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Introduction

The properties of a material depend on its crystalline state, where titanium dioxide (TiO2) is no exception. Currently TiO2 is used in varied domains, spanning from toothpaste, to cosmetics, food, packaging, sunscreen, medication, fertilizers, paints, sensors, and photocatalysts. [START_REF] Cargnello | Solution-Phase Synthesis of Titanium Dioxide Nanoparticles and Nanocrystals[END_REF] Despite its widespread use, the application of this compound has become controversial. [START_REF] Baranowska-Wójcik | Effects of Titanium Dioxide Nanoparticles Exposure on Human Health-a Review[END_REF] France originally banned its use in food products and packaging starting from 2020, [START_REF] Coppens | The Labelling of Nanomaterials under EU Law, with a Particular Focus on France[END_REF] but then revoked the decision at the beginning of 2019. However, the toxicity of TiO2 is questionable, with some studies finding a toxic effect and many others finding no toxicity. [START_REF] Barthes | Review: the potential impact of surface crystalline states of titanium for biomedical applications[END_REF] In fact, toxicity is a complex issue, dependent on many physical properties, including the degree of crystallinity and phase. [START_REF] Li | Toxicity of Three Crystalline TiO2 Nanoparticles in Activated Sludge: Bacterial Cell Death Modes Differentially Weaken Sludge Dewaterability[END_REF] TiO2 can be found in three main crystalline phases; anatase, rutile and brookite which differ in their physical properties (e.g. refractive index, dielectric constant, etc.) and chemical and photochemical reactivity. Seeing the importance and prevalence of TiO2 in modern society, ideally TiO2 would not be banned, but applied in a non-toxic form. The bottom-up synthesis of TiO2 typically generates amorphous matter, which then, through processing, is converted into the desired crystalline form or mixture of forms, while also controlling the grain size. The objective here is to reduce the time and energy required to crystallize titania, seeing the importance of crystallinity to material performance.

Crystallization can be achieved through a variety of methods. For TiO2, the most common is thermal treatment in a furnace at 400 °C or above for at least an hour. While giving good crystallinity, this method requires the sample to be in solid form and leads to particle-particle sintering. Sintering makes redispersion extremely complicated, and thus prevents further processing of nano-or micron-sized building blocks into a homogeneous, non-aggregated material. A solvothermal process can alternatively be applied to crystallize TiO2 nanoparticles without particle-particle sintering, but this requires long reaction times up to 16 h in caustic solutions. [START_REF] Chen | Mesoporous Anatase TiO2 Beads with High Surface Areas and Controllable Pore Sizes: A Superior Candidate for High-Performance Dye-Sensitized Solar Cells[END_REF] Alternatives include supercritical crystallization, gas phase crystallization, the nonhydrolytic sol-gel process [START_REF] Niederberger | Benzyl Alcohol and Titanium Tetrachloride A Versatile Reaction System for the Nonaqueous and Low-Temperature Preparation of Crystalline and Luminescent Titania Nanoparticles[END_REF] and acid peptization. [START_REF] Adschiri | Rapid and Continuous Hydrothermal Crystallization of Metal Oxide Particles in Supercritical Water[END_REF][START_REF] Ahonen | Gas-phase Crystallization of Titanium Dioxide Nanoparticles[END_REF][START_REF] Hyunho | Crystallization Process of TiO2 Nanoparticles in an Acidic Solution[END_REF] All of these approaches consume large amounts of energy, either during the thermal treatment or by using organic solvents. Reducing the crystallization time and temperature while using water and alcohol as solvents leads to an economical and environmentally friendly crystallization process. Microwave-assisted crystallization is a relatively low temperature (225 °C), rapid (25 min) and efficient method to crystallize TiO2. [START_REF] Hart | Formation of Anatase TiO2 by Microwave Processing[END_REF] When performed in a hydrothermal bomb, the crystallization temperature can be reduced to 140 °C under microwave treatment. [START_REF] Wu | TiO2 Beads as Photocatalyst and Photoelectrode for Dye-Sensitized Solar Cells Synthesized by a Microwave-Assisted Hydrothermal Method[END_REF] Other examples can be referred to. [START_REF] Aquino | Microwave-assisted crystallization into anatase of amorphous TiO2 nanotubes electrochemically grown on a Ti substrate[END_REF][START_REF] Chen | Microwave-Assisted Hydrothermal Synthesis Of TiO2 Spheres With Efficient Photovoltaic Performance For Dye-Sensitized Solar Cells[END_REF][START_REF] De Mendonca | Insights Into Formation Of Anatase TiO2 Nanoparticles From Peroxo Titanium Complex Degradation Under Microwave-Assisted Hydrothermal Treatment[END_REF][START_REF] Suzuki | Microwave-Assisted Rapid Synthesis of Anatase TiO 2 Nanosized Particles in an Ionic Liquid-Water System[END_REF][START_REF] Yang | Microwave-Assisted Fabrication of Nanoparticulate TiO2 Microspheres for Synergistic Photocatalytic Removal of Cr(VI) and Methyl Orange[END_REF] Another well-known method to decrease the temperature of crystallization is metal-induced crystallization, [START_REF] Carretero-Genevrier | Soft-Chemistry-Based Routes to Epitaxial α-Quartz Thin Films with Tunable Textures[END_REF][START_REF] Drisko | Water-Induced Phase Separation Forming Macrostructured Epitaxial Quartz Films on Silicon[END_REF][START_REF] Drisko | Crystallization of Hollow Mesoporous Silica Nanoparticles[END_REF][START_REF] Hou | Catalytic Metal-Induced Crystallization of Sol-Gel Metal Oxides for High-Efficiency Flexible Perovskite[END_REF] which was first applied to titania materials by Sangani et al. in 2015. 22 This report showed a reduction of the crystallization temperature from 400 to 300 °C through the diffusion of gold species through a vitreous titania film. To our knowledge, no one has yet reported coupling metal-induced crystallization with microwave-assisted crystallization.

