
HAL Id: hal-02612825
https://hal.science/hal-02612825v2

Submitted on 13 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A model of covid-19 transmission to understand the
effectiveness of the containment measures: application

to data from France
Pascal Zongo, Malicki Zorom, Gisèle Mophou, René Dorville, Catherine

Beaumont

To cite this version:
Pascal Zongo, Malicki Zorom, Gisèle Mophou, René Dorville, Catherine Beaumont. A model of
covid-19 transmission to understand the effectiveness of the containment measures: application to
data from France. Epidemiology and Infection, 2020, 148, pp.e221. �10.1017/S0950268820002162�.
�hal-02612825v2�

https://hal.science/hal-02612825v2
https://hal.archives-ouvertes.fr


Preprint accepted to Epidemiology and infection

A model of covid-19 transmission to understand the effectiveness of the containment mea-
sures: application to data from France

P. ZONGOa1, M. ZOROMb, G. MOPHOUc, R. DORVILLEa, and C. BEAUMONTd,

a Laboratoire L3MA, DSI et IUT , Université des Antilles, Schoelcher, Martinique
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dINRAE,Université de Tours, UMR Biologie des oiseaux et aviculture, F-37380 Nouzilly, France

SUMMARY

The main objective of this paper is to address the following question : are the containment measures imposed by most of
the world governments effective and sufficient to stop the epidemic of COVID-19 beyond the lock-down period? In this
paper we propose a mathematical model which allows to investigate and analyze this problem. We show by means of the
reproductive number, R0 that the containment measures appear to have slowed the growth of the outbreak. Nevertheless,
these measures remain only effective as long as a very large fraction of population, p, greater than the critical value
1−1/R0 remains confined. Using French current data, we give some simulation experiments with five scenarios including:
(i) the validation of model with p estimated to 93%, (ii) the study of the effectiveness of containment measures, (iii) the
study of the effectiveness of the large scale testing, (iv) the study of the social distancing and wearing masks measures
as well as (v) the study taking into account the combination of the large scale test of detection of infected individuals
and the social distancing with linear progressive easing of restrictions. The latter scenario was shown to be effective to
overcome the outbreak if the transmission rate is decreased to 75% and the number of tests of detection is multiplied by
three. We also noticed that if the measures studied in our five scenarios are taken separately then the second wave might
occur at least as far as the parameter values remain unchanged.

Key words: COVID-19, Basic reproduction ratio, containment measures, new wave

1 INTRODUCTION

In December 2019, a disease that appeared in central China precisely in the city of Wuhan (Hubei Province) started to take
its toll. On January 7, 2020, Chinese authorities admitted that the country was facing an epidemic caused by a new virus
from the coronavirus family. First named ”2019-nCOV”, this virus and disease was named COVID-19 or SARS-COV-2
by the World Health Organization (WHO) [36]. COVID-19 disease has passed in a few weeks from a localized epidemic
to a pandemic. This disease is now a public health emergency of international level and is currently affecting more than
200 countries with more than 350,000 deaths and nearly 6 millions people infected according to WHO. It is contagious
with human-to-human transmission via respiratory droplets or by touching contaminated surfaces and then touching one’s
face. The most common symptoms are fever, cough, and difficulty breathing, but it can cause acute respiratory distress,
which is often fatal.

The spread of the disease has enormous consequences for all sectors of society, endangering economics of almost all
countries in the world. In the current state of knowledge, there is no preventive vaccine, biomedical means of prevention or
specific therapeutic means. International, national and local control strategies are essentially based on barrier measures,
social distancing, wearing masks, confinement, screening and diagnosis according to various methods and symptomatic
treatment. Today in different countries, research in all its dimensions has become an absolute priority. In particular any
research which can help to understand, prevent and treat Covid 19 is encouraged at the highest political level of many
countries. Following this urgency, models have already been proposed in order to study the dynamics and to control the
pandemic [2, 12, 22, 28, 24, 25, 29, 5, 35]. In this paper, we propose a new model which could help to understand the
effectiveness of the containment measures adopted across countries. The model will be used to predict different scenarios
of the possible resurgences of the new waves of epidemic in France.

