpxq exp

ˆ
ż y

1

εjpu|xq

u
du

˙

,

with Bjpxq P R and εjpy|xq Ñ ´βjpxq as y Ñ 8. Moreover, we assume y Ñ εjpy|xq to be a
continuous function.

Clearly, Assumption pDq implies that Ujp¨|xq, j “ 1, 2, satisfy

Ujpy|xq “ rAjpxqs
γjpxq yγjpxq p1` ajpy|xqq , (2)

where ajpy|xq “ δjpUjpy|xq|xqp1` op1qq, and thus |ajp.|xq| P RV´βjpxqγjpxq.

Now, to estimate θppx0q it is required to impose an assumption on the right-hand upper tail
dependence of pY p1q, Y p2qq, conditional on a value of the covariate X. Let Rtpy1, y2|xq :“
tPpF 1pY

p1q|xq ď y1{t, F 2pY
p2q|xq ď y2{t|X “ xq.

Assumption pRq For all x P SX we have as tÑ8

Rtpy1, y2|xq Ñ Rpy1, y2|xq,

uniformly in y1, y2 P p0, T s, for any T ą 0, and in x P Bpx0, rq, for some r ą 0.

Assuming pDq with γ1px0q ă 1 and pRq, one can show (see Cai et al., 2015, Proposition 1) that

lim
pÑ0

θppx0q

U1p1{p|x0q
“ ´

ż 8

0
Rps, 1|x0qds

´γ1px0q,

from which the following approximation can be deduced

θppx0q „
U1p1{p|x0q

U1pn{k|x0q
θ k
n
px0q „

ˆ

k

np

˙γ1px0q

θ k
n
px0q.

Thus, to estimate θppx0q, we need first to estimate γ1px0q. We propose the following estimator

pγ1,k1px0q :“

1
k1

řn
i“1Khnpx0 ´Xiq

´

lnY
p1q
i ´ ln pU1pn{k1|x0q

¯

1l
tY
p1q
i ěpU1pn{k1|x0qu

pfnpx0q
, (3)

based on an intermediate sequence k1 such that k1 Ñ8 with k1{nÑ 0. This sequence may be
different from k, the one used in the estimator θ k

n
px0q, but the two sequences are linked together
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(see Theorem 2.2 below). On the contrary, for convenience, we use the same bandwidth hn and
kernel K for both the estimation of γ1px0q and θppx0q. Note that pγ1,k1px0q is a local version of
the Hill estimator (Hill, 1975) from the univariate extreme value context. The extreme value lit-
erature contains several alternative estimators for the conditional tail index. We refer to Gardes
and Girard (2008), Daouia et al. (2011), Dierckx et al. (2014) and Goegebeur et al. (2014b) for
conditional tail index estimators in the framework of Pareto-type distributions, and to Daouia
et al. (2013), Stupfler (2013) and Goegebeur et al. (2014a) for conditional tail index estimators
that work in the broader general max-domain of attraction.

Now, we are able to define a Weissman-type estimator for θppx0q, given by

pθppx0q “

ˆ

k

np

˙

pγ1,k1 px0q

θ k
n
px0q.

Our aim in this paper is to establish the asymptotic behavior of pθppx0q, which requires the asymp-
totic behavior of pγ1,k1px0q in terms of the process on which the estimator θ k

n
px0q is based on (see

Theorem 5.1 in Section 5). To reach this goal, some assumptions due to the regression context
are required. In particular, fXp.q, Rpy1, y2|.q and the functions appearing in F jpy|.q, j “ 1, 2,
are assumed to satisfy the following Hölder conditions. Let }.} denote some norm on Rd.

Assumption pHq There exist positive constants MfX , MR, MAj , Mγj , MBj , Mεj , ηfX , ηR,
ηAj , ηγj , ηBj , ηεj , where j “ 1, 2, and β ą γ1px0q, such that for all x, z P SX :

|fXpxq ´ fXpzq| ď MfX }x´ z}
ηfX ,

sup
y1ą0, 1

2
ďy2ď2

|Rpy1, y2|xq ´Rpy1, y2|zq|

yβ1 ^ 1
ď MR}x´ z}

ηR ,

|Ajpxq ´Ajpzq| ď MAj}x´ z}
ηAj ,

|γjpxq ´ γjpzq| ď Mγj}x´ z}
ηγj ,

|Bjpxq ´Bjpzq| ď MBj}x´ z}
ηBj ,

and

sup
yě1

|εjpy|xq ´ εjpy|zq| ď Mεj}x´ z}
ηεj .

We also impose a condition on the kernel function K, which is a standard condition in local
estimation.

Assumption pKq K is a bounded density function on Rd, with support SK included in the unit
ball in Rd, with respect to the norm }.}.

Our first aim, now, is to show the weak convergence, denoted  , of the process based on
pγ1,k1px0q, but in terms of the same process as the one used in Theorem 2.3 from Goegebeur et
al. (2020).
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Theorem 2.1 Assume pDq, pHq, pKq, x0 P IntpSXq with fXpx0q ą 0, and y Ñ F1py|x0q,
is strictly increasing. Consider sequences k1 Ñ 8 and hn Ñ 0 as n Ñ 8, in such a way
that k1{n Ñ 0, k1h

d
n Ñ 8, h

ηε1
n lnn{k1 Ñ 0,

a

k1hdn h
ηfX^ηA1
n Ñ 0,

a

k1hdn h
ηγ1
n lnn{k1 Ñ 0,

a

k1hdn|δ1pU1pn{k1|x0q|x0q| Ñ 0. Then we have,

b

k1hdn ppγ1,k1px0q ´ γ1px0qq 
γ1px0q

fXpx0q

„
ż 1

0
W pz,8q

1

z
dz ´W p1,8q



,

where W pz,8q is a zero centered Gaussian process with covariance function

EpW pz,8qW pz,8qq “ }K}22fXpx0q pz ^ zq ,

with }K}2 :“
b

ş

Rd K
2puqdu.

Note that the variance of the limiting distribution of pγ1,k1px0q, after normalization, is given
by γ2

1px0q}K}
2
2{fXpx0q, compared to an asymptotic variance of γ2

1 for the Hill estimator in the
univariate context.

Before stating the weak convergence of pθppx0q, we need to introduce a second order condition,
usual in the extreme value context.

Assumption pSq. There exist β ą γ1px0q and τ ă 0 such that, as tÑ8

sup
xPBpx0,rq

sup
y1ą0, 1

2
ďy2ď2

|Rtpy1, y2|xq ´Rpy1, y2|xq|

yβ1 ^ 1
“ Optτ q,

for some r ą 0.

Our final result is now the following.

Theorem 2.2 Assume pDq, pHq, pKq, pSq with x Ñ Rpy1, y2|xq being a continuous function,
and y Ñ Fjpy|x0q, j “ 1, 2, are strictly increasing. Let x0 P IntpSXq such that fXpx0q ą 0.
Consider sequences k “ tnα`1pnqu, k1 “ tnα1`2pnqu and hn “ n´∆`3pnq, where `1, `2 and `3 are
slowly varying functions at infinity, with α P p0, 1q and

α ď α1 ă min

ˆ

α

d
rd` 2 pηfX ^ ηA1 ^ ηγ1qs ,

α` 2γ1px0qβ1px0q

1` 2γ1px0qβ1px0q

˙

,

and

max

ˆ

α

d` 2γ1px0qpηR ^ ηA1 ^ ηγ1q
,

α

d` 2p1´ γ1px0qqpηA2 ^ ηγ2 ^ ηB2 ^ ηε2 ^ ηfX q
,

α

d
´

2p1´ αqγ2
1px0qβ1px0q

d` dpβ1px0q ` εqγ1px0q
,
α´ 2p1´ αqpγ1px0q ^ pβ2px0qγ2px0qq ^ p´τqq

d
,

α1

d` 2 pηfX ^ ηA1 ^ ηγ1q
,
α1 ´ 2p1´ α1qγ1px0qβ1px0q

d

¯

ă ∆ ă
α

d
.
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Then, for γ1px0q ă 1{2 and p satisfying p ď k
n such that ln k{pnpq?

k1hdn
Ñ 0 and

b

k
k1

ln k
np Ñ r P r0,8s,

we have

min

˜

b

khdn,

a

k1hdn
ln k{pnpq

¸˜

pθppx0q

θppx0q
´ 1

¸

 minpr, 1q
γ1px0q

fXpx0q

ˆ
ż 1

0
W py,8q

1

y
dy ´W p1,8q

˙

`min

ˆ

1,
1

r

˙

#

´p1´ γ1px0qq
W p8, 1q

fXpx0q
`

1

fXpx0q

ş8

0 W py, 1qdy´γ1px0q
ş8

0 Rpy, 1|x0qdy´γ1px0q

+

,

where W py1, y2q is a zero centered Gaussian process with covariance function

E pW py1, y2qW py1, y2qq “ }K}
2
2fXpx0qRpy1 ^ y1, y2 ^ y2|x0q,

W py,8q is the limiting process of Theorem 2.1, and W p8, yq is a zero centered Gaussian process
with covariance function

E pW p8, yqW p8, yqq “ }K}22fXpx0qpy ^ yq.

