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Abstract

The marginal expected shortfall is an important risk measure in finance, which has been
extended recently to the case where the random variables of main interest pY p1q, Y p2qq are
observed together with a covariate X P Rd. This leads to the concept of conditional marginal
expected shortfall. It is defined as θppx0q “ ErY p1q|Y p2q ě QY p2qp1 ´ p|x0q;x0s, where p is
small and QY p2qp¨|x0q denotes the conditional quantile function of Y p2q, given X “ x0. In
this paper, we propose an estimator for θppx0q allowing extrapolation outside the Y p2q´data
range, i.e., valid for p ă 1{n. The main asymptotic properties of this estimator have been
established, using empirical processes arguments combined with the multivariate extreme
value theory. The finite sample behavior of the proposed estimator is evaluated with a sim-
ulation experiment, and the practical applicability is illustrated on a medical dataset.

Keywords: Conditional marginal expected shortfall, extrapolation, Pareto-type distribu-
tion.

1 Introduction

Risk measures have been extensively studied in the literature, but mainly in the univariate frame-
work. The extension to the multivariate context is very recent and crucial for many applications.
For instance, in finance, the Marginal Expected Shortfall (MES) is an important tool when mea-
suring the systemic risk of financial institutions. It is defined as θp :“ ErY p1q|Y p2q ě QY p2qp1´pqs
where Y p1q denotes the loss of the equity return of a financial institution, while Y p2q is that of the
entire market and QY p2qp1´ pq the corresponding p1´ pq-quantile. This MES measure has been
estimated in Cai et al. (2015) using extreme value arguments in the case p “ Op1{nq, where n
is the sample size. Recently, Goegebeur et al. (2020) have considered also the estimation of the
marginal expected shortfall, but this time in case where the random variables of main interest
pY p1q, Y p2qq are recorded together with a random covariate X P Rd. This leads to the concept
of conditional marginal expected shortfall, given X “ x0, and defined as

θppx0q “ E
”

Y p1q
ˇ

ˇ

ˇ
Y p2q ě QY p2q

´

1´ p
ˇ

ˇ

ˇ
x0

¯

;x0

ı

.

1



In the sequel, we will denote by Fjp¨|xq the continuous conditional distribution function of
Y pjq, j “ 1, 2, given X “ x, and use the notation F jp¨|xq for the conditional survival function
and Ujp¨|xq for the associated tail quantile function defined as Ujp¨|xq “ infty : Fjpy|xq ě 1´1{¨u.
Also, we will define by fX the density function of the covariate X and by x0 a reference position
such that x0 P IntpSXq, the interior of the support SX Ă Rd of fX , which is assumed to

be non-empty. Considering pY
p1q
i , Y

p2q
i , Xiq, i “ 1, . . . , n, independent copies of pY p1q, Y p2q, Xq,

Goegebeur et al. (2020) proposed the following nonparametric estimator for θk{npx0q

θ k
n
px0q :“

1
k

řn
i“1Khnpx0 ´XiqY

p1q
i 1l

tY
p2q
i ěpU2pn{k|x0qu

pfnpx0q
,

where Khnp.q :“ Kp.{hnq{h
d
n, with K a joint density function on Rd, k an intermediate sequence

such that k Ñ8 with k{nÑ 0, hn a positive non-random sequence of bandwidths with hn Ñ 0
if n Ñ 8, 1lA the indicator function on the event A, and pfnpx0q :“ p1{nq

řn
i“1Khnpx0 ´ Xiq

is a classical kernel density estimator. Here, pU2p.|x0q is an estimator for U2p.|x0q, defined as
pU2p.|x0q :“ infty : pFn,2py|x0q ě 1´ 1{.u where

pFn,2py|x0q :“

1
n

řn
i“1Khnpx0 ´Xiq1ltY p2qi ďyu

pfnpx0q
. (1)

The asymptotic behavior of θk{npx0q has been established by Goegebeur et al. (2020) and is
recalled in Theorem 5.1 in Section 5. Due to the conditions k, n Ñ 8 with k{n Ñ 0, the
Y p2q-quantile is intermediate, and thus the estimator θk{npx0q cannot be used for extrapolation

outside the Y p2q-data range. This reduces considerably the potential of applications of the es-
timator in practice. The aim of this paper is to solve this issue and to define a new estimator
which allows extrapolation and thus which is valid for p ă 1{n.

The remainder of the paper is organized as follows. In Section 2, we introduce our estimator
for the conditional marginal expected shortfall allowing extrapolation and we establish its main
asymptotic properties. The efficiency of our estimator is examined with a small simulation study
in Section 3. Finally, in Section 4 we illustrate the performance of our estimator on the PIMA
Indians Diabetes dataset. Some preliminary results are given in Section 5, whereas the proofs
of the main results are postponed to Section 6.

2 Estimator and asymptotic properties

We assume that Y p1q and Y p2q are positive random variables, and that they follow a conditional
Pareto-type model. Let RVψ denote the class of regularly varying functions at infinity with
index ψ, i.e., positive measurable functions f satisfying fptxq{fptq Ñ xψ, as t Ñ 8, for all
x ą 0. If ψ “ 0, then we call f a slowly varying function at infinity.
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Assumption pDq For all x P SX , the conditional survival function of Y pjq, j “ 1, 2, given
X “ x, satisfies

F jpy|xq “ Ajpxqy
´1{γjpxq

ˆ

1`
1

γjpxq
δjpy|xq

˙

,

where Ajpxq ą 0, γjpxq ą 0, and |δjp.|xq| is normalized regularly varying at infinity with index
´βjpxq, βjpxq ą 0, i.e.,

δjpy|xq “ Bjpxq exp

ˆ
ż y

1

εjpu|xq

u
du

˙

,

with Bjpxq P R and εjpy|xq Ñ ´βjpxq as y Ñ 8. Moreover, we assume y Ñ εjpy|xq to be a
continuous function.

Clearly, Assumption pDq implies that Ujp¨|xq, j “ 1, 2, satisfy

Ujpy|xq “ rAjpxqs
γjpxq yγjpxq p1` ajpy|xqq (2)

where ajpy|xq “ δjpUjpy|xq|xqp1` op1qq, and thus |ajp.|xq| P RV´βjpxqγjpxq.

Now, to estimate θppx0q it is required to impose an assumption on the right-hand upper tail
dependence of pY p1q, Y p2qq, conditional on a value of the covariate X. Let Rtpy1, y2|xq :“
tPpF 1pY

p1q|xq ď y1{t, F 2pY
p2q|xq ď y2{t|X “ xq.

Assumption pRq For all x P SX we have as tÑ8 and h Ó 0 that

Rtpy1, y2|xq Ñ Rpy1, y2|xq,

uniformly in y1, y2 P p0, T s, for any T ą 0, and in x P Bpx0, hq.

Assuming pDq with γ1px0q ă 1 and pRq, one can show (see Cai et al., 2015, Proposition 1) that

lim
pÑ0

θppx0q

U1p1{p|x0q
“ ´

ż 8

0
Rps, 1|x0qds

´γ1px0q,

from which the following approximation can be deduced

θppx0q „
U1p1{p|x0q

U1pn{k|x0q
θ k
n
px0q „

ˆ

k

np

˙γ1px0q

θ k
n
px0q.

Thus, to estimate θppx0q, we need first to estimate γ1px0q. We propose the following estimator

pγ1,k1px0q :“

1
k1

řn
i“1Khnpx0 ´Xiq

´

lnY
p1q
i ´ ln pU1pn{k1|x0q

¯

1l
tY
p1q
i ěpU1pn{k1|x0qu

pfnpx0q
, (3)

based on an intermediate sequence k1 such that k1 Ñ8 with k1{nÑ 0. This sequence may be
different from k, the one used in the estimator θ k

n
px0q, but the two sequences are linked together
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(see Theorem 2.2 below). On the contrary, for convenience, we use the same bandwidth hn and
kernel K for both the estimation of γ1px0q and θppx0q. Note that pγ1,k1px0q is a local version of
the Hill estimator (Hill, 1975) from the univariate extreme value context.

Now, we are able to define a Weissman-type estimator for θppx0q, given by

pθppx0q “

ˆ

k

np

˙

pγ1,k1 px0q

θ k
n
px0q.