1Corresponding author: Pascal.Zongo@gmail.com (Pascal Zongo)

1



The paper is organized as follows. The next section presents the model. The basic reproduction ratio is established in
Section 3. Section 4 is devoted to the formulation of the function which regulates the containment measures. In section 5,
we identified the values of model parameters. The Section 6 presents the Simulation experiments for which five scenarios
will be implemented: validation of model by comparison with the actual available data in France, testing the effectiveness
of containment measures and Longer term forecasting of epidemic, study of the effectiveness of the large scale testing,
study of social distancing measures and the combined study of the large scale testing and Social distancing and/or wearing
masks measures. Concluding remarks will follow in Sections 7.
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Figure 1: A schematic of the model for COVID-19 transmission. In this Figure, Su represents the number of
unconfined susceptible, Sc denotes the number of confined susceptible, E depicts the number of exposed, Ir
denotes the number of reported Infectious, Iu represents the number of unreported infectious or silent carriers,
R denotes the number of recovered, Q denotes the number of quarantined. The arrow show the people moving
between the compartments.

2 MODEL FORMULATION

To model the COVID-19 transmission, we divide the human population into seven classes. Susceptible unconfined Su(t),
susceptible confined Sc(t), exposed E(t), reported infectious Ir(t), unreported infectious or silent carriers, Iu(t), quaran-
tined Q(t), recovered R(t) at any time t, see in Figure 1.

In this paper, the unreported infectious individuals depict mainly the individuals with no clinical symptoms (asymp-
tomatic or silent carriers) during their infectious period. They also include some infectious individuals with mild symptoms
who thus often go unrecognized.

In what follows, we assume that these individuals don’t die of the disease, while the reported infectious can die of
disease at a rate (1−q)ηr where 1−q is the fraction of reported individuals that die, q is the fraction of reported individuals
that recover and 1/ηr is the average length of infectious period of reported individuals (see Figure 1).

An individual moves to the susceptible unconfined class, Su, either from the confined class at a rate 1−m(t) or from
the quarantined class at a constant rate θ(1 − λ). The fundamental parameter that we have introduced in our model
to study the containment measures is the parameter m(t), it can be interpreted as the fraction of confined susceptible
individuals at any time t. When the susceptible individuals are exposed to the virus, then the exposition provides either
the reported class, Ir or the unreported class, Iu. Without making any distinction about the origin of the infection, we
assume that a fraction σ of Susceptible unconfined individuals which has been in contact with an infectious individual is
quarantined with contact tracing while the other fraction (1−σ) who was not detected by the contact tracing move to the
exposed class E once effectively infected or stay in compartment Su otherwise. Then, the quantities (1−σ)(βrIr +βuIu)S
and σ(βrIr +βuIu)S represent the inflow of new individuals into the exposed class E and quarantined class Q respectively.
The parameters βr and βu are the transmission rate of reported and unreported cases respectively. We assume that
reported individuals will participate into the infections with a lower rate than those unreported because they are generally
isolated at the hospital or at home. However, they can transmit the infection to caregivers or their entourage. Moreover,
they may have first been asymptomatic carriers contributing to the transmission of the virus. To simplify the notation,
we set βu = β and βr = %βu = %β where % ∈ [0, 1]. The parameter % represents the infectivity of the reported cases and
for % = 1, the reported and unreported have the same level of infectivity. Among the quarantined individuals, a fraction λ
of individuals are effectively infected and moves in the reported infectious class, Ir, after an average duration of isolation,
1/θ, and a fraction 1−λ returns to the susceptible class without being reported infectious. We assume that only a fraction

2



f of the individuals of exposed class becomes reported infectious and enters to the class Ir at a rate µ where 1/µ represents
the average length of the exposed period while the other fraction (1 − f) moves to the infectious unreported infectious
class Iu at a rate µ.