The variance of the limiting random variable in Theorem 2.2, denoted W, is given by

VarpWq “
}K}22
fXpx0q

#

pminpr, 1qq2γ2
1px0q

`

ˆ

min

ˆ

1,
1

r

˙˙2 „

γ2
1px0q ´ 1´ c2

ż 8

0
Rps, 1|x0qds

´2γ1px0q



`2 min

ˆ

r,
1

r

˙

γ1px0q

«

p1´ γ1px0q ` cqRp1, 1|x0q

´

ż 1

0

´

1´ γ1px0q ` cs
´γ1px0qp1´ γ1px0q ´ γ1px0q ln sq

¯ Rps, 1|x0q

s
ds

ff+

, (4)

where c :“ p
ş8

0 Rps, 1|x0qds
´γ1px0qq´1.

If one takes k “ k1 or k{k1 Ñ c P p0,8q in Theorem 2.2, then the rate of convergence of θk{npx0q

and pγ1,k1px0q are the same. If one assumes additionally that np “ opkq, then the limiting

distribution of
a

khdn{ lnpk{pnpqqppθppx0q{θppx0q ´ 1q is essentially that of
a

k1hdnppγ1,k1px0q ´

γ1px0qq. In order words, the extrapolated estimator for CMES inherits the limiting distribution
of the estimator for γ1px0q. A similar fact is observed in the estimation of extreme quantiles (see,
e.g., Theorem 4.3.8 in de Haan and Ferreira, 2006) and in the estimation of extreme conditional
quantiles (e.g., Daouia et al., 2011), where the limiting distribution of the (conditional) extreme
quantile estimator is that of the estimator of the (conditional) extreme value index. The result
of Theorem 2.2 is more general, as, depending on the value of r, one can have as limiting
distribution a linear combination of the limiting distributions of

a

khdnpθk{npx0q{θk{npx0q ´ 1q

and
a

k1hdnppγ1,k1px0q ´ γ1px0qq.
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3 Simulation experiment

In this section, we illustrate the finite-sample performance of our conditional marginal expected
shortfall estimator with a simulation experiment. To this aim, we consider the three models
already used in Goegebeur et al. (2020), but this time in the case where p ă 1{n, i.e., allowing
extrapolation outside the Y p2q´data range. These models are the following:

Model 1: The conditional logistic copula model, defined as

Cpu1, u2|xq “ e´rp´ lnu1qx`p´ lnu2qxs1{x , u1, u2 P r0, 1s, x ě 2. (5)

In this model, X is uniformly distributed on the interval r2, 10s, and the marginal distribution
functions of Y p1q and Y p2q are Fréchet distributions:

Fjpyq “ e´y
´1{γj

, y ą 0,

j “ 1, 2. We set γ1 “ 0.25 and γ2 “ 0.5. It can be shown that this model satisfies Assumption
pSq with Rpy1, y2|xq “ y1 ` y2 ´ py

x
1 ` y

x
2 q

1{x, τ “ ´1 and β “ 1´ ε for some small ε ą 0.

Model 2: The conditional distribution of pY p1q, Y p2qq given X “ x is that of

p|Z1|
γ1pxq, |Z2|

γ2pxqq,

where pZ1, Z2q follow a bivariate standard Cauchy distribution with density function

fpz1, z2q “
1

2π
p1` z2

1 ` z
2
2q
´3{2, pz1, z2q P R2.

Here, X is uniformly distributed on r0, 1s and

γ1pxq “ 0.4 r0.1` sinpπxqs
”

1.1´ 0.5e´64px´0.5q2
ı

,

γ2pxq “ 0.1` 0.1x.

Again, Assumption pSq is satisfied for this model with Rpy1, y2|xq “ y1`y2´
a

y2
1 ` y

2
2, τ “ ´1

and β “ 2 (see, e.g., Cai et al., 2015, in the context without covariates).

Model 3: We consider again the conditional logistic copula model defined in (5) but this time
with conditional Burr distributions for the marginal distribution functions of Y p1q and Y p2q, i.e.,

Fjpy|xq “ 1´

ˆ

βj

βj ` yτjpxq

˙λj

, y ą 0; βj , λj , τjpxq ą 0,

j “ 1, 2. We set β1 “ β2 “ 1, λ1 “ 1, λ2 “ 0.5, and

τ1pxq “ 2e0.2x, τ2pxq “ 8{ sinp0.3xq.

Similarly to Model 1, this model satisfies pSq.
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Note that for all these models, Assumption pDq is satisfied since all the marginal conditional
distributions are standard examples from this class of heavy-tailed distributions (see, e.g., Beir-
lant et al., 2009, Table 1), and Assumption pHq also holds.

We simulate 500 datasets of size n “ 500 and 1 000 from each model. For each sample, we
compute pθppx0q for two different values of p: 1{p2nq and 1{p5nq, and three different sets of val-
ues of the covariate position x0: t3, 5, 7u for Model 1 and Model 3, and t0.3, 0.5, 0.8u for Model 2.

Concerning the kernel function K, we use the bi-quadratic function

Kpxq “
15

16
p1´ x2q21ltxPr´1,1su,

for both the estimation of pγ1,k1px0q and θk{npx0q. This kernel function clearly satisfies Assump-
tion pKq. To compute these estimators, we need also to select a bandwidth hn. To this aim, we
use the cross-validation procedure introduced by Yao (1999), and already used in the extreme
value framework by Daouia et al. (2011, 2013) and Escobar-Bach et al. (2018a), and defined as:

hcv :“ argmin
hnPH

n
ÿ

i“1

n
ÿ

j“1

ˆ

1l!
Y
p2q
i ďY

2q
j

) ´ pFn,hn,2,´i

´

Y
p2q
j

ˇ

ˇ

ˇ
Xi

¯

˙2

, (6)

where H is the grid of values defined as RX ˆ t0.05, 0.10, . . . , 0.30u, with RX the range of the
covariate X, and

pFn,hn,2,´i py|xq :“

řn
k“1,k‰iKhn px´Xkq 1l!

Y
p2q
k ďy

)

řn
k“1,k‰iKhn px´Xkq

.

Concerning the choice of the sequence k1 in the estimation of γ1px0q, a graphical assessment is
used. The retained value of k1 corresponds to the smallest value of k after which the median of
the estimates pγ1,kpx0q over the 500 replications exibit a stable part. This choice is common in
extreme value theory where we search at a plateau of an extreme value estimator as a function
of the intermediate sequence.

Figures 1 to 6 display the boxplots of the ratios between the estimates pθppx0q and the true value
θppx0q based on the 500 replications for the different values of x0 (corresponding to the rows)
and the two sample sizes (corresponding to the columns: n “ 500 on the left, n “ 1 000 on the
right). Figures 1 and 2 correspond to Model 1 for p “ 1{p2nq and 1{p5nq, respectively. Similarly,
Figures 3 and 4 correspond to Model 2, and Figures 5 and 6 to Model 3.

Based on these simulations, we can draw the following conclusions:

• Our estimator pθppx0q performs quite well in all the situations, although its efficiency de-
pends obviously on the model and also on the covariate position. This is expected because
as is clear from our models, the marginal distributions in Model 1 do not depend on the
covariates but the dependence structure does. On the contrary, the dependence structure
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in Model 2 does not depend on the covariate but the marginal distributions depend on x0,
and in Model 3 both of them depend on x0. Thus, Model 1 is less challenging than the
two other models;

• Note that the estimation in Model 2 is difficult and depends a lot on the value of the
covariate. This can be explained by the fact that the plot of γ1pxq as a function of x
exhibits two local maxima, one of which being close to 0.3, and a local minimum at 0.5.
Thus, we get an underestimation of θppx0q near the local maxima and an overestimation
of θppx0q near the local minima, due to the local nature of the estimation. Outside these
neighborhoods, the estimation is without bias. This is the case for x0 “ 0.8. Note also
that sometimes a local bandwidth instead of a global one as in (6) can give better results,
especially at covariate positions where the function γ1pxq changes quickly;

• As expected, the smaller p is, the more difficult is the estimation, due to an important
extrapolation outside the Y p2q´data range. This results in an increase of the variability of
the estimates. Note that the values p “ 1{p2nq and p “ 1{p5nq correspond to quite severe
extrapolations since the estimation is done locally, and the local number of observations
is much smaller than n.