In the present work, TiO2 particles are prepared by a sol-gel process, [START_REF] Chen | Mesoporous Anatase TiO2 Beads with High Surface Areas and Controllable Pore Sizes: A Superior Candidate for High-Performance Dye-Sensitized Solar Cells[END_REF][START_REF] Chen | Synthesis of Monodisperse Mesoporous Titania Beads with Controllable Diameter, High Surface Areas, and Variable Pore Diameters (14-23 nm)[END_REF][START_REF] Cao | Monodisperse anatase titania microspheres with high-thermal stability and large pore size (80 nm) as efficient photocatalysts[END_REF] yielding amorphous spheres with a diameter of about 300 nm. These particles are then crystallized in solution by using metal-induced crystallization combined with microwave radiation. This is the first report showing that the combination of microwaves and metal-induced crystallization has a synergistic effect on the crystallization process. Depending on the applied conditions (time and temperature), the transition of amorphous titania to anatase begins at temperature as low as 125 °C or can be as short as 5 min. For a given reaction time, a temperature increase from 125 to 200 °C induces a crystallite growth from 3.7 to 6.3 nm (Figure S1a).

The mechanism of crystallization is studied using electron microscopy, single particle inductively plasma mass spectrometry, X-ray diffraction, Auger and X-ray photometry, showing that the cation seems to induce crystallization as it migrates throughout the oxide matrix. Cation association with oxygen in the matrix occurs after 10 min of microwave radiation, which is after the induction of crystallization. A burst of crystal nucleation occurs throughout the spheres, followed by simultaneous crystallite growth.

Experimental section

General. Titanium (IV) isoproxide (97%), octadecyl amine (97%), potassium chloride (99.0-100.5%), cobalt (II) chloride (97%), nickel (II) chloride (98%), copper (II) chloride (97%) and zinc chloride (≥98%) were obtained from Sigma Aldrich. Manganese (II) chloride (97%) and ethanol were obtained from Fisher Scientific. Titania synthesis. All chemicals were used as received, without further purification. Amorphous titania spheres were prepared by modifying a previously published procedure. [START_REF] Chen | Mesoporous Anatase TiO2 Beads with High Surface Areas and Controllable Pore Sizes: A Superior Candidate for High-Performance Dye-Sensitized Solar Cells[END_REF] In a typical synthesis octadecyl amine (ODA, 2.67 g, 1 mmol) was dissolved in ethanol (800 mL, 13.7 mol), then a solution of 0.04 M KCl in water (7.5 mL, 0.3 mmol) was added under moderate agitation. Titanium (IV) isopropoxide (97%) (TiP, 18.1 mL, 64.3 mmol) was withdrawn via syringe and added rapidly as a single portion to the solution under extreme agitation. Magnetic stirring was stopped after 15 min of reaction time. The milky-white suspension remained static for 1 day. The molar ratio of precursors ODA:H2O:KCl:EtOH:TiP was 1.6x10 -2 :6.2:4.7x10 -3 : 213.0:1.0. To purify the spheres, the solution was removed by passing the suspension through a frit under vacuum. The spheres were redispersed several times in fresh ethanol and each time the solution was removed by vacuum filtration until the supernatant was transparent.

Titania crystallization.