With the above considerations, the model describing the spread of COVID-19 takes the form:

dSc

dt
= m(t)Su − (1−m(t))Sc

dSu

dt
= (1−m(t))Sc −m(t)Su − β(%Ir + Iu)Su + θ(1− λ)Q

dE

dt
= (1− σ)β(%Ir + Iu)Su − µE

dIr
dt

= µfE + θλQ− ηrIr
dIu
dt

= µ(1− f)E − ηuIu
dR

dt
= ηrqIr + ηuIu

dQ

dt
= σβ(%Ir + Iu)Su − θQ.

(1)

This model (1) is supplemented together with initial data Sc(τ0), Su(τ0), E(τ0), Ir(τ0), Iu(τ0), R(τ0) and Q(τ0).
Let DIr(t), DIu(t), CIr(t) and CIu(t) denotes the daily number of reported cases, unreported one, the cumulative

number of reported cases and unreported cases respectively at any time t. These quantities are obtained by solving the
following equations 

dDIr(t)

dt
= µfE(t) + θλQ(t)−DIr(t)

dDIu(t)

dt
= µ(1− f)E(t)−DIu(t)

dCIr(t)

dt
= µfE(t) + λθQ(t)

dCIu(t)

dt
= µ(1− f)E(t).

(2)

with initial conditions DIr(τ0), DIu(τ0), CIr(τ0) and CIu(τ0)

3 BASIC REPRODUCTION NUMBER

The fundamental key concept in epidemiology is the basic reproduction number. Commonly denoted by R0, it is the
expected number of secondary cases produced by a typical infective individual introduced into a completely susceptible
population, in the absence of any control measure [10, 34]. Mathematically, R0 is the spectral radius of the next generation
matrix. The next generation matrix can be obtained by construction (cf. for instance [1, 11, 14]). Using the method
developed in [34], we obtain explicit formula for R0 as follows:

R0 = [(1− σ)f + σλ]
%βSu(0)

ηr
+ (1− σ)(1− f)

βSu(0)

ηu
(3)

where βu = β and βr = %β. In Appendix we give some details about the derivation of R0.
The quantity Rr := [(1 − σ)f + σλ]%βSu(0)/ηr represents the average number of secondary infections produced by

one reported infective individual during its infectious period, 1/ηr; Ru := (1− σ)(1− f)βSu(0)/ηu represents the average
number of secondary infections produced by one unreported infective individual during its infectious period, 1/ηu;

To take into account the containment measures, the large scale testing, the social distancing and wearing masks
measures, some constant parameters such as f, σ, β and Su(0) will be replaced in equation (3) with the aforementioned
time-dependent parameters. In this case, we can define the effective daily reproduction number, R0(t) which measures
the number of new infections produced by a single infected individual per day. This quantity are obtained by solving the
following equation

R0(t)

dt
= [(1− σ(t))f(t) + σ(t)λ]

%β(t)Su(t)

ηr
+ (1− σ(t))(1− f(t))

β(t)Su(t)

ηu
−R0(t) (4)

with initial condition R0(0) = R0 defined in Equation (3).
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4 CONSTRUCTION OF THE CONTAINMENT RATE

To analyze the effectiveness of containment measures, we assume that a fraction m(t) of susceptible individuals in the
population is confined at any time t. Furthermore, we introduce a parameter p which indicates the maximum percentage
of the population that the government confines. This fraction should be greater than the quantity 1− 1/R0 to be sure of
its effectiveness [40, 11]. This parameter varies from country to country and can be set in advance for a given country. Let
τ0 denotes the starting date of epidemic, τ1 represents the date at which a government decides to apply the containment
measures, τ2 denotes the date at which a fraction p of the population is confined, τ3 Stands for the date at which the
government decides to exit progressively the containment measures because either the restrictions take effect or there
are budget or social limitations and τf denotes the date for the end of the containment measures. Now, we divide the
containment rate m(t) into four phases:

Phase 0: Period without containment measures (from date τ0 to τ1), then m(t) = 0.

Phase 1: Period when containment is taking place until the government reaches its maximum containment effort (from
date τ1 to τ2). In this phase we assume that the function m increases exponentially and reach the value p at date
τ2. It follows that m takes the form m(t) = 1− exp(−a(t− τ1)) where a = − ln(1− p)/(τ2 − τ1).