Next, we investigate in Table 1 the coverage probabilities of the pointwise 95% confidence inter-
vals for θppx0q, based on a log-scale version of Theorem 2.2, namely for

min

˜

b

khdn,

a

k1hdn
ln k{pnpq

¸

ln
pθppx0q

θppx0q
,

which has the same limiting distribution as in Theorem 2.2, and this for the three models with
their different values of x0, and three values for p: 1{n, 1{p2nq and 1{p5nq. These confidence
intervals are given by

»

—

—

—

—

–

pθppx0q

exp

#

Φ´1
`

1´ α
2

˘

b

{VarpWq
an

+ ,
pθppx0q

exp

#

´Φ´1
`

1´ α
2

˘

b

{VarpWq
an

+

fi

ffi

ffi

ffi

ffi

fl

, (7)

where an :“ minp
a

khdn,
a

k1hdn{pln k{pnpqq, Φ´1 denotes the standard normal quantile function

and {VarpWq is an estimate for the asymptotic variance given in (4), obtained by using the local
Hill estimate (3) for γ1px0q and the following estimate for Rpy1, y2|x0q:

pRpy1, y2|x0q “

1
k

řn
i“1Khn px0 ´Xiq 1l!

pFn,1pY
p1q
i |Xi qď

k
n
y1,

pFn,2pY
p2q
i |Xi qď

k
n
y2

)

pfnpx0q
, (8)

where pFn,1 is a kernel estimator for F1, of the same form as pFn,2 given in (1). Note that this
estimator (8) can be viewed as an adjusted version of the estimator proposed in the context of
estimation of the conditional stable tail dependence function by Escobar-Bach et al. (2018b).
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x0 p “ 1{n p “ 1{p2nq p “ 1{p5nq

Model 1 3 0.946 (0.954) 0.946 (0.954) 0.948(0.954)
5 0.956 (0.960) 0.960 (0.960) 0.962 (0.958)
7 0.958 (0.936) 0.956 (0.936) 0.956 (0.936)

Model 2 0.3 0.842 (0.906) 0.842 (0.906) 0.842 (0.906)
0.5 0.838 (0.954) 0.840 (0.952) 0.844 (0.954)
0.8 0.956 (0.936) 0.958 (0.936) 0.958 (0.934)

Model 3 3 0.938 (0.962) 0.942 (0.964) 0.940 (0.964)
5 0.880 (0.956) 0.880 (0.958) 0.876 (0.958)
7 0.854 (0.954) 0.856 (0.948) 0.854 (0.944)

Table 1: Empirical coverage probabilities of 95% confidence intervals for θppx0q based on 500
simulated datasets of size n “ 1000 with h “ hcv defined in (6) (with h “ hcv{2).

Remark also that we use here the log-scale version of Theorem 2.2 as suggested by Drees (2003)
since it improves the coverage probabilities. This can be explained by the fact that the normal
approximation of logppθppx0q{θppx0qq is more accurate than the one of pθppx0q{θppx0q´1, since by

definition of pθppx0q, the log-transform yields to a linear function of pγ1,k1px0q, which distribution
is well approximated by a normal distribution. For the construction of the confidence intervals,
k and k1 were selected in a data driven way, by using a stability criterion as in Goegebeur et
al. (2019). Concerning h, the global bandwidth hcv defined in (6) is first used. Note that
the practical implementation of the confidence intervals based on Theorem 2.2 also requires the

value r. The latter is taken as
b

k
k1

ln k
np , for the data-driven choices of k and k1. Overall the

confidence intervals have reasonably good coverage probabilities, if one takes into account the
fact that the asymptotic variance given in (4) has a complicated form with several integrals
that depend on Rpy1, y2|x0q, which needs to be replaced by an estimator. As expected, the
coverage probabilities of the asymptotic confidence intervals depend on the model and the co-
variate positions: the positions where θppx0q is estimated well (with no/little bias) give good
coverage probabilities, and those with bias lead typically to smaller coverage probabilities. To
improve them, a solution is to use a local bandwidth leading to a smaller value of h. This is
illustrated in Table 1 where a heuristic value h “ hcv{2 is also used. As is clear from that table,
the coverage probabilities improve a lot, being closer to the nominal level, in the cases where
the estimation is biased with a global bandwidth. From Table 1, we can also remark that the
coverage probabilities are not too much sensitive on the value of p. Alternative methods, such
as empirical likelihood or bootstrap approaches, could be also investigated in future research to
see their impact on coverage probabilities.

4 Application to vehicle insurance data

In this section, we illustrate our method on the Vehicle Insurance Customer Data, available at
https://www.kaggle.com/ranja7/vehicle-insurance-customer-data, which contains socio-
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Figure 1: Boxplots of pθppx0q{θppx0q for Model 1 based on 500 replications of sample sizes n “ 500
(left column) and n “ 1 000 (right column) for p “ 1{p2nq. From top to bottom we have x0 “ 3,
x0 “ 5 and x0 “ 7. The values of k are taken as 2%, 5%, 10% and 20% of n.
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Figure 2: Boxplots of pθppx0q{θppx0q for Model 1 based on 500 replications of sample sizes n “ 500
(left column) and n “ 1 000 (right column) for p “ 1{p5nq. From top to bottom we have x0 “ 3,
x0 “ 5 and x0 “ 7. The values of k are taken as 2%, 5%, 10% and 20% of n.

13



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●
●
●

●●

●

●

●●

●

●●

●
●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●●

●
●
●

●
●
●
●

●

●

●
●
●

●

●

●

10 25 50 100

0
1

2
3

4
5

k

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●●●

●
●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

20 50 100 200

0
1

2
3

4
5

k

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●
●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

10 25 50 100

0
1

2
3

4
5

6

k

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

20 50 100 200

0
1

2
3

4
5

6

k

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10 25 50 100

0
1

2
3

4
5

6

k

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●●
●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

20 50 100 200

0
1

2
3

4
5

6

k

Figure 3: Boxplots of pθppx0q{θppx0q for Model 2 based on 500 replications of sample sizes n “ 500
(left column) and n “ 1 000 (right column) for p “ 1{p2nq. From top to bottom we have x0 “ 0.3,
x0 “ 0.5 and x0 “ 0.8. The values of k are taken as 2%, 5%, 10% and 20% of n.
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Figure 4: Boxplots of pθppx0q{θppx0q for Model 2 based on 500 replications of sample sizes n “ 500
(left column) and n “ 1 000 (right column) for p “ 1{p5nq. From top to bottom we have x0 “ 0.3,
x0 “ 0.5 and x0 “ 0.8. The values of k are taken as 2%, 5%, 10% and 20% of n.
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Figure 5: Boxplots of pθppx0q{θppx0q for Model 3 based on 500 replications of sample sizes n “ 500
(left column) and n “ 1 000 (right column) for p “ 1{p2nq. From top to bottom we have x0 “ 3,
x0 “ 5 and x0 “ 7. The values of k are taken as 2%, 5%, 10% and 20% of n.
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Figure 6: Boxplots of pθppx0q{θppx0q for Model 3 based on 500 replications of sample sizes n “ 500
(left column) and n “ 1 000 (right column) for p “ 1{p5nq. From top to bottom we have x0 “ 3,
x0 “ 5 and x0 “ 7. The values of k are taken as 2%, 5%, 10% and 20% of n.
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economic data of insurance customers along with details about the insured vehicle. This dataset
was already used in Girard et al. (2021) to illustrate the estimation of extreme conditional
expectiles for the total claim amount given customer lifetime value and income. A conditional
expectile is a risk measure for a single risk factor, which has in the paper by Girard et al. (2021)
been extended to the situation where the risk factor is observed together with a covariate. We
estimate the conditional marginal expected shortfall of the total claim amount (i.e., cumulative
over the duration of the contract), Y p1q, conditional on the customer lifetime value, Y p2q, exceed-
ing a high quantile and a given value for the covariate income, X. Compared to the analysis in
Girard et al. (2021) we focus on the case of a bivariate risk factor pY p1q, Y p2qq which is observed
together with a random covariate, and we estimate the conditional marginal expected shortfall.

