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ABSTRACT

Recent advancements in the image capturing techniques
and post processing software generate High Dynamic Range
(HDR) images. Such images retain maximum information of
the scene by capturing more realistic visual contents, which
are often missed in traditional image capturing techniques. In
this regard, tone mapping operators (TMOs) play a signifi-
cant role in displaying HDR image contents on a traditional
Low Dynamic Range (LDR) display. These operators tend
to introduce artifacts in the original HDR image to change
its brightness and contrast in such a way that it can destroy
the important textures and information of the image. The as-
sessment of these TMOs is a challenging topic to select best
the best technique considering different perceptual and qual-
ity dimensions. In this paper, we propose to compare TMOs
through their impact on visual behavior in comparison with
HDR condition. This study is the first of its kind to utilize
hidden markov model (HMM) as a similarity measure to eval-
uate perceived quality of TMO. The findings suggest that the
proposed HMM-based method which emphasizes on tempo-
ral information produce better evaluation metric than the tra-
ditional approaches which are based only on visual spatial
information.

Index Terms— scanpath, eye movements, visual atten-
tion, hidden markov model, tone mapping operators

1. INTRODUCTION AND BACKGROUND

High Dynamic Range (HDR) imaging has gained significant
attention in recent years both in industry and academia. The is
mainly due to the fact that HDR images are visually more re-
alistic and appealing as they represent a larger dynamic range
of the visual content present in the real world. The HDR tech-
nologies are arguably considered a major development in dis-
play technologies since the transition from black and white to
color displays [1, 2]. However, most of the common imaging
devices are only capable to work only with standard dynamic
range (SDR) images, leading to a loss of luminance and con-
trast.

When the dynamic range is lower than the one of the con-
tent, the source image is processed with a tone mapping op-
erator (TMO) to compress the dynamic range before render-
ing. The goal of this technique is to reproduce HDR con-
tent on SDR display while preserving details, contrasts and
quality. As a consequence, several techniques have been de-
veloped in the past utilizing simple global operations such
as linear scaling and clipping [3, 4] to more local advance
operators that exploit properties of the human visual system
[5,6,7,8,9]. TMOs can be also perceptually optimized using
visual saliency and visual attention to locally adjust the con-
trast, preserve details and chromoticity [10]. The quality eval-
uation of tone mapping operators is a challenging topic due to
the consideration of multi- perceptual dimensions such as nat-
uralness, colorfulness, brightness, fidelity, and artistic intent.
Several studies have assessed these dimensions through sub-
jective experiments [11, 12, 13] and different objective met-
rics for HDR content have been proposed [14, 15, 16].

The use of eye tracking experiment is proven to be a good
methodology in measuring visual fidelity. Indeed, Narwaria
et al. [11] showed that tone mapping operators modify vi-
sual attention by comparing the similarity between saliency
maps (computed from eye data obtained during the visuali-
sation of HDR and tone-mapped images). The current study
performs the comparison of saliency maps and investigates
their impact on pre- and post tone mapping. The findings
suggest that some salient areas in HDR image are not seen
after tone-mapping (and vice versa). However, the dynamic
aspect of visual behavior, e.g. scanpaths, is not considered
with saliency-based framework. Indeed, temporal aspect in
visual attention can reveal the way a content is visually per-
ceived, semantically processed and qualitatively assessed.

Scanpath modeling is a challenging task which has been
more recently raised with new analytical tools to compare
visual behaviour of different conditions or populations. To
cater this issue, probability based approaches are developed
by assuming that eye movement parameters are random vari-
ables generated by underlying stochastic processes. The set
of gaze positions is modeled as bivariate gaussian distribution
and hidden markov models (HMMs) are utilized to introduce
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the temporal component of gaze behavior [17, 18, 19]. This
in turn will determine the percentage of transitions from one
ROI to another ROI. These techniques have been used for the
study of scanpath in face recognition [17], the classification
of scanpath according to different visual task [19] or different
population with visual field losses [18].