Our aim in this paper is to establish the asymptotic behavior of pθppx0q, which requires the
asymptotic behavior of pγ1,k1px0q in terms of the process on which the estimator θ k

n
px0q is based

on (see Theorem 5.1 in Section 5). To reach this goal, some assumptions due to the regression
context are required. In particular, fX and the functions appearing in F jpy|xq, j “ 1, 2, are
assumed to satisfy the following Hölder conditions. Let }.} denote some norm on Rd.

Assumption pHq There exist positive constants MfX , MAj , Mγj , MBj , Mεj , ηfX , ηAj , ηγj , ηBj
and ηεj , where j “ 1, 2, such that for all x, z P SX :

|fXpxq ´ fXpzq| ď MfX }x´ z}
ηfX ,

|Ajpxq ´Ajpzq| ď MAj}x´ z}
ηAj ,

|γjpxq ´ γjpzq| ď Mγj}x´ z}
ηγj ,

|Bjpxq ´Bjpzq| ď MBj}x´ z}
ηBj ,

sup
yě1

|εjpy|xq ´ εjpy|zq| ď Mεj}x´ z}
ηεj .

We also impose a condition on the kernel function K, which is a standard condition in local
estimation.

Assumption pKq K is a bounded density function on Rd, with support SK included in the unit
ball in Rd, with respect to the norm }.}.

Our first aim, now, is to show the weak convergence, denoted  , of the process based on
pγ1,k1px0q, but in terms of the same process as the one used in Theorem 2.3 from Goegebeur et
al. (2020).

Theorem 2.1 Assume pDq, pHq, pKq, x0 P IntpSXq with fXpx0q ą 0, and y Ñ F1py|x0q,
is strictly increasing. Consider sequences k1 Ñ 8 and hn Ñ 0 as n Ñ 8, in such a way
that k1{n Ñ 0, k1h

d
n Ñ 8, h

ηε1
n lnn{k1 Ñ 0,

a

k1hdn h
ηfX^ηA1
n Ñ 0,

a

k1hdn h
ηγ1
n lnn{k1 Ñ 0,

a

k1hdn|δ1pU1pn{k1|x0q|x0q| Ñ 0. Then we have,

b

k1hdn ppγ1,k1px0q ´ γ1px0qq 
γ1px0q

fXpx0q

„
ż 1

0
W pz,8q

1

z
dz ´W p1,8q



,

where W pz,8q is a zero centered Gaussian process with covariance function

EpW pz,8qW pz,8qq “ }K}22fXpx0q pz ^ zq ,
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with }K}2 :“
b

ş

Rd K
2puqdu.

Note that the variance of the limiting distribution of pγ1,k1px0q, after normalization, is given
by γ2

1px0q}K}
2
2{fXpx0q, compared to an asymptotic variance of γ2

1 for the Hill estimator in the
univariate context.

Before stating the weak convergence of pθppx0q, we need to introduce a second order condition,
usual in the extreme value context.

Assumption pSq. There exist β ą γ1px0q and τ ă 0 such that, as tÑ8 and h Ó 0 we have

sup
xPBpx0,hq

sup
0ăy1ă8,

1
2
ďy2ď2

|Rtpy1, y2|xq ´Rpy1, y2|x0q|

yβ1 ^ 1
“ Optτ q.

Our final result is now the following.

Theorem 2.2 Assume pDq, pHq, pKq, pSq with x Ñ Rpy1, y2|xq being a continuous function,
and y Ñ Fjpy|x0q, j “ 1, 2, are strictly increasing. Let x0 P IntpSXq such that fXpx0q ą 0.
Consider sequences k “ tnα`1pnqu, k1 “ tnα1`2pnqu and hn “ n´∆`3pnq, where `1, `2 and `3 are
slowly varying functions at infinity, with α P p0, 1q and

α ď α1 ă min

ˆ

α

d
rd` 2 pηfX ^ ηA1 ^ ηγ1qs ,

α` 2γ1px0qβ1px0q

1` 2γ1px0qβ1px0q

˙

,

and

max

ˆ

α

d` 2γ1px0qpηA1 ^ ηγ1q
,

α

d` 2p1´ γ1px0qqpηA2 ^ ηγ2 ^ ηB2 ^ ηε2 ^ ηfX q
,

α

d
´

2p1´ αqγ2
1px0qβ1px0q

d` dpβ1px0q ` εqγ1px0q
,
α´ 2p1´ αqpγ1px0q ^ pβ2px0qγ2px0qq ^ p´τqq

d
,

α1

d` 2 pηfX ^ ηA1 ^ ηγ1q
,
α1 ´ 2p1´ α1qγ1px0qβ1px0q

d

¯

ă ∆ ă
α

d
.

Then, for γ1px0q ă 1{2 and p satisfying p ď k
n such that ln k{pnpq?

k1hdn
Ñ 0 and

b

k
k1

ln k
np Ñ r P r0,8s,

we have

min

˜

b

khdn,

a

k1hdn
ln k{pnpq

¸˜

pθppx0q

θppx0q
´ 1

¸

 minpr, 1q
γ1px0q

fXpx0q

ˆ
ż 1

0
W py,8q

1

y
dy ´W p1,8q

˙

`min

ˆ

1,
1

r

˙

#

´p1´ γ1px0qq
W p8, 1q

fXpx0q
`

1

fXpx0q

ş8

0 W py, 1qdy´γ1px0q
ş8

0 Rpy, 1|x0qdy´γ1px0q

+

,

where W py1, y2q is a zero centered Gaussian process with covariance function

E pW py1, y2qW py1, y2qq “ }K}
2
2fXpx0qRpy1 ^ y1, y2 ^ y2|x0q,
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W py,8q is the limiting process of Theorem 2.1, and W p8, yq is a zero centered Gaussian process
with covariance function

E pW p8, yqW p8, yqq “ }K}22fXpx0qpy ^ yq.

The variance of the limiting random variable in Theorem 2.2, denoted W, is given by

VarpWq “
}K}22
fXpx0q

#

pminpr, 1qq2γ2
1px0q

`

ˆ

min

ˆ

1,
1

r

˙˙2 „

γ2
1px0q ´ 1´ c2

ż 8

0
Rps, 1|x0qds

´2γ1px0q



`2 min

ˆ

r,
1

r

˙

γ1px0q

«

p1´ γ1px0q ` cqRp1, 1|x0q

´

ż 1

0

´

1´ γ1px0q ` cs
´γ1px0qp1´ γ1px0q ´ γ1px0q ln sq

¯ Rps, 1|x0q

s
ds

ff+

, (4)

where c :“ p
ş8

0 Rps, 1|x0qds
´γ1px0qq´1.

3 Simulation experiment

In this section, we illustrate the finite-sample performance of our conditional marginal expected
shortfall estimator with a simulation experiment. To this aim, we consider the three models
already used in Goegebeur et al. (2020), but this time in the case where p ă 1{n, i.e., allowing
extrapolation outside the Y p2q´data range. These models are the followings:

Model 1: The conditional logistic copula model, defined as

Cpu1, u2|xq “ e´rp´ lnu1qx`p´ lnu2qxs1{x , u1, u2 P r0, 1s, x ě 2. (5)

In this model, X is uniformly distributed in the interval r2, 10s, and the marginal distribution
functions of Y p1q and Y p2q are Fréchet distributions:

Fjpyq “ e´y
´1{γj

, y ą 0,

j “ 1, 2. We set γ1 “ 0.25 and γ2 “ 0.5. It can be shown that this model satisfies Assumption
pSq with Rpy1, y2|xq “ y1 ` y2 ´ py

x
1 ` y

x
2 q

1{x, τ “ ´1 and β “ 1´ ε for some small ε ą 0.

Model 2: The conditional distribution of pY p1q, Y p2qq given X “ x is that of

p|Z1|
γ1pxq, |Z2|

γ2pxqq,

where pZ1, Z2q follow a bivariate standard Cauchy distribution with density function

fpz1, z2q “
1

2π
p1` z2

1 ` z
2
2q
´3{2, pz1, z2q P R2.
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Here, X is uniformly distributed in r0, 1s and

γ1pxq “ 0.4 r0.1` sinpπxqs
”

1.1´ 0.5e´64px´0.5q2
ı

,

γ2pxq “ 0.1` 0.1x.