In our analysis, we only use the data with a nonzero value for the income variable, leading to
n “ 6817 observations. The scatterplot of total claim amount versus customer lifetime value,
shown in Figure 7, indicates a positive association between these variables. In order to verify the
Pareto-type behavior of Y p1q, we construct the local Pareto quantile plots of the Y p1q data for
which X P r30000, 40000s and X P r70000, 80000s, respectively, see Figure 8, top row. Clearly,
the local Pareto quantile plots become approximately linear in the largest observations, which
confirms underlying Pareto-type distributions (see Beirlant et al., 2004, for a general discussion
of Pareto quantile-quantile plots). Also shown in Figure 8 are the Hill estimates of the total
claim amount for which X P r30000, 40000s and X P r70000, 80000s, respectively (bottom row).
When focusing on the stable horizontal parts of these plots we can clearly see that the theoretical
requirement γ1px0q ă 0.5 is satisfied. Also for Y p2q the local Pareto quantile plots become linear
in the largest observations, indicating underlying Pareto-type distributions, though the linearity
is only in the very largest observations; see Figure 9. Similar local Pareto quantile plots were
obtained at other incomes.

Next, we investigate the asymptotic dependence assumption by plotting, in Figure 10, pRp1, 1|x0q

given in (8) as a function of k, at x0 “ 35000 and x0 “ 75000. In the stable regions of these plots,
which are from approximately k “ 300 to k “ 700, we get confidence intervals for Rp1, 1|x0q that
do not contain zero, which indicates that Y p1q and Y p2q seem to be asymptotically dependent
given X “ x0. However, this heuristic evaluation cannot be viewed as a rigorous test, as the one
proposed, e.g., by Hüsler and Li (2009) in the usual unconditional setting, since, unfortunately,
no formal test for asymptotic independence exists in the regression context.

Finally, we illustrate the estimation of the conditional marginal expected shortfall of total claim
amount given a customer lifetime value that exceeds a high quantile and given a certain income.
In Figure 11, we show pθppx0q as a function of income for p “ 0.1% and p “ 0.05%. To obtain the
estimate for θppx0q, we firstly obtain pγ1,k1px0q. This is done by plotting pγ1,k1px0q as a function
of k1, followed by determining k1 by applying a stability criterion as described in Goegebeur et
al. (2019). Then, the k-value for the estimation of the conditional marginal expected shortfall
at a given x0 was obtained in a similar way. Note that k and k1 are determined in an automatic
data driven way, as the bounds on α, α1, and ∆ in Theorem 2.2 cannot be used in practice, since
they depend on unknown parameters. Also the bandwidth parameter hn was determined in a
data driven way with the same cross-validation criterion as in the simulation section, resulting
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Figure 7: Vehicle insurance dataset. Scatterplot of total claim amount versus customer lifetime
value.

in hn “ 26950. From Figure 11 we see that smaller values of p lead to larger estimates of
the conditional marginal expected shortfall, as expected. Overall, the conditional marginal
expected shortfall is quite stable for incomes up to 60000 whereafter it shows a slight decrease. In
Figure 11 we show also pointwise 95% confidence intervals for θppx0q based on (7). As expected,
the confidence intervals are clearly wider for p “ 0.05% than for p “ 0.1%, reflecting the higher
uncertainty of the estimate at p “ 0.05% due to the fact that the estimation is based on fewer
observations. Based on the results displayed in Figure 11, one might wonder if the covariate has
a significant impact on the marginal expected shortfall. Assessing this formally requires that
a process convergence result for pθppxq, properly normalised, in terms of x is available, which
would then form the basis for the derivation of a test statistic for testing a specific form for
θppxq. Obtaining such a process result is highly non-trivial. Even in the simpler case of local
estimation of the conditional tail index γpxq of a Pareto-type tail with random covariates, it
remains uncertain whether this type of result is possible. Our context is much more complicated
than this latter univariate framework, and thus the problem is still open.

5 Preliminary results

To be self contained, we recall below Theorem 2.3 from Goegebeur et al. (2020) which states the
weak convergence of θ k

n
px0q. Note that this theorem has been adjusted due to our Assumption

pSq which is slightly different from the one in the latter paper, and the additional Hölder-type
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Figure 8: Vehicle insurance dataset. Top row: Pareto quantile plots of the total claim amount
for which income P r30000, 40000s (left) and income P r70000, 80000s (right). Bottom row:
Hill estimates of the total claim amount for which income P r30000, 40000s (left) and income
P r70000, 80000s (right).
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Figure 9: Vehicle insurance dataset. Pareto quantile plots of the customer lifetime value for
which income P r30000, 40000s (left) and income P r70000, 80000s (right).
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Figure 10: Vehicle insurance dataset. pRp1, 1|x0q as a function of k, for x0 “ 35000 (left) and
x0 “ 75000 (right), with pointwise 95% confidence intervals.
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Figure 11: Vehicle insurance dataset. pθppx0q along with pointwise 95% confidence intervals for
θppx0q at several values of x0 for p “ 0.1% (left), p “ 0.05% (right).

condition on the R´function in Assumption pHq.

Theorem 5.1 Assume pDq, pHq, pKq, pSq with x Ñ Rpy1, y2|xq being a continuous function,
and y Ñ Fjpy|x0q, j “ 1, 2, are strictly increasing. Let x0 P IntpSXq such that fXpx0q ą 0.
Consider sequences k “ tnα`1pnqu and hn “ n´∆`3pnq, where `1 and `3 are slowly varying
functions at infinity, with α P p0, 1q and

max

ˆ

α

d` 2γ1px0qpηR ^ ηA1 ^ ηγ1q
,

α

d` 2p1´ γ1px0qqpηA2 ^ ηγ2 ^ ηB2 ^ ηε2 ^ ηfX q
,

α

d
´

2p1´ αqγ2
1px0qβ1px0q

d` dpβ1px0q ` εqγ1px0q
,
α´ 2p1´ αqpγ1px0q ^ pβ2px0qγ2px0qq ^ p´τqq

d

¯

ă ∆ ă
α

d
.

Then, for γ1px0q ă 1{2, we have

b

khdn

˜

θ k
n
px0q

θ k
n
px0q

´ 1

¸

 ´p1´ γ1px0qq
W p8, 1q

fXpx0q
`

1

fXpx0q

ş8

0 W ps, 1qds´γ1px0q
ş8

0 Rps, 1|x0qds´γ1px0q
.
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Now, remark that, assuming that F1py|x0q is strictly increasing in y, we have

pγ1,k1px0q “
1

pfnpx0q

1

k1

n
ÿ

i“1

Khnpx0 ´Xiq

ż Y
p1q
i

pU1pn{k1|x0q

1

u
du1l

tY
p1q
i ěpU1pn{k1|x0qu

“
1

pfnpx0q

ż 8

pU1pn{k1|x0q

1

k1

n
ÿ

i“1

Khnpx0 ´Xiq
1

u
1l
tY
p1q
i ěuu

du

“
1

pfnpx0q

ż 8

pU1pn{k1|x0q

1

k1

n
ÿ

i“1

Khnpx0 ´Xiq1ltF 1pY
p1q
i |x0qď

k1
n

n
k1

F 1pu|x0qu

1

u
du

“
γ1px0q

pfnpx0q

ż 1

0

1

k1

n
ÿ

i“1

Khnpx0 ´Xiq1ltF 1pY
p1q
i |x0qď

k1
n

n
k1

F 1pz´γ1px0q pU1pn{k1|x0q|x0qu

1

z
dz

“
γ1px0q

pfnpx0q

ż 1

0
Tn ppsnpz|x0q|x0q

1

z
dz, (9)

where

Tnpy|x0q :“
1

k1

n
ÿ

i“1

Khnpx0 ´Xiq1ltF 1pY
p1q
i |x0qďk1{n yu

,

and psnpz|x0q :“
n

k1
F 1

´

z´γ1px0q pU1pn{k1|x0q

ˇ

ˇ

ˇ
x0

¯

.

Thus we need to study the asymptotic properties of Tnpy|x0q, psnpz|x0q and pU1pn{k1|x0q.

We start by showing the weak convergence of the process based on Tnpy|x0q, first when the
process is centered around its expectation (Theorem 5.2) and then when it is centered around
the dominant term of its expectation (Corollary 5.1).

Theorem 5.2 Assume pDq, pHq, pKq, and x0 P Int(SXq with fXpx0q ą 0, and y Ñ F1py|x0q

is strictly increasing. Consider sequences k1 Ñ 8 and hn Ñ 0 as n Ñ 8, in such a way that
k1{nÑ 0, k1h

d
n Ñ8 and h

ηγ1^ηε1
n lnn{k1 Ñ 0. Then for η P r0, 1{2q, we have,

b

k1hdn

ˆ

Tnpy|x0q ´ EpTnpy|x0qq

yη

˙

 
W py,8q

yη
, (10)

in Dpp0, T sq, for any T ą 0.

