
HAL Id: hal-02612914
https://hal.science/hal-02612914v1

Submitted on 19 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Measuring cell displacements in opaque tissues: dynamic
light scattering in the multiple scattering regime

Benjamin Brunel, Vincent Levy, Arnaud Millet, Monika Elzbieta Dolega,
Antoine Delon, Romain Pierrat, Giovanni Cappello

To cite this version:
Benjamin Brunel, Vincent Levy, Arnaud Millet, Monika Elzbieta Dolega, Antoine Delon, et al.. Mea-
suring cell displacements in opaque tissues: dynamic light scattering in the multiple scattering regime.
Biomedical optics express, 2020, 11 (4), pp.2277. �10.1364/BOE.388360�. �hal-02612914�

https://hal.science/hal-02612914v1
https://hal.archives-ouvertes.fr


Research Article Vol. 11, No. 4 / 1 April 2020 / Biomedical Optics Express 2277

Measuring cell displacements in opaque tissues:
dynamic light scattering in the multiple
scattering regime

BENJAMIN BRUNEL,1 VINCENT LEVY,1 ARNAUD MILLET,2,3

MONIKA ELZBIETA DOLEGA,1 ANTOINE DELON,1 ROMAIN
PIERRAT,4 AND GIOVANNI CAPPELLO1,*

1Université Grenoble Alpes, Laboratoire Interdisciplinaire de Physique, CNRS, F-38000 Grenoble, France
2Institute for Advanced Biosciences, Inserm U1209 - CNRS UMR 5309, Université Grenoble Alpes,
F-38000 Grenoble, France
3Research Department, University Hospital of Grenoble Alpes, F-38000 Grenoble, France
4ESPCI Paris, PSL University, CNRS, Institut Langevin, 1 rue Jussieu, F-75005, Paris, France
*Giovanni.Cappello@univ-grenoble-alpes.fr

Abstract: Coherent light scattered by tissues brings structural and dynamic information, at
depth, that standard imaging techniques cannot reach. Dynamics of cells or sub-cellular elements
can be measured thanks to dynamic light scattering in thin samples (single scattering regime) or
thanks to diffusive wave spectroscopy in thick samples (diffusion regime). Here, we address the
intermediate regime and provide an analytical relationship between scattered light fluctuations
and the distribution of cell displacements as a function of time. We illustrate our method by
characterizing cell motility inside half millimeter thick multicellular aggregates.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

In the past two decades, we have witnessed an unprecedented development of optical microscopy
for biology. On the one hand, the advent of super-resolved microscopy [1–3] allowed to break the
diffraction barrier. On the other hand, new techniques were introduced to allow optical sectioning
of thick samples, including confocal and two photon microscopy [4,5], light sheet microscopy
[6–8], optical coherence tomography [9–12] and phase conjugation [13,14]. Apart from the latter,
these techniques are based on the signal carried by ballistic photons, those that have not been
scattered in their path through the tissue. Unfortunately, cells have a very large scattering cross
section that severely limits the mean free path of photons (called `s hereinafter) to few tens of
microns, in biological tissues [15,16]. As the non-scattered photons decrease exponentially with
the penetration depth, the signal becomes unexploitable beyond a thickness corresponding to few
cells [17].

To go beyond this limit, several techniques based on the exploitation of the scattered photons
have been developed. Even for very thick tissues, fluctuations of coherent scattered light are
informative of the dynamics of the scatterers population, though individual behaviors cannot be
measured. In laser Doppler flowmetry [18,19] (LDF), scatterers are red blood cells and blood
flow is calculated from the fluctuations of backscattered light. Laser speckle flowmetry [20,21]
(LSF) works similarly, but the blood flow is evaluated from the speckles contrast relatively to the
exposure time. Dynamic light scattering (DLS) [22,23] is generally used to measure the diffusion
coefficient of colloidal suspensions and was recently applied on sub-cellular components [24–26].
All three techniques rely on the same physical principles, although the formalism varies as they
were developed in different communities relatively to their field of application. Light fluctuations
are analyzed either by mean of the power spectrum of the intensity over time (LDF), or by mean
of the speckle contrast (LSF), related to the power spectrum as explained in [27], or by mean of
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the autocorrelation function of the intensity over time (DLS). As LDF and LSF were developed
to measure in vivo blood flow, a backscattering configuration (scattering angle of 180◦) was
adopted. On the contrary, in DLS an additional information can be retrieved from the angular
dependence of the signal. To obtain similar information with backscattering, the acquisition must
be performed on several axes [28].
Relating light fluctuations to a quantitative measurement of the scatterers dynamics is made

difficult by multiple scattering (MS). Several methods have been proposed to reject multiply
scattered photons if they represent a small fraction of the scattered light [29–32]. Low-coherence
interferometry proved to be efficient in selecting photons depending on their path-length, allowing
single scattering conditions either by setting a path-length smaller than `s or by use of confocal
optics at a depth of the selected path-length (DLS-optical coherence tomography) [33]. Apart
from technical solutions, MS can be integrated into the model used to relate light fluctuations and
scatterers movements. For the specific case of red blood cells moving behind a highly diffusive
tissue (LDF,LSF), a model was proposed by Bonner et al. [34]. For a backscattered configuration
(LDF), a correction of the power spectrum under MS was reported by Wax et al. [35]. As for
DLS, diffusive wave spectroscopy [36,37] (DWS) was developed as an extension to optically
thick samples. More precisely, DLS is only valid if the sample size L<`s because photons are
assumed to be scattered only once, while DWS applies to samples thicker than the transport mean
free path `∗ [38]. `∗ is the average distance after which photons are isotropically oriented [see
Eq. (10)]. In biological tissues, `∗ is roughly 10 times larger than `s [39] because the scattering
is mainly forward. DWS was applied to biological samples [40,41] and was also used to perform
dynamical tomography by acquiring scattered light in numerous directions and numerically solve
an inverse problem (Diffuse Correlation Tomography [42], Speckle Contrast Optical Tomography
[43]).
In aforementioned models, the angular dependence of the signal was not studied, either

because only backscattered light was collected or because the signal was isotropic in the L>`∗
regime. However, the intermediate case (`s<L<`∗) is rather frequent and the forward-scattering
configuration (or small-angle scattering) is more beneficial than backscattering for two reasons.
First, multiply scattered photons are fewer because in tissues light is mainly scattered in the
forward direction [39]. Secondly, the signal can be measured at different angles, bringing more
information than backscattering. Using numerical resolution, some approaches address the lower
limit of DWS [44,45] or even bridge DLS and DWS regimes [46].
In this paper, we derive the relationship between scatterers displacements and scattered light

fluctuations in the regime L<`∗, thanks to an analytical model of the multiply scattered photons
propagation. Our method, denoted Multiple Scattering DLS (MS-DLS) in the following, is
suitable for small-angle scattering in the intermediate regime and does not require time-consuming
simulations. The angular dependence allows the measurement of the displacements distribution
over time, without having to assume any type of motion (ballistic or Brownian). The scatterers
that interested us were cells rather than sub-cellular elements studied in [24–26]. This is consistent
with a measurement at small angles where the scattered light is dominated by the cells as a
whole rather than its sub-cellular elements [47]. Using DLS on cell monolayers, we previously
showed that cell migration speed could be measured without the need for usual cell tracking
procedures [48]. Thanks to MS-DLS, we extend here the measurement of cell displacements
over time to spherical multicellular aggregate (Multi Cellular Spheroid - MCS) where MS cannot
be neglected. Our experiments revealed a decrease in the average cell speed from the periphery
toward the center, as well as preference in the tangential direction for cells motion. We also found
that an isotropic compression of the MCS inhibits cell motility, probably by limiting the access
to the intercellular space, filled by extracellular matrix and interstitial fluid.
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2. Materials and methods

2.1. Sample preparation

Colon carcinoma cells CT26 (ATCC CRL-2638TM; ATCC, Manassas, VA) were cultured in
25 cm2 sterile flask (VWR, Radnor, PA) containing 6 to 10mL of DMEM with GlutaMAX
(THERMO FISHER, Waltham, MA) supplemented with 10% of fetal bovine serum and 1%
Penicillin-Streptomycin (SIGMA-ALDRICH, St. Louis, MO). Incubated at 37◦ and 5% CO2,
cells were passaged using trypsin every 2 to 3 days to keep the cell surface concentration between
30 and 1000 cells/mm2. Spheroid were prepared in 96 wells plates coated with 1% agarose gel
[49]. 300 cells suspended in a 150 µL culture medium solution were seeded in each well, leading
to the formation of a L = 250 ± 30 µm (standard deviation) diameter spheroid after 3 days of
incubation ("small“ spheroids with ∼3000 cells) or a L = 470 ± 50 µm diameter spheroid after
7 days of incubation ("big“ spheroids with ∼20000 cells). To apply an isotropic pressure on
the spheroid, we used the osmotic stress exerted by Dextran molecules (SIGMA-ALDRICH) in
solution (r>15 nm, MW>200 kDa) as previously described in [50,51]. Dextran molecules are
excluded from the spheroid volume and exert a pressure at its surface, following the empirical
relationship indicated in Table 1. For each experiment, a single spheroid was put into a 35mm
VWR round petri dish containing 2mL of culture medium with or without Dextran. To prevent
translational motion of the spheroid, the petri dish was treated beforehand with Pol-L-lysine
(SIGMA-ALDRICH) for 10 minutes and rinsed with phosphate-buffered saline (PBS), improving
the adhesion of the spheroid to its surface.