Again, Assumption pSq is satisfied for this model with Rpy1, y2|xq “ y1`y2´
a

y2
1 ` y

2
2, τ “ ´1

and β “ 2 (see, e.g., Cai et al., 2015, in the context without covariates).

Model 3: We consider again the conditional logistic copula model defined in (5) but this time
with conditional Burr distributions for the marginal distribution functions of Y p1q and Y p2q, i.e.,

Fjpy|xq “ 1´

ˆ

βj

βj ` yτjpxq

˙λj

, y ą 0; βj , λj , τjpxq ą 0,

j “ 1, 2. We set β1 “ β2 “ 1, λ1 “ 1, λ2 “ 0.5, and

τ1pxq “ 2e0.2x, τ2pxq “ 8{ sinp0.3xq.

Similarly to Model 1, this model satisfies pSq.

Note that for all these models, Assumption pDq is satisfied since all the marginal conditional
distributions are standard examples from this class of heavy-tailed distributions (see, e.g., Beir-
lant et al., 2009, Table 1).

We simulate 500 datasets of size n “ 500 and 1 000 from each model. For each sample, we
compute pθppx0q for two different values of p: 1{p2nq and 1{p5nq, and three different sets of val-
ues of the covariate position x0: t3, 5, 7u for Model 1 and Model 3, and t0.3, 0.5, 0.8u for Model 2.

Concerning the kernel function K, we use the bi-quadratic function

Kpxq “
15

16
p1´ x2q21ltxPr´1,1su,

for both the estimation of pγ1,k1px0q and θk{npx0q. To compute these estimators, we need also to
select a bandwidth hn. To this aim, we use the cross-validation procedure introduced by Yao
(1999), and already used in the extreme value framework by Daouia et al. (2011, 2013) and
Escobar-Bach et al. (2018a), and defined as:

hcv :“ argmin
hnPH

n
ÿ

i“1

n
ÿ

j“1

ˆ

1l!
Y
p2q
i ďY

2q
j

) ´ pFn,hn,2,´i

´

Y
p2q
j

ˇ

ˇ

ˇ
Xi

¯

˙2

,

where H is the grid of values defined as RX ˆ t0.05, 0.10, . . . , 0.30u, with RX the range of the
covariate X, and

pFn,hn,2,´i py|xq :“

řn
k“1,k‰iKhn px´Xkq 1l!

Y
p2q
k ďy

)

řn
k“1,k‰iKhn px´Xkq

.
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Concerning now, the choice of the sequence k1 in the estimation of γ1px0q, a graphical assessment
is used. The retained value of k1 corresponds to the smallest value of k after which the median
of the estimates pγ1,kpx0q over the 500 replications exibit a stable part. This choice is common in
extreme value theory where we search at a plateau of an extreme value estimator as a function
of the intermediate sequence.

Figures 1 to 6 display the boxplots of the ratios between the estimates pθppx0q and the true value
θppx0q based on the 500 replications for the different values of x0 (corresponding to the rows)
and the two sample sizes (corresponding to the columns: n “ 500 on the left, n “ 1 000 on the
right). Figures 1 and 2 correspond to Model 1 for p “ 1{p2nq and 1{p5nq, respectively. Similarly,
Figures 3 and 4 correspond to Model 2, and Figures 5 and 6 to Model 3.

Based on these simulations, we can draw the following conclusions:

• Our estimator pθppx0q performs quite well in all the situations, although its efficiency de-
pends obviously on the model and also on the covariate position. This is expected because
as is clear from our models, the marginal distributions in Model 1 do not depend on the
covariates but the dependence structure does. On the contrary, the dependence structure
in Model 2 does not depend on the covariate but the marginal distributions depend on x0,
and in Model 3 both of them depend on x0. Thus, Model 1 is less challenging than the
two other models;

• Note that the estimation in Model 2 is difficult and depends a lot on the value of the
covariate. This can be explained by the fact that the plot of γ1pxq as a function of x
exhibits two local maxima, one of which being close to 0.3, and a local minimum at 0.5.
Thus, we get an underestimation of θppx0q near the local maxima and an overestimation
of θppx0q near the local minima, due to the local nature of the estimation. Outside these
neighborhoods, the estimation is without bias. This is the case for x0 “ 0.8.

• As expected, the smaller p is, the more difficult is the estimation, due to an important
extrapolation outside the Y p2q´data range. This results in an increase of the variability of
the estimates. Note that the values p “ 1{p2nq and p “ 1{p5nq correspond to quite severe
extrapolations since the estimation is done locally, and the local number of observations
is much smaller than n.

4 Application to Indians diabetes data

In this section we illustrate the developed methodology on the PIMA Indians Diabetes dataset.
This dataset is originally from the National Institute of Diabetes and Digestive and Kidney
Diseases, and contains observations on nine variables, for 768 subjects aged 21 to 81 years.
We estimate the conditional marginal expected shortfall for the diastolic blood pressure, Y p1q,
given that the body mass index, BMI, Y p2q, exceeds a large quantile and given a value for
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Figure 1: Boxplots of pθppx0q{θppx0q for Model 1 based on 500 replications of sample sizes n “ 500
(left column) and n “ 1 000 (right column) for p “ 1{p2nq. From top to bottom we have x0 “ 3,
x0 “ 5 and x0 “ 7. The values of k are taken as 2%, 5%, 10% and 20% of n.
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Figure 2: Boxplots of pθppx0q{θppx0q for Model 1 based on 500 replications of sample sizes n “ 500
(left column) and n “ 1 000 (right column) for p “ 1{p5nq. From top to bottom we have x0 “ 3,
x0 “ 5 and x0 “ 7. The values of k are taken as 2%, 5%, 10% and 20% of n.

10



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●
●
●

●●

●

●

●●

●

●●

●
●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●●

●
●
●

●
●
●
●

●

●

●
●
●

●

●

●

10 25 50 100

0
1

2
3

4
5

k

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●●●

●
●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

20 50 100 200

0
1

2
3

4
5

k

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●
●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

10 25 50 100

0
1

2
3

4
5

6

k

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

20 50 100 200

0
1

2
3

4
5

6

k

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10 25 50 100

0
1

2
3

4
5

6

k

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●●
●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

20 50 100 200

0
1

2
3

4
5

6

k

Figure 3: Boxplots of pθppx0q{θppx0q for Model 2 based on 500 replications of sample sizes n “ 500
(left column) and n “ 1 000 (right column) for p “ 1{p2nq. From top to bottom we have x0 “ 0.3,
x0 “ 0.5 and x0 “ 0.8. The values of k are taken as 2%, 5%, 10% and 20% of n.
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Figure 4: Boxplots of pθppx0q{θppx0q for Model 2 based on 500 replications of sample sizes n “ 500
(left column) and n “ 1 000 (right column) for p “ 1{p5nq. From top to bottom we have x0 “ 0.3,
x0 “ 0.5 and x0 “ 0.8. The values of k are taken as 2%, 5%, 10% and 20% of n.
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Figure 5: Boxplots of pθppx0q{θppx0q for Model 3 based on 500 replications of sample sizes n “ 500
(left column) and n “ 1 000 (right column) for p “ 1{p2nq. From top to bottom we have x0 “ 3,
x0 “ 5 and x0 “ 7. The values of k are taken as 2%, 5%, 10% and 20% of n.
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Figure 6: Boxplots of pθppx0q{θppx0q for Model 3 based on 500 replications of sample sizes n “ 500
(left column) and n “ 1 000 (right column) for p “ 1{p5nq. From top to bottom we have x0 “ 3,
x0 “ 5 and x0 “ 7. The values of k are taken as 2%, 5%, 10% and 20% of n.
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the covariate age, X. We only consider the subjects for whom Y p1q and Y p2q are non-missing,
giving n “ 729. In Gardes and Girard (2015) these data were considered with the purpose
of illustrating the estimation of the dependence function Rpy1, y2|xq. The estimation results
reported below are obtained with the bi-quadratic kernel function, and the bandwidth selection
is done with the cross-validation criterion described in the simulation section. The scatterplot
of blood pressure versus BMI, shown in Figure 7, indicates a positive association between these
variables. In order to verify the Pareto-type behavior of Y p1q and Y p2q, we construct the local
Pareto quantile-quantile plots of the Y p1q and Y p2q data, respectively, for which the X coor-
dinate is in a neighborhood of age=25 and age=55, see Figure 8. Clearly, the local Pareto
quantile-quantile plots become approximately linear in the largest observations, which confirms
underlying Pareto-type distributions (see Beirlant et al., 2004, for a general discussion of Pareto
quantile-quantile plots). In Figure 9 we show the plot of the Hill estimates for blood pressure
as a function of k, based on the data shown in the local Pareto quantile-quantile plots. When
focusing on the stable horizontal parts of these plots we can clearly see that the theoretical
requirement γ1px0q ă 0.5 is satisfied. Similar local Pareto quantile-quantile and Hill plots were
obtained at other ages. Next, we investigate the asymptotic dependence assumption by plotting
an estimate for Rp2, 2|x0q as a function of k, at several values of x0. To this aim, we consider an
adjustment of the estimator proposed in Escobar-Bach et al. (2018b), which is for the context
of estimation of Lpy1, y2|x0q, to the context of estimation of Rpy1, y2|x0q, namely