For thermal treatment, an Anton Paar Microwave Reactor (Monowave 450) equipped with an Autosampler (MAS 24) was used. A portion of 100 mg of TiO2 dispersed in 13.3 mL of ethanol was combined with 5 mL of 0.33 M cation solution in water, and then placed in a 30 mL reaction vial. The solution was heated rapidly using microwaves to the target temperature, typically 150 °C. The temperature was held constant for a certain time, typically 45 min, and then the reaction vial was cooled quickly thanks to an air flux within the reactor. To recover the spheres, the suspension was placed in a centrifuge tube and centrifuged at 10,000 RPM for 10 min. The supernatant was discarded, and the solid was dried at 70 °C overnight.

For the control experiment using convective heating, the titania was pre-infiltrated with manganese cations. The same quantity of TiO2 was dispersed in the same solution containing MnCl2 as for the microwave experiments. At this point, the suspension was stirred overnight on a hot plate at 150 °C in a hermetically sealed container (30 mL). The spheres were then recovered using the same centrifugation conditions as for the microwave-treated spheres, and dried at 70 °C overnight. The powder was placed in the XRD apparatus and diffractograms were acquired while in-situ heating by 25 °C intervals. The diffractogram at 150 °C was used as a reference sample (blue curve) in Figure 1.

Surfactant removal from TiO2. The crystalline TiO2 (0.6-0.8 g) was suspended in 100 mL of ethanol and sonicated for 5 min followed by an addition of 10 drops of 1 M HCl. The resulting suspension was heated to 80 °C for 1 h, centrifuged at 14,000 RPM for 10 min, and washed twice with ethanol.

Preparation of nanoparticles cross cut by ion-milling. The nanoparticle cross cut was

prepared with a JEOL Cross-Polisher [START_REF] Tsutsumi | Auger Analysis of Cross Sections Prepared by Cross Section Polisher[END_REF][START_REF] Ledeuil | New insights into Micro/Nanoscale Combined Probes (NanoAuger, μXPS) to Characterize Ag/Au@SiO2 Core-Shell Assemblies[END_REF] (JEOL Ltd., Tokyo, Japan) working under controlled atmosphere (O2 < 1 ppm, H2O < 1 ppm). Several drops of a particle suspension in ethanol were deposited on aluminum foil before evaporating the solvent at 120 °C. The Al foil was then fixed on a shield plate for cutting with an Ar + beam. During this cutting process, the beam angle to the sample surface was close to 90° and generated a perfect planar cut through slow material erosion.

The working Ar + pressure was 1.10 -4 Pa while the ion beam energy was fixed at 5 keV for 2 h followed by 1 keV for 1 h. The ion current was approximately 80 μA.

Scanning electron microscopy (SEM), scanning Auger mapping (SAM) and Auger electron spectroscopy (AES).

Analyses were carried out using a JEOL JAMP 9500 F Auger spectrometer (JEOL Ltd., Tokyo, Japan) working under UHV conditions (pressure < 2 × 10 -7 Pa). The electron emitter was a Schottky field emission gun dedicated to high spatial resolution analysis and high brightness (size of the excitation electron beam ≈ 10 nm). The system was fitted with a hemispherical analyser coupled to a high dynamic multichannel detector (7 channeltrons), optimal for energy-resolved analysis.

X-ray photoelectron spectroscopy (XPS).

The surface atomic composition and the electronic structure of elements on the sample surface were analyzed by XPS. The survey and high resolution spectra were obtained on a Thermo Kα system with a hemispherical analyzer and a microfocused (analysis area was ca. 200 µm²) monochromatized Al Kα (1486.6 eV) radiation operating at 75 W under a residual pressure of 1 × 10 -7 mBar. The spectrometer pass energy was respectively set to 160 eV and 20 eV for the survey spectrum and core peak records. Sample surface charging was minimized by a neutralizer gun, which sprays low energy electrons and Ar + ions over the sample surface. The binding energy values of Ti 2p, O 1s, Mn 2p, Mn 3s and Cl 2p were calibrated by using the standard binding energy of adventitious carbon (C 1s = 285.0 eV) as a reference. The peak positions and areas were optimized by a weighted least-squares fitting method using 70 % Gaussian and 30 % Lorentzian line shapes. The quantification of surface composition was based on Scofield's relative sensitivity factors. [START_REF] Scofield | Hartree-Slater Subshell Photoionization Cross-Sections at 1254 and 1487 eV[END_REF] CASA XPS software (CasaXPS Ltd, Teignmouth, UK) using Kα relative sensitivity factors were used to quantify and fit the spectra.

X-ray diffraction (XRD).

Powder X-ray diffraction measurements were carried out with a PANalytical X'Pert Pro diffractometer equipped with a secondary monochromator (KαCu = 1.5418 Å) and an X'Celerator detector over an angular range of 2θ = 8-80° with a step size of 0.0167°.