Table 1. Pressure exerted by Dextran molecules in solution depending on their mass
concentration.

Pressure (kPa) 0 2.5 5 7.5 10 12.5 15 17.5 20 25

Concentration (g/L) 0 37.0 54.8 68.8 78.4 87.5 95.5 102.6 109.2 120.9

2.2. Experimental setup

The light scattering setup was implemented on a commercial microscope (Axiover 100; ZEISS,
Jena, Germany) in order to switch easily between the phase contrast image of the sample and
scattered light image [see Fig. 1]. Monitoring both images simultaneously is possible, as
described in [48], but it would lower the quality of the light scattering signal. Implementing a
scattering detection over a microscope have been previously done in numerous works, such as
[52], [24] and [53].
The microscope was equipped with a phase-contrast condenser, a 10× objective (EC Plan-

Neofluar; ZEISS, NA = 0.3) and a Charge-Coupled Device camera (CCD1 - Pike; ALLIED
VISION, Stadtroda, Germany). The sample was illuminated using a 850 nm laser (CPS850V,
0.85mW; THORLABS, Newton, NJ). The beam was attenuated (2.0 ND; THORLABS) and
narrowed with two lenses (L1: +150mm, L2: +50mm) to obtain a Gaussian beam with a waist
of 192 ± 12 µm. The front focal plane of L3 lens (+60mm, LA1401-B; THORLABS) [see
Fig. 1] contains the scattered light image formed at infinity (Fraunhofer scattering) and is imaged
on the CCD2 camera (Guppy F 046B; ALLIED VISION) using L4 lens (same as L3). L3 was
positioned as close as possible to the sample to maximize the range of collected scattering vectors
q: from 0.01 µm−1 (laser divergence) to 1.7 µm−1. L4 was positioned to adjust this q range
to the CCD detector size, leading to an angular resolution of 0.0014 µm−1 per pixel. Angular
calibration was performed using a diffraction grating. To maintain temperature, humidity and pH,
the sample was put inside a top-stage incubator system (CU-501; Live Cell Instrument, Seoul,
South Korea). We choose to keep the scattering setup simple but one could use low-coherence
interferometry and confocal optics to have a z-resolve measurements [33].
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Fig. 1. Schematic view of the experimental setup. Light scattering dectection was added
to a commercial microscope. The illumination part was composed of a laser (850 nm)
attenuated (neutral density) and narrowed (L1 and L2). The detection part was composed of
two lenses L3 and L4 positioned so that the front focal plane of L3 is imaged on the CCD2
camera.

2.3. Data acquisition and analysis

Data acquisition and analysis were performed using MATLAB (THE MATHWORKS, Natick,
MA). Scattered light was recorded using CCD2 at one frame every 20 seconds, over a period
of at least 2.5h. To capture the wide range of scattered intensity, each frame was composed of
5 concentric rings taken at different time exposures. From largest scattering angles, where the
intensity was lower, to smallest angles, exposure times were: 512ms, 128ms, 32ms, 8ms and
2ms. To measure the phase function p [see Eq. (2)], the background light was subtracted and
vignetting effects were corrected [54]. Then, the intensity was averaged over the azimuthal angle
ϕ. More specifically, the average over ϕ was performed on a set of rings of scattering vectors q
satisfying k∆q< |q|<(k + 1)∆q, k being an integer and ∆q the discretization step [see Fig. 2 (b)].
As the speckle grain area was about 900 pixels, rings contained from 3 (inner ring) to 150 (outer
ring) speckle grains.

When cells move inside the spheroid, each spot of the diffraction pattern fluctuates. Figure 2 (a)
displays the temporal evolution of the intensity I(q, t), recorded from a given pixel at a scattering
vector q. To quantify light fluctuations, we computed the intensity autocorrelation function C
[see Fig. 2 (c)]:

C(q, τ) =
〈

I(q, t)I(q, t + τ)
〈I(q, t)〉ϕ 〈I(q, t + τ)〉ϕ

〉
t
− 1. (1)

Qualitatively, at a given |q|, the time needed for the correlation function C to reach zero is related
to the time needed for one cell to travel a distance of 1/|q|. The more times photons are scattered,
the shorter the time to zero is because photons probe a combination of several cells displacements.

Different scattering patterns corresponds to different cell configurations inside spheroids. We
assume that all different orientation configurations of spheroids can be explored while looking
at a single direction over time (ergodic hypothesis) : 〈I(q, t)〉ϕ = 〈I(q, t)〉t. This hypothesis is
reasonable because of the rotational symmetry of spheroids. The spheroid azimuthal symmetry
also led to the same symmetry in the correlation function and C was averaged over ϕ [see Fig. 2 (b)
and (d)]: C(q, τ) = 〈C(q, τ)〉ϕ . In order to measure cells dynamics at steady-state, we waited
until the correlation function became stationary. In practice we discarded the first tens of minutes
of acquisition after MCS manipulation.
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Fig. 2. (b) q-resolved diffraction pattern as acquired on CCD2. ϕ is the azimuthal angle.
(a) Time evolution of the scattered intensity for a given scattering vector q, and (c) its
autocorrelation function. (d) The autocorrelation function is averaged over ϕ, i.e. over pixels
inbetween the two white circles in (b).

3. Results

3.1. DLS extension to multiple scattering

Dynamic light scattering relies on the hypothesis of single scattering (Born approximation).
However, this approximation is limited to thin samples as the average distance between two
scattering events, the so-called mean free path `s, range from 15 to 100 µm inside tissues [15,16].
To address the case of a small number of scattering events, intermediate between classical

DLS and DWS, we modelled the propagation of light as corpuscular. While crossing a spheroid,
a photon can be scattered several times by different cells [see Fig. 3 (a)]. Each scattering event is
described as a change of direction, from u′ to u (unit vectors), following a probability proportional
to the angular intensity Is of a single scattering event. This description ignores interference with
other photons during the propagation following the scattering event. This is the so-called ladder
or independent scattering approximation valid for a dilute medium such that the wavenumber
satisfies k0`s � 1. The probability function Is corresponds to the phase function of a single cell
and is defined as

ps
(
k0(u − u′)

)
=

Is (k0(u − u′))∬
Is (k0(u − u′)) k20du

. (2)

where k0 is the wavenumber k0 = 2π/λ. The phase function is usually defined as a dimensionless
quantity. Here we chose to define it with the dimension of a surface (1/k20) in order to have
consistent dimensions in the following Eq. (3).
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Fig. 3. (a) Diagram of the light propagation model inside a spheroid (large circle). Photons
arrive from the laser beam on the left with a direction vector ui. Then, they follow a random
walk trajectory (red lines) with changes in direction vectors (u′, u) following an angular
probability (red shapes). The last scattering event emits a wave, observed in the direction
us. (b,c) Proportion in the scattered light of photons scattered between 1 and 8 times, for a
Gaussian beam with a waist of w = 192 ± 12 µm and a spheroid of diameter L = 250 µm (b)
and L = 470 µm (c). (d,e) Correlation function C as a function of the scattering vector norm
q, calculated using Eq. (3) (solid orange line) or a Monte Carlo simulation (dash black line),
for virtual homogeneous spheres of L = 250 µm (d) or L = 470 µm (e), containing scatterers
whose displacement distribution follows Eq. (11)