pRpy1, y2|x0q “

1
k

řn
i“1Khn px0 ´Xiq 1l!

pFn,1pY
p1q
i |Xi qď

k
n
y1,

pFn,2pY
p2q
i |Xi qď

k
n
y2

)

pfnpx0q
, (6)

where pFn,1 is a kernel estimator for F1, of the same form as pFn,2 given in (1). For the bandwidth

parameter hn in (6) we take the bandwidth used in pFn,2, obtained with cross-validation, and

which turns out to be the same as the cross-validated bandwidth for pFn,1 (by coincidence). In

Figure 10 we plot pRp2, 2|x0q as a function of k, at x0 “ 30 and x0 “ 50. Clearly, the displays
show a positive estimate for Rp2, 2|x0q, which gives evidence of asymptotic dependence of Y p1q

and Y p2q given X “ x0. Finally, we illustrate the estimation of the conditional marginal expected
shortfall of blood pressure given a BMI that exceeds a high quantile and given a certain age.
In Figure 11, we show pθppx0q as a function of age for p “ 0.5%, 1%, 5% and 10%. The k-value
for the estimation of the conditional marginal expected shortfall at a given x0 was obtained by
plotting pθppx0q as a function of k, whereafter k is selected by a stability criterion as described
in Goegebeur et al. (2019). As expected, smaller values of p lead to larger estimates of the
conditional marginal expected shortfall. In Figure 12 we show pθppx0q at several positions x0,
and for p “ 1% (left) and p “ 5% (right), along with pointwise 95% confidence intervals for
θppx0q, obtained from Theorem 2.2. These confidence intervals are given by

»

—

–

pθppx0q

1` Φ´1
`

1´ α
2

˘

b

{VarpWq
an

,
pθppx0q

1´ Φ´1
`

1´ α
2

˘

b

{VarpWq
an

fi

ffi

fl

,

where an :“ minp
a

khdn,
a

k1hdn{pln k{pnpqq, Φ´1 denotes the standard normal quantile function

and {VarpWq is an estimate for the asymptotic variance given in (4), obtained by using the local
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Figure 7: Indians diabetes dataset: scatterplot of blood pressure versus BMI.

Hill estimate (3) for γ1px0q and (6) as estimate for Rpy1, y2|x0q. The confidence intervals are
clearly wider for p “ 1% than for p “ 5%, reflecting the higher uncertainty of the estimate
at p “ 1% due to the fact that the estimation is based on fewer observations. Similarly, the
confidence intervals are wider at covariate positions where the data are sparse. These findings
are obviously in line with what can be expected.

5 Preliminary results

To be self contained, we recall below Theorem 2.3 from Goegebeur et al. (2020) which states
the weak convergence of θ k

n
px0q.

Theorem 5.1 Assume pDq, pHq, pKq, pSq with x Ñ Rpy1, y2|xq being a continuous function,
and y Ñ Fjpy|x0q, j “ 1, 2, are strictly increasing. Let x0 P IntpSXq such that fXpx0q ą 0.
Consider sequences k “ tnα`1pnqu and hn “ n´∆`3pnq, where `1 and `3 are slowly varying
functions at infinity, with α P p0, 1q and

max

ˆ

α

d` 2γ1px0qpηA1 ^ ηγ1q
,

α

d` 2p1´ γ1px0qqpηA2 ^ ηγ2 ^ ηB2 ^ ηε2 ^ ηfX q
,

α

d
´

2p1´ αqγ2
1px0qβ1px0q

d` dpβ1px0q ` εqγ1px0q
,
α´ 2p1´ αqpγ1px0q ^ pβ2px0qγ2px0qq ^ p´τqq

d

¯

ă ∆ ă
α

d
.
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Figure 8: Indians diabetes dataset: local Pareto quantile-quantile plots of blood pressure (top
row) and BMI (bottom row), at age=25 (left) and age=55 (right).
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Figure 9: Indians diabetes dataset: local Hill plots of blood pressure for age=25 (left) and
age=55 (right).
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Figure 10: Indians diabetes dataset: pRp2, 2|x0q as a function of k, for x0 “ 30 (left) and x0 “ 50
(right).
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Figure 11: Indians diabetes dataset: pθppx0q as a function of x0 for p “ 0.5% (solid line) 1%
(dotted line), 5% (dashed-dotted line) and 10% (dashed line).
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Figure 12: Indians diabetes dataset: pointwise 95% confidence interval for θppx0q at several
values of x0 for p “ 1% (left) and p “ 5% (right).

Then, for γ1px0q ă 1{2, we have
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Now, remark that, assuming that F1py|x0q is strictly increasing in y, we have
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Thus we need to study the asymptotic properties of Tnpy|x0q, psnpz|x0q and pU1pn{k1|x0q.
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We start by showing the weak convergence of the process based on Tnpy|x0q, first when the
process is centered around its expectation (Theorem 5.2) and then when it is centered around
the dominant term of its expectation (Corollary 5.1).

Theorem 5.2 Assume pDq, pHq, pKq, and x0 P Int(SXq with fXpx0q ą 0, and y Ñ F1py|x0q

is strictly increasing. Consider sequences k1 Ñ 8 and hn Ñ 0 as n Ñ 8, in such a way that
k1{nÑ 0, k1h

d
n Ñ8 and h

ηγ1^ηε1
n lnn{k1 Ñ 0. Then for η P r0, 1{2q, we have,
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in Dpp0, T sq, for any T ą 0.

Proposition 5.1 Assume pDq, pHq, pKq, and x0 P Int(SXq with fXpx0q ą 0. Consider se-
quences k1 Ñ8 and hn Ñ 0 as nÑ8, in such a way that k1{nÑ 0, and h

ηγ1^ηε1
n lnn{k1 Ñ 0.

Then for η P r0, 1q, we have,

E pTnpy|x0qq

yη
“ y1´ηfXpx0q `O

´

h
ηfX^ηA1
n

¯

`O

ˆ

h
ηγ1
n ln

n

k1

˙

`O

ˆˇ

ˇ

ˇ

ˇ

δ1

ˆ

U1

ˆ

n

k1

ˇ

ˇ

ˇ
x0

˙

ˇ

ˇ

ˇ
x0

˙ˇ

ˇ

ˇ

ˇ

h
ηB1
n

˙

`O

ˆˇ

ˇ

ˇ

ˇ

δ1

ˆ

U1

ˆ

n

k1

ˇ

ˇ

ˇ
x0

˙

ˇ

ˇ

ˇ
x0

˙ˇ

ˇ

ˇ

ˇ

h
ηε1
n ln

n

k1

˙

,

where the O–terms are uniform in y P p0, T s, for any T ą 0.

