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What is the problem being addressed by the manuscript and why is it important to the Antennas & 

Propagation community?  

 
This paper investigates the effects of electromagnetic coupling between randomly distributed dipoles on their 

matching properties from a statistical point of view. The well-established UHF RFID may be used in a context of 

high densities of tags. The proximity of tags can result in an important electromagnetic coupling between tags 

which alters antenna's key parameters (e.g. radiation pattern and matching). Consequently the quality of 

communication between the RFID reader and the tags will be degraded. The statistical study of coupling effects can 

help the RFID engineer to maintain the link quality even in a context of high density of tags. 

 

What is the novelty of your work over the existing work?  

 
A pure deterministic modelling of tag behaviour in random configurations would not be realistic. Although 

intensive research on mutual coupling is available in literature, the impact of the mutual coupling for high densities 

of RFID tags has never been modelled statistically. This work presents the matching evaluation of dipoles from a 

statistical point of view. The novelty is to be able to predict the matching properties of a set of random dipoles by 

their density. Combined to a future study on radiation pattern, this method offers the possibility to express the RFID 

system parameters (e.g. read-range) statistically. 
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Abstract— Electromagnetic coupling between randomly 

distributed dipole antennas is analyzed statistically. The 

impedance matrix of a set of dipoles is first calculated with both 

the Induced Electromotive Force (IEMF) technique and 

Numerical Electromagnetic Code (NEC) simulator. Then, the 

input impedance of a surrounded dipole is assessed for any 

loading of the surrounding dipoles. Cumulative distributed 

functions for the mismatch of a surrounded dipole are given for 

different dipole densities and loadings of the surrounding 

dipoles. This statistical approach is proposed in the context of 

UHF Radio Frequency IDentification (RFID) use cases where tag 

antennas are concentrated in reduced volumes and where the 

antenna group behavior should be considered. 

 

Index Terms—electromagnetic coupling, highly coupled 

dipoles, impedance matrix, RFID antenna matching  

I. INTRODUCTION 

UHF RFID (Radio Frequency IDentification) 

technologies have a long established role for tracking and 

identification in various fields of application such as food 

traceability [1], logistics management in textile industry [2] or 

supply chain management [3]. For instance, UHF RFID tags 

installed into hotel and hospital linens, towels, uniforms and 

medical gowns allow for the real-time management and 

tracking of the laundry activity. This use case is characterized 

by huge concentrations of tagged items in reduced volumes 

during the shipping, the storage and the washing steps. Other 

use cases can be found in the shoe or clothing retail where 

items can be stacked or aligned yielding to high densities of 

RFID tags. High density of tags can give rise to an important 

electromagnetic coupling between tag antennas which alters 

antenna's key parameters such as the radiation pattern and the 

matching properties. The decrease in antenna performance 

ultimately degrades the RFID system performances, e.g. the 

read range and the read rate of tags. The empirical strategies 

which are currently proposed rely on either a multiplication of 

the number of reading systems to bring diversity [4] or a 

modification in the tags' environment by using mechanical 

vibration or electromagnetic stirring [5]. The implementation 

of these solutions results in a heavy and costly infrastructure 

which is not suitable for large scale applicability of RFID 

systems and does not guarantee a total reliability.  
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A solution to optimize the RFID infrastructure may reside 

in a better understanding and a fine modeling of coupling 

effects but obviously in such a complex random context, a 

purely deterministic approach is not appropriate. Although 

intensive research on mutual coupling [6] has been conducted 

for over fifty years, the impact of the mutual coupling for high 

densities of RFID tags has never been modeled statistically to 

predict their group behavior. By using a more rigorous 

statistical analysis, our motivation is to build the preliminary 

version of a statistical tool dedicated to the performance 

evaluation of any design of tag antenna for a given density of 

randomly distributed tags. This statistical tool will also be 

used to optimize the number and positions of the reader’s

antennas. 