The acquisition lasted for 34 min. The unit cell parameters were refined by structural pattern matching using the Fullprof program package. The samples were placed on aluminum alloy sample-holders, and flattened with a flat glass substrate. For in situ high-temperature characterization, experiments were performed with a PANalytical X'Pert diffractometer with Bragg-Bentano geometry equipped with a secondary monochromator (KαCu = 1.5418 Å) and an Anton Paar HTK16 chamber. The chosen heating sequence recorded diffractograms of TiO2 every 25 °C between room temperature and 800 °C, with a range from 8 to 80°, a step size of 0.0167° and an acquisition time of 58 min. The diffractogram at 150 °C was used as a reference sample (blue curve) in Figure 1.

Scanning electron microscopy (SEM).

The powders were fixed onto a double face carbon tape on a classical SEM stub and covered with a Au/Pt layer a few nm in thickness, deposited by plasma sputtering. A JSM 6700F GEOL microscope was used to observe the samples.

Transmission electron microscopy (TEM). TiO2 beads were embedded in LR White resin in conical gelatin capsules, and polymerized overnight at 60 °C. Samples were then sectioned using a diamond knife (Diatome, Biel-Bienne, Switzerland) on an ultramicrotome (EM UCT, Leica Microsystems, Vienna, Austria). Resin sections of 70 nm (nanometers) were placed on copper grids with a carbon membrane.

Grids were examined with a scanning transmission electron microscope (Talos F200S -Thermofisher -Eindhoven) at 200 kV (wavelength λ = 2.51 pm), equipped with a double EDS detector and a 4K*4K camera One View (Gatan, Paris, France). Digital diffractograms were calculated using the Gatan Digital Micrograph program. In order to be representative and statistically significant, many images from several regions of various samples were recorded and the most characteristic results are presented.

Single particle inductively coupled plasma mass spectrometry (Single Particle-ICP-MS).

An Agilent 7900 ICP MS (Agilent, Tokyo, Japan) equipped with Single Nanoparticle Application Module was used. TiO2 suspensions were analyzed in TRA mode using a dwell time of 100 μs, and monitoring 55 Mn for a total analysis time of 60 s per sample. Transport efficiency was determined through a gold nanoparticle standard suspension with a nominal diameter of 50 nm obtained from BBI solutions (Crimlin, UK). Raw data generated by the software were treated by in-house developed programs based on Excel (Microsoft, Redmond, OR) spreadsheets to obtain mass distributions. The later were prepared in Origin 8.5 software (Northampton, MA).

Acid digestion and ICP-MS. The powders were digested in an UltraWAVE acid digestion system (Milestone, Sorisole, Italy). Concentrated HNO3 (4 mL) and concentrated HF (500 µL) were added to approximately 10 mg of sample. Digestion occurred by heating to 250 °C for 25 min and then maintaining 250 °C for 15 min. After digestion, the samples were diluted with ultrapure water to a final volume of 50 mL. Further dilutions were prepared with 2 vol% HNO3 before ICP-MS analysis. Isotopes 47 Ti and 55 Mn were monitored by an Agilent 7700x ICP-MS.

Raman spectroscopy. A Horiba Jobin Yvon Xplora microscope equipped with a cooled Andor CCD detector was used. The excitation wavelength was 532 nm, calibrated using a highly ordered pyrolytic graphite. The laser spot size was ∼1 μm. A grating of 1200 lines per mm was used with an Olympus objective of 50x long working distance.

Results and discussion

Synergistic effect of metal-induced and microwave-assisted crystallization. To generate the amorphous precursor spheres, titanium (IV) isopropoxide was added to a solution of octadecyl amine (ODA), ethanol and KCl, a modification of a previously published protocol. [START_REF] Chen | Mesoporous Anatase TiO2 Beads with High Surface Areas and Controllable Pore Sizes: A Superior Candidate for High-Performance Dye-Sensitized Solar Cells[END_REF] The spheres were then typically heated to 150 °C under microwave radiation for 45 min in the presence of a metallic cation. Scanning electron microscopy (SEM) images of the spheres as synthesized and after microwave treatment in the presence of MnCl2 show the evolution of the spheres from amorphous to crystalline (Figure 1a and Figure 1b). X-ray diffraction (XRD) patterns of the as-synthesized spheres show no sharp peaks, confirming the amorphous nature of the particles (Figure 1c).

To elucidate the effect of combining microwaves and a devitrification agent, a series of crystallization experiments was performed with just one of these techniques. The titania particles remained amorphous when either heating in a microwave to 150 °C without a metal salt or while heating to 150 °C with the salt in a convection furnace (Figure 1c). The same treatment in the presence of a solution of MnCl2 and using microwaves afforded well-crystallized TiO2 7 in the anatase phase. The effect is definitely due to the cation, rather than the anion (Figure S1b), while based on results from the literature, [START_REF] Garcia | Facile Synthesis by Peroxide Method and Microwave-Assisted Hydrothermal Treatment of TiO2 with High Photocatalytic Efficiency for Dye Degradation and Hydrogen Production[END_REF] it is also known that protons are able to induce such a process.