The main contribution of the paper is a new HMM based
similarly measure in order to evaluate the quality of HDR and
TMO generated scanpaths. This paper is structured as fol-
lows. First, we explain HMMs in the context of gaze behavior
modeling. Then, we illustrate the application of this technique
for TMOs bencharmarking. Finally, we conclude our method
in the last section.

2. HMM TOOLS FOR THE MEASURE OF VISUAL
SCANPATH SIMILARITY

2.1. HMM used as eye movement modeling

The proposed work utilizes HMMs as a statistical approach
to produce the sequence of observation through the set of
stochastic process. These observed sequences are then pre-
dicted by estimating the transition among different states.
it is a data-driven technique and integrates influences stem-
ming from bottom-up mechanisms,top-down mechanisms,
and viewing biases into a single model [19]. In this work,
the eye position is observed using estimated ROI of the im-
age which is set as the hidden state of HMM. Following the
technique used in Chuk et al. [17], the transition matrix rep-
resents the saccadic movements of the participant. The emis-
sion densities (the distribution of fixation points in each ROI)
are modeled as two-dimensional Gaussian distributions. The
initial state of the model, i.e., the probability distribution of
the first fixation, is modeled with the prior values. The pa-
rameter K which represents the number of ROI in context of
scanpath must be selected according to the gaze data instead
of setting the parameter with prior information.

The variational approach to Bayesian inference allows si-
multaneous estimation of complexity of model and its param-
eters [20], which automates the process of finding number of
states (K) in HMM model [17]. An HMM is trained on eye
movement data which enables to compare and visualize the
gaze behavior of different groups of observers, in different
experimental conditions. The individual HMMs of the simi-
lar gaze pattern behaviour is clustered by VHEM [21, 22] into
joint HMM. For each cluster, the VHEM algorithm produced
a representative HMM, which summarizes the common ROIs
and transitions in the cluster.

2.2. Measure of similarity

In the proposed work, similarity is evaluated using sequence
of steps. The steps involved in this process are presented in
Fig. 1. Initially, each of the observers eye movement is mod-
eled using HMM for one condition (C1). The HMM of each
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Fig. 1: Scanpath similarity evaluation framework.

observer is then clustered into single Joint HMM by using
VHEM. The similarity between the scanpath (i.e. sequence
of fixations) of second condition (C2) and the joint clus-
tered is determined by computing the likelihood using Viterbi
decorder. The mean likelihood of all observers is considered
as a similarity score between the two conditions.

Table 1: Characteristics of subjective experiment

Features HDR test TMO test
# of images 11 88
Image resolution 760x900 to 1620x1080
Image duration 10 seconds
Distance 3 times of display height
# of Observers 37 48
Display model Sim2 HDR47E | TvLogic LVM401
Display resolution 1920x1080 pixels
Eyetracker SMI Hi-Speed

3. APPLICATION OF BENCHMARKING TMOS

3.1. Dataset

The publicly available dataset “Eye-Tracking on High dY-
namic range iMAges” (ETHyma) [11] is analyzed in this
study. The dataset contains 11 HDR images, captured in
different environmental conditions, i.e. indoor and outdoor
scenes with varying illumination conditions. A total of 88
TMOs images were computed using 8 different TMO meth-
ods. These methods are referred in Table 1, column 4-11,
where each column presents the output of these TMO meth-
ods using proposed and state-of-the-art techniques. The HDR
stimuli were displayed on an HDR display (Sim2 HDR47E S
4K) and the tone mapped contents are presented on on a stan-



Table 2: Similarity scores for the studied dataset. (Red cells represent similarity scores higher than the baseline, discussed
Section 3.3. Results of green cells are discussed in Section 3.4 to highlight the interest of the framework.)