In this paper, we assume that the electromagnetic 

interactions observed in a set of randomly distributed 

commercial tags built around dipole-like antennas are 

statistically similar to those of straight dipole antennas. Under 

this assumption, the driven dipole antenna corresponding to 

the activated (or read) tag is mismatched by the presence of 

surrounding dipoles corresponding to neighboring unactivated 

tags. This paper aims at studying statistically the mismatch of 

the driven dipole antenna surrounded by a randomly 

distributed set of dipoles. The other consequence of the 

antenna coupling, i.e. the distortion of the radiation pattern, is 

not treated in this paper. 

The core of the electromagnetic simulation should 

present two important characteristics. First, the method should 

estimate the input impedance of a randomly oriented dipole 

including mutual coupling with randomly distributed loaded 

surrounding dipoles. Secondly, the method needs to be fast 

enough to process a large number of random samples. In this 

paper, we use the Induced ElectroMotive Force (IEMF) 

technique [7]‒[13] which is a simple analytical method to 

estimate the self and mutual impedances of two electrically 

thin dipoles including coupling effects. The technique needs 

to be extended to the case of a set of randomly oriented thin 

dipoles. Other analytical or numerical techniques, such as in 

[14]-[15] can also be used but only for non-inclined dipoles.  

The manuscript is organized as follows: in Section II the 

impedance matrix for two randomly oriented thin dipoles is 

derived using the IEMF technique and this technique is 

extended to a set of N thin dipoles. The Numerical 

Electromagnetics Code (NEC) [16] is used as a validation 

reference. In Section III, expressions of the input impedance 

and the input reflection coefficient are given for a dipole with 

surrounding dipoles arbitrarily loaded. Then, NEC 

simulations for isolated and surrounded antennas are 

compared to IEMF for thin dipoles and to measurements for 

thick dipoles. In Section IV, NEC and IEMF are both applied 
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to perform statistical studies of the mismatch of a dipole as a 

function of the density and the loadings of the surrounding 

dipoles. 

II. EXTENDED IEMF AND IMPEDANCE MATRIX 

The IEMF (Induced ElectroMotive Force) method was 

introduced by Brillouin in 1922 [7]. This method is based on 

power conservation, which allows calculating the self-

impedance of a small antenna (loop, dipole) with uniform 

current distribution. In 1929, Pistolkors developed this 

method in order to calculate the self and mutual resistances of 

half-wave dipoles [8]. In 1941, Schelkunoff showed that the 

IEMF method may be used to calculate the self-reactance of 

dipoles [9]. Later, the IEMF method was used by King [10] to 

calculate the mutual impedance between staggered parallel 

antennas of arbitrary length and Baker [11] presented the 

integral form of the IEMF method for a V shape configuration 

of dipoles, to be evaluated numerically. In all cases, the self 

and mutual impedances are obtained supposing a known 

current distribution (e.g. sinusoidal) on the dipoles. For a few 

configurations, the expressions of the mutual resistance and 

reactance are in terms of sine and cosine integrals and can be 

obtained analytically, for others the evaluation remains 

numerical. 

 
Fig. 1. Two staggered arbitrarily oriented thin dipoles in zOy plane. 

Here we consider two staggered arbitrarily oriented 

dipole antennas of length l and diameter a as presented in Fig. 

1. The center of the dipoles are situated at (y01, z01) and (y02, 

z02) and their inclination angles with respect to z axis are 

noted 1 and 2 respectively for dipole 1 and 2. If both 

antennas are considered to be infinitely thin (diameter⩽10
-3 
λ) 

[12], the current distribution on the dipoles can be assumed to 

be sinusoidal. The self and mutual impedances can thus be 

calculated by applying the IEMF method. The expressions of 

the self impedance as presented in [12] are given below: 
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where   is the characteristic impedance of the medium,       

and       are the cosine and sine integrals respectively,    

0.5772istheEuler’sconstantand  is the wave number. For 

the mutual impedance, we use the expressions presented in 

[11]: 
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where the distance from the centre of dipole 2 to some point 

along its axis is called  . E21 is the electric field radiated by 

dipole 1 at this point and is given by: 

    
 

 
             (4) 

where: 

    
    

   
                            

       
  

 
              

 (5) 

    
    

  
  

     

 
    

  

 
  

      

  
 

      

  

   (6) 