Corollary 5.1 Assume pDq, pHq, pKq, x0 P IntpSXq with fXpx0q ą 0, and y Ñ F1py|x0q

is strictly increasing. Consider sequences k1 Ñ 8 and hn Ñ 0 as n Ñ 8, in such a way
that k1{n Ñ 0, k1h

d
n Ñ 8, h

ηε1
n lnn{k1 Ñ 0,

a

k1hdn h
ηfX^ηA1
n Ñ 0,

a

k1hdn h
ηγ1
n lnn{k1 Ñ 0,

a

k1hdn|δ1pU1pn{k1|x0q|x0q|h
ηB1
n Ñ 0, and

a

k1hdn|δ1pU1pn{k1|x0q|x0q|h
ηε1
n lnn{k1 Ñ 0. Then for

η P r0, 1{2q, we have,

b

k1hdn

ˆ

Tnpy|x0q

yη
´ y1´ηfXpx0q

˙

 
W py,8q

yη

in Dpp0, T sq, for any T ą 0.

In the sequel, for convenient representation, the limiting process in Theorem 5.2 and Corollary
5.1 will be defined on the same probability space as the original random variables, via the
Skorohod construction, but it should be kept in mind that it is only in distribution equal to
the original process. The Skorohod representation theorem gives then, with keeping the same
notation, that

sup
yPp0,T s

ˇ

ˇ

ˇ

ˇ

b

k1hdn

ˆ

Tnpy|x0q

yη
´ y1´ηfXpx0q

˙

´
W py,8q

yη

ˇ

ˇ

ˇ

ˇ

Ñ 0 a.s. ,

as nÑ8.

For the intermediate quantile estimate pU1pn{k|x0q, we recall Lemma 5.6 from Goegebeur et al.
(2020), which is used several times in our proofs, and which states the weak convergence of
pun :“ pU1pn{k1|x0q{U1pn{k1|x0q.
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Lemma 5.1 Assume pDq, pHq, pKq, x0 P IntpSXq with fXpx0q ą 0 and y Ñ F1py|x0q is
strictly increasing. Consider sequences k1 Ñ 8 and hn Ñ 0 as n Ñ 8, in such a way that
k1{n Ñ 0, k1h

d
n Ñ 8, h

ηε1
n lnn{k1 Ñ 0,

a

k1hdn h
ηfX^ηA1
n Ñ 0,

a

k1hdn h
ηγ1
n lnn{k1 Ñ 0,

a

k1hdn|δ1pU1pn{k1|x0q|x0q| Ñ 0. Then, as nÑ8, we have

b

k1hdn ppun ´ 1q 
γ1px0qW p1,8q

fXpx0q
.

From Lemma 5.1, we can show now the uniform convergence in probability of psnpz|x0q towards
z for any z P p0, T s.

Lemma 5.2 Under the assumptions of Lemma 5.1, for any T ą 0, we have

sup
zPp0,T s

|psnpz|x0q ´ z| “ oPp1q.

Proof of the preliminary results

Proof of Theorem 5.2. Recall that

Tnpy|x0q

yη
“

1

k1

n
ÿ

i“1

Khnpx0 ´Xiq1ltF 1pY
p1q
i |x0qď

k1
n
yu

1

yη
.

The proof of Theorem 5.2 follows the lines of proof of Theorem 2.1 in Goegebeur et al. (2020).
Below, we only outline the main differences and refer to the latter paper otherwise. To start,
we need some notations from empirical process theory with changing function classes, see for
instance van der Vaart and Wellner (1996). Let P be the distribution measure of pY p1q, Xq,
and denote the expected value under P as Pf :“

ş

fdP for any real-valued measurable function
f : R ˆ Rd Ñ R. For a function class F , let Nrspε,F , L2pP qq, denote the minimal number of
ε´brackets needed to cover F . The bracketing integral is then defined as

Jrspδ,F , L2pP qq “

ż δ

0

b

lnNrspε,F , L2pP qqdε.

We introduce our sequence of classes Fn on Rˆ Rd as

Fn :“ tpu, zq Ñ fn,ypu, zq, y P p0, T su ,

where

fn,ypu, zq :“

d

nhdn
k1

Khnpx0 ´ zq1ltF 1pu|x0qď
k1
n
yu

1

yη
.

Denote also by Fn an envelope function of the class Fn. Now, according to Theorem 19.28
in van der Vaart (1998), the weak convergence of the stochastic process (8) follows from the
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following four conditions. Let ρx0 be a semimetric, possibly depending on x0, making p0, T s
totally bounded. We have to prove that

sup
ρx0 py,ȳqďδn

P pfn,y ´ fn,ȳq
2 ÝÑ 0 for every δn Œ 0, (9)

PF 2
n “ Op1q, (10)

PF 2
n1ltFnąε

?
nu ÝÑ 0 for every ε ą 0, (11)

Jrspδn,Fn, L2pP qq ÝÑ 0 for every δn Œ 0. (12)

We start with verifying condition p9q, with ρx0py, yq :“ |y ´ y|. Without loss of generality, we
may assume that y ď y. We have

P pfn,y ´ fn,yq
2 “

nhdn
k1

E

»

–K2
hnpx0 ´Xq

˜

1l
tF 1pY p1q|x0qď

k1
n
yu

yη
´

1l
tF 1pY p1q|x0qď

k1
n
yu

yη

¸2
fi

fl .

We consider now two cases.

Case 1: y ď δn. We have

˜

1l
tF 1pY p1q|x0qď

k1
n
yu

yη
´

1l
tF 1pY p1q|x0qď

k1
n
yu

yη

¸2

ď 3
1l
tF 1pY p1q|x0qď

k1
n
yu

y2η
`

1l
tF 1pY p1q|x0qď

k1
n
yu

y2η .

This implies that

P pfn,y ´ fn,yq
2 ď 3

nhdn
k1

E

˜

K2
hnpx0 ´Xq

1l
tF 1pY p1q|x0qď

k1
n
yu

y2η

¸

`
nhdn
k1

E

˜

K2
hnpx0 ´Xq

1l
tF 1pY p1q|x0qď

k1
n
yu

y2η

¸

“ 3
nhdn
k1

ż

Rd

1

h2d
n

K2

ˆ

x0 ´ v

hn

˙ P
´

F 1pY
p1q|x0q ď

k1
n y|X “ v

¯

y2η
fXpvqdv

`
nhdn
k1

ż

Rd

1

h2d
n

K2

ˆ

x0 ´ v

hn

˙ P
´

F 1pY
p1q|x0q ď

k1
n y|X “ v

¯

y2η fXpvqdv

“ 3
n

k1

ż

SK

K2pvq
P
´

F 1pY
p1q|x0q ď

k1
n y|X “ x0 ´ hnv

¯

y2η
fXpx0 ´ hnvqdv

`
n

k1

ż

SK

K2pvq
P
´

F 1pY
p1q|x0q ď

k1
n y|X “ x0 ´ hnv

¯

y2η fXpx0 ´ hnvqdv.
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Since P
´

F 1pY
p1q|x0q ď

k1
n y

ˇ

ˇ

ˇ
X “ x0 ´ hnv

¯

“ F 1

´

U1p
n
k1y
|x0q

ˇ

ˇ

ˇ
x0 ´ hnv

¯

, this yields

P pfn,y ´ fn,yq
2 ď 3 y1´2η

ż

SK

K2pvqfXpx0 ´ hnvqdv

`3

ż

SK

K2pvq

„

1

y2η

n

k1
F 1

ˆ

U1

ˆ

n

k1y

ˇ

ˇ

ˇ
x0

˙

ˇ

ˇ

ˇ
x0 ´ hnv

˙

´ y1´2η



fXpx0 ´ hnvqdv

`y1´2η

ż

SK

K2pvqfXpx0 ´ hnvqdv

`

ż

SK

K2pvq

„

1

y2η

n

k1
F 1

ˆ

U1

ˆ

n

k1y

ˇ

ˇ

ˇ
x0

˙

ˇ

ˇ

ˇ
x0 ´ hnv

˙

´ y1´2η



fXpx0 ´ hnvqdv.