Phase 2: Period where the maximum effort is maintained (from date τ3 à τ4) and m(t) = p.

Phase 3 Period at which the government decides to relax the containment measures (from date τ3 to τf ). This drop
is linearly depending on the time so that the value of m at date τf equals to 0. Then m is described as follows
m(t) = p+ b(t− τ3), where b = −p/(τf − τ3).

5 MODEL PARAMETERS

Before to go further, let us point out that in our paper, the values of the parameters f, σ, µ, θ, τ0, τ3, τf , as well as
the initial values Su(τ0), Sc(τ0) and Ir(τ0) were chosen from expert opinions. The values of the parameters τ2, λ, %,
p, β, σ, ηr, ηu as well as the initial values CIu(τ0), Q(τ0) E(τ0) were unknown. However, it is possible to identify
them from specific time data. The value of the parameter q can be easily computed from current data. By setting
x = (τ2, λ, %, p, β, σ, ηr, ηu, Iu(τ0), Q(τ0), E(τ0), τ2), we estimated an optimal value of x that fit with the data from France
by minimizing the following error function

χ2(x) =

∑n
l=1(obs(tl)− sim(tl, x))2

n
(5)

where n is the number of observed data, obs(tl) and sim(tl, x) are the observed and calculated data at time tl respectively.

5.1 Chosen Values: f, σ, µ, θ, τ0, τ3, τf , Su(τ0), Sc(τ0) and Ir(τ0)

Initial conditions: We started the simulations at the moment where in France, the number of reported cases were identified
with 12 individuals, ie precisely on the date τ0 = 25 February. Then Ir(τ0) = 12. The population of France is around
66 999 000 inhabitants [4], thus, we set Sc(τ0) = 66 999 000. At that date, there were no confined individuals, thus
Sc(τ0) = 0.
Value of parameter f : Recall that, (1−f) stands for the fraction of exposed individuals that becomes unreported infectious
and corresponds to the proportion of asymptomatic or silent carriers or mild infectious. (1−f) is ranging from 17.9%-86%
[36, 8, 9, 26, 16] and some reviews therein [41]. The fractions of unreported individuals in these previous studies is derived
from the number of tests performed. Therefore, the current fraction may be seriously underestimated. During the onset
of covid-19 in France, there was very little screening tests. That’s why, we estimated that 1 − f = 0.8 (ie. f = 0.2).
Furthermore, we make it vary in the scenario 3 (effectiveness of the large scale testing), as soon as the number of tests
increases.
Value of parameter σ: The value of parameter σ was calibrated to 0.2 so that σ = f. In scenario 3, we assume that f
increases in the same order as σ when the time evolves (see Figure 2(c)), because when the number of tests increases,
the fraction of reported cases increases and thus the fraction σ of Susceptible unconfined individuals that is quarantined
increases with contact tracing.
Value of parameter τ1: The starting date of the containment was fixed on March 17, then τ1 = 17 March.
Value of parameter τ3: According to the announcement of French government of April 13, a gradual deconfinement started
on May 11. So for model validation, we fixed τ3 = 11 May.
Value of parameter τf : We fixed the end date of containment measures on September 1.
Value of parameter µ: The mean incubation period 1/µ was fixed to 5 days see [36, 19, 3].
Value of parameter θ: We considered 14 days to isolate the quarantined individuals, therefore, 1/θ = 14 days.
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5.2 Estimated values: τ2, λ, %, p, β, σ, ηr, ηu, Iu(τ0), Q(τ0), E(τ0), τ2 and q.