I01 denotes the current magnitude over dipole 1. As we have 

extended the IEMF formulas presented in [11] to any arbitrary 

position and orientation of a pair of dipoles in a plane [13], 

the following equations give the new extended geometrical 

parameters corresponding to Fig. 1 to be inserted in general 

equations from (4) to (6):  
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Using the above formulas for two dipoles, the impedance 

matrix of a set of thin dipoles can be calculated by the 

superposition principle. We call this approach "extended 

IEMF" where the IEMF method is applied for each pair of 

dipoles in the set. The superposition is valid if adding an extra 

dipole to a pair of antennas does not alter the previous 

estimated values of the self and mutual impedances of the 

pair, thus the condition of minimum scattering is satisfied 

[17]. In the case of thin dipoles, for which the IEMF method 

is sufficiently accurate, this condition is not restrictive and 

results in very small distances. 

The extended IEMF method needs to be validated by a 

reference method for two reasons. First, the IEMF method is 

here applied to an arbitrary position and orientation of two 

dipoles. Secondly, the IEMF method has originally been 

developed for two dipoles and here it is extended to a set of 

dipoles. The extended IEMF for a set of half-wave thin 

dipoles is validated for two configurations by a comparison 

with Numerical Electromagnetics Code (NEC) which is a 

popular simulator for wire antennas based on Method of 

Moments. This simulator is relatively fast and can be easily 

automated in order to generate the necessary database for 

statistical studies. The frequency under consideration is 

892 MHz which corresponds to the medium frequency 

between the European and US UHF RFID bands. In this paper 

λ corresponds to the wavelength calculated at this frequency. 

A. 1D Set of Randomly Distributed Parallel Dipoles 

A randomly distributed set of 10 thin identical parallel 

dipoles of diameter 10
-6

 λ is considered (see Fig. 2). The 

dipole centers are distributed randomly in one dimension. The 

diagonal elements of the N×N impedance matrix are equal to 

the self-impedance (Zii) of a single dipole. The mutual 

impedances Zij = Zji are obtained for any pair (i, j) of dipole in 

the array in the absence of the other dipoles. The results are 

compared to NEC simulations and the absolute error on each 

element of the matrix is shown in Fig. 3 where the axes 

correspond to the dipole index (from 1 to 10). Unlike the 

extended IEMF technique, NEC takes the interactions 

between all dipoles into account. 

 
 

Fig. 2. Randomdistributionof10thindipolesovera1.6λlength. 

As shown in Fig. 3, the absolute error values on the real 

and imaginary parts of the impedance are limited to a 

maximum of 7 Ω. 

 

Fig. 3. Absolute error values in Ohms between the extended IEMF and NEC 

on the real (left) and imaginary (right) parts of the impedance matrix of a 
randomly distributed set of 10 parallel dipoles. 

The core of the NEC code is called by a MATLAB 

program which allows the automation of the procedure 

requiring multiple simulations. Fig. 4 depicts the evolution of 

the computation time of an impedance matrix for both the 

extended IEMF and NEC as a function of the number of 

dipoles in the set. The calculation time grows drastically as 

the number of dipoles in the set increases. This is due to the 

fact that in NEC, wires are discretized into short segments 

with linear variations of current and voltage, unlike the IEMF 

method, where the entire dipole is considered as one segment 

with a known current distribution. In other words, IEMF has a 

single complex unknown while NEC deals with n complex 

unknowns for n discretizations. The IEMF method shows 

consequently lower computation times. In this paper, NEC 

results have been obtained by discretizing the half-wave 

dipoles into 51 segments (λ/100). Fig. 4 shows that in the case 

of 10 dipoles, the extended IEMF technique is approximately 

40 times faster than NEC.  

 
Fig. 4. Computation time of the impedance matrix obtained by the extended 
IEMF and NEC as a function of the number of dipoles. 

B. 2D Set of Randomly Distributed Dipoles 

A randomly distributed set of 10 thin identical dipoles is 

presented in Fig. 5. The centers are distributed randomly in 

two dimensions and each dipole has a random orientation 

under the condition that dipole overlaps are forbidden. Two 

distribution areas are considered: 2λ×2λ and λ×λ. The
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impedance matrix of each set has been calculated as 

previously explained and the result has been compared to the 

matrix provided by NEC. The absolute error on the real and 

imaginary parts of the impedance for each element of the 

matrix is shown in Fig. 6. The maximum absolute error is 

limited to 9.3 Ω and is observed for the highest antenna

density. 
 