Using Lemma 5.1 in Goegebeur et al. (2020) and the fact that ρx0py, yq ď δn which implies
y ď 2δn, we get

P pfn,y ´ fn,yq
2 ď 5 δ1´2η

n

ż

SK

K2pvqfXpx0 ´ hnvqdv ` op1q,

where the op1q´term does not depend on y and y.
Case 2: y ą δn. In that case

˜

1l
tF 1pY p1q|x0qď

k1
n
yu

yη
´

1l
tF 1pY p1q|x0qď

k1
n
yu

yη

¸2

ď

ˆ

1

yη
´

1

yη

˙2

1l
tF 1pY p1q|x0qď

k1
n
yu

`
1

y2η

!

1l
tF 1pY p1q|x0qď

k1
n
yu
´ 1l

tF 1pY p1q|x0qď
k1
n
yu

)

,

from which we deduce that

P pfn,y ´ fn,yq
2 ď

pyη ´ yηq2

pyyq2η

ż

SK

K2pvq
n

k1
F 1 pU1pn{pk1yq|x0q|x0 ´ hnvq fXpx0 ´ hnvqdv

`
1

y2η

n

k1

ż

SK

K2pvqP

ˆ

k1

n
y ď F 1pY

p1q|x0q ď
k1

n
y

ˇ

ˇ

ˇ

ˇ

X “ x0 ´ hnv

˙

fXpx0 ´ hnvqdv.

These two terms on the right-hand side of the above inequality can be handled similarly as those
in case 3 in the proof of Theorem 2.1 in Goegebeur et al. (2020).

Now, a natural envelope function of the class Fn is

Fnpu, zq :“

d

nhdn
k1

Khnpx0 ´ zq
1l
tF 1pu|x0qďk1T {nu

rpn{k1qF 1pu|x0qs
η
.

Thus, according again to the proof of Theorem 2.1 in Goegebeur et al. (2020), conditions p10q
and p11q are satisfied.
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Finally, we need to show condition p12q. Without loss of generality we assume T “ 1. Consider
for a, θ ă 1:

F p1qn paq :“ tfn,y P Fn : y ď au,

F p2qn p`q :“ tfn,y P Fn : θ``1 ď y ď θ`u,

where ` “ 0, . . . , tln a{ ln θu .

The class F p1qn paq has been already studied in the proof of Theorem 2.1 in Goegebeur et al.

(2020) and F p2qn p`q can be dealt with similar arguments as for Fnp`,mq from the latter paper,
since we have the following bounds

unpu, zq :“

d

nhdn
k1

Khnpx0 ´ zq
1l
tF 1pu|x0qďk1{n θ``1u

θ`η

ď fn,ypu, zq ď

d

nhdn
k1

Khnpx0 ´ zq
1l
tF 1pu|x0qďk1{n θ`u

θp``1qη
“: unpu, zq.

This concludes the proof of Theorem 5.2.

Proof of Proposition 5.1. We have

E rTnpy|x0qs

yη
“

1

yη
n

k1
E
”

Khnpx0 ´Xq1ltF 1pY p1q|x0qď
k1
n
yu

ı

“
1

yη
n

k1

ż

Rd

1

hdn
K

ˆ

x0 ´ u

hn

˙

P

ˆ

F 1

´

Y p1q
ˇ

ˇ

ˇ
x0

¯

ď
k1

n
y
ˇ

ˇ

ˇ
X “ u

˙

fXpuqdu

“
1

yη
n

k1

ż

SK

KpuqF 1

ˆ

U1

ˆ

n

k1y

ˇ

ˇ

ˇ
x0

˙

ˇ

ˇ

ˇ
x0 ´ hnu

˙

fXpx0 ´ hnuqdu

“ y1´η fXpx0q ` y
1´η

ż

SK

Kpuq rfXpx0 ´ hnuq ´ fXpx0qs du

`fXpx0q

ż

SK

Kpuq

»

–

n
k1
F 1

´

U1

´

n
k1y

ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ
x0 ´ hnu

¯

yη
´ y1´η

fi

fl du

`

ż

SK

Kpuq

»

–

n
k1
F 1

´

U1

´

n
k1y

ˇ

ˇ

ˇ
x0

¯
ˇ

ˇ

ˇ
x0 ´ hnu

¯

yη
´ y1´η

fi

fl rfXpx0 ´ hnuq ´ fXpx0qs du.

Following the lines of proof of Lemma 5.1 in Goegebeur et al. (2020), we have
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n
k1
F 1

´

U1

´

n
k1y

ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ
x0 ´ hnu

¯

yη
´ y1´η

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ O
´

h
ηA1
n

¯

`O

ˆ

h
ηγ1
n ln

n

k1

˙

`O

ˆ
ˇ

ˇ

ˇ

ˇ

δ1

ˆ

U1

ˆ

n

k1

ˇ

ˇ

ˇ
x0

˙

ˇ

ˇ

ˇ
x0

˙
ˇ

ˇ

ˇ

ˇ

h
ηB1
n

˙

`O

ˆˇ

ˇ

ˇ

ˇ

δ1

ˆ

U1

ˆ

n

k1

ˇ

ˇ

ˇ
x0

˙

ˇ

ˇ

ˇ
x0

˙ˇ

ˇ

ˇ

ˇ

h
ηε1
n ln

n

k1

˙
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with O´terms which are uniform in y P p0, T s, for any T ą 0. This yields Proposition 5.1.

Proof of Corollary 5.1. Using the decomposition

b

k1hdn

ˆ

Tnpy|x0q

yη
´ y1´ηfXpx0q

˙

“

b

k1hdn

ˆ

Tnpy|x0q ´ EpTnpy|x0qq

yη

˙

`

b

k1hdn

ˆ

E pTnpy|x0qq

yη
´ y1´ηfXpx0q

˙

,

combined with Theorem 5.2 and Proposition 5.1 yields Corollary 5.1.

Proof of Lemma 5.2. We have, for z P p0, T s and any ε ą 0 and ζ P p0, β1px0qs

|psnpz|x0q ´ z| “

ˇ

ˇ

ˇ

ˇ

n

k1
F 1

´

z´γ1px0qpunU1pn{k1|x0q

ˇ

ˇ

ˇ
x0

¯

´ z

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

F 1

´

z´γ1px0qpunU1pn{k1|x0q

ˇ

ˇ

ˇ
x0

¯

F 1

´

U1pn{k1|x0q

ˇ

ˇ

ˇ
x0

¯ ´ z

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď z
ˇ

ˇ

ˇ
pu´1{γ1px0q
n ´ 1

ˇ

ˇ

ˇ

1` 1
γ1px0q

δ1

´

z´γ1px0qpunU1pn{k1|x0q

ˇ

ˇ

ˇ
x0

¯

1` 1
γ1px0q

δ1

´

U1pn{k1|x0q

ˇ

ˇ

ˇ
x0

¯

`
z

γ1px0q

ˇ

ˇ

ˇ
δ1

´

U1pn{k1|x0q

ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ

1` 1
γ1px0q

δ1

´

U1pn{k1|x0q

ˇ

ˇ

ˇ
x0

¯

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

δ1

´

z´γ1px0qpunU1pn{k1|x0q

ˇ

ˇ

ˇ
x0

¯

δ1

´

U1pn{k1|x0q

ˇ

ˇ

ˇ
x0

¯ ´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď C T
ˇ

ˇ

ˇ
pu´1{γ1px0q
n ´ 1

ˇ

ˇ

ˇ

`C T
ˇ

ˇ

ˇ
δ1

´

U1pn{k1|x0q

ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ

$

&

%

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

δ1

´

z´γ1px0qpunU1pn{k1|x0q

ˇ

ˇ

ˇ
x0

¯

δ1

´

U1pn{k1|x0q

ˇ

ˇ

ˇ
x0

¯ ´

´

z´γ1px0qpun

¯´β1px0q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

´

z´γ1px0qpun

¯´β1px0q
´ 1

ˇ

ˇ

ˇ

ˇ

*

ď C T
ˇ

ˇ

ˇ
pu´1{γ1px0q
n ´ 1

ˇ

ˇ

ˇ

`C ε
ˇ

ˇ

ˇ
δ1

´

U1pn{k1|x0q

ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ
T 1`γ1px0qβ1px0q˘γ1px0qζ

pu´β1px0q˘ζn

`C
ˇ

ˇ

ˇ
δ1

´

U1pn{k1|x0q

ˇ

ˇ

ˇ
x0

¯
ˇ

ˇ

ˇ
T

!