By calibrating the model with the data corresponding to the cumulated reported cases for France, we identified some
values of model parameters giving a good fit of the observed data obtained in [7]. The parameter values and initial
conditions estimated are listed in Table 1.
Value of parameters τ2 and p: we estimate that the government has successfully confined 93% of the population on the
date April 12, thus, τ2 = 12 April and p = 0.93. This value means that 93% of the population was confined on date
τ2 equals to April 12th, thus Sc(τ2) = 62 300 700. In this case, 7% of the population that remained active and we set
Su(τ2) = 4 689 300. Note that this number corresponds approximately to 15.78% of active population in France which
was 29 700 000 according to INSEE in 2017 [32].
Value of parameters ηr and ηu: By fitting with data from France, we estimate that the mean duration of infectious period
for unreported individuals, 1/ηu = 4 days and for reported ones, 1/ηr = 10 days.
Value of parameters βr, βu and %: we estimated that the infectivity of reported cases % is equals to 0.40 compared to
infectivity of unreported which is 1. The transmission rate βu = β of unreported individuals is estimated to 2.115× 10−8

day−1, then the transmission rate of reported individuals equals to βr = β% = 0.846× 10−8 day−1.
Value of parameter q: Since 1− q represents the fraction of reported individuals that dies, thus

1− q =
Cumulative number of death among the reported individuals

Cumulative number of reported individuals
.

From current data (July 31), we find 1 − q = 30254/186573 = 0.1622. It follows that the disease-induced death rate of
reported individuals, (1− q)ηr, equals to 0.1622× 1/10 = 0.0162 day−1. Furthermore, the fraction of reported individuals
that becomes recovered equals to q = 0.8378.
Value of parameters E(τ0), Q(τ0) and Iu(τ0): we estimate that at date τ0, we have Q(τ0) = 36, Iu(τ0) = 50 and
E(τ0) = 112.

6 SIMULATION EXPERIMENTS: APPLICATION TO DATA FROM
FRANCE

6.1 Scenario 1: validation of model with Data from France

We selected for model validation, the data obtained for daily reported (DRIr) and cumulative reported (CRIr) cases for
France see [7]. Some constants and parameters involved in the model were listed in Table 1. The results of this scenario
are illustrated on the figures 3.

6.2 Scenario 2: effectiveness of containment measures

The objective of this scenario is to analyse if the outbreak might stop for different values of the date at which the
containment measures are relaxed, namely τ3. Then, the value of the latter is assumed varying from May 11, June 01 and
30. The end date of containment measures τf , is fixed to September 1. The values of the parameters used are listed in
tables 1 excepted the containment function m that varies (see Figure 2(b)).
The results of this scenario are illustrated on the figures 4.

6.3 Scenario 3: effectiveness of the large scale testing

To investigate the effectiveness of the large scale test of detection of infected individuals, the date at which the containment
measures are relaxed, τ3, is fixed to May 11; the end date of containment measures, τf , is fixed to September 01. We
assume that between the dates τ3, and τf , the fraction of reported cases f increases linearly and reach 200% of its initial
value and the fraction of susceptible individuals which is quarantined σ is also increased linearly to reach 200% of its
initial value (see Figure 2(c)), the initial values is estimated in scenario 1. The values of the other parameters is listed in
tables 1 excepted the containment function m that varies (see Figure 2(b)).
The results of this scenario are illustrated on the figures 5.

6.4 Scenario 4: Social distancing and/or wearing masks measures

To study the social distancing and/or wearing masks measures, the date at which the containment measures are relaxed,
τ3, was fixed to May 11; the end date of containment measures, τf , is fixed to September 01. We assume that between
the dates τ3, and τf , the transmission rate β decreases linearly to reach 75% of its initial value (see Figure 2(d)). The
values of the other parameters is listed in tables 1 excepted the containment function m that varies (see Figure 2(b)).
The results of this scenario are illustrated on the figures 6.
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Table 1: List of parameters meanings and the parameter ranges for which the model was solved

Name Meaning Value

p Maximum fraction of the susceptible that a government can confine 0.93
f Fraction of Exposed that becomes reported infectious 0.4
% Infectivity of reported individuals 0.5
λ Fraction of quarantined individuals that becomes infectious 0.3
q Fraction of reported individuals that becomes recovered 0.83
σ Fraction of individuals which is quarantined with contact tracing 0.2