In situ X-ray diffraction of the spheres using convection heating with and without impregnation with a 0.09 M MnCl2 solution showed the presence of diffraction peaks corresponding to anatase (JCPDS 21-1272) at 375 and 475 °C respectively (Figure S2). The combination of microwave radiation and the presence of a cation significantly decreases the crystallization temperature.

Metal-induced crystallization can act through several mechanisms depending on the matrix and the metal. [START_REF] Wang | Metal-Induced Crystallization: Fundamentals and Applications[END_REF] In the present case, we hypothesize that the passage of the cation from one interstitial site to another stretches the Ti-O bonds (Figure 2a). When the bonds relax after the passage of the cation, they relax into the conformation with the shortest bond distances, the lower energy crystalline form. [START_REF] Wang | Metal-Induced Crystallization: Fundamentals and Applications[END_REF] Perhaps the bond stretching during microwave radiation facilitates this metal migration, hence the reduction in crystallization temperature. A generalizable technique. Several metals ions were studied to investigate whether the metalinduced crystallization was a general phenomenon. Different metallic salt solutions (MnCl2, CoCl2, NiCl2, CuCl2, ZnCl2 and AlCl3) did induce titania crystallization under the same microwave treatment (Figure 2b). The intensity of the peaks and the crystallite size varies depending on the nature of the metal. There is a roughly linear correlation between atomic radii and crystallite size for ions with the same oxidation state and belonging to the d-block of the periodic table (Figure 2c). Mn 2+ yields the biggest crystallites (5.0 nm), whereas Al 3+ produces the smallest ones (2.8 nm) in the series of cations studied. Manganese was chosen for the set of experiments presented here as this cation has the largest crystal grain size. [START_REF] Cormary | Procédé de dDécontamination par Micro-Ondes Utilisant un Absorbeur d'Oxyde Métallique[END_REF] The different examples shown here illustrate that combining metal-induced + microwave-assisted crystallization can be achieved with a variety of different cations. Metal migration in the titania matrix. The distribution of Mn 2+ in the sphere and the crystallization of TiO2 were investigated by TEM EDX (Figure 3). Cross-sections of the samples immobilized in a polymer were performed before treatment and after 5, 10 and 90 min microwave radiation. EDX mapping shows a complete and homogenous distribution of Mn 2+ throughout the TiO2 matrix, from the edges to the center of the particles occurring within a few minutes. Chlorine could not be detected in the inner part of the spheres using EDX mapping despite having a Kα excitation of 2.621 keV, well under the applied beam of 20 keV indicating the migration of only the cation in the structure. No chlorine was detected either on the spheres periphery, probably because of the low quantity present in the 70 nm thick samples used for the EDX measurements; chlorine is easier to detect by XPS as illustrated later on. Dark field TEM images show the apparition of crystallites starting from 5 min of treatment, where some spheres are well crystallized and others remain amorphous. The cation is well distributed throughout all of the particles, even those that remain amorphous after 5 or 10 min of radiation. Interestingly, very few of the spheres show a partial crystallization, they are either completely amorphous or completely crystalline. These results echo those published previously in the crystallization of SiO2, [START_REF] Carretero-Genevrier | Soft-Chemistry-Based Routes to Epitaxial α-Quartz Thin Films with Tunable Textures[END_REF] where films were inexplicably either 100% crystalline or totally amorphous after heat treatment in the presence of a devitrification agent. [START_REF] Brinker | Quartz on Silicon[END_REF] This observation indicates that once crystallization is triggered, it quickly propagates throughout the titania sphere. Raman spectroscopy was used to also confirm that anatase was produced (Figure S3). [START_REF] Choi | Size Effects in the Raman Spectra of TiO2 Nanoparticles[END_REF] All the spheres were fully crystalline after a 90 min treatment. To better understand the results indicated by the EDX spectra of the sectioned beads, samples after 5, 10 and 90 min of radiation were analyzed by Single Particle-ICP-MS. This technique provides a mass distribution of Mn/bead in femtograms. The corresponding mass distributions obtained are shown in Figure 4a, where a slight increase in the amount of manganese is observed between 5 and 10 min (median masses of 0.69 and 0.92 fg/TiO2 sphere respectively), then the quantity remains constant between 10 and 90 min (median mass of 0.97 fg/TiO2 sphere). To give context, 1 fg of Mn/TiO2 sphere is equivalent to 3.34 mol% Mn/TiO2. Thus, the increase in crystallinity between 10 and 90 min is not due to an increase in manganese absorption by the sphere, but rather due to diffusion time. As the manganese has more time to travel through the spheres, the degree of crystallinity increases (Figure 4b). The crystal grain size also increases from 3 to 5 nm between 5 and 10 min and then stays more or less constant, growing to 6 nm by 90 min. The increase in relative intensity in the XRD spectrum echoes the results of electron microscopy, the sample is more crystalline with increasing crystallization time. The total mass of Ti and Mn was determined by ICP-Ms after acid digestion of the solid samples.