 
Fig. 5. Random distribution of 10 thin dipoles over two dimensions for two 

differentdistributionareas(a)2λ×2λand(b)λ×λ. 

 
Fig. 6. Absolute error values in Ohms between the extended IEMF and NEC 
on the real (left) and imaginary (right) parts of the impedance matrix for a 

randomly distributed set of 10 dipoles and for two different distribution areas 

(a)2λ×2λand(b)λ×λ. 

It is not pertinent to calculate a relative error in this phase 

because an insignificant error on a low impedance of a matrix 

element can result in a very high relative error. We will 

present relative error values for the parameters of interest, i.e. 

the input impedance of each driven dipole. 

III. INPUT IMPEDANCE OF A DRIVEN DIPOLE SURROUNDED BY 

LOADED DIPOLES 

The input impedance of a driven dipole surrounded by 

loaded dipoles is calculated by using the equivalent N-port 

network presented in Fig. 7.  

 
Fig. 7. Input impedance of a loaded N-port network. 

The input impedance at port i is calculated when all the 

(N-1) other ports are loaded with ZL. Knowing that the general 

Z matrix definition leads to            and that for each 

loaded port         , the input impedance at port i defined 

by             is given by: 
 

 in 
 

 

 mod  
       

 (22) 

where        
   is the inverse of the NN matrix obtained by 

adding ZL to the main diagonal of the general Z matrix of the 

network everywhere except on the (i, i)
th 

element:  
 

        

 
 
 
 
 
                  

   
               

   
                   

 
 
 
 

   (23) 

It can be experimentally shown that for physical loads (ZL 

presenting a positive real part), this matrix is always 

invertible. 

It is important to notice that the absolute errors on the 

impedance matrices of Fig. 3, Fig. 6 (a) and Fig. 6 (b) result 

in a relative error on     between NEC and extended IEMF 

defined as  
                

       
 . The maximum of the absolute 

value of this error observed for one driven dipole among 10 is 

equal to 4% for Fig. 2, 4.3% for Fig. 5 (a) and 25% for Fig. 5 

(b). In Section IV, we will focus on the statistical matching 

behavior of the dipoles where those errors will prove to have 

no influence on the general statistical conclusions. The two 

following subsections present an experimental validation of 

    for the isolated and surrounding dipoles over a large 

frequency band.  

A. Isolated Dipole 

The input impedance of a thin isolated dipole of length 

17 cm (≃0.5 λ) and diameter 0.3 m (≃10
-6

 λ) has been 

calculated by IEMF and compared to NEC. The input 
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impedance of a thick isolated dipole of length 17 cm and 

diameter 1 mm has also been calculated by NEC and 

compared to measurements. 
 

 
Fig. 8. Experimental setup for the impedance measurement of a random 
distribution of 10 thick dipoles in anechoic chamber (one driven dipole and 

nine surrounding short-circuited dipoles). 

As shown in Fig. 8, the measurements have been 

performed in the anechoic environment of the Voyantic 

Cabinet [18] used to determine the radiation pattern of UHF 

RFID tags. Thick dipoles have been fabricated with copper 

wires and fixed to a block of polystyrene whose relative 

permittivity is close to 1. The driven element has been fed 

differentially by a 2-port Vector Network Analyzer (VNA).  
 

 
 
Fig. 9. Input impedance of an isolated thin and thick dipole. 

The input impedance of the driven element is finally 

extracted from the measured [S] matrix using the procedure 

described in [19]. Fig. 9 presents the real and imaginary parts 

of the input impedance as a function of the frequency. NEC 

results for both thin and thick dipoles are in excellent 

agreement with IEMF and measurements, respectively. This 

confirms that NEC can be used as a reference code for both 

thin and thick cases as measurements are not easy to carry out 

for extremely thin dipoles and IEMF accuracy is limited for 

thick dipoles. 