βr = %β Transmission rate of reported individuals 0.846× 10−8

βu = β Transmission rate of unreported individuals 2.115× 10−8

(1− q)ηr Disease-induced death rate of reported individuals 0.016
1/µ Average length of the exposed period 5
1/ηr Average length of infectious period of reported individuals 10
1/ηu Average length of infectious period of unreported individuals 4
1/θ Average length of the quarantine period 14
m(t) The fraction of confined susceptible at any time t [0− p],see Fig. 2
τ0 Starting date of the epidemic February 25
τ1 Starting date of the containment March 17
τ2 Date at which a fraction p of the population is confined April 12
τ3 Decision date of relaxation of the containment measures May 11-June 28
τf End date of containment measures Sep. 01

Initial values Meaning Value

Sc(τ0) Initial confined susceptible population 0
Su(τ0) Initial unconfined susceptible population 66990000
E(τ0) Initial exposed population 112
Ir(τ0) Initial reported population 12
Iu(τ0) Initial unreported population 50
R(τ0) Initial recovered population 0
Q(τ0) Initial quarantined population 36

6.5 Scenario 5: Combined effects of large scale testing and Social distancing measures

To test the combined effects of large scale testing and Social distancing social and/or wearing masks measures, we combine
the conditions of scenario 1 and 2. The date at which the containment measures are relaxed, τ3, is fixed to May 11; the
end date of containment measures, τf , is fixed to September 01. Between the dates τ3 and τf , we assume that f increases
linearly to reach 200% of its initial value, σ increases linearly to reach 200% of its initial value and β decreases of 75% of
its initial value see Figure 2(d) for these different variations of parameter values.
The results of this scenario are illustrated on the figures 7.
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Figure 2: Evolution over time of parameters m, σ, f, βr, βu and τ3 according to each scenario; the other
parameters of model are fixed in Table 1. (a) for scenario 1, only the parameter m is time depending, f =
σ = 0.2, βr = 0.846 × 10−8, βu = 2.115 × 10−8 and τ3 = May 11 for all time. (b) for scenario 2, f = σ = 0.2,
βr = 0.846× 10−8, βu = 2.115× 10−8 for all time, only the parameter m is time depending for three different
values of the date at which the containment measures are relaxed, τ3, more precisely when τ3 takes the values
May 11, June 01 and 30. (c) for scenario 3, we set τ3 = May 11, m, f and σ evolve over time, βr = 0.846×10−8,
βu = 2.115×10−8. (d) for scenario 4, τ3 = May 11, f = σ = 0.2, m evolves as in (a), in addition, the transmission
rate βr and βu evolve. (e) for scenario 5, τ3 = May 11, f, σ, m evolve as in (c), moreover βr and βu evolve as
in (d)
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Figure 3: Scenario 1: validation of model with currently data from France. The date at which the containment
measures are relaxed, τ3, was fixed to May 11; the end date of containment measures, τf , was fixed to September
01. (a) The cumulative number of reported CIr and unreported CIu cases simulated, and observed data
CIrData. (b) The daily number of reported DIr and unreported DIu cases from the model and observed data
DDataIr. (c) The confined and unconfined susceptible Sc and Su. (d) The daily reproductive number R0.
In this scenario, the values of the parameters were estimated and listed in tables 1 excepted the containment
function m which varies between 0 and 1 (see Figure 2(a))
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Figure 4: Scenario 2: longer term forecasting of epidemic spreading according to different values of the date
at which the containment measures are relaxed, τ3 that varies between May 11, June 01 and 30. The end
date of containment measures τf , was fixed to September 1. (a) The cumulative number of reported CIr
cases simulated. (b) The daily number of reported DIr cases from the model. (c) The number of confined
susceptible Sc. (d) The daily (effective) reproductive number R0. In this scenario, the values of the parameters
were estimated and listed in tables 1 excepted the containment function m which varies between 0 and 1 for
different values of τ3 (see Figure 2(b))
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Figure 5: Scenario 3: Longer term forecasting of epidemic spreading in case of large scale tests of detection on
infected individuals. τ3, was fixed to May 11; τf , was fixed to September 01. Between the dates τ3 and τf ,
the parameter f was assumed increase linearly to reach 200% of its initial value, σ increased linearly to reach
200% of its initial value (see Figure 2(c)). The values of the other parameters were listed in tables 1 excepted m
that varies (see Figure 2(b)). (a) The cumulative number of simulated reported CIr and unreported CIu cases,
and observed data CIrData. (b) The daily number of simulated reported DIr and unreported DIu cases, and
observed data DDataIr. (c) The number of simulated confined and unconfined susceptible Sc and Su. (d) The
daily reproductive number R0.
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Figure 6: scenario 4: Longer term forecasting of epidemic spreading in case of the social distancing and wearing
masks measures. τ3, was fixed to May 11; τf , was fixed to September 01. Between the dates τ3 and τf , the
parameter β decreases of 75% of its initial value see Figure 2(d). The values of the other parameters are listed
in tables 1 excepted m that varies (see Figure 2(b)). (a) The cumulative number of simulated reported CIr
and unreported CIu cases, and observed data CIrData. (b) The daily number of simulated reported DIr and
unreported DIu cases, and observed data DDataIr. (c) The number of simulated confined and unconfined
susceptible Sc and Su. (d) The daily reproductive number R0.
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Figure 7: Scenario 5: Longer term forecasting of epidemic spreading in case of both social distancing and/or
wearing masks and large scale tests. τ3, was fixed to May 11; τf , was fixed to September 01. Between the dates
τ3 and τf , the parameter f increases linearly to reach 200% of its initial value, σ increases linearly to reach
200% of its initial value (see Figure 2(c)). β decreases to 75% of its initial value see Figure 2(d). The values of
the other parameters are listed in table 1 excepted m that varies (see Figure 2(b)). (a) The cumulative number
of simulated reported CIr and unreported CIu cases, and observed data CIrData. (b) The daily number of
simulated reported DIr and unreported DIu cases, and observed data DDataIr. (c) The number of simulated
confined and unconfined susceptible Sc and Su. (d) The daily reproductive number R0.
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7 DISCUSSION AND CONCLUSION