Using this method, a slight increase in the Mn/Ti ratio was observed between 10 and 90 min of radiation (112 vs 135 µg Mn/mg Ti, respectively), while no difference was observed between 5 and 10 min. With acid digestion, this increase with increasing time indicates that the spheres are quickly saturated in Mn 2+ with the microwave treatment, but with longer treatment time, a portion of the Mn 2+ weakly adsorbs to the titania surface. This surface desorption is confirmed by the increase in the background signal due to unbound Mn 2+ also observed between 10 and 90 min by Single Particle-ICP-MS analyses.

We propose that the mechanism is as follows (Figure 4c): Mn 2+ diffuses rapidly through the TiO2 spheres at the onset of microwave treatment. A burst of crystallization occurs as the microwaves facilitate metal diffusion due to bond stretching modes. Once crystallization begins, it propagates rapidly throughout the sphere, keeping the grain size relatively small. As time progresses more spheres become crystallized. As the spheres are quickly saturated in metal, crystallinity is dependent on the diffusion time of the devitrification agent. This burst of crystallization differs from what has been observed in TiO2 films via convective heating metal induced crystallization. In this report by Sangani, et al., [START_REF] Sangani | Low Temperature Au Induced Crystallization of Titanium Dioxide Thin Films for Resistive Switching Applications[END_REF] crystallization centers appeared in a mass of amorphous titania. The difference in mechanism may be explained by the inhomogeneous distribution of Au in the TiO2 film. The nanometric dimensions in the current study lend themselves to a more homogeneous distribution of devitrification agents.

When TiO2 nanostructures are crystallized by calcination, the surfactant is burned away (Warning! Carcinogenic vapours are produced via calcination, thus such experiments must be performed in a well ventilated area). The surfactant is still present after microwave treatment, which may allow delicate mesostructuration to be preserved, as has been beneficial in creating mesostructured quartz. [START_REF] Matsuno | A Single-Crystalline Mesoporous Quartz Superlattice[END_REF] However, if the surfactant must be removed, it is possible to do so by refluxing in a mildly acidic solution of ethanol for 1 h (Figure S3). This protocol efficiently removed octadecyl amine from the titania spheres, without visibly damaging their structure or the degree of crystallinity. An infrared spectrum of the crude crystalline TiO2 showed two sharp peaks at 2920 and 2858 cm -1 , which are assigned to the CH2 stretching vibrations of octadecylamine.

After hot acid treatment, these bands disappeared, indicating surfactant removal.

The elemental distribution within titania spheres was studied using Auger electron spectroscopy by drop-casting samples onto an aluminum sheet and cross-cutting to study their cross-section.

There was no significant difference in elemental distribution between samples treated in the presence of MnCl2 for 5, 10 or 90 min, attesting the rapid migration of Mn 2+ in the TiO2 spheres (Figure S4). Figure 5 displays the Auger analyses of the particles after 10 min of contact with MnCl2 under microwaves. The Auger electron spectroscopy spectra of four target spots (Figure 5a) with a spot size of 10 nm were recorded (Figure 5b). Dots 1, 3 and 4 were located on cross-cut sections of particles whereas dot 2 targets the external surface of a particle. Figure 5b shows different Auger transitions, including Cl LVV (140 to 180 eV), C KLL (240 to 280 eV), Ti LMM (340 to 460 eV), O KLL (460 to 520 eV) and Mn LMM (520 to 660 eV) for all dots. The chloride peak is weak, suggesting that the Mn cation diffuses through the matrix without the Cl counter ion.