B. Surrounded Dipole 

For the randomly distributed dipoles (1D or 2D) 

presented in Fig. 2 and Fig. 5, the input impedance is 

calculated for different driven dipoles. Fig. 10 depicts the 

input impedance of the driven dipole (either dipole n°1 or 

n°7) in the parallel configuration (Fig. 2) as a function of the 

frequency in the case of thin or thick dipoles. Surrounding 

dipoles are short-circuited. The results not only prove the 

validity of the procedure (NEC compared to extended IEMF 

for thin dipoles and to measurement for thick dipoles) but also 

show a high dispersion of the input impedance in a random 

configuration. Consequently, each surrounded dipole might be 

highly mismatched or not according to its position in a 

random configuration. 

 

 
Fig. 10. Input impedance of dipole (a) n°1 and (b) n°7 in the set of randomly 
distributed parallel dipoles (Fig. 2). 

Two other dipoles have been chosen in the considered 2D 

randomly distributed sets (Fig. 5) and the results are shown in 

Fig. 11. We observe more fluctuations of the real and 

imaginary parts in the case of the highest density of dipoles 

(Fig. 11.b). 
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Fig. 11. Input impedance of a dipole in the set of randomly distributed dipoles 
for different distribution areas (a) dipole n°5 in 2λ×2λ (Fig. 5.a) and (b) 

dipole n°1 inλ×λ(Fig. 5.b). 

IV. STATISTICAL ASSESSMENT 

This section is dedicated to the statistical assessment of 

the mismatch for a surrounded dipole in different random 

configurations. To this end, we define the reflection 

coefficient Γin i for the i
th

 surrounded dipole as follows: 

      
          

 

          
 (24) 

where the reference impedance Zref is chosen to be the 

complex conjugate of the self-impedance of an isolated 

dipole. The self-impedance of an isolated thin dipole of 

diameter 0.3 m is calculated by extended IEMF and NEC: 

Zself_thin_IEMF = 77.6+j91 Ω and Zself_thin_NEC = 81.7+j93.59 Ω.

The self-impedance of an isolated thick dipole of diameter 

1 mm is obtained by measurements and NEC: Zself_thick_meas= 

93.93+j68.09 Ω and Zself_thick_NEC = 95.65+j67.55 Ω. The 

statistical studies are conducted through two different axes: 

the reflection coefficient and the bandwidth of surrounded 

dipoles. 

A. Reflection Coefficient 

Ten identical dipoles are randomly distributed over 

surfaces of dimensions 44, 33, 22 and 11, i.e. 

using four different densities. For each dipole density, 200 

random configurations have been generated with thin and 

thick dipoles. The magnitude of the input reflection 

coefficient(Γin) for each of the 10 dipoles has been calculated 

in dB when all other dipoles are either short-circuited or 

matched. Therefore, 200×10 = 2000 samples are available for 

each dipole density. The cumulative distribution functions 

(CDF) are presented in Fig.12. 
 

 

Fig. 12. Cumulative distribution functions of the input reflection coefficient 
of a dipole, surrounded by (a) short-circuited dipoles and (b) matched dipoles, 

as a function of the densities obtained by extended IEMF (thin dipoles) and 

NEC (thin and thick dipoles). 

An excellent agreement is observed between the three 

series of CDF obtained by extended IEMF and NEC. This 

figure leads to an important conclusion: the statistical 

behavior of thick and thin dipoles is similar even if the 

intrinsic values of their input impedances and thus the 

reflection coefficients are quite different. For both loadings 

and for a given mismatch level, the number of dipoles 

presenting better matching properties increases as the 

distribution surface increases (or the dipole density 

decreases). In the case of short-circuited surrounding dipoles, 

the percentage of dipoles presenting a reflection coefficient 

smaller than |Γin| = ‒10 dB, is equal to 33% for the highest 

density (11) and reaches 97.5% for the lowest density 

(44). Finally, the loads of the surrounding dipoles have an 

important influence on the input reflection coefficient of a 

surrounded dipole. We observe that for a given dipole density, 
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the percentage of mismatched antennas decreases if the 