This model takes into account the measures of confinement, distinguishing between confined individuals, quarantined
individuals and isolated individuals. Many values were estimated to fit the beginning of expansion of disease in France,
other were inferred from expert opinions, see Section 5. The proportion (1−f) is ranging from 17.9%-86% [36, 8, 9, 26, 16]
and some reviews therein [41]. The lower value was observed on board of the Diamond princess, i.e. in conditions which
are not representative of large scale populations living in larger surfaces. At the other hand, in [20] and in a WHO report,
it was estimated that between 80 and 86% of all infections were undocumented. Since this fraction is dependant on the
number of tests performed and since during the onset of covid-19 in France, there was very little screening tests, we
eventually chose f = 0.2.

As for f, the mean duration of infectious period, is a debatable point. In [30], the authors estimate that the asymp-
tomatic individuals had median virus persistence duration of 8.87 days (95% CI: 7.65-10.27). This duration varies also
between asymptomatic and symptomatic individuals [39], even when mildly affected. By contrast, all severe cases were
still tested positive at or beyond day 10 post-onset [38]. This longer virus persistence in severe cases as compared to
milder cases has been also demonstrated by [31] but not by all authors, see some reviews therein [41]. Note also that
in the literature, the estimate of the mean duration of infectious period of reported individuals is not always clear, since
some authors include hospitalization or isolation period, others do not. Results vary between 2 and 8 days, [20, 6, 17].
Our model implicitly takes into account a combined effect of duration of infectivity and viral load, which results in risk of
transmission. Indeed, the mean duration of infectious period estimated to be 10 days for reported individuals is coherent
with the estimation in [27] based on clinical, microbiologic, epidemiologic and clinical data. Since we estimate the infec-
tivity of the reported cases to be equal to 0.4, that of unreported cases in term of duration of infectious period, it means
that reported individuals are infectious for 40% of their infectious period, ie 4 days. If the infectivity is interpreted in
term of viral load, it means that 40% of the viral load excreted by the infectious reported cases is infective. Such a link
between duration of infectious period and infectivity (ie interpreted in term of viral load) also holds in literature except
in [42] where the authors observed no difference in viral load between asymptomatic and symptomatic patients. In [23]
the virus level in the asymptomatic group was significantly lower than in the symptomatic group in the acute phase.