TMOs algorithms
Images Metrics L]iglfeslei::(r)lg d ash[7] | chi[5] | dra[3] | dur[6] | ica[8] | linear | rei[9] | tum [4]
Apartment KLD | - 0.1624 | 0.3320 | 0.2391 | 0.3597 | 0.1309 | 0.1412 | 0.1712 | 0.2236
HMM 1 -13.34 -13.53 | -13.60 | -13.61 | -13.63 | -13.51 | -13.41 | -13.45 | -13.47
Corr 1 - 0.8684 | 0.7798 | 0.8010 | 0.7440 | 0.8769 | 0.8761 | 0.8843 | 0.8531
NSS 1 - 1.0238 | 0.8137 | 1.1442 | 0.9361 | 1.0092 | 1.1543 | 1.2349 | 1.2286
Atrium Night KLD | - 0.0917 | 0.1528 | 0.1150 | 0.0796 | 0.1541 | 0.1074 | 0.1543 | 0.1261
HMM 1 -13.09 _] -13.23 | -13.10 | -13.15 | -13.19 | -13.12 | -13.11 | -13.21
Corr 1 - 0.8315 | 0.7451 | 0.8321 | 0.8758 | 0.7174 | 0.8616 | 0.7443 | 0.7281
NSS 1 - 0.8512 | 0.7626 | 0.9471 | 0.9414 | 0.7972 | 0.9478 | 0.6961 | 0.6130
Oxford Church KLD | - 0.2331 | 0.3275 | 0.1880 | 0.2333 | 0.1887 | 0.1897 | 0.1086 | 0.1808
HMM 1 -12.74 -12.94 | -13.03 | -13.06 | -13.03 | -13.06 | -12.94
Corr 1 - 0.9273 | 0.8663 | 0.9302 | 0.9100 | 0.8833 | 0.9027 | 0.9134 | 0.8882
NSS 1 - 1.2413 | 1.2006 | 1.2647 | 1.0502 | 1.3077 | 1.3967 | 1.6129 | 1.4484
Big_for Map KLD | - 0.1996 | 0.1094 | 0.1880 | 0.1340 | 0.1086 | 0.1350 | 0.1092 | 0.2327
HMM 1 -13.02 -13.10 | -13.17 | -13.36 | -13.26 | -13.29 | -13.39 | -13.22 | -13.25
Corr 1 - 0.8018 | 0.8709 | 0.7494 | 0.8376 | 0.8793 | 0.8496 | 0.8764 | 0.7378
NSS 1t - 1.1877 | 0.9602 | 0.6817 | 0.8068 | 0.9608 | 0.7904 | 1.1687 | 0.8693
Dani_Belgium KLD | - 0.1775 | 0.1278 | 0.2162 | 0.1589 | 0.2152 | 0.2013 | 0.2025 | 0.2288
HMM 1 | -13.03 | -13.12 |JBEEl -1323 | -13.15 [ -13.03 |BE8l -13.17 | -13.11
Corr 1 - 0.7239 | 0.8279 | 0.6537 | 0.8185 | 0.7045 | 0.8241 | 0.7544 | 0.7393
NSS 1 - 0.8347 | 1.1032 | 0.7022 | 1.0347 | 0.8727 | 1.2562 | 0.8626 | 0.7540
lampickaHDR KLD | - 0.2234 | 0.1485 | 0.1645 | 0.2338 | 0.5603 | 0.1619 | 0.0821 | 0.2884
HMM ¢ -12.68 -13.00 | -13.01 | -13.35 | -13.27 | -13.08 | -13.24 | -12.84 | -13.29
Corr 1 - 0.9154 | 0.8306 | 0.8322 | 0.6259 | 0.8719 | 0.7600 | 0.9367 | 0.5663
NSS 1 - 1.2041 | 0.9626 | 0.9040 | 0.8113 | 1.0356 | 0.8568 | 1.2953 | 0.7550
memorial 0876 KLD | - 0.1125 | 0.1092 | 0.0729 | 0.0801 | 0.0565 | 0.0773 | 0.0551 | 0.1037
HMM ¢ -12.31 -12.35 | -12.63 | -12.54 | -12.40 | -12.53 | -12.35 | -12.49 | -12.33
Corr 1 - 0.9037 | 0.7787 | 0.9156 | 0.8978 | 0.9362 | 0.9147 | 0.9335 | 0.8886
NSS 1 - 1.2283 | 0.7700 | 1.0032 | 0.9547 | 0.8890 | 1.0938 | 1.0564 | 1.2794
moto KLD | - 0.7040 | 0.1932 | 0.1353 | 0.1967 | 0.2049 | 0.2216 | 0.3256 | 0.1876
HMM 1 -13.39 -13.50 | -13.41 | -13.56 | -13.48 | -13.32 | -13.39 | -13.68 | -13.55
Corr 1 - 0.8894 | 0.9066 | 0.9048 | 0.8633 | 0.9086 | 0.9014 | 0.8253 | 0.8551
NSS 1 - 1.4345 | 1.5737 | 1.3882 | 1.4694 | 1.5536 | 1.8779 | 1.1869 | 1.3414
KLD | 0.3322 | 0.4180 | 0.1626 | 0.1235 | 0.1458 | 0.1791 | 0.1679 | 0.1265