The phase difference between each photon is calculated geometrically, according to its trajectory.
Finally, the electrical field on the detector is taken as the addition of all electrical fields associated
to photons.
Based on this model, we deduced the expression of the intensity correlation function C(q, τ),

defined in Eq. (1), with the delay τ and the scattering vector q = k0(us − ui) [see Fig. 3 (a)]. The
calculus is detailed in the appendix. Briefly, all possible photon trajectories are integrated, with
weights given by the angular distribution ps and the proportion, noted αk, of k-times scattered
photons in the scattered light. The result gives the relationship between the correlation function
C and the cell displacement distribution at a given delay, noted D(∆r, τ) :

C(q, τ) =

�����∑k αk[ps(q)D̃(q, τ)]~k−1 [ps(q)D̃(q, τ)]
p(q)

�����2 , (3)

with
p(q) =

∑
k
αk[ps ~

k−1 ps](q), (4)

where ps ~k ps denotes ps being convoluted with itself k times, with the convention ps ~0 ps = ps;
D̃(q, τ) is the 3D Fourier Transform of D(∆r, τ) along q. p corresponds to the phase function
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of the whole spheroid, defined as in Eq. (2) by replacing Is by the average intensity scattered
by the spheroid 〈I(q, t)〉t. In the single-scattering approximation, Eq. (3) simplifies into:

C(q, τ) =
���D̃(q, τ)���2. Equation (3) is valid under the following hypotheses: i) light fluctuations

are mainly due to cell displacements rather than cell shape changes, ii) cell displacements are
uncorrelated, iii) displacements are small as compared to the mean free path, iv) the sample is
homogeneous in terms of cell displacement behavior. Regarding hypothesis i), the smaller the
scattering angle is, the less cell shape details impact the scattered pattern. Hypothesis ii) is a
strong hypothesis in biological samples. However, measured speeds may still be interpreted as
speeds of independent groups of cells. Finally, q only takes values on a surface, approximated
at small angles as a plane perpendicular to the optical axis. As a result, D(∆r, τ) can only be
measured on this plane and movements parallel to the optical axis cannot be detected.

To evaluate αk, we start from the probability for a photon to be scattered k-times while traveling
a distance s inside the sample, which follows a Poisson distribution [55] (we neglect absorption
over scattering):

Pb(k, s) =
sk

`k
s k!

exp
[
−

s
`s

]
. (5)

Then, the proportion α∗k of photons scattered k-times by a spheroid of radius R can be calculated
by integrating Eq. (5) over the cross section of the spheroid (polar coordinates r, θ), weighted by
the incoming laser intensity Il:

α∗k =

∫ 2π
0

∫ ∞
0 Pb(k, s(r))Il(r, θ)r dr dθ∫ 2π
0

∫ ∞
0 Il(r, θ)r dr dθ

. (6)

The traveling distance s(r) was approximated as the thickness of the spheroid (s(r) = 2
√

R2 − r2)
because photons trajectories are nearly straight as the forward direction is lost after a distance of
`∗ = 950 µm, as measured hereafter. The integration over r goes beyond R to take into account
the light that misses the spheroid (s(r) = 0 in this case).

Finally, to obtain the proportion αk of photons k-times scattered within the scattered light, the
unscattered light was taken out:

αk =
α∗k

1 − α∗0
. (7)

The mean free path `s was deduced from the measurement of α∗0, the ratio of unscattered
light (central spot) with and without the sample. We found `s = 76 ± 4 µm at a λ = 850 nm
wavelength.

Figure 3 (b) and 3 (c) shows αk computed for two spheroids, the diameters of which are
respectively 250 µm and 470 µm. It shows that the Born approximation is not valid for our
samples, hence the need of Multiple Scattering DLS.

3.2. Displacement distribution measurement

To illustrate our approach, we deduce the displacement distribution D(∆r, τ) of cells from the
correlation function C(q, τ), inside an opaque multicellular aggregate. The correlation function
is calculated from the evolution of the scattered intensity pattern, as explained in the method
section. Then, to deduce the cell displacement distribution from Eqs. (3) and 4, we empirically
chose a parametric form for the phase function ps, combining a Gaussian function for small
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angles and a Henyey-Greenstein function for larger angles [56]:

ps
[
k0(u − u′)

]
=

a
2πq02

exp
[
−
[k0(u − u′)]2

2q02

]
+
1 − a
4πk20

1 − b2[
1 + b2 − 2bu · u′

]3/2 , (8)

where the dot product u · u′ is the cosine of the scattering angle. The parameters a, q0 and b were
adjusted so that p calculated using Eq. (4) fitted (least squares) the data points. The calculation
is easier in Fourier space as convolution products become products. Fourier transforms were
performed analytically when possible (Gaussian, Henyey-Greenstein). Otherwise, analytical
expressions were discretized with a sampling rate and a range making the numerical error
negligible as compared to data noise.
Figure 4 (c) shows the adjustment of the measured phase function of a spheroid of 146 µm in

diameter. The best fit was obtained for a = 0.23, q0 = 0.14 µm−1 and b = 0.90. Incidentally, we
deduced `∗ from this measure of ps. First, we calculated the anisotropy factor g, defined as

g = k0
∬

ps
(
k0(u − u′)

)
u · u′du′ = 0.92. (9)

Then, `∗ was obtained as
`∗ =

`s
1 − g

= 950 µm. (10)

Similarly, we propose an empirical parametric function for D(∆r, τ). A Gaussian distribution
showed a relative agreement with the data [Fig. 4 (a)], while preserving the azimuthal symmetry
showed by the correlation functions C:

D(∆r, τ) = 1
(2π)3/2σ3

τ

exp
(
−
∆r2

2σ2
τ

)
, (11)

where ∆r = |∆r|. στ is an adjustable parameter that scales with τ in a manner that depends on
the nature of cell motion (subdiffusive, diffusive, ballistic). Because this approach is based on
curve fitting, it can be used even when certain angles are not measurable. This is our case as, due
to the direct beam, C is measurable only for q>0.09µm−1.

3.3. Full multiple scattering model

To consolidate our model, we compared the prediction given by Eq. (3) to a full theoretical model
of light transport in the MS regime. This model is presented in detail in Ref. [57]. Starting from
first principles (i.e.generalized scattering matrix for a moving scatterer), a transport equation is
derived directly for the temporal correlation function of the field g(1). This equation, similar to
the well-known Radiative Transfer Equation (RTE) reads in the steady-state regime:[

u · ∇r +
1
`s

]
g(1)(r,u, τ) = 1

`s

∫
k20ps (k0(u − u′))˜̃h(k0 |u − u′ |τ)g(1)(r,u′, τ)du′ (12)

where ˜̃h is the 1D Fourier transform of

h̃(w) =
∫

δ
[
w −

w · v
w

]
h(v)dv. (13)

h(v) is the velocity distribution of the scatterers. It is related to the displacement distribution by
the relation

h(v) = D(τv, τ)
τ

. (14)

In Eq. (12), g(1)(r,u, τ) is the Wigner transform of the field time correlation function [57]. It
gives access to the time decorrelation of the field at a given point r and for a given direction u
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Fig. 4. (a) Autocorrelation functions C(q, τ) measured for a L = 413 µm spheroid, with a
delay going from 6 to 24min (markers). Data was fitted (lines) using Eqs. (4), 3 and 11.
Fitting parameters are σ = 0.79 µm, 1.40µm, 2.16µm and 2.87 µm. (b) Cell displacements
magnitude distribution (D(∆r, τ) multiplied by 4π |∆r |2) deduced from the fit of (a). (c)
Phase function p measured for a spheroid of 146 µm in diameter, averaged azimuthally. Data
was fitted using Eqs. (4) and 8. (d) Mean cells speed inside spheroids as a function of the
pressure applied, for spheroids of respectively 250 µm and 470 µm in diameter (markers).
Data was fitted by an exponential decay (lines).