Figure 3 shows the adequacy of the model for predicting the evolution of number of cases in the beginning of the crisis
until end of June. It also shows that as soon as confinement is reduced or stopped, the daily reproduction number R0

value increases again and a new wave of epidemics is to be expected as soon as its value is higher than 1. As observed
on Figures 4 (for longer term forecasting), such waves are expected to appear very shortly after reduction of confinement,
once the incubation period is spent. These values will allow predicting the effectiveness of the containment measures as
well as risk and the intensity of possible resurgences of the new waves of epidemic in France. Indeed, the measures of
confinement have a strong impact on the value of the daily reproduction number R0. Figures 4 shows that, while it was
equal to nearly 5 in the beginning of the disease, before confinement, it decreased to about 0.5 as long as confinement
of most people takes place and increased to a lower value, between 2 and 2.5, that is about half its former value. But
even if its value is reduced, it remains higher than 1. It is also to note that, unexpectedly, its value was lower when end
of confinement was earlier. Figure 3-4 show that the current increase in number of cases could be expected as soon as
containment was relaxed from Mid-May to September. However, number of cases are expected to decrease if a higher
proportion of infected people are detected and confined, which is currently the case. Delaying the very starting date of
deconfinement to 30 June would have resulted in a later and higher wave but not as late as could be expected for a starting
date to 11 May. All French people are expected to be either reported or unreported infected individuals at the end of
2020, i.e. before expected development of vaccines. However, some of those values may change with evolution of measures
of prevention such as social distancing and/or wearing masks, large scale testing, treatment of the disease.

Social distancing and wearing masks measures directly influences the transmission rate which is expected to dramati-
cally decrease with the increasing tendency to wear masks. Its effect was investigated in scenario 3 where the transmission
rate was assumed to decrease linearly to reach the value 75 % of its initial one as shown on Figure 2(d). The results of
this scenario are shown on Figures 5. The transmission rate may be dramatically decreased. But the results show that
this measure alone is insufficient to eliminate the disease.

The effectiveness of the large scale test of detection of infected individuals was analysed and shown on Figures 6. The
fraction of reported cases, from date τ3 to date τf , the fraction of reported cases f was assumed increase linearly to reach
the value 200% of its initial one and the fraction of susceptible individuals which is quarantined σ was also increased
linearly to reach the value 200% of its initial one (see Figure 2(c)), see Figure 2b Theses values may be observed by
tracking all former contacts of any newly reported case, and systematically testing them, As in the former scenario dates
of relaxation and end of containment measures were fixed to May 11th and September 1th respectively. Results show that
this measure without further action is also insufficient to control the outbreak.

The combined measures of large scale testing and social distancing and/or wearing masks measures was studied in
scenario 5. The transmission rates (reported and unreported individuals) were assumed to decrease from 75% to the date
τ2 to the date τf (see Figure 2(d)). The Figures 7, show the effectiveness of these combined measures and the potential
of such a strategy. In particular, it shows that predicted data are compatible with the current situation with no evidence
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yet of a second wave. This result also shows that protective measures must be maintained for a long term before the
hypothesis of a second wave may be discarded.

In the absence of any control measure, the basic reproduction number R0 is equal to 4.8739. Most of this value is
due to the weight of transmission by unreported individuals (Ru = 3.6271) and the weight of transmission by reported
cases accounts for much less (Rr = 1.2468). These values show that the major number of secondary infections is produced
by the unreported individuals. With increasing use of appropriate tests, reported individuals will be more precisely
diagnosed, thus the fraction of reported cases f will increase and thus the importance of Rr in the total value of R0.
Since the infectivity of reported individuals was estimated at 0.4 compared to infectivity of unreported the increase in Rr

will be very small showing the importance of detecting infectious individuals, see the evolution over time of the effective
reproductive number R0(t) and effective weight of transmission Rr(t) and Ru(t) on Figures 7(d). Therefore, the reported
individuals will have a lower propensity to transmit the virus. Through stronger measures