forestpath o T 1347 | -1384 | -13.83 | -13.75 | -13.67 | -13.68 | -13.83 | -13.79 | -13.61

Corr 1 - 0.8224 | 0.8475 | 0.9295 | 0.9447 | 0.9461 | 0.8724 | 0.9408 | 0.9475
NSS 1 - 1.3002 | 1.1029 | 1.5537 | 1.3769 | 1.5853 | 1.2878 | 1.6714 | 1.4998
KLD | 0.1488 | 0.0989 | 0.1080 | 0.0869 | 0.0978 | 0.0765 | 0.1187 | 0.0716

rend02_oC95

HMM 1 -12.90 -12.97 | =1291 | -13.04 | -1291 | -12.96 | -12.94 | -13.06 | -12.96

Corr 1 - 0.8431 | 0.8617 | 0.8927 | 0.9404 | 0.9078 | 0.9212 | 0.8792 | 0.9263

NSS 1 - 1.0016 | 1.0149 | 1.1647 | 1.4003 | 1.1596 | 1.2397 | 1.0846 | 1.3691

treeUnil KLD | - 0.0835 | 0.0963 | 0.1867 | 0.1437 | 0.0637 | 0.1939 | 0.1188 | 0.1965
HMM 1 -13.19 -13.38 | -13.29 | -1343 | -13.36 | -13.25 | -13.31 | -13.31

Corr 1 - 0.9540 | 0.9297 | 0.8172 | 0.8268 | 0.9540 | 0.8527 | 0.9092 | 0.8737

NSS 1 - 1.0772 | 1.1153 | 0.8824 | 0.9030 | 1.2082 | 1.1491 | 1.2066 | 1.3509




dard LCD screen. Each image was viewed by the participant
during 10 seconds. The eye movements were recorded us-
ing SMI Hi-Speed tracker with a frequency of S00Hz. Thirty
seven observers participated in the HDR experiment and 48
did the TMO experiment. The characteristics of this subjec-
tive experiment are presented in Table.1.

3.2. Similarity metrics

In this section, we present the obtained scores of similarity for
our framework compared with state-of-the-art saliency-based
metrics: Kullback-Liebler divergence (KLD), 2D correlations
(Corr) and Normalized scanpath saliency (NSS) [23]. These
metrics are calculated after the computation of fixation maps.
These maps are computed by convolving a Gaussian kernel
with standard deviation of one degree of visual angle across
the observer’s fixation locations. The proposed framework is
applied with C1 as the HDR condition compared with the dif-
ferent tone mapping techniques. The HMM model is applied
on eye fixations extracted from raw gaze data for each ob-
server during HDR experiment [24]. In addition, each HMM
is then clustered into single joint HMM by using VHEM. The
likelihood is calculated using Viterbi decoder by passing joint
HMM parameters and fixation points recorded during TMOs
experiment. The similarity score between HDR and TMOs
is estimated by taking mean of likelihood of all observers for
each TMOs. In this study, the maximum value of states in
HMM, K, is set to 7. The scores of the proposed framework
with the ones of all the other similarity / dissimilarity metrics
are presented Table 2.