inside or outside the medium. It is strictly equivalent to the specific intensity in the case of a static
disordered medium. This RTE-type equation states that light propagates following a random walk
process where the average step-size is `s and the angular redistribution at each scattering event is
given by ps. A time decorrelation occurs also at each scattering event because of the Doppler shift
taken into account in h in Eq. (12). This model is valid in a dilute inhomogeneous medium such
as k0`s � 1 and for all possible optical thicknesses b = L/`s (from single-scattering to diffusion).
To the best of our knowledge, analytical solutions of a RTE-type equation are limited to very
simple geometries and the case of a spheroid, even with a homogeneous density of scatterers,
requires a numerical treatment. The simplest numerical algorithm to solve this problem is the
well-known Monte Carlo method. This is particularly adapted to obtain directly the field temporal
correlation function for the beam radiated in far-field. To reproduce experimental conditions,
parameters of the simulation were fixed at their experimental values. The phase function was
taken from Eq. (8) with the subsequent coefficients values, the wavelength was λ = 0.85µm and
the scattering mean free path was `s = 76µm. The dilute assumption was then largely fulfilled.
The spheroid was shined with a Gaussian beam of waist w = 192µm centered in the spheroid
center. Finally, the Siegert relation was used to deduce the intensity temporal correlation function
assuming that we had a Gaussian statistical field [58]:

C = |g(1) |2. (15)
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Fig. 3 (d) and (e) show the comparison, on virtual samples, between C obtained by simulation of
the full multiple scattering model (dash black line) and C calculated with Eqs. (4) and 3 (plain
orange line). In silico samples were homogeneous spheres of L = 250 µm (d) or L = 470 µm (e),
containing scatterers whose displacement distribution follows Eq. (11) with στ = 5 µm. As an
indication, the C that would have been obtained in the single scattering regime is represented
(plain blue line). In all cases, we found a very good agreement between our model prediction
and the simulations. This confirms the validity of the hypotheses we used, in particular the
approximation of straight line trajectories in the calculation of αk.

3.4. Cell displacements inside a spheroid

Figure 4 (a) shows an example of C(q, τ) measured for τ = 6min, 12min, 18min and 24min, in
a spheroid of 413 µm in diameter. C is azimuthally symmetric and is therefore only represented
as a function of q = |∆q|. Figure 4 (b) shows the corresponding fitting distributions (Eq. (11))
of the amplitude of displacements [4π |∆r |2D(∆r, τ)]. The evolution of the distribution gives
information about the type of motion. Here, the average distance traveled by cells (2

√
2/πσ)

increases nearly proportionally with time: 1.3, 2.2, 3.4 and 4.6 µm. Hence cells move in a
ballistic manner (constant speed) inside a spheroid. The four C curves can be fitted altogether to
Eq. (11), using a unique function σ(τ) = v̄τ/(2

√
2/π), where v̄ is the average speed of the cells,

v̄ = 11.4 µm/h. In every measurement performed on spheroids, ballistic motion was observed
for delays smaller than 30min. However, a progressive deviation toward a Brownian motion
(σ(τ) ∝ τ1/2) was observed for longer delays, suggesting cells perform a random walk with steps
lasting more than 30min. Finally, the shape of the speed distribution gives information about the
cell population diversity, with a standard deviation of 12.4 µm/h.

3.5. Cell motility under pressure

There are evidences that a moderate compressive stress (500 Pa to 5000 Pa) inhibits cell
proliferation inside MCS [51]. With MS-DLS we can now easily determine whether the pressure-
induced proliferation arrest correlates with a reduction in cell motility. To do so, we measured
the mean cell velocity inside spheroids submitted to pressures up to 25kPa, which are the typical
stresses that tumors receive in vivo from its surrounding environment [59]. Applying a pressure
to spheroids did not affect the type of motion nor the shape of the distribution. For this reason,
the impact of pressure on cells motility was only characterized by the evolution of the average
speed of cells v̄. Blue squares in Fig. 4 (d) display the mean cell speed v̄(P) as a function of
pressure, for spheroids with a diameter of 250µm. The velocity exponentially decreases (blue
lines) from v̄(0kPa) = 22 ± 2 µmm/h to v̄(25kPa) = 7 ± 3 µm/h. Interestingly, cells inside larger
spheroids (L = 470 µm) are systematically slower, even without pressure, and the plateau is
reached at lower pressures (red triangles). In large spheroids, we measured v̄(0) = 9 ± 1 µm/h
and v̄(∞) = 4.1 ± 0.3 µm/h.

3.6. Radial profile of cell speed inside spheroids

We made the approximation of a homogeneous sample (hypothesis iv), but spheroids are known
to be heterogeneous, with a radial structure [60]. To test whether a heterogeneity also existed
in term of cell speed, and measure if it does, we probed the local cell velocity. To do so, the
laser waist was reduced to 120 ± 40 µm: smaller than the spheroid but large enough to have a
reasonable statistic (∼500 cells). The center of the laser was positioned at different distances
from the center of the spheroid to measure cells speed radial profile [see Fig. 5 (a)]. To compare
spheroids of different diameters (240 µm to 480 µm), we introduced the normalized coordinates
r/R, where R is the spheroid radius and r the distance from the center, and v(r/R)/v0, where v0 is
the mean velocity of the cells measured at r/R = 0.
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Fig. 5. (a) Diagram representing a spheroid and the area illuminated by the laser positioned
on the side of the spheroid. Arrows indicate radial (white) and tangential (black) directions.
(b) Example of a diffraction pattern obtained for an off-center illuminated spheroid. Radial
and tangential directions are indicated similarly to (a). For a given direction and a given
q norm, pixels included inside white sections are considered. (c) Cell velocity v/v0 as a
function of the laser position r/R, normalized by the speed at the center v0.

When the laser is off-center, the rotational symmetry of the spheroid is lost. This is clearly
visible in the speckle pattern of the scattered light [see Fig. 5 (b)]. As a consequence, the
correlation function was measured for each axis. For a given direction and a given q norm,
pixels used for C calculation are comprised inside two π/8 sections centered on the axis [see
Fig. 5 (b)]. Radial and tangential C were then fitted together as described above, with an empirical
parametric function for the displacement distribution D(∆r, τ). As previously, we chose a
Gaussian distribution, but with two independent axes:

D(∆r, τ) = 8
(πτ)3v̄r v̄2t

exp

[
−
4
π

{(
∆rr

τv̄r

)2
+

(
∆rt

τv̄t

)2
+

(
∆rz

τv̄t

)2}]
(16)

where ∆rr, ∆rt and ∆rz are respectively the radial, the tangential and the optical axis components
of ∆r. The average speed along the optical axis was chosen to be equal to the one tangential
one, but it actually has no impact on the result of the calculation. Radial (v̄r) and tangential (v̄t)
velocities are fitted for each laser position with respect to the spheroid center [see Fig. 5 (c)].

At the center of the spheroid, both directions are equivalent and therefore speeds are identical
(v̄t/v̄r = 0.98 ± 0.04). Moving the laser toward the surface, two features appear: both speeds
increase toward the surface and tangential speed becomes greater than radial speed. Note that,
due to the finite beam waist, r/R may be greater than 1, while the laser beam still intersects the
spheroid.
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4. Discussion

4.1. DLS extension to multiple scattering

In the diffusion regime (DWS), the large number of scattering events effectively mixes up the
signal from different scattering angles, with a loss of information. As a result, the autocorrelation
function is flattened, as illustrated in simulations showed in Fig. 3 (d) and (e). If we consider C as
a function of the delay for a given scattering vector, the flattening implies a faster loss in intensity
auto-correlation as compared to the single-scattering regime, meaning intensity fluctuates more
rapidly. As expected, this flattening is exacerbated in thicker samples [Fig. 3 (e) as compared
to (d)]. Using MS-DLS, this effect can be corrected, by adjusting the parametric model of the
MS signal to experimental measurements. An analytical solution allows for tremendously faster
curve fitting as compared to Monte Carlo simulations. Moreover, our model helps understanding
how MS modifies the signal, making it easier to choose a parametric model for the dynamics
of the sample. Two aspects limits MS-DLS to samples thinner than `∗. First, because it relies
on angular dependence of the correlation function, which is lost for L>`∗. Secondly, in the
calculation of αk (Eq. (6)), we assumed that photons follow straight line trajectories. This is not
true for L>`∗ and proper calculation requires random walk Monte Carlo simulations.
Results from Fig. 5 show that the hypothesis of homogeneity was not valid, which might

induce a bias in the average of cells speed. This assumption was used to transit from Eq. (39)
to Eq. (41) in the appendix, but a more restrictive hypothesis is enough: that the dynamics of
the population of cells involved in k-times scattered photons does not depend on k. This is not
true for spheroids because photons scattered a small amount of time mainly come from the sides
of the spheroid where cells are faster. To evaluate the bias induced in spheroid-averaged speed,
we fitted data in Fig. 4 considering a simpler, but exaggerated, model where fast cells (standard
deviation of 2στ in Eq. (11)) are involved in slightly-scattered photons (k ≤ 4, 56% of scattered
light) while slow cells (στ/2) are involved in highly scattered photons (k>4, 44% of scattered
light). Instead of previous average distances 1.3, 2.2, 3.4 and 4.6 µm, we found 0.8, 1.3, 2.2
and 2.5 µm. Under homogeneity hypothesis, speed are overestimated by a factor 1.7 in average
because phase dynamics is dominated by slightly scattered photons, involving fast cells in our
case. In reality, this factor should be smaller as highly scattered photons also involve cells from
the surface. In any case, relative measurement of speed is still valid and absolute measurement
can be achieved by reducing the width of the probing laser beam.