Focusing on Mn, the element is detected in the sample material with no significant difference in the signal intensity between the dots, even when comparing dot 2 (external surface) to dots 1, 3 and 4 (cross-section). There is thus a homogenous elemental distribution of Mn from the surface to the particle core. This result has been confirmed by nanoscale scanning Auger mapping images performed on single particles (Figure 5c to Figure 5f). From this chemical mapping, Mn is distributed homogeneously within the particle, in good agreement with the spectra analyses (Figure 5b) and just as observed using TEM EDX mapping (Figure 3). Oxidation states support a diffusion-based mechanism. To further probe the mechanism of crystallization, XPS measurements were performed to determine the global electronic structure and composition of the spheres, with a depth profile of 5-10 nm. The Ti 2p, O 1s, Mn 3s, Mn 2p and Cl 2p spectra were recorded for TiO2 prior to microwave treatment, and then after 5, 10 and 90 min microwave radiation times (Figure 6, Figure S5 and Figure S6). These XPS results show that the crystallization propagates in titania spheres from 0 to 90 min, with the greatest amount of crystallization occurring within 5 min. Mn existed mostly in a +II oxidation state. A small fraction of Mn adsorbs to the surface of the TiO2 with increasing microwave radiation time. Ti 2p core peak spectra (Figure 6a) consist of two main Ti 2p components: Ti 2p3/2 (ca. 459.3 eV) and Ti 2p1/2 (ca. 465.1 eV). These peaks are due to spin-orbit coupling, with charge-transfer satellite peaks at the higher binding energy side (13 eV) associated to each main component, which are representative of the tetravalent Ti 4+ cation in an oxygenated environment. [START_REF] Wang | Metal-Induced Crystallization: Fundamentals and Applications[END_REF] This indicates that the electronic environment of Ti (IV) does not change from the amorphous material to 90 min of treatment. A small proportion of titanium exists in a +III oxidation state (Figure 6a, red contribution), which is either a surface defect or generated under the beam. As in the Ti 2p spectra, the O 1s core peaks of all samples present the characteristics associated with the continuous crystallization of titania from 0 to 90 min (Figure 6b). The O 1s core peaks are asymmetric, and can be decomposed into two components: a main component at 530.54 eV attributed to the O 2- anions of the inner oxide lattice and another component at 532.2 eV corresponding to oxygen atoms of the hydroxyl groups, adsorbed species and under coordinated oxygen present on the oxide surface. There is a strong difference in the spectra between the amorphous titania and the crystalline samples. The green contribution at 531.6 eV of Figure 6b relates to pendant hydroxyl groups, and undergoes a strong decrease of intensity as soon as the microwave radiation takes place because the crystallization process condenses the oxide network (Figure 6b, 5 min). In the same way, the XPS spectra indicate that a new oxygen environment is detected after 10 min of microwave treatment and is even more relevant at 90 min (Figure 6b, red curve). This new contribution could be assigned to the formation of Mn-O-Ti as the binding energy of 529.4 eV corresponds to the oxide anion in a Mn network (reference spectrum bottom of Figure 6b).

The electronic structure of the manganese cations have been investigated through both Mn 3s (Figure S5) and Mn 2p (Figure 6c) core peak spectra. As a multiplet splitting has been recorded in the Mn 3s spectra for all the samples, the manganese is sitting in a paramagnetic state. The energy splitting between the two components of the Mn 3s spectra is 6.2 eV in MnCl2, according to the +II oxidation state. The energy splitting value is maintained whatever the treatment time, indicating the majority of Mn exists mainly in the +II oxidation state. Divalent manganese in an oxygenated environment, MnO, has roughly the same energy splitting 5.5-6.1 eV, and could not be distinguished from MnCl2. As we do not detect a significant variation of the energy splitting in the Mn 3s spectra, we argue that the change in the satellite area of the Mn 2p spectra can be assigned to a change of the Mn 2+ from a chloride to an oxygenated environment. Thus, the decomposition of the Mn 2p spectra has been performed by considering the characteristic (main peak and satellites) of the Mn 2+ signature in the MnCl2 and MnO environments. [START_REF] Khoa Le | Study of the Effects of Surface Modification by Thermal Shock Method on Photocatalytic Activity of TiO2 P25[END_REF] The Mn 2p core peak of the MnCl2 reference material is described by two main components, with a binding energy of the Mn 2p3/2 of 642.3 eV, due to the spin orbit coupling, and two large satellites (Isat/I 2p3/2 = 0.23) occurring at 5.7 eV higher binding energy with respect to the main peak (Figure 6c). A variation of the Isat / I 2p3/2 ratio occurs with time, indicating a change in the manganese environment and/or oxidation state. [START_REF] Biesinger | Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni[END_REF][START_REF] Quesne-Turin | Morphology and Surface Reactivity Relationship in the Li1+xMn2-xO4 Spinel with x = 0[END_REF] The MnO reference spectrum exhibits a similar shape but with a less intense satellite. [START_REF] Biesinger | Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni[END_REF] The MnO environment content increases with crystallization time from 26.7 to 39.5 % for 5 to 90 min (red curves). This indicates that the Mn is covalently attaching to the TiO2 matrix. Moreover, the binding energy of the Mn 2p3/2 component, assigned to the MnO environment in our materials is slightly larger (+0.4 eV) than those reported by Biesinger et al., indicating that the Mn 2+ cations are in a more electronegative environment, such as O-Mn-Cl. [START_REF] Biesinger | Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni[END_REF] However, the global Mn 2p signature of the MnCl2 environment is shifted to a lower binding energy by 0.4 eV, in accordance with the same shift observed in the Cl 2p and Mn 3s spectrum (Figure S6). This result indicates that the presence of TiO2 does not globally impact the Mn-Cl bond. This slight shift in binding energy is due to a change in the electronic environment after adsorbing onto the surface of titania. The totality of these spectra indicates that the majority of the manganese is migrating through the network with little electronic interaction with titania, in accordance with EDX and TEM measurements.