T γ1px0qβ1px0qpu´β1px0qn ` 1
)

,

for n large, with arbitrary large probability, by Proposition B.1.10 in de Haan and Ferreira
(2006). In the above, the notation a˘‚ means a‚ if a ě 1 and a´‚ if a ă 1. Using Lemma 5.1,
Lemma 5.2 follows.
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6 Proofs of the main results

Proof of Theorem 2.1. Using (7), we have the following decomposition

b

k1hdn ppγ1,k1px0q ´ γ1px0qq “
γ1px0q

fXpx0q

ż 1

0
W pz,8q

1

z
dz

`γ1px0q

b

k1hdn

ż 1

0

„

psnpz|x0q

z
´ 1



dz

`
γ1px0q

fXpx0q

ż 1

0
rW ppsnpz|x0q,8q ´W pz,8qs

1

z
dz

`γ1px0q

ż 1

0

"

b

k1hdn

„

Tnppsnpz|x0q|x0q

fXpx0qps
η
npz|x0q

´ ps1´η
n pz|x0q



´
W ppsnpz|x0q,8q

fXpx0qps
η
npz|x0q

*

psηnpz|x0q

z
dz

´
γ1px0q

fXpx0q pfnpx0q

ż 1

0
Tnppsnpz|x0q|x0q

1

z
dz

c

k1

n

b

nhdn

´

pfnpx0q ´ fXpx0q

¯

“:
γ1px0q

fXpx0q

ż 1

0
W pz,8q

1

z
dz `

4
ÿ

i“1

Ti,n.

We study each term separately.

Concerning T1,n, following the lines of proof of Lemma 5.2, we have

T1,n “ γ1px0q

b

k1hdn

”

pu´1{γ1px0q
n ´ 1

ı

` oPp1q.

Now, combining Lemma 5.1 with a Taylor expansion, we have

T1,n  ´
γ1px0q

fXpx0q
W p1,8q.

Concerning T2,n, for δ P p0, 1q, we use the decomposition

T2,n “
γ1px0q

fXpx0q

"
ż δ

0
rW ppsnpz|x0q,8q ´W pz,8qs

1

z
dz `

ż 1

δ
rW ppsnpz|x0q,8q ´W pz,8qs

1

z
dz

*

“: T
p1q
2,n ` T

p2q
2,n .

Using Lemma 5.2 combined with Potter’s bounds (see Proposition B.1.9 (5) in de Haan and
Ferreira, 2006), we have for any ζ P p0, 1{γ1px0qq, for n large, and with arbitrary large probability

|T
p1q
2,n | ď

γ1px0q

fXpx0q
sup
zPp0,2s

|W pz,8q|

zη

„
ż δ

0

psηnpz|x0q

z
dz `

δη

η



ď C

ż δ

0

1

z

”

z´γ1px0qpun

ıηp˘ζ´1{γ1px0qq
dz ` Cδη

ď Cpup˘ζ´1{γ1px0qqη
n δp1´γ1px0qζqη ` Cδη

“ Cε1´γ1px0qζ ` Cε, by choosing δη “ ε.
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Now, concerning T
p2q
2,n , remark that following the lines of proof of Lemma 5.2, we have

sup
zPrδ,1s

´

k1h
d
n

¯1{4
|psnpz|x0q ´ z| “ oPp1q,

from which we deduce that, for any ξ ą 0

P

˜

sup
zPrδ,1s

|W ppsnpz|x0q,8q ´W pz,8q| ą ξ

¸

ď P

˜

sup
zPrδ,1s

|W ppsnpz|x0q,8q ´W pz,8q| ą ξ, sup
zPrδ,1s

|psnpz|x0q ´ z| ď
1

pk1hdnq
1{4

¸

`P

˜

sup
zPrδ,1s

|psnpz|x0q ´ z| ą
1

pk1hdnq
1{4

¸

ď P

¨

˝ sup
zPrδ,1s,|y´z|ď 1

pk1h
d
nq

1{4

|W py,8q ´W pz,8q| ą ξ

˛

‚` P

˜

sup
zPrδ,1s

|psnpz|x0q ´ z| ą
1

pk1hdnq
1{4

¸

“ op1q,

by the continuity of W p¨,8q. This implies that

|T
p2q
2,n | ď ε ln

1

δ
“ ´

ε

η
ln ε.

Hence, T2,n “ oPp1q.
Concerning T3,n, from Lemma 5.2, we have, for n large, with arbitrary large probability

|T3,n| ď
γ1px0q

fXpx0q
sup
yPp0,2s

ˇ

ˇ

ˇ

ˇ

b

k1hdn

ˆ

Tnpy|x0q

yη
´ y1´ηfXpx0q

˙

´
W py,8q

yη

ˇ

ˇ

ˇ

ˇ

ż 1

0

psηnpz|x0q

z
dz.

Then, by Corollary 5.1 combined with the Skorohod representation theorem, we can conclude
that T3,n “ oPp1q.

Finally, T4,n “ oPp1q using the properties of the kernel density estimator.

This achieves the proof of Theorem 2.1.

Proof of Theorem 2.2. We use the decomposition

pθppx0q

θppx0q
“

#

ˆ

k

np

˙

pγ1,k1 px0q´γ1px0q
+

loooooooooooooomoooooooooooooon

T5,n

#

θ k
n
px0q

θ k
n
px0q

+

looooomooooon

T6,n

$

&

%

p knpq
γ1px0qθ k

n
px0q

θppx0q

,

.

-

loooooooooooomoooooooooooon

T7,n

,
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from which we deduce that

pθppx0q

θppx0q
´ 1 “

#

ˆ

k

np

˙

pγ1,k1 px0q´γ1px0q

´ 1

+

T6,nT7,n `

#

θ k
n
px0q

θ k
n
px0q

´ 1

+

T7,n `

$

&

%

p knpq
γ1px0qθ k

n
px0q

θppx0q
´ 1

,

.

-

.(13)

We will study the three terms pTi,n ´ 1q, i “ 5, 6, 7, separately.

Concerning the term pT5,n ´ 1q, remark that, assuming ln k{pnpq?
k1hdn

ÝÑ 0 and using Theorem 2.1,

we have

ˆ

k

np

˙

pγ1,k1 px0q´γ1px0q

´ 1 “ exp

#

b

k1hdn rpγ1,k1px0q ´ γ1px0qs
ln k{pnpq
a

k1hdn

+

´ 1

“

b

k1hdn rpγ1,k1px0q ´ γ1px0qs
ln k{pnpq
a

k1hdn
p1` oPp1qq ,

from which we deduce that

a

k1hdn
ln k{pnpq

#

ˆ

k

np

˙

pγ1,k1 px0q´γ1px0q

´ 1

+

 
γ1px0q

fXpx0q

„
ż 1

0
W pz,8q

1

z
dz ´W p1,8q



. (14)

The asymptotic behavior of the term pT6,n ´ 1q has been already established in Theorem 5.1.