4.2. Cell motility under pressure

Pressure inside multi-cellular system result from two components: a growth induced internal
pressure [61,62] and an external pressure coming from the surrounding tissues. Both are present
in our experiments, the second one being mimicked by the pressure induced by Dextran molecules.
The resulting pressure increases from the periphery to the core [63] which correlates with the
decrease of speed observed in Fig. 5 (c). To check whether pressure causes a cell displacements
reduction, we varied its intensity by adding an external pressure or by making larger (older)
spheroids with an increased growth pressure [64]. Figure 4 (d) shows that in both cases, the
average cell speed is decreased when pressure is increased. The speed is more than halved at 7kPa
and 15kPa, respectively for large and small spheroids ; Then a plateau is reached. It is noticeable
that the same pressure slows cell proliferation in spheroids made from cells of the same line
[50]. Interestingly, this pressure also corresponds to the maximal stress that a growing tumor can
exerts on its surroundings [59], defined as the homeostatic pressure in [65]. We conclude that
aggregates are sensitive to stresses up to the homeostatic pressure, with no additional effect above
this threshold. The effect of pressure on cell displacements depends on the cell line. Janet et al.
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[66] showed on cells sheets that pressure could increase the migration of aggressive cancerous
cells while decreasing the migration of less invasive cells. It might also depend on the direct
surroundings of a cell. Using the same cell line as ours, Alessandri et al. [67] measured an
increased migration under pressure at the surface of encapsulated spheroids.

5. Conclusion

MS-DLS is an analytical method that can measure cell motion in opaque samples thinner than
the transport mean free path `∗. Based on small-angle light scattering, it can be implemented
on any microscope devoted to biological imaging with the addition of few optical elements.
We applied it to the measurement of cell motion inside multicellular aggregates, quantifying
how much external mechanical constraints impair cell displacements. This experiment could
be extended to the study of cell migration regulation under numerous conditions: mechanical
constraints, genetic mutations, temperature, drugs. More generally, our technique would prove
useful in studying the migration of specific cells (cancer cells, macrophages) inside complex
environments (gels with inclusions, ex vivo tissues).

Appendix : MS-DLS analysis formula demonstration

In this appendix, we demonstrate the formula used to obtain cell displacement distribution from
the intensity correlation function (Eqs. (3) and (4) in Results section).

5.1 Light propagation

Light propagation is modeled as photons going from a scatterer to another inside the spheroid
to finally emit a wave at the last scattering. First, we calculate the relative phase shift between
photons, depending on the changes of propagation direction at each scattering event. Figure 6
shows an example of a photon being scattered twice: at positions r1 and r2. As phase reference in
the calculation of the phase shift, we take a photon scattered once, at the center of the spheroid. ui,
u1 and us are the directions of the photon incoming, scattered once and outcoming respectively.
The scattering angle of observation is q = k0(us−ui) and we note q1 = k0(u1−ui) and δ = r2− r1.
As in DLS or DWS, the phase shift is calculated from the difference in the optical path of the
photon. In this example, the phase shift φ is:

φ = k0 (ui.r1 + u1.δ − us.r2)

= k0 (ui.r1 + u1.(r2 − r1) − us.r2)

= −q1.r1 + k0(u1 − us).r2

= −q1.r1 + (q1 − q).r2

(17)

This result is equivalent to what we would obtain from the transport equation (Eq. (12)) which
was derived from first principles by controlling rigorously the approximations made [57].

In the general case of k scattering events at positions rm for m in [1..k], with directions um
associated to qm = k0(um − ui), the phase shift is:

φ(q, t) = −
k∑

m=1
(qm − qm−1).rm(t) (18)

With q0 = 0 and qk = q. The electrical field on the detector is taken as the addition of all waves
emitted by N scattering cells:

E(q, t) =
N∑

j=1
Ej(q)eiφj(t) (19)

where Ej is the amplitude of the field scattered by the jth cell and φj its phase shift. Ej is determined
by the cell shape. We assume that light fluctuations due to cell shape changes are negligible as
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Fig. 6. Diagram showing the trajectory of a photon scattered twice (bottom) inside a
spheroid, compared with the phase reference trajectory (up). ui, u1 and us are the directions
of the photon incoming, scattered once and outcoming respectively. Scaterring events are
located at position r1 and r2 with δ = r2 − r1.

compared to those due to cell displacements (hypothesis i). The smaller the scattering vector is,
the less details of the cell shape impact Ej(q) and the more valid this hypothesis is. Following
hypothesis i, we assume Ej to be constant over time.

5.2 Phase function

Let us start with the phase function in Eq. (4). The temporal average intensity is:

〈I(q, t)〉t = 〈|E(q, t)|2〉t
= 〈E(q, t)E(q, t)〉t

= 〈

(
N∑
j

Ej(q)eiφj(q,t)

) (
N∑
m

Em(q)e−iφm(q,t)

)
〉t

= 〈

N∑
j,m

Ej(q)eiφj(q,t)Em(q)e−iφm(q,t)〉t

=

N∑
j,m

Ej(q)Em(q)〈eiφj(q,t)e−iφm(q,t)〉t

(20)

We make the hypothesis that cell positions are not correlated (hypothesis ii). Because different
phases φ rely on different cells, they are not correlated and we have:

〈eiφj(q,t)e−iφm(q,t)〉t =


〈eiφj(q,t)〉t〈e−iφm(q,t)〉t = 0 if j , m

1 if j = m


Back to Eq. (20), we have:

〈I(q, t)〉t =
N∑
j

E2
j (q) (21)

As described in the main section, cells considered here correspond to the last event of scattering
in the scattering chain of photons. We group them depending on the number of scattering in the
chain.
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Each group includes an average of Nαk cells (see the definition of αk in the Results section
DLS extension to multiple scattering), so that:

〈I(q, t)〉t =
∑

k
Nαk〈E2

j (q)〉j(k) (22)

where the average is over cells of indexes j(k) that are last scatterers of k times scattered photons.
E2

j can be decomposed into an amplitude factor I0 and a phase function. The phase function is
the one of a single scatterer, noted ps in the main section, with an orientation determined by the
direction before the last scattering:

E2
j (q) = I0ps(q − qk−1(j)). (23)

The average over j(k) is then taken as an average over possible trajectories. For k = 1, qk−1 = 0
and:

〈E2
j (q)〉j(1) = I0ps(q) (24)

For k = 2, the photon is first scattered in a direction q1 with a probability ps(q1) and the average
calculated as:

〈E2
j (q)〉j(2) =

∬
I0ps(q1)ps(q − q1)dq1 = I0[ps ~ ps](q) (25)

where [ps ~ ps] is the convolution product of ps with itself. In the general case, the photon
undergoes k-1 scattering in the successive directions q1,. . . , qk−1, associated with a probability
ps(q1)ps(q2 − q1) · · · ps(qk−1 − qk−2) and the final phase function is ps(q − qk−1). Following the
same reasoning, we obtain:

〈E2
j (q)〉j(k) = I0[ps ~

k ps](q) (26)

where [ps ~k ps] is ps convoluted to itself k-times, with the convention [ps ~0 ps] = ps. Replacing
in Eq. (22), we get:

〈I(q, t)〉t = NI0
∑

k
αk[ps ~

k ps](q) (27)

To obtain p, Eq. (27) needs to be divided by the total intensity scattered:∬
〈I(q, t)〉tdq = NI0

∑
k
αk

∬
[ps ~

k ps](q)dq = NI0
∑

k
αk = NI0 (28)

Finally, we have:

p(q) = 〈I(q, t)〉t
NI0

=
∑

k
αk[ps ~

k ps](q) (29)

5.3 Intensity correlation function

This section details the calculation leading to Eq. (3) on C.
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For our sample, 〈I(q, t)〉ϕ = 〈I(q, t)〉t. The average intensity is thus written 〈I(q)〉 hereafter and
is time and ϕ independent. Under this condition, the intensity correlation function C becomes:

C(q, τ) = 〈I(q, t)I(q, t + τ)〉t
〈I(q)〉2

− 1 (30)

We introduce cell displacements over the period τ as:

∆r(t, τ) = r(t + τ) − r(t) (31)

Phase modifications are then expressed as:

∆φ(q, t, τ) = φ(q, t + τ) − φ(q, t)

= −

k∑
m=1
(qm − qm−1).(rm(t + τ) − rm(t))

= −

k∑
j=m
(qm − qm−1).∆rm(t, τ)

(32)

Where we made the approximation that qm are constant over time (hypothesis iii). This
approximation is valid if the distance between scattering events of a single photon trajectory (≈
mean free path) is large as compared to cell displacements.
First, we calculate 〈I(q, t)I(q, t + τ)〉t using Eq. (19):

〈I(q, t)I(q, t + τ)〉t
= 〈E(q, t)E(q, t)E(q, t + τ)E(q, t + τ)〉t

= 〈

(
N∑
j

Ej(q)eiφj(q,t)

) (
N∑
l

El(q)e−iφl(q,t)

) (
N∑
m

Em(q)eiφm(q,t+τ)

) (
N∑
p

Ep(q)e−iφp(q,t+τ)

)
〉t

= 〈

N∑
j,l,m,p

Ej(q)El(q)Em(q)Ep(q)ei(φj(q,t)−φl(q,t))ei(φm(q,t+τ)−φp(q,t+τ))〉t

=

N∑
j,l,m,p

Ej(q)El(q)Em(q)Ep(q)〈ei(φj(q,t)e−iφl(q,t)eiφm(q,t+τ)e−iφp(q,t+τ)〉t

(33)

As in the calculation of the phase function, A = 〈ei(φj(q,t)−φl(q,t))ei(φm(q,t+τ)−φp(q,t+τ))〉t is non
null only if:

• j = l and m = p, leading to A = 1.

• j = p and l = m with m , p, leading to

A = 〈ei(φj(q,t)−φj(q,t+τ))〉t〈ei(φm(q,t+τ)−φm(q,t))〉t = 〈e−i∆φj(q,t,τ)〉t〈ei∆φm(q,t,τ)〉t (34)

• j = m and l = p with m , p, leading to

A = 〈ei(φj(q,t)+φj(q,t+τ))〉t〈e−i(φp(q,t)+φp(q,t+τ))〉t = 0 (35)
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As a consequence, Eq. (33) can be written:

〈I(q, t)I(q, t + τ)〉t =
N∑
j,m

E2
j (q)E

2
m(q) +

N∑
j,m

E2
j (q)E

2
m(q)〈e−i∆φj(q,t,τ)〉t〈ei∆φm(q,t,τ)〉t

= 〈I(q)〉2 +
(

N∑
j

E2
j (q)〈e

−i∆φj(q,t,τ)〉t

) (
N∑
m

E2
m(q)〈ei∆φm(q,t,τ)〉t

)

= 〈I(q)〉2 +

����� N∑
j

E2
j (q)〈e

i∆φj(q,t,τ)〉t

�����2
(36)

and the correlation function becomes:

C(q, τ) =

���∑N
j E2

j (q)〈e
i∆φj(q,t,τ)〉t

���2
〈I(q)〉2

(37)

Now, we take separately the sum, and rearrange the terms depending on the number k of
scattering events, as we did previously in Eq. (22):

N∑
j

E2
j (q)〈e

i∆φj(q,t,τ)〉t =
∑

k
Nαk〈E2

j (q)e
i∆φj(q,t,τ)〉t,j(k) (38)

where the average is now also over cells of indexes j(k) that are last scatterers of k times scattered
photons.
Finally, using Eqs. (23) and (32) we calculate:

〈E2
j (q)e

i∆φj(q,t,τ)〉t,j(k) = I0〈ps(q − qk−1)e−i
∑k

m=1(qm−qm−1).∆rm(t,τ)〉t,j(k)

= I0〈ps(q − qk−1)
k∏

m=1
e−i(qm−qm−1).∆rm(t,τ)〉t,j(k)

(39)

We assume that all cells follow the same displacement probability Dτ(∆r), i.e. the sample
is homogeneous in terms of cell displacements (hypothesis iv). As a consequence, photon
trajectories, given by the qj, are independent on specific cells and the average over trajectories
can be separated from the average over time.

〈E2
j (q)e

i∆φj(q,t,τ)〉t,j(k) = I0〈ps(q − qk−1)
k∏

m=1
〈e−i(qm−qm−1).∆rm(t,τ)〉t〉j(k) (40)

Taking separately the average over time, we notice that:

〈e−i(qj−qj−1).∆rj(t,τ)〉t =

∭
Dτ(∆r)e−i(qj−qj−1).∆rd∆r = D̃τ(qj − qj−1) (41)
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D̃τ being the 3D Fourier transform of Dτ . Back to the previous equation:

〈E2
m(q)ei∆φj(q,t,τ)〉t,j(k)

= I0〈ps(q − qk−1)
k∏

j=1
D̃(qj − qj−1)〉j(k)

= I0
∫
· · ·

∫
ps(q1)D̃τ(q1)ps(q2 − q1)D̃τ(q2 − q1) · · · ps(q − qk−1)D̃τ(q − qk−1)dq1 · · · dqk−1

= I0
∫
· · ·

∫
[psD̃τ ~ psD̃τ](q2)[psD̃τ](q3 − q2) · · · [psD̃τ](q − qk−1)dq2 · · · dqk−1

= I0
[
psD̃τ ~

k−1 psD̃τ

]
(q)

(42)
Introducing this result in Eq. (38) and then in the correlation function expression Eq. (37):

C(q, τ) =

���NI0
∑

k αk[psD̃τ ~k−1 psD̃τ](q)
���2

〈I(q)〉2
(43)

Finally, as p = 〈I(q)〉NI0 , we have:

C(q, τ) =

����� 1
p(q)

∑
k
αk[psD̃τ ~

k−1 psD̃τ](q)

�����2 (44)

Funding

Institut National de la Santé et de la Recherche Médicale (PC201407); Agence Nationale de la
Recherche (ANR-10-IDEX-0001-02 PSL*).

Acknowledgments

We thank Pr. R. Carminati for his significant contribution in initiating this work.
BB, GC, AM and AD designed the experiments; BB built up and characterized the experimental

device and conceived the MS-DLS analysis; BB, VL, AM and MD performed the experiments;
RP carried out numerical simulations and supervised the theoretical work; GC supervised the
experimental work; BB, RP and GC wrote the manuscript.

Disclosures

The authors declares no conflict of interest.

References
1. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-

depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
2. K. A. Lidke, B. Rieger, T. M. Jovin, and R. Heintzmann, “Superresolution by localization of quantum dots using

blinking statistics,” Opt. Express 13(18), 7052–7062 (2005).
3. M. J. Rust, M. Bates, and X. Zhuang, “Stochastic optical reconstruction microscopy (storm) provides sub-diffraction-

limit image resolution,” Nat. Methods 3(10), 793–796 (2006).
4. T. Wilson, “Optical aspects of confocal microscopy,” Confocal Microscopy pp. 93–141 (1990).
5. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951),

73–76 (1990).
6. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos

by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
7. J. Huisken and D. Y. R. Stainier, “Even fluorescence excitation by multidirectional selective plane illumination

microscopy (mspim),” Opt. Lett. 32(17), 2608–2610 (2007).

https://doi.org/10.1364/OL.19.000780
https://doi.org/10.1364/OPEX.13.007052
https://doi.org/10.1038/nmeth929
https://doi.org/10.1126/science.2321027
https://doi.org/10.1126/science.1100035
https://doi.org/10.1364/OL.32.002608


Research Article Vol. 11, No. 4 / 1 April 2020 / Biomedical Optics Express 2295

8. P. J. Verveer, J. Swoger, F. Pampaloni, K.Greger, M.Marcello, and E.H.K. Stelzer, “High-resolution three-dimensional
imaging of large specimens with light sheet–based microscopy,” Nat. Methods 4(4), 311–313 (2007).

9. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A.
Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

10. P. Yu, M. Mustata, J. J. Turek, P. M. W. French, M. R. Melloch, and D. D. Nolte, “Holographic optical coherence
imaging of tumor spheroids,” Appl. Phys. Lett. 83(3), 575–577 (2003).

11. J. A. Izatt, M. A. Choma, and A.-H. Dhalla, “Theory of optical coherence tomography,” Optical Coherence
Tomography: Technology and Applications pp. 65–94 (2015).

12. C.-E. Leroux, J. Palmier, A. C. Boccara, G. Cappello, and S. Monnier, “Elastography of multicellular aggregates
submitted to osmo-mechanical stress,” New J. Phys. 17(7), 073035 (2015).

13. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological
samples,” Nat. Photonics 2(2), 110–115 (2008).

14. M. Jang, H. Ruan, I. M. Vellekoop, B. Judkewitz, E. Chung, and C. Yang, “Relation between speckle decorrelation
and optical phase conjugation (opc)-based turbidity suppression through dynamic scattering media: a study on in
vivo mouse skin,” Biomed. Opt. Express 6(1), 72–85 (2015).

15. W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J.
Quantum Electron. 26(12), 2166–2185 (1990).

16. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
17. A. Badon, A. C. Boccara, G. Lerosey, M. Fink, and A. Aubry, “Multiple scattering limit in optical microscopy,” Opt.

Express 25(23), 28914–28934 (2017).
18. C. Riva, B. Ross, and G. B. Benedek, “Laser doppler measurements of blood flow in capillary tubes and retinal

arteries,” Investigative Ophthalmology & Visual Science 11, 936–944 (1972).
19. V. Rajan, B. Varghese, T. G. van Leeuwen, and W. Steenbergen, “Review of methodological developments in laser

doppler flowmetry,” Lasers Med. Sci. 24(2), 269–283 (2009).
20. A. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun.

37(5), 326–330 (1981).
21. A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow,” Ann. Biomed. Eng. 40(2), 367–377 (2012).
22. B. J. Berne and R. Pecora, Dynamic Light Scattering with Applications to Biology, Chemistry and Physics (Wiley,

1976).
23. W. I. Goldburg, “Dynamic light scattering,” Am. J. Phys. 67(12), 1152–1160 (1999).
24. M. Suissa, C. Place, E. Goillot, and E. Freyssingeas, “Internal dynamics of a living cell nucleus investigated by

dynamic light scattering,” Eur. Phys. J. E: Soft Matter Biol. Phys. 26(4), 435–448 (2008).
25. D. D. Nolte, R. An, J. Turek, and K. Jeong, “Holographic tissue dynamics spectroscopy,” J. Biomed. Opt. 16(8),

087004 (2011).
26. J. Lee, H. Radhakrishnan, W. Wu, A. Daneshmand, M. Climov, C. Ayata, and D. A. Boas, “Quantitative imaging of

cerebral blood flow velocity and intracellular motility using dynamic light scattering–optical coherence tomography,”
J. Cereb. Blood Flow Metab. 33(6), 819–825 (2013).

27. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser
speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).

28. D. L. Marks, R. L. Blackmon, and A. L. Oldenburg, “Diffusion tensor optical coherence tomography,” Phys. Med.
Biol. 63(2), 025007 (2018).

29. J. M. Schmitt, A. H. Gandjbakhche, and R. F. Bonner, “Use of polarized light to discriminate short-path photons in a
multiply scattering medium,” Appl. Opt. 31(30), 6535–6546 (1992).

30. G. D. J. Phillies, “Suppression of multiple scattering effects in quasielastic light scattering by homodyne cross-
correlation techniques,” J. Chem. Phys. 74(1), 260–262 (1981).

31. K. Schätzel, “Suppression of multiple scattering by photon cross-correlation techniques,” J. Mod. Opt. 38(9),
1849–1865 (1991).

32. J.-M. Tualle, E. Tinet, and S. Avrillier, “A new and easy way to perform time-resolved measurements of the light
scattered by a turbid medium,” Opt. Commun. 189(4-6), 211–220 (2001).

33. D. A. Boas, K. K. Bizheva, and A. M. Siegel, “Using dynamic low-coherence interferometry to image brownian
motion within highly scattering media,” Opt. Lett. 23(5), 319–321 (1998).

34. R. Bonner and R. Nossal, “Model for laser doppler measurements of blood flow in tissue,” Appl. Opt. 20(12),
2097–2107 (1981).

35. A. Wax, C. Yang, R. R. Dasari, and M. S. Feld, “Path-length-resolved dynamic light scattering: modeling the
transition from single to diffusive scattering,” Appl. Opt. 40(24), 4222–4227 (2001).

36. D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12),
1134–1137 (1988).

37. D. J. Pine, D. A. Weitz, J. X. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in
the multiple scattering limit,” J. Phys. 51(18), 2101–2127 (1990).

38. D. J. Durian, “Accuracy of diffusing-wave spectroscopy theories,” Phys. Rev. E 51(4), 3350–3358 (1995).
39. V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8),

603–614 (2010).

https://doi.org/10.1038/nmeth1017
https://doi.org/10.1126/science.1957169
https://doi.org/10.1063/1.1594830
https://doi.org/10.1088/1367-2630/17/7/073035
https://doi.org/10.1038/nphoton.2007.297
https://doi.org/10.1364/BOE.6.000072
https://doi.org/10.1109/3.64354
https://doi.org/10.1109/3.64354
https://doi.org/10.1088/0031-9155/58/11/R37
https://doi.org/10.1364/OE.25.028914
https://doi.org/10.1364/OE.25.028914
https://doi.org/10.1016/0026-2862(82)90048-6
https://doi.org/10.1007/s10103-007-0524-0
https://doi.org/10.1016/0030-4018(81)90428-4
https://doi.org/10.1007/s10439-011-0469-0
https://doi.org/10.1119/1.19101
https://doi.org/10.1140/epje/i2007-10346-5
https://doi.org/10.1117/1.3615970
https://doi.org/10.1038/jcbfm.2013.20
https://doi.org/10.1097/00004647-200103000-00002
https://doi.org/10.1088/1361-6560/aa9cfe
https://doi.org/10.1088/1361-6560/aa9cfe
https://doi.org/10.1364/AO.31.006535
https://doi.org/10.1063/1.440884
https://doi.org/10.1080/09500349114551951
https://doi.org/10.1016/S0030-4018(01)01045-8
https://doi.org/10.1364/OL.23.000319
https://doi.org/10.1364/AO.20.002097
https://doi.org/10.1364/AO.40.004222
https://doi.org/10.1103/PhysRevLett.60.1134
https://doi.org/10.1051/jphys:0199000510180210100
https://doi.org/10.1103/PhysRevE.51.3350
https://doi.org/10.1038/nmeth.1483


Research Article Vol. 11, No. 4 / 1 April 2020 / Biomedical Optics Express 2296

40. F. Jaillon, S. E. Skipetrov, J. Li, G. Dietsche, G. Maret, and T. Gisler, “Diffusing-wave spectroscopy from head-like
tissue phantoms: influence of a non-scattering layer,” Opt. Express 14(22), 10181 (2006).

41. J. Li, G. Dietsche, D. Iftime, S. E. Skipetrov, G. Maret, T. Elbert, B. Rockstroh, and T. Gisler, “Noninvasive detection
of functional brain activity with near-infrared diffusing-wave spectroscopy,” J. Biomed. Opt. 10(4), 044002 (2005).

42. D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. van Houten,
E. L. Kermit, W.-F. Cheong, and D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J.
Cereb. Blood Flow Metab. 20(3), 469–477 (2000).

43. H. M. Varma, C. P. Valdes, A. K. Kristoffersen, J. P. Culver, and T. Durduran, “Speckle contrast optical tomography:
A new method for deep tissue three-dimensional tomography of blood flow,” Biomed. Opt. Express 5(4), 1275–1289
(2014).