Table 3: Pearson correlation coefficients (PCC) between sim-
ilarity metrics. (* indicates a p-value < 0.05 and ** indicates
a p-value < 0.001).

PCC KLD HMM Corr NSS
KLD 1.0000 -0.3957** | -0.2755* 0.0581
HMM | -0.3975** 1.0000 0.1300 -0.1472
Corr | -0.2755* 0.1300 1.0000 | 0.6811**
NSS 0.0581 -0.1472 | 0.6811** 1.0000
°° < ash|[ o AP
07 = chi + AN
e dra « OC
badi - dur BM
05| « ica x DB
—, lin o FP
204 * rei o LH
o o - tum|| «+ ME
0.3 o = MO
0.2 oo © 2 ‘6, .Orz x +x S *"0 * : -T-LEJ

0.1 ’ =e < q" e Tf o * % =

o
14 -1338 136 134 132 13
Likelihood {

Fig. 2: Relationship between scores of KLD and HMM met-
rics

In addition, a baseline likelihood score on individual HDR
scanpaths is also calculated to validate this method. The base-
line likelihood is estimated by providing the fixation points of
each observer for HDR condition and joint HMM parameter
to the Viterbi decoder. The final score is taking a mean of all
likelihood for all observers. This baseline can be interpreted
as the similarity score between one observer and a model of
all scanpaths for the same condition. It is thus expected that
the likelihood score for the TM condition would be lower than
the baseline.

3.3. Validation of the framework

The similarity metrics are compared between each other
through the computation of Pearson’s correlation coefficients
(PCC) presented Table 3. The proposed framework shows
a strong significant negative correlations with KLLD metric.
The relationship between KLD and HMM likelihood scores is
also presented Fig. 2. These results ensure the validity of the
proposed framework which is correlated with existing metrics
used to measure visual fidelity.

Concerning the baseline, the obtained scores seem to val-
idate the previous assumption except for a few values (high-
lighted in red in Table 2). These specific cases could be ex-
plained by a low inter-observer congruency for HDR baseline
condition and further analysis should be done to better under-
stand these outcomes.

3.4. Benchmarking of TMOs through dynamic visual fi-
delity

The similarity scores detailed in Table 2 show a strong cor-
relation between saliency-based metrics and the proposed
HMM-based one, except for some specific tone-mapped con-
tents. The moto and rend02_oC95 are selected as test images
to investigate these results through the comparison of the per-
formance between HMM and KLD. The performed analysis
of KLD suggests that Drago and Tumblin methods offer the
best performance among all for moto and rend02_0C95 im-
ages respectively. Whereas with the HMM-based framework,
iCAMO6 method offers best performance for moto and Chiu
method for rend02_oC95 image (see Table 2-highlighted
green cells). Saliency maps, HDR joint HMM states and tran-
sition matrix as well as scanpaths for TMO condition are de-
picted on Fig 3 and 4. We can see that most performant TMOs
with our framework seem to lead to more similar saliency
maps than the best ones with KLD metric. In addition, the
scanpaths for iCAMO6 (resp. Chiu) TMO fit better the joint
HMM on HDR condition than Drago (resp. Tumblin) TMO.
From these observations, we can see that HMM-based frame-
work outperfoms KLD metric and better reveals visual atten-
tion similarity for both spatial (i.e salient) and temporal (i.e.
scanpath) information.