Proposition 5.1 Assume pDq, pHq, pKq, and x0 P Int(SXq with fXpx0q ą 0. Consider se-
quences k1 Ñ8 and hn Ñ 0 as nÑ8, in such a way that k1{nÑ 0, and h

ηγ1^ηε1
n lnn{k1 Ñ 0.

Then for η P r0, 1q, we have,

E pTnpy|x0qq

yη
“ y1´ηfXpx0q `O

´

h
ηfX^ηA1
n

¯

`O

ˆ

h
ηγ1
n ln

n

k1

˙

`O

ˆ
ˇ

ˇ

ˇ

ˇ

δ1

ˆ

U1

ˆ

n

k1

ˇ

ˇ

ˇ
x0

˙

ˇ

ˇ

ˇ
x0

˙
ˇ

ˇ

ˇ

ˇ

h
ηB1
n

˙

`O

ˆˇ

ˇ

ˇ

ˇ

δ1

ˆ

U1

ˆ

n

k1

ˇ

ˇ

ˇ
x0

˙

ˇ

ˇ

ˇ
x0

˙
ˇ

ˇ

ˇ

ˇ

h
ηε1
n ln

n

k1

˙

,

where the O–terms are uniform in y P p0, T s, for any T ą 0.
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Corollary 5.1 Assume pDq, pHq, pKq, x0 P IntpSXq with fXpx0q ą 0, and y Ñ F1py|x0q

is strictly increasing. Consider sequences k1 Ñ 8 and hn Ñ 0 as n Ñ 8, in such a way
that k1{n Ñ 0, k1h

d
n Ñ 8, h

ηε1
n lnn{k1 Ñ 0,

a

k1hdn h
ηfX^ηA1
n Ñ 0,

a

k1hdn h
ηγ1
n lnn{k1 Ñ 0,

a

k1hdn|δ1pU1pn{k1|x0q|x0q|h
ηB1
n Ñ 0, and

a

k1hdn|δ1pU1pn{k1|x0q|x0q|h
ηε1
n lnn{k1 Ñ 0. Then for

η P r0, 1{2q, we have,

b

k1hdn

ˆ

Tnpy|x0q

yη
´ y1´ηfXpx0q

˙

 
W py,8q

yη
,

in Dpp0, T sq, for any T ą 0.

In the sequel, for convenient representation, the limiting process in Theorem 5.2 and Corollary
5.1 will be defined on the same probability space as the original random variables, via the
Skorohod construction, but it should be kept in mind that it is only in distribution equal to
the original process. The Skorohod representation theorem gives then, with keeping the same
notation, that

sup
yPp0,T s

ˇ

ˇ

ˇ

ˇ

b

k1hdn

ˆ

Tnpy|x0q

yη
´ y1´ηfXpx0q

˙

´
W py,8q

yη

ˇ

ˇ

ˇ

ˇ

Ñ 0 a.s. ,

as nÑ8.

For the intermediate quantile estimate pU1pn{k|x0q, we recall Lemma 5.6 from Goegebeur et al.
(2020), which is used several times in our proofs, and which states the weak convergence of
pun :“ pU1pn{k1|x0q{U1pn{k1|x0q.

Lemma 5.1 Assume pDq, pHq, pKq, x0 P IntpSXq with fXpx0q ą 0 and y Ñ F1py|x0q is
strictly increasing. Consider sequences k1 Ñ 8 and hn Ñ 0 as n Ñ 8, in such a way that
k1{n Ñ 0, k1h

d
n Ñ 8, h

ηε1
n lnn{k1 Ñ 0,

a

k1hdn h
ηfX^ηA1
n Ñ 0,

a

k1hdn h
ηγ1
n lnn{k1 Ñ 0,

a

k1hdn|δ1pU1pn{k1|x0q|x0q| Ñ 0. Then, as nÑ8, we have

b

k1hdn ppun ´ 1q 
γ1px0qW p1,8q

fXpx0q
.

From Lemma 5.1, we can show now the uniform convergence in probability of psnpz|x0q towards
z for any z P p0, T s.

Lemma 5.2 Under the assumptions of Lemma 5.1, for any T ą 0, we have

sup
zPp0,T s

|psnpz|x0q ´ z| “ oPp1q.

Proof of the preliminary results

Proof of Theorem 5.2. Recall that

Tnpy|x0q

yη
“

1

k1

n
ÿ

i“1

Khnpx0 ´Xiq1ltF 1pY
p1q
i |x0qď

k1
n
yu

1

yη
.
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The proof of Theorem 5.2 follows the lines of proof of Theorem 2.1 in Goegebeur et al. (2020).
Below, we only outline the main differences and refer to the latter paper otherwise. To start,
we need some notations from empirical process theory with changing function classes, see for
instance van der Vaart and Wellner (1996). Let P be the distribution measure of pY p1q, Xq,
and denote the expected value under P as Pf :“

ş

fdP for any real-valued measurable function
f : R ˆ Rd Ñ R. For a function class F , let Nrspε,F , L2pP qq, denote the minimal number of
ε´brackets needed to cover F . The bracketing integral is then defined as

Jrspδ,F , L2pP qq “

ż δ

0

b

lnNrspε,F , L2pP qqdε.

We introduce our sequence of classes Fn on Rˆ Rd as

Fn :“ tpu, zq Ñ fn,ypu, zq, y P p0, T su ,

where

fn,ypu, zq :“

d

nhdn
k1

Khnpx0 ´ zq1ltF 1pu|x0qď
k1
n
yu

1

yη
.

Denote also by Fn an envelope function of the class Fn. Now, according to Theorem 19.28
in van der Vaart (1998), the weak convergence of the stochastic process (10) follows from the
following four conditions. Let ρx0 be a semimetric, possibly depending on x0, making p0, T s
totally bounded. We have to prove that

sup
ρx0 py,ȳqďδn

P pfn,y ´ fn,ȳq
2 ÝÑ 0 for every δn Œ 0, (11)

PF 2
n “ Op1q, (12)

PF 2
n1ltFnąε

?
nu ÝÑ 0 for every ε ą 0, (13)

and

Jrspδn,Fn, L2pP qq ÝÑ 0 for every δn Œ 0. (14)

We start with verifying condition p11q, with ρx0py, yq :“ |y ´ y|. Without loss of generality, we
may assume that y ď y. We have

P pfn,y ´ fn,yq
2 “

nhdn
k1

E

»

–K2
hnpx0 ´Xq

˜

1l
tF 1pY p1q|x0qď

k1
n
yu

yη
´

1l
tF 1pY p1q|x0qď

k1
n
yu

yη

¸2
fi

fl .

We consider now two cases.

Case 1: y ď δn. We have

˜

1l
tF 1pY p1q|x0qď

k1
n
yu

yη
´

1l
tF 1pY p1q|x0qď

k1
n
yu

yη

¸2

ď 3
1l
tF 1pY p1q|x0qď

k1
n
yu

y2η
`

1l
tF 1pY p1q|x0qď

k1
n
yu

y2η .
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This implies that

P pfn,y ´ fn,yq
2 ď 3

nhdn
k1

E

˜

K2
hnpx0 ´Xq

1l
tF 1pY p1q|x0qď

k1
n
yu

y2η

¸

`
nhdn
k1

E

˜

K2
hnpx0 ´Xq

1l
tF 1pY p1q|x0qď

k1
n
yu

y2η

¸

“ 3
nhdn
k1

ż

Rd

1

h2d
n

K2

ˆ

x0 ´ v

hn

˙ P
´

F 1pY
p1q|x0q ď

k1
n y|X “ v

¯

y2η
fXpvqdv

`
nhdn
k1

ż

Rd

1

h2d
n

K2

ˆ

x0 ´ v

hn

˙ P
´

F 1pY
p1q|x0q ď

k1
n y|X “ v

¯

y2η fXpvqdv

“ 3
n

k1

ż

SK

K2pvq
P
´

F 1pY
p1q|x0q ď

k1
n y|X “ x0 ´ hnv

¯

y2η
fXpx0 ´ hnvqdv

`
n

k1

ż

SK

K2pvq
P
´

F 1pY
p1q|x0q ď

k1
n y|X “ x0 ´ hnv

¯

y2η fXpx0 ´ hnvqdv.