44. P.-A. Lemieux, M. U. Vera, and D. J. Durian, “Diffusing-light spectroscopies beyond the diffusion limit: The role of
ballistic transport and anisotropic scattering,” Phys. Rev. E 57(4), 4498–4515 (1998).

45. R. Pierrat, N. B. Braham, L. F. Rojas-Ochoa, R. Carminati, and F. Scheffold, “The influence of the scattering
anisotropy parameter on diffuse reflection of light,” Opt. Commun. 281(1), 18–22 (2008).

46. R. Carminati, R. Elaloufi, and J.-J. Greffet, “Beyond the diffusing-wave spectroscopy model for the temporal
fluctuations of scattered light,” Phys. Rev. Lett. 92(21), 213903 (2004).

47. M. Xu, T. T. Wu, and J. Y. Qu, “Unified mie and fractal scattering by cells and experimental study on application in
optical characterization of cellular and subcellular structures,” J. Biomed. Opt. 13(2), 024015 (2008).

48. B. Brunel, C. Blanch, A. Gourrier, V. Petrolli, A. Delon, J.-F. Joanny, R. Carminati, R. Pierrat, and G. Cappello,
“Structure and dynamics of multicellular assemblies measured by coherent light scattering,” New J. Phys. 19(7),
073033 (2017).

49. J. Friedrich, C. Seidel, R. Ebner, and L. A. Kunz-Schughart, “Spheroid-based drug screen: considerations and
practical approach,” Nat. Protoc. 4(3), 309–324 (2009).

50. F. Montel, M. Delarue, J. Elgeti, L. Malaquin, M. Basan, T. Risler, B. Cabane, D. Vignjevic, J. Prost, G. Cappello, and
J.-F. Joanny, “Stress clamp experiments on multicellular tumor spheroids,” Phys. Rev. Lett. 107(18), 188102 (2011).

51. S. Monnier, M. Delarue, B. Brunel, M. E. Dolega, A. Delon, and G. Cappello, “Effect of an osmotic stress on
multicellular aggregates,” Methods 94, 114–119 (2016).

52. N. N. Boustany, S. C. Kuo, and N. V. Thakor, “Optical scatter imaging: subcellular morphometry in situ with fourier
filtering,” Opt. Lett. 26(14), 1063–1065 (2001).

53. Z. J. Smith and A. J. Berger, “Integrated raman-and angular-scattering microscopy,” Opt. Lett. 33(7), 714–716 (2008).
54. F. Ferri, “Use of a charge coupled device camera for low-angle elastic light scattering,” Rev. Sci. Instrum. 68(6),

2265–2274 (1997).
55. C. M. Sorensen, R. C. Mockler, and W. J. O’Sullivan, “Multiple scattering from a system of brownian particles,”

Phys. Rev. A 17(6), 2030–2035 (1978).
56. G. Hall, S. L. Jacques, K. W. Eliceiri, and P. J. Campagnola, “Goniometric measurements of thick tissue using monte

carlo simulations to obtain the single scattering anisotropy coefficient,” Biomed. Opt. Express 3(11), 2707–2719
(2012).

57. R. Pierrat, “Transport equation for the time correlation function of scattered field in dynamic turbid media,” J. Opt.
Soc. Am. A 25(11), 2840 (2008).

58. A. J. F. Siegert, On the Fluctuations in Signals Returned by Many Independently Moving Scatterers (Radiation
Laboratory, Massachusetts Institute of Technology, 1943).

59. G. Helmlinger, P. A. Netti, H. C. Lichtenbeld, R. J. Melder, and R. K. Jain, “Solid stress inhibits the growth of
multicellular tumor spheroids,” Nat. Biotechnol. 15(8), 778–783 (1997).

60. F. Hirschhaeuser, H. Menne, C. Dittfeld, J. West, W. Mueller-Klieser, and L. A. Kunz-Schughart, “Multicellular
tumor spheroids: an underestimated tool is catching up again,” J. Biotechnol. 148(1), 3–15 (2010).

61. T. Stylianopoulos, J. D. Martin, V. P. Chauhan, S. R. Jain, B. Diop-Frimpong, N. Bardeesy, B. L. Smith, C. R. Ferrone,
F. J. Hornicek, Y. Boucher, L. L. Munn, and R. K. Jain, “Causes, consequences, and remedies for growth-induced
solid stress in murine and human tumors,” Proc. Natl. Acad. Sci. U. S. A. 109(38), 15101–15108 (2012).

62. T. Colin, G. Dechriste, J. Fehrenbach, L. Guillaume, V. Lobjois, and C. Poignard, “Experimental estimation of stored
stress within spherical microtissues,” J. Math. Biol. 77(4), 1073–1092 (2018).

63. M. E. Dolega, M. Delarue, F. Ingremeau, J. Prost, A. Delon, and G. Cappello, “Cell-like pressure sensors reveal
increase of mechanical stress towards the core of multicellular spheroids under compression,” Nat. Commun. 8(1),
14056 (2017).

64. H. T. Nia, H. Liu, G. Seano, M. Datta, D. Jones, N. Rahbari, J. Incio, V. P. Chauhan, K. Jung, J. D. Martin, V.
Askoxylakis, T. P. Padera, D. Fukumura, Y. Boucher, F. J. Hornicek, A. J. Grodzinsky, J. W. Baish, L. L. Munn, and
R. K. Jain, “Solid stress and elastic energy as measures of tumour mechanopathology,” Nat. Biomed. Eng. 1(1), 0004
(2017).

65. M. Basan, T. Risler, J.-F. Joanny, X. Sastre-Garau, and J. Prost, “Homeostatic competition drives tumor growth and
metastasis nucleation,” HFSP J. 3(4), 265–272 (2009).

66. M. T. Janet, G. Cheng, J. A. Tyrrell, S. A. Wilcox-Adelman, Y. Boucher, R. K. Jain, and L. L. Munn, “Mechanical
compression drives cancer cells toward invasive phenotype,” Proc. Natl. Acad. Sci. U. S. A. 109(3), 911–916 (2012).

67. K. Alessandri, B. R. Sarangi, V. V. Gurchenkov, B. Sinha, T. R. Kießling, L. Fetler, F. Rico, S. Scheuring, C. Lamaze,
A. Simon, S. Geraldo, D. Vignjević, H. Doméjean, L. Rolland, A. Funfak, J. Bibette, N. Bremond, and P. Nassoy,

https://doi.org/10.1364/OE.14.010181
https://doi.org/10.1117/1.2007987
https://doi.org/10.1097/00004647-200003000-00005
https://doi.org/10.1097/00004647-200003000-00005
https://doi.org/10.1364/BOE.5.001275
https://doi.org/10.1103/PhysRevE.57.4498
https://doi.org/10.1016/j.optcom.2007.09.008
https://doi.org/10.1103/PhysRevLett.92.213903
https://doi.org/10.1117/1.2907790
https://doi.org/10.1088/1367-2630/aa7b0f
https://doi.org/10.1038/nprot.2008.226
https://doi.org/10.1103/PhysRevLett.107.188102
https://doi.org/10.1016/j.ymeth.2015.07.009
https://doi.org/10.1364/OL.26.001063
https://doi.org/10.1364/OL.33.000714
https://doi.org/10.1063/1.1148135
https://doi.org/10.1103/PhysRevA.17.2030
https://doi.org/10.1364/BOE.3.002707
https://doi.org/10.1364/JOSAA.25.002840
https://doi.org/10.1364/JOSAA.25.002840
https://doi.org/10.1038/nbt0897-778
https://doi.org/10.1016/j.jbiotec.2010.01.012
https://doi.org/10.1073/pnas.1213353109
https://doi.org/10.1007/s00285-018-1243-9
https://doi.org/10.1038/ncomms14056
https://doi.org/10.1038/s41551-016-0004
https://doi.org/10.2976/1.3086732
https://doi.org/10.1073/pnas.1118910109


Research Article Vol. 11, No. 4 / 1 April 2020 / Biomedical Optics Express 2297

“Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor
progression in vitro,” Proc. Natl. Acad. Sci. U. S. A. 110(37), 14843–14848 (2013).

https://doi.org/10.1073/pnas.1309482110