One limitation of this proposed framework is that HMM
based on Chuck methodology perform well with image con-



(a) Drago TMO output  (b) iCAM06 TMO output

(c) HDR saliency map

(d) Drago saliency map (e) iCAMOG6 saliency map
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Fig. 3: Tone-mapped images, saliency maps, scanpaths and HDR joint HMM model for moto content.

tent with clear regions of interest and, thus, low visual atten-
tion dispersion. Therefore, future work should be needed to
deeper assess the impact of content, inter-observer congru-
ency and HMM meta-parameters as number of states (i.e re-
gions of interest) on the similarity metric performance. Dif-
ferent HMM techniques can be also further tested and com-
pared for similarity evaluation through this framework.

4. CONCLUSION

In this paper, an HMM based framework is proposed to mea-
sure the similarity of visual behaviour between two condi-
tions of experiment. The framework is then applied and vali-
dated for the comparison of visual attention in HDR and tone-
mapped images. The proposed framework provides promis-
ing results due to the capability of HMM to analyse eye data
considering both the spatial and sequential aspects. On the
contrary, other saliency models do not reflect the dynamic
(saccadic) nature of visual scanpaths.

5. ACKNOWLEDGMENT

The work in this paper was funded from the European Union’s
Horizon 2020 research and innovation program under the
Marie Sklodowska-Curie grant agreement No 765911, Euro-
pean Training Network on Real Vision project.

6. REFERENCES

[1] Ahmet Oguz Akyiiz, Roland Fleming, Bernhard E
Riecke, Erik Reinhard, and Heinrich H Biilthoff, “Do
hdr displays support 1dr content? a psychophysical eval-
uation,” ACM Transactions on Graphics (TOG), vol. 26,
no. 3, pp. 38—es, 2007.

[2] F Banterle, A Artusi, K Debattista, and A Chalmers,
“Advanced high dynamic range imaging: Theory and
practice. isbn: 978-156881-719-4, ak peters,” .

[3] Frédéric Drago, Karol Myszkowski, Thomas Annen,
and Norishige Chiba, “Adaptive logarithmic mapping
for displaying high contrast scenes,” in Computer
graphics forum. Wiley Online Library, 2003, vol. 22, pp.
419-426.

[4] Jack Tumblin, Jessica K Hodgins, and Brian K Guenter,
“Two methods for display of high contrast images,”
ACM Transactions on Graphics (TOG), vol. 18, no. 1,
pp- 56-94, 1999.

[5] Ken Chiu, Michael Herf, Peter Shirley, S Swamy,
Changyaw Wang, Kurt Zimmerman, et al., “Spatially
nonuniform scaling functions for high contrast images,”
in Graphics Interface. Canadian Information Processing
Society, 1993, pp. 245-245.

[6] Frédo Durand and Julie Dorsey, “Fast bilateral filter-
ing for the display of high-dynamic-range images,” in
Proceedings of the 29th annual conference on Computer
graphics and interactive techniques, 2002, pp. 257-266.

[71 Michael Ashikhmin, “A tone mapping algorithm for
high contrast images,” in Proceedings of the 13th Eu-
rographics workshop on Rendering. Eurographics As-
sociation, 2002, pp. 145-156.

[8] Jiangtao Kuang, Garrett M Johnson, and Mark D
Fairchild, “icam06: A refined image appearance model
for hdr image rendering,” Journal of Visual Commu-
nication and Image Representation, vol. 18, no. 5, pp.
406414, 2007.

[9] Erik Reinhard, Michael Stark, Peter Shirley, and James
Ferwerda, ‘“Photographic tone reproduction for digital
images,” in Proceedings of the 29th annual conference
on Computer graphics and interactive techniques, 2002,

pp- 267-276.



(a) Tumblin TMO output

(b) Chiu TMO output

(c) HDR saliency map

(d) Tumblin saliency map

(e) Chiu saliency map

H 28 12 0 09 10 26 .1
B 03

(f) HDR joint HMM clusters with 2 scanpaths on Tumblin (g) HDR joint HMM clusters with 2 scanpaths on Chiu (h) HMM transitions

T™O

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

T™O

matrix

Fig. 4: Tone-mapped images, saliency maps, scanpaths and HDR joint HMM model for rend02_oC95 content.