Since P
´

F 1pY
p1q|x0q ď

k1
n y

ˇ

ˇ

ˇ
X “ x0 ´ hnv

¯

“ F 1

´

U1p
n
k1y
|x0q

ˇ

ˇ

ˇ
x0 ´ hnv

¯

, this yields

P pfn,y ´ fn,yq
2 ď 3 y1´2η

ż

SK

K2pvqfXpx0 ´ hnvqdv

`3

ż

SK

K2pvq

„

1

y2η

n

k1
F 1

ˆ

U1

ˆ

n

k1y

ˇ

ˇ

ˇ
x0

˙

ˇ

ˇ

ˇ
x0 ´ hnv

˙

´ y1´2η



fXpx0 ´ hnvqdv

`y1´2η

ż

SK

K2pvqfXpx0 ´ hnvqdv

`

ż

SK

K2pvq

„

1

y2η

n

k1
F 1

ˆ

U1

ˆ

n

k1y

ˇ

ˇ

ˇ
x0

˙

ˇ

ˇ

ˇ
x0 ´ hnv

˙

´ y1´2η



fXpx0 ´ hnvqdv.

Using Lemma 5.1 in Goegebeur et al. (2020) and the fact that ρx0py, yq ď δn which implies
y ď 2δn, we get

P pfn,y ´ fn,yq
2 ď 5 δ1´2η

n

ż

SK

K2pvqfXpx0 ´ hnvqdv ` op1q,

where the op1q´term does not depend on y and y.
Case 2: y ą δn. In that case

˜

1l
tF 1pY p1q|x0qď

k1
n
yu

yη
´

1l
tF 1pY p1q|x0qď

k1
n
yu

yη

¸2

ď

ˆ

1

yη
´

1

yη

˙2

1l
tF 1pY p1q|x0qď

k1
n
yu

`
1

y2η

!

1l
tF 1pY p1q|x0qď

k1
n
yu
´ 1l

tF 1pY p1q|x0qď
k1
n
yu

)

,
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from which we deduce that

P pfn,y ´ fn,yq
2 ď

pyη ´ yηq2

pyyq2η

ż

SK

K2pvq
n

k1
F 1 pU1pn{pk1yq|x0q|x0 ´ hnvq fXpx0 ´ hnvqdv

`
1

y2η

n

k1

ż

SK

K2pvqP

ˆ

k1

n
y ď F 1pY

p1q|x0q ď
k1

n
y

ˇ

ˇ

ˇ

ˇ

X “ x0 ´ hnv

˙

fXpx0 ´ hnvqdv.

These two terms on the right-hand side of the above inequality can be handled similarly as those
in case 3 in the proof of Theorem 2.1 in Goegebeur et al. (2020).

Now, a natural envelope function of the class Fn is

Fnpu, zq :“

d

nhdn
k1

Khnpx0 ´ zq
1l
tF 1pu|x0qďk1T {nu

rpn{k1qF 1pu|x0qs
η
.

Thus, according again to the proof of Theorem 2.1 in Goegebeur et al. (2020), conditions p12q
and p13q are satisfied.

Finally, we need to show condition p14q. Without loss of generality we assume T “ 1. Consider
for a, θ ă 1:

F p1qn paq :“ tfn,y P Fn : y ď au,

and

F p2qn p`q :“ tfn,y P Fn : θ``1 ď y ď θ`u,

where ` “ 0, . . . , tln a{ ln θu .

The class F p1qn paq has been already studied in the proof of Theorem 2.1 in Goegebeur et al.

(2020) and F p2qn p`q can be dealt with similar arguments as for Fnp`,mq from the latter paper,
since we have the following bounds

unpu, zq :“

d

nhdn
k1

Khnpx0 ´ zq
1l
tF 1pu|x0qďk1{n θ``1u

θ`η

ď fn,ypu, zq ď

d

nhdn
k1

Khnpx0 ´ zq
1l
tF 1pu|x0qďk1{n θ`u

θp``1qη
“: unpu, zq.

This concludes the proof of Theorem 5.2.
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Proof of Proposition 5.1. We have

E rTnpy|x0qs

yη
“

1

yη
n

k1
E
”

Khnpx0 ´Xq1ltF 1pY p1q|x0qď
k1
n
yu

ı

“
1

yη
n

k1

ż

Rd

1

hdn
K

ˆ

x0 ´ u

hn

˙

P

ˆ

F 1

´

Y p1q
ˇ

ˇ

ˇ
x0

¯

ď
k1

n
y
ˇ

ˇ

ˇ
X “ u

˙

fXpuqdu

“
1

yη
n

k1

ż

SK

KpuqF 1

ˆ

U1

ˆ

n

k1y

ˇ

ˇ

ˇ
x0

˙

ˇ

ˇ

ˇ
x0 ´ hnu

˙

fXpx0 ´ hnuqdu

“ y1´η fXpx0q ` y
1´η

ż

SK

Kpuq rfXpx0 ´ hnuq ´ fXpx0qs du

`fXpx0q

ż

SK

Kpuq

»

–

n
k1
F 1

´

U1

´

n
k1y

ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ
x0 ´ hnu

¯

yη
´ y1´η

fi

fl du

`

ż

SK

Kpuq

»

–

n
k1
F 1

´

U1

´

n
k1y

ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ
x0 ´ hnu

¯

yη
´ y1´η

fi

fl rfXpx0 ´ hnuq ´ fXpx0qs du.

Following the lines of proof of Lemma 5.1 in Goegebeur et al. (2020), we have

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n
k1
F 1

´

U1

´

n
k1y

ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ
x0 ´ hnu

¯

yη
´ y1´η

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ O
´

h
ηA1
n

¯

`O

ˆ

h
ηγ1
n ln

n

k1

˙

`O

ˆˇ

ˇ

ˇ

ˇ

δ1

ˆ

U1

ˆ

n

k1

ˇ

ˇ

ˇ
x0

˙

ˇ

ˇ

ˇ
x0

˙ˇ

ˇ

ˇ

ˇ

h
ηB1
n

˙

`O

ˆˇ

ˇ

ˇ

ˇ

δ1

ˆ

U1

ˆ

n

k1

ˇ

ˇ

ˇ
x0

˙

ˇ

ˇ

ˇ
x0

˙ˇ

ˇ

ˇ

ˇ

h
ηε1
n ln

n

k1

˙

,

with O´terms which are uniform in y P p0, T s, for any T ą 0. This yields Proposition 5.1.

Proof of Corollary 5.1. Using the decomposition

b

k1hdn

ˆ

Tnpy|x0q

yη
´ y1´ηfXpx0q

˙

“

b

k1hdn

ˆ

Tnpy|x0q ´ EpTnpy|x0qq

yη

˙

`

b

k1hdn

ˆ

E pTnpy|x0qq

yη
´ y1´ηfXpx0q

˙

,

combined with Theorem 5.2 and Proposition 5.1 yields Corollary 5.1.
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Proof of Lemma 5.2. We have, for z P p0, T s and any ε ą 0 and ζ P p0, β1px0qs

|psnpz|x0q ´ z| “

ˇ

ˇ

ˇ

ˇ

n

k1
F 1

´

z´γ1px0qpunU1pn{k1|x0q

ˇ

ˇ

ˇ
x0

¯

´ z

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

F 1

´

z´γ1px0qpunU1pn{k1|x0q

ˇ

ˇ

ˇ
x0

¯

F 1

´

U1pn{k1|x0q

ˇ

ˇ

ˇ
x0

¯ ´ z

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď z
ˇ

ˇ

ˇ
pu´1{γ1px0q
n ´ 1

ˇ

ˇ

ˇ

1` 1
γ1px0q

δ1

´

z´γ1px0qpunU1pn{k1|x0q

ˇ

ˇ

ˇ
x0

¯

1` 1
γ1px0q

δ1

´

U1pn{k1|x0q

ˇ

ˇ

ˇ
x0

¯

`
z

γ1px0q

ˇ

ˇ

ˇ
δ1

´

U1pn{k1|x0q

ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ

1` 1
γ1px0q

δ1

´

U1pn{k1|x0q

ˇ

ˇ

ˇ
x0

¯

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

δ1

´

z´γ1px0qpunU1pn{k1|x0q

ˇ

ˇ

ˇ
x0

¯

δ1

´

U1pn{k1|x0q

ˇ

ˇ

ˇ
x0

¯ ´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď C T
ˇ

ˇ

ˇ
pu´1{γ1px0q
n ´ 1

ˇ

ˇ

ˇ

`C T
ˇ

ˇ

ˇ
δ1

´

U1pn{k1|x0q

ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ

$

&

%

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

δ1

´

z´γ1px0qpunU1pn{k1|x0q

ˇ

ˇ

ˇ
x0

¯

δ1

´

U1pn{k1|x0q

ˇ

ˇ

ˇ
x0

¯ ´

´

z´γ1px0qpun

¯´β1px0q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

´

z´γ1px0qpun

¯´β1px0q
´ 1

ˇ

ˇ

ˇ

ˇ

*

ď C T
ˇ

ˇ

ˇ
pu´1{γ1px0q
n ´ 1

ˇ

ˇ

ˇ

`C ε
ˇ

ˇ

ˇ
δ1

´

U1pn{k1|x0q

ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ
T 1`γ1px0qβ1px0q˘γ1px0qζ

pu´β1px0q˘ζn

`C
ˇ

ˇ

ˇ
δ1

´

U1pn{k1|x0q

ˇ

ˇ

ˇ
x0

¯
ˇ

ˇ

ˇ
T

!