Now, concerning the term pT7,n ´ 1q, remark that

p knpq
γ1px0qθk{npx0q

θppx0q
´ 1 “

ˆ

θk{npx0q{U1pn{k|x0q

θppx0q{U1p1{p|x0q
´ 1

˙

U1pn{k|x0qp
k
npq

γ1px0q

U1p1{p|x0q

`
U1pn{k|x0qp

k
npq

γ1px0q

U1p1{p|x0q
´ 1. (15)

Under assumption pDq, (2) yields

U1pn{k|x0qp
k
npq

γ1px0q

U1p1{p|x0q
´ 1 “

1` a1pn{k|x0q

1` a1p1{p|x0q
´ 1 “ o

˜

1
a

khdn

¸

, (16)

since
a

khdn|δ1pU1pn{k|x0q|x0q| Ñ 0 and
a

khdn|δ1pU1p1{p|x0q|x0q| Ñ 0 under our assumptions.
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Moreover

θk{npx0q

U1pn{k|x0q
“

ż 8

0

n

k
P
´

Y p1q ą y1, Y
p2q ě U2pn{k|x0q

ˇ

ˇ

ˇ
x0

¯ dy1

U1pn{k|x0q

“

ż 8

0

n

k
P
ˆ

1´ F1pY
p1q|x0q ă 1´ F1py1|x0q, 1´ F2pY

p2q|x0q ď
k

n

ˇ

ˇ

ˇ
x0

˙

dy1

U1pn{k|x0q

“

ż 8

0
Rn{k

´n

k
r1´ F1py1|x0qs , 1

ˇ

ˇ

ˇ
x0

¯ dy1

U1pn{k|x0q

“ ´

ż 8

0
Rn{k

´n

k

”

1´ F1pz
´γ1px0q
1 U1pn{k|x0q|x0q

ı

, 1
ˇ

ˇ

ˇ
x0

¯

dz
´γ1px0q
1

“ ´

ż 8

0
Rpz1, 1|x0qdz

´γ1px0q
1

´

ż 8

0

”

Rn{k

´n

k

”

1´ F1pz
´γ1px0q
1 U1pn{k|x0q|x0q

ı

, 1
ˇ

ˇ

ˇ
x0

¯

´R
´n

k

”

1´ F1pz
´γ1px0q
1 U1pn{k|x0q|x0q

ı

, 1
ˇ

ˇ

ˇ
x0

¯ı

dz
´γ1px0q
1

´

ż 8

0

”

R
´n

k

”

1´ F1pz
´γ1px0q
1 U1pn{k|x0q|x0q

ı

, 1
ˇ

ˇ

ˇ
x0

¯

´R pz1, 1|x0q

ı

dz
´γ1px0q
1

“: ´

ż 8

0
Rpz1, 1|x0qdz

´γ1px0q
1 ` T8,n ` T9,n.

Now, by Assumption pSq

|T8,n| ď sup
xPBpx0,hnq

sup
0ăy1ă8,

1
2
ďy2ď2

|Rn{kpy1, y2|xq ´Rpy1, y2|x0q|

yβ1 ^ 1

ˆ

ˇ

ˇ

ˇ

ˇ

ż 8

0

ˆ

!n

k

”

1´ F1pz
´γ1px0q
1 U1pn{k|x0q|x0q

ı)β
^ 1

˙

dz
´γ1px0q
1

ˇ

ˇ

ˇ

ˇ

“ O
´´n

k

¯τ¯

“ o

˜

1
a

khdn

¸

,

by our assumptions on the sequence k, and

|T9,n| ď sup
1
2
ďy2ď2

ˇ

ˇ

ˇ

ˇ

ż 8

0

”

R
´n

k

”

1´ F1pz
´γ1px0q
1 U1pn{k|x0q|x0q

ı

, y2

ˇ

ˇ

ˇ
x0

¯

´R pz1, y2|x0q

ı

dz
´γ1px0q
1

ˇ

ˇ

ˇ

ˇ

“ o

˜

1
a

khdn

¸

,

by Lemma 5.4 in Goegebeur et al. (2020). Thus

θk{npx0q

U1pn{k|x0q
“ ´

ż 8

0
Rpz1, 1|x0qdz

´γ1px0q
1 ` o

˜

1
a

khdn

¸

. (17)
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A similar type of property can be obtained for θppx0q instead of θk{npx0q. Indeed

θppx0q

U1p1{p|x0q
“ ´

ż 8

0
R1{p

ˆ

1

p

”

1´ F1pz
´γ1px0q
1 U1p1{p|x0q|x0q

ı

, 1
ˇ

ˇ

ˇ
x0

˙

dz
´γ1px0q
1

“ ´

ż 8

0
Rpz1, 1|x0qdz

´γ1px0q
1

´

ż 8

0

„

R1{p

ˆ

1

p

”

1´ F1pz
´γ1px0q
1 U1p1{p|x0q|x0q

ı

, 1
ˇ

ˇ

ˇ
x0

˙

´R

ˆ

1

p

”

1´ F1pz
´γ1px0q
1 U1p1{p|x0q|x0q

ı

, 1
ˇ

ˇ

ˇ
x0

˙

dz
´γ1px0q
1

´

ż 8

0

„

R

ˆ

1

p

”

1´ F1pz
´γ1px0q
1 U1p1{p|x0q|x0q

ı

, 1
ˇ

ˇ

ˇ
x0

˙

´R pz1, 1|x0q



dz
´γ1px0q
1

“: ´

ż 8

0
Rpz1, 1|x0qdz

´γ1px0q
1 ` T10,n ` T11,n.

Clearly T10,n “ Opp´τ q “ o

ˆ

1?
khdn

˙

, by our assumptions on k and p. For T11,n, we follow the

lines of proof of the second part of Lemma 5.4 in Goegebeur et al. (2020), using the Lipschitz
property of the function R, for Tn Ñ8, we have

b

khdn|T11,n| ď

b

khdn

ˇ

ˇ

ˇ

ˇ

ż Tn

0

„

R

ˆ

1

p

”

1´ F1

´

z
´γ1px0q
1 U1p1{p|x0q

ˇ

ˇ

ˇ
x0

¯ı

, 1
ˇ

ˇ

ˇ
x0

˙

´Rpz1, 1|x0q



dz
´γ1px0q
1

ˇ

ˇ

ˇ

ˇ

`

b

khdn

ˇ

ˇ

ˇ

ˇ

ż 8

Tn

„

R

ˆ

1

p

”

1´ F1

´

z
´γ1px0q
1 U1p1{p|x0q

ˇ

ˇ

ˇ
x0

¯ı

, 1
ˇ

ˇ

ˇ
x0

˙

´Rpz1, 1|x0q



dz
´γ1px0q
1

ˇ

ˇ

ˇ

ˇ

ď ´

b

khdn

ż Tn

0

ˇ

ˇ

ˇ

ˇ

1

p

”

1´ F1

´

z
´γ1px0q
1 U1p1{p|x0q

ˇ

ˇ

ˇ
x0

¯ı

´ z1

ˇ

ˇ

ˇ

ˇ

dz
´γ1px0q
1

`2 sup
z1ě0

Rpz1, 1|x0q

b

khdn T
´γ1px0q
n

ď ´

b

khdn

ˇ

ˇ

ˇ
δ1

´

U1

´

1
p

ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
γ1px0q ` δ1

´

U1

´

1
p

ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ

ż Tn

0
z1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

δ1

´

z
´γ1px0q
1 U1

´

1
p

ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ
x0

¯

δ1

´

U1

´

1
p

ˇ

ˇ

ˇ
x0

¯

|x0

¯ ´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

dz
´γ1px0q
1

`C
b

khdn T
´γ1px0q
n

ď C
b

khdn

ˇ

ˇ

ˇ

ˇ

δ1

ˆ

U1

ˆ

1

p

ˇ

ˇ

ˇ
x0

˙

ˇ

ˇ

ˇ
x0

˙ˇ

ˇ

ˇ

ˇ

T 1´γ1px0q`pβ1px0q`εqγ1px0q
n ` C

b

khdn T
´γ1px0q
n

ď C
b

khdn

ˇ

ˇ

ˇ
δ1

´

U1

´n

k

ˇ

ˇ

ˇ
x0

¯
ˇ

ˇ

ˇ
x0

¯
ˇ

ˇ

ˇ
T 1´γ1px0q`pβ1px0q`εqγ1px0q
n ` C

b

khdn T
´γ1px0q
n ,

for n large. Then, if α and ∆ are chosen as stated in Theorem 2.2 and Tn “ nκ with κ chosen
such that

α´∆d

2γ1px0q
ă κ ă

2p1´ αqγ1px0qβ1px0q ´ pα´∆dq

2r1´ γ1px0q ` pβ1px0q ` εqγ1px0qs
,
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we have

θppx0q

U1p1{p|x0q
“ ´

ż 8

0
Rpz1, 1|x0qdz

´γ1px0q
1 ` o

˜

1
a

khdn

¸

. (18)

Combining (15), (16), (17) and (18), we deduce that

p knpq
γ1px0qθk{npx0q

θppx0q
´ 1 “ o

˜

1
a

khdn

¸

. (19)

Finally, decomposition (13) combined with Theorem 5.1, (14) and (19) achieves the proof of
Theorem 2.2.
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