The hypothesized mechanism presented in Figure 2 is inconsistent with the mechanisms known to occur in silicon metal induced crystallization. In silicon, two crystallization pathways are known: a eutectic mechanism and a silicide mechanism. [START_REF] Knaepen | Insitu X-ray Diffraction study of Metal Induced Crystallization of Amorphous Silicon[END_REF] We eliminate the eutectic mixture mechanism as the melting point of TiO2 alone is 1843 °C. Its mixtures with other oxides does not lower the melting temperature by 1700 °C. Moreover, melting would lead to a loss of spherical shape, which is not the case. We also eliminate the silicide-equivalent mechanism as XPS studies showed that Mn-O-Ti bonds form after, not prior to, the onset of crystallization. To fully understand the mechanism, X-ray absorption fine structure studies should be performed, as has been done for silicon. [START_REF] Mohiddon | Chromium Oxide as a Metal Diffusion Barrier Layer: An X-Ray Absorption Fine Structure Spectroscopy Study[END_REF] Thus we have presented the metal-induced crystallization mechanism proposed for silica, [START_REF] Carretero-Genevrier | Soft-Chemistry-Based Routes to Epitaxial α-Quartz Thin Films with Tunable Textures[END_REF][START_REF] Drisko | Water-Induced Phase Separation Forming Macrostructured Epitaxial Quartz Films on Silicon[END_REF][START_REF] Drisko | Crystallization of Hollow Mesoporous Silica Nanoparticles[END_REF] which depends on cationic diffusivity work by Anderson and Stuart. [START_REF] Anderson | Calculation of Activation Energy of Ionic Conductivity in Silica Glasses by Classical Methods[END_REF] 

Conclusions

In order to move away from a carbon-intensive economy, new synthetic methods that not only replace organic solvents by water, but also require less energy, need to be developed. This metalinduced + microwave-assisted crystallization method responds to these requirements, reducing the temperature of treatment, reducing the treatment time and using a mixture of water and ethanol for the process. The technique works with a series of d-block elements and a p-block element, and could likely be extended to s-block and other p-block metals. Under microwave radiation, the metal ion rapidly diffuses homogeneously throughout the titania spheres, initiating crystallization within a few minutes. The treatment time influences the degree of crystallinity; the treatment temperature and the metal used determine the crystallite size. This is a key point, since the TiO2 properties, such as photocatalytic activity, are known to be dependent on crystallite size, thus it is advantageous that this crystallization method provides fine control over this parameter. Moreover, the presence of metal species in the titania structure 415 may prove to be beneficial to photocatalytic 
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 5 Figure 5. Auger Electron Spectroscopy analysis. SEM image of (a) the cross-cut spheres with
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 6 Figure 6. Determination of oxidation states. XPS core spectra of (a) Ti 2p, (b) O 1s and (c) Mn

  properties. Experiments to determine photocatalytic activity of metal-induced crystallization titania samples are currently in process. Further efforts will focus on adapting this technique to access other crystalline forms, e.g. rutile titania, quartz silica and barium titanate. Additionally the interpretation. GLD financed the research. All authors have given approval to the final version of the manuscript. ‡These authors contributed equally.Funding SourcesLabEx AMADEus and the French Agence Nationale de la Recherche. ACKNOWLEDGMENT AM, MLDM, BC and GLD are supported by the LabEx AMADEus (ANR-10-LABX-42) in the framework of IdEx Bordeaux (ANR-10-IDEX-03-02), i.e. the Investissements d'Avenir program of the French government managed by the Agence Nationale de la Recherche. JA and DF acknowledge CNRS and the French Aquitaine region. Sabrina Lacomme acquired the TEM images and mapping at the Bordeaux Imaging Center, member of the FranceBioImaging national infrastructure (ANR-10-INBS-04). Eric Labraud performed XRD experiments through the XRD service of the ICMCB.

effect of the metal devitrification agents within the titania structure on its properties, such as photocatalytic activity, will soon be addressed.
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TOC graphic

By combining two crystallization techniques, titania is crystallized in aqueous solution within a few minutes, thus achieving a more performant material while minimizing pollution and saving energy and time.