surrounding dipoles are terminated by a matched load 

compared to the case when they are short-circuited. For the 

highest dipole density (11), the percentage of dipoles 

presenting a reflection coefficient better than |Γin| = –10 dB 

increases from 33% with short-circuited surrounding dipoles 

to 77% with matched surrounding dipoles. This result can be 

physically explained by the higher radar cross-section of 

short-circuited dipoles compared to matched dipoles yielding 

a higher backscattering and a higher disturbance on the driven 

dipole. It must be mentioned that RFID tag antennas are 

normally designed to be matched to the RFID chip impedance 

when the tag is unactivated. Therefore, the matched 

configuration of surrounding dipoles can be associated to a 

realistic RFID scenario. However, despite these statistical 

results, it is not yet possible to conclude on the read rate of the 

RFID tags, without studying the impact of the mutual 

coupling on the radiation pattern. In other words, the absolute 

gain of the tag antenna in the reader's direction includes the 

mismatch of the driven dipole as well as the radiation gain (or 

directivity) of this latter in that direction. This analysis is 

however out of the scope of this paper. 

Finally, it must be noticed that the relative errors on input 

impedances between NEC and extended IEMF observed for a 

few configurations in Section III do not have significant 

impact on the general conclusions that can be drawn using the 

statistical results as observed in Fig. 12. Here the statistical 

behavior of a large number of configurations is considered 

and the locally high or low errors are of no interest. 

B. Bandwidth 

The typical reflection coefficient of an isolated dipole is 

plotted as a function of frequency in Fig. 13. For a given 

threshold of the reflection coefficient, the isolated dipole 

shows a certain frequency bandwidth. The bandwidth of the 

isolated dipole is used as a reference in the study of the 

surrounded dipole. 

 
Fig. 13. Reflection coefficient of the isolated thin dipole under study as a 
function of frequency. 

The statistical influence of the neighboring dipoles over 

the bandwidth of a surrounded dipole is performed using the 

same scenarios as in the previous subsection. The same 

number of dipoles is randomly distributed using the four 

different densities, and 100 random configurations have been 

generated with thin dipoles with short-circuited neighboring 

dipoles. For each distribution density and for a fixed threshold 

of the reflection coefficient, the percentage of dipoles 

covering a given desired bandwidth around 892 MHz can be 

read over the plots of Fig. 14. 

For example, the percentage of dipoles satisfying a 3 

MHz bandwidth for a -10 dB threshold is equal to 97.1% for a 

44 distribution surface while the percentage reduces to 

68.7% for a 11 surface where the coupling effects are 

more important due to the higher distribution density. 

 
Fig. 14. Percentage of dipoles presenting at least a given bandwidth for a 

fixed threshold of the reflection coefficient for different distribution densities 

(a) 44, (b) 33, (c) 22 and (d) 11. 

V. CONCLUSION 

A set of RFID tag antennas has been modeled by a set of 

arbitrarily distributed dipoles where the matching properties 

of the isolated driven tag are modified by the presence of 

neighboring dipoles. As the position, orientation and density 

of the tags in the targeted RFID scenarios are random 

parameters, a purely deterministic approach cannot describe 

the coupling phenomena realistically. It has been shown that 

the impedance matrix of the set, including the coupling 

effects, can be constructed with the rather fast numerical 

electromagnetic simulator NEC. For thin dipoles, a purely 

analytical approach based on the IEMF technique has been 

used with a considerable saving of computation time. It has 

also been demonstrated that the statistical behavior of thin 

dipoles simulated by extended IEMF is similar to those of 

thick dipoles simulated by NEC.  

Our approach clearly allows quantifying the statistical 

influence of the electromagnetic coupling on the matching for 

different dipole densities. In on-going works, our approach is 

extended to statistically assess the radiation pattern 

distortions. In further developments, instead of a single driven 

element and surrounding coupled dipoles, our formulation 
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will consider a plane wave illuminating all dipoles and 

modeling the reader signal as suggested in [6]. The ultimate 

objective is to provide a quick NEC-based tool to evaluate the 

statistical performance of any design of wire antenna in use-

cases where high densities of tags are observed. In that sense, 

this work is the first attempt to handle the group behavior of 

tag antennas in the UHF RFID context. 