Wen-Chieh Lin and Zhi-Cheng Yan, “Attention-based
high dynamic range imaging,” The Visual Computer,
vol. 27, no. 6-8, pp. 717, 2011.

Manish Narwaria, Matthieu Perreira Da Silva, Patrick
Le Callet, and Romuald Pépion, “Effect of tone map-
ping operators on visual attention deployment,” in Ap-
plications of Digital Image Processing XXXV. Interna-
tional Society for Optics and Photonics, 2012, vol. 8499,
p- 84990G.

Martin Cadﬂ(, Michael Wimmer, Laszlo Neumann, and
Alessandro Artusi, “Evaluation of hdr tone mapping
methods using essential perceptual attributes,” Comput-
ers & Graphics, vol. 32, no. 3, pp. 330-349, 2008.

Josselin Petit and Rafal K Mantiuk, “Assessment
of video tone-mapping: Are cameras’ s-shaped tone-
curves good enough?,” Journal of Visual Communica-
tion and Image Representation, vol. 24, no. 7, pp. 1020-
1030, 2013.

Lukas Krasula, Karel Fliegel, Patrick Le Callet, and
Milos Klima, “Objective evaluation of naturalness, con-
trast, and colorfulness of tone-mapped images,” in Ap-
plications of Digital Image Processing XXXVII. Interna-
tional Society for Optics and Photonics, 2014, vol. 9217,
p.- 92172D.

Hojatollah Yeganeh and Zhou Wang, “Objective quality
assessment of tone-mapped images,” IEEE Transactions
on Image Processing, vol. 22, no. 2, pp. 657-667, 2012.

Miguel Granados, Tunc Ozan Aydin, J Rafael
Tena, Jean-Francois Lalonde, and Christian Theobalt,
“Contrast-use metrics for tone mapping images,” in
2015 IEEE International Conference on Computational
Photography (ICCP). IEEE, 2015, pp. 1-8.

Tim Chuk, Antoni B Chan, and Janet H Hsiao, “Under-
standing eye movements in face recognition using hid-

(18]

[19]

(20]

(21]

(22]

(23]

[24]

den markov models,” Journal of vision, vol. 14, no. 11,
pp- 8-8, 2014.

Erwan Joél David, Pierre Lebranchu, Matthieu Perreira
Da Silva, and Patrick Le Callet, “Predicting artificial vi-
sual field losses: a gaze-based inference study,” Journal
of Vision, vol. 19, no. 14, pp. 22-22, 2019.

Antoine Coutrot, Janet H Hsiao, and Antoni B Chan,
“Scanpath modeling and classification with hidden
markov models,” Behavior research methods, vol. 50,
no. 1, pp. 362-379, 2018.

Clare A McGrory and DM Titterington, ‘““Variational
bayesian analysis for hidden markov models,” Aus-
tralian & New Zealand Journal of Statistics, vol. 51, no.
2, pp. 227-244, 2009.

Emanuele Coviello, Gert R Lanckriet, and Antoni B
Chan, “The variational hierarchical em algorithm for
clustering hidden markov models,” in Advances in neu-
ral information processing systems, 2012, pp. 404—412.
Emanuele Coviello, Antoni B Chan, and Gert RG
Lanckriet, “Clustering hidden markov models with vari-
ational hem,” The Journal of Machine Learning Re-
search, vol. 15, no. 1, pp. 697-747, 2014.

Mohsen Emami and Lawrence L Hoberock, “Selec-
tion of a best metric and evaluation of bottom-up visual
saliency models,” Image and Vision Computing, vol. 31,
no. 10, pp. 796-808, 2013.

Asim H Dar, Adina S Wagner, and Michael Hanke, “Re-
modnav: Robust eye movement detection for natural
viewing,” BioRxiv, p. 619254, 2020.