T γ1px0qβ1px0qpu´β1px0qn ` 1
)

,

for n large, with arbitrary large probability, by Proposition B.1.10 in de Haan and Ferreira
(2006). In the above, the notation a˘‚ means a‚ if a ě 1 and a´‚ if a ă 1. Using Lemma 5.1,
Lemma 5.2 follows.
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6 Proofs of the main results

Proof of Theorem 2.1. Using (9), we have the following decomposition

b

k1hdn ppγ1,k1px0q ´ γ1px0qq “
γ1px0q

fXpx0q

ż 1

0
W pz,8q

1

z
dz

`γ1px0q

b

k1hdn

ż 1

0

„

psnpz|x0q

z
´ 1



dz

`
γ1px0q

fXpx0q

ż 1

0
rW ppsnpz|x0q,8q ´W pz,8qs

1

z
dz

`γ1px0q

ż 1

0

"

b

k1hdn

„

Tnppsnpz|x0q|x0q

fXpx0qps
η
npz|x0q

´ ps1´η
n pz|x0q



´
W ppsnpz|x0q,8q

fXpx0qps
η
npz|x0q

*

psηnpz|x0q

z
dz

´
γ1px0q

fXpx0q pfnpx0q

ż 1

0
Tnppsnpz|x0q|x0q

1

z
dz

c

k1

n

b

nhdn

´

pfnpx0q ´ fXpx0q

¯

“:
γ1px0q

fXpx0q

ż 1

0
W pz,8q

1

z
dz `

4
ÿ

i“1

Ti,n.

We study each term separately.

Concerning T1,n, following the lines of proof of Lemma 5.2, we have

T1,n “ γ1px0q

b

k1hdn

”

pu´1{γ1px0q
n ´ 1

ı

` oPp1q.

Now, combining Lemma 5.1 with a Taylor expansion, we have

T1,n  ´
γ1px0q

fXpx0q
W p1,8q.

Concerning T2,n, for δ P p0, 1q, we use the decomposition

T2,n “
γ1px0q

fXpx0q

"
ż δ

0
rW ppsnpz|x0q,8q ´W pz,8qs

1

z
dz `

ż 1

δ
rW ppsnpz|x0q,8q ´W pz,8qs

1

z
dz

*

“: T
p1q
2,n ` T

p2q
2,n .

Using Lemma 5.2 combined with Potter’s bounds (see Proposition B.1.9 (5) in de Haan and
Ferreira, 2006), we have for any ζ P p0, 1{γ1px0qq, for n large, and with arbitrary large probability

|T
p1q
2,n | ď

γ1px0q

fXpx0q
sup
zPp0,2s

|W pz,8q|

zη

„
ż δ

0

psηnpz|x0q

z
dz `

δη

η



ď C

ż δ

0

1

z

”

z´γ1px0qpun

ıηp˘ζ´1{γ1px0qq
dz ` Cδη

ď Cpup˘ζ´1{γ1px0qqη
n δp1´γ1px0qζqη ` Cδη

“ Cε1´γ1px0qζ ` Cε, by choosing δη “ ε.
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Now, concerning T
p2q
2,n , remark that following the lines of proof of Lemma 5.2, we have

sup
zPrδ,1s

´

k1h
d
n

¯1{4
|psnpz|x0q ´ z| “ oPp1q,

from which we deduce that, for any ξ ą 0

P

˜

sup
zPrδ,1s

|W ppsnpz|x0q,8q ´W pz,8q| ą ξ

¸

ď P

˜

sup
zPrδ,1s

|W ppsnpz|x0q,8q ´W pz,8q| ą ξ, sup
zPrδ,1s

|psnpz|x0q ´ z| ď
1

pk1hdnq
1{4

¸

`P

˜

sup
zPrδ,1s

|psnpz|x0q ´ z| ą
1

pk1hdnq
1{4

¸

ď P

¨

˝ sup
zPrδ,1s,|y´z|ď 1

pk1h
d
nq

1{4

|W py,8q ´W pz,8q| ą ξ

˛

‚` P

˜

sup
zPrδ,1s

|psnpz|x0q ´ z| ą
1

pk1hdnq
1{4

¸

“ op1q,

by the continuity of W p¨,8q. This implies that

|T
p2q
2,n | ď ε ln

1

δ
“ ´

ε

η
ln ε.

Hence, T2,n “ oPp1q.
Concerning T3,n, from Lemma 5.2, we have, for n large, with arbitrary large probability

|T3,n| ď
γ1px0q

fXpx0q
sup
yPp0,2s

ˇ

ˇ

ˇ

ˇ

b

k1hdn

ˆ

Tnpy|x0q

yη
´ y1´ηfXpx0q

˙

´
W py,8q

yη

ˇ

ˇ

ˇ

ˇ

ż 1

0

psηnpz|x0q

z
dz.

Then, by Corollary 5.1 combined with the Skorohod representation theorem, we can conclude
that T3,n “ oPp1q.

Finally, T4,n “ oPp1q using the properties of the kernel density estimator.

This achieves the proof of Theorem 2.1.

Proof of Theorem 2.2. We use the decomposition

pθppx0q

θppx0q
“

#

ˆ

k

np

˙

pγ1,k1 px0q´γ1px0q
+

loooooooooooooomoooooooooooooon

T5,n

#

θ k
n
px0q

θ k
n
px0q

+

looooomooooon

T6,n

$

&

%

p knpq
γ1px0qθ k

n
px0q

θppx0q

,

.

-

loooooooooooomoooooooooooon

T7,n

,
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from which we deduce that

pθppx0q

θppx0q
´ 1 “

#

ˆ

k

np

˙

pγ1,k1 px0q´γ1px0q

´ 1

+

T6,nT7,n `

#

θ k
n
px0q

θ k
n
px0q

´ 1

+

T7,n `

$

&

%

p knpq
γ1px0qθ k

n
px0q

θppx0q
´ 1

,

.

-

.(15)

We will study the three terms pTi,n ´ 1q, i “ 5, 6, 7, separately.

Concerning the term pT5,n ´ 1q, remark that, assuming ln k{pnpq?
k1hdn

ÝÑ 0 and using Theorem 2.1,

we have

ˆ

k

np

˙

pγ1,k1 px0q´γ1px0q

´ 1 “ exp

#

b

k1hdn rpγ1,k1px0q ´ γ1px0qs
ln k{pnpq
a

k1hdn

+

´ 1

“

b

k1hdn rpγ1,k1px0q ´ γ1px0qs
ln k{pnpq
a

k1hdn
p1` oPp1qq ,

from which we deduce that

a

k1hdn
ln k{pnpq

#

ˆ

k

np

˙

pγ1,k1 px0q´γ1px0q

´ 1

+

 
γ1px0q

fXpx0q

„
ż 1

0
W pz,8q

1

z
dz ´W p1,8q



. (16)

The asymptotic behavior of the term pT6,n ´ 1q has been already established in Theorem 5.1.

Now, concerning the term pT7,n ´ 1q, remark that

p knpq
γ1px0qθk{npx0q

θppx0q
´ 1 “

ˆ

θk{npx0q{U1pn{k|x0q

θppx0q{U1p1{p|x0q
´ 1

˙

U1pn{k|x0qp
k
npq

γ1px0q

U1p1{p|x0q

`
U1pn{k|x0qp

k
npq

γ1px0q

U1p1{p|x0q
´ 1. (17)

Under assumption pDq, (2) yields

U1pn{k|x0qp
k
npq

γ1px0q

U1p1{p|x0q
´ 1 “

1` a1pn{k|x0q

1` a1p1{p|x0q
´ 1 “ o

˜

1
a

khdn

¸

, (18)

since
a

khdn|δ1pU1pn{k|x0q|x0q| Ñ 0 and
a

khdn|δ1pU1p1{p|x0q|x0q| Ñ 0 under our assumptions.