REFERENCES 

[1] R.S.Chen,C.C.Chen,K.C.Yeh,Y.C.ChenandC.W.Kuo,“Using
RFID technology in food produce traceability,” WSEAS Transactions 
on information science and applications, vol. 5, no. 11, pp. 1551-1560, 
2008. 

[2] A. P. Hum, “Fabric area network–a new wireless communications 
infrastructure to enable ubiquitous networking and sensing on 
intelligent clothing,” Computer Networks, vol. 35, no. 4, pp. 391-399, 
2001. 

[3] G. M. Gaukler and R.W. Seifert, “Applications of RFID in supply
chains,” Trends in supply chain design and management, pp. 29-48, 
Springer London, 2007. 

[4] L.Wang,B.A.Norman,andJ.Rajgopal,“PlacementofmultipleRFID
reader antennas to maximise portal read accuracy,” International 
Journal of Radio Frequency Identification Technology and 
Applications, vol. 1, no. 3, p. 260, 2007. 

[5] J. R. Kruest and G. Bann, “Systems and methods for stirring
electromagnetic fields and interrogating stationary RFID tags, ” U.S.
Patent No. 7,884,725, 8 Feb. 2011. 

[6] G. Marrocco, “RFID grids: Part I—Electromagnetic theory”, IEEE 
Transactions on Antennas and Propagation, vol. 59, no. 3, pp. 1019-
1026, 2011. 

[7] L. Brillouin, “Sur l’origine de la résistance de rayonnement,” Radio 
électricité, vol. 3, no. 4, pp. 147-152, 1922. 

[8] A.A.Pistolkors,“Theradiationresistanceofbeamantennas,”Proc.IRE, 
vol. 17, no. 3, pp. 562-519, 1929. 

[9] S. A. Schelkunoff, “Theory of antennas of arbitrary size and shape,”
Proc. IRE, vol. 29, no. 9, pp. 493-521, 1941. 

[10] H.King, “Mutual impedance of unequal length antennas in echelon,”
IEEE Transactions on Antennas and Propagation, vol. 5, no. 3, pp. 
306-313, 1957. 

[11] H. Baker and A. LaGrone, “Digital computation of the mutual 
impedance between thin dipoles,” IRE Transactions on Antennas and 
Propagation, vol. 10, no. 2, pp. 172-178, 1962. 

[12] C. A. Balanis, Antenna theory: analysis and design, John Wiley & 
Sons, 2015. 

[13] I. Adjali, A. Gueye, B. Poussot, S. Mostarshedi, F. Nadal and J.-M. 
Laheurte, “Statistical studyofcoupling in randomlydistributeddipole
sets,” 12th European Conference on Antennas and Propagation 
(EuCAP), London, 2018. 

[14] A.E.Gera,“Simple expressions formutual impedances,” Inst. Electr. 
Eng. Proc., vol. 135, no. 6, pp. 395–399, 1988. 

[15] H. A. Abdallah and W. Wasylkiwskyj, “A numerical technique for
calculating mutual impedance and element patterns of antenna arrays 
based on the characteristics of an isolated element,” IEEE Trans. 
Antennas Propag, vol. 53, no. 10, 2005. 

[16] G.J.Burke,A.J.Poggio,J.C.LoganandJ.W.Rockway,”Numerical
ElectromagneticCode(NEC),”IEEE Int. Symp. Electromagn. Compat., 
San Diego, pp.1-3, 1979. 

[17] A. J. Roscoe and R.A. Perrott, “Large finite array analysis using infinite 
array data,”IEEE Transactions on Antennas and Propagation, vol. 42, 
no.7, pp. 983-992, 1994. 

[18] Tagformance pro, Voyantic Ltd, Espoo, Finland [Online]. Available: 
http://voyantic.com/tagformance_pro 

[19] K. D. Palmer and M. W. Van Rooyen, “Simple broadband
measurements of balanced loads using a network analyzer,” IEEE 
Trans. On Instrument.& Meas., vol. 55, no. 1, pp. 266-272, 2006. 

[20] K.Kurokawa, “Powerwaves and the scatteringmatrix,” IEEE Trans. 
Microw. Theory Tech., vol. 13, no. 3, pp. 194–202, 1965. 

  