32



Moreover

θk{npx0q

U1pn{k|x0q
“

ż 8

0

n

k
P
´

Y p1q ą y1, Y
p2q ě U2pn{k|x0q

ˇ

ˇ

ˇ
x0

¯ dy1

U1pn{k|x0q

“

ż 8

0

n

k
P
ˆ

1´ F1pY
p1q|x0q ă 1´ F1py1|x0q, 1´ F2pY

p2q|x0q ď
k

n

ˇ

ˇ

ˇ
x0

˙

dy1

U1pn{k|x0q

“

ż 8

0
Rn{k

´n

k
r1´ F1py1|x0qs , 1

ˇ

ˇ

ˇ
x0

¯ dy1

U1pn{k|x0q

“ ´

ż 8

0
Rn{k

´n

k

”

1´ F1pz
´γ1px0q
1 U1pn{k|x0q|x0q

ı

, 1
ˇ

ˇ

ˇ
x0

¯

dz
´γ1px0q
1

“ ´

ż 8

0
Rpz1, 1|x0qdz

´γ1px0q
1

´

ż 8

0

”

Rn{k

´n

k

”

1´ F1pz
´γ1px0q
1 U1pn{k|x0q|x0q

ı

, 1
ˇ

ˇ

ˇ
x0

¯

´R
´n

k

”

1´ F1pz
´γ1px0q
1 U1pn{k|x0q|x0q

ı

, 1
ˇ

ˇ

ˇ
x0

¯ı

dz
´γ1px0q
1

´

ż 8

0

”

R
´n

k

”

1´ F1pz
´γ1px0q
1 U1pn{k|x0q|x0q

ı

, 1
ˇ

ˇ

ˇ
x0

¯

´R pz1, 1|x0q

ı

dz
´γ1px0q
1

“: ´

ż 8

0
Rpz1, 1|x0qdz

´γ1px0q
1 ` T8,n ` T9,n.

Now, by Assumption pSq

|T8,n| ď sup
xPBpx0,hnq

sup
0ăy1ă8,

1
2
ďy2ď2

|Rn{kpy1, y2|xq ´Rpy1, y2|xq|

yβ1 ^ 1

ˆ

ˇ

ˇ

ˇ

ˇ

ż 8

0

ˆ

!n

k

”

1´ F1pz
´γ1px0q
1 U1pn{k|x0q|x0q

ı)β
^ 1

˙

dz
´γ1px0q
1

ˇ

ˇ

ˇ

ˇ

“ O
´´n

k

¯τ¯

“ o

˜

1
a

khdn

¸

,

by our assumptions on the sequence k, and

|T9,n| ď sup
1
2
ďy2ď2

ˇ

ˇ

ˇ

ˇ

ż 8

0

”

R
´n

k

”

1´ F1pz
´γ1px0q
1 U1pn{k|x0q|x0q

ı

, y2

ˇ

ˇ

ˇ
x0

¯

´R pz1, y2|x0q

ı

dz
´γ1px0q
1

ˇ

ˇ

ˇ

ˇ

“ o

˜

1
a

khdn

¸

,

by Lemma 5.4 in Goegebeur et al. (2020). Thus

θk{npx0q

U1pn{k|x0q
“ ´

ż 8

0
Rpz1, 1|x0qdz

´γ1px0q
1 ` o

˜

1
a

khdn

¸

. (19)
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A similar type of property can be obtained for θppx0q instead of θk{npx0q. Indeed

θppx0q

U1p1{p|x0q
“ ´

ż 8

0
R1{p

ˆ

1

p

”

1´ F1pz
´γ1px0q
1 U1p1{p|x0q|x0q

ı

, 1
ˇ

ˇ

ˇ
x0

˙

dz
´γ1px0q
1

“ ´

ż 8

0
Rpz1, 1|x0qdz

´γ1px0q
1

´

ż 8

0

„

R1{p

ˆ

1

p

”

1´ F1pz
´γ1px0q
1 U1p1{p|x0q|x0q

ı

, 1
ˇ

ˇ

ˇ
x0

˙

´R

ˆ

1

p

”

1´ F1pz
´γ1px0q
1 U1p1{p|x0q|x0q

ı

, 1
ˇ

ˇ

ˇ
x0

˙

dz
´γ1px0q
1

´

ż 8

0

„

R

ˆ

1

p

”

1´ F1pz
´γ1px0q
1 U1p1{p|x0q|x0q

ı

, 1
ˇ

ˇ

ˇ
x0

˙

´R pz1, 1|x0q



dz
´γ1px0q
1

“: ´

ż 8

0
Rpz1, 1|x0qdz

´γ1px0q
1 ` T10,n ` T11,n.

Clearly T10,n “ Opp´τ q “ o

ˆ

1?
khdn

˙

, by our assumptions on k and p. For T11,n, we follow the

lines of proof of the second part of Lemma 5.4 in Goegebeur et al. (2020), using the Lipschitz
property of the function R, for Tn Ñ8, we have

b

khdn|T11,n| ď

b

khdn

ˇ

ˇ

ˇ

ˇ

ż Tn

0

„

R

ˆ

1

p

”

1´ F1

´

z
´γ1px0q
1 U1p1{p|x0q

ˇ

ˇ

ˇ
x0

¯ı

, 1
ˇ

ˇ

ˇ
x0

˙

´Rpz1, 1|x0q



dz
´γ1px0q
1

ˇ

ˇ

ˇ

ˇ

`

b

khdn

ˇ

ˇ

ˇ

ˇ

ż 8

Tn

„

R

ˆ

1

p

”

1´ F1

´

z
´γ1px0q
1 U1p1{p|x0q

ˇ

ˇ

ˇ
x0

¯ı

, 1
ˇ

ˇ

ˇ
x0

˙

´Rpz1, 1|x0q



dz
´γ1px0q
1

ˇ

ˇ

ˇ

ˇ

ď ´

b

khdn

ż Tn

0

ˇ

ˇ

ˇ

ˇ

1

p

”

1´ F1

´

z
´γ1px0q
1 U1p1{p|x0q

ˇ

ˇ

ˇ
x0

¯ı

´ z1

ˇ

ˇ

ˇ

ˇ

dz
´γ1px0q
1

`2 sup
z1ě0

Rpz1, 1|x0q

b

khdn T
´γ1px0q
n

ď ´

b

khdn

ˇ

ˇ

ˇ
δ1

´

U1

´

1
p

ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
γ1px0q ` δ1

´

U1

´

1
p

ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ

ż Tn

0
z1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

δ1

´

z
´γ1px0q
1 U1

´

1
p

ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ
x0

¯

δ1

´

U1

´

1
p

ˇ

ˇ

ˇ
x0

¯

|x0

¯ ´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

dz
´γ1px0q
1

`C
b

khdn T
´γ1px0q
n

ď C
b

khdn

ˇ

ˇ

ˇ

ˇ

δ1

ˆ

U1

ˆ

1

p

ˇ

ˇ

ˇ
x0

˙

ˇ

ˇ

ˇ
x0

˙ˇ

ˇ

ˇ

ˇ

T 1´γ1px0q`pβ1px0q`εqγ1px0q
n ` C

b

khdn T
´γ1px0q
n

ď C
b

khdn

ˇ

ˇ

ˇ
δ1

´

U1

´n

k

ˇ

ˇ

ˇ
x0

¯
ˇ

ˇ

ˇ
x0

¯
ˇ

ˇ

ˇ
T 1´γ1px0q`pβ1px0q`εqγ1px0q
n ` C

b

khdn T
´γ1px0q
n ,

for n large. Then, if α and ∆ are chosen as stated in Theorem 2.2 and Tn “ nκ with κ chosen
such that

α´∆d

2γ1px0q
ă κ ă

2p1´ αqγ1px0qβ1px0q ´ pα´∆dq

2r1´ γ1px0q ` pβ1px0q ` εqγ1px0qs
,
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we have

θppx0q

U1p1{p|x0q
“ ´

ż 8

0
Rpz1, 1|x0qdz

´γ1px0q
1 ` o

˜

1
a

khdn

¸

. (20)

Combining (17), (18), (19) and (20), we deduce that

p knpq
γ1px0qθk{npx0q

θppx0q
´ 1 “ o

˜

1
a

khdn

¸

. (21)

Finally, decomposition (15) combined with Theorem 5.1, (16) and (21) achieves the proof of
Theorem 2.2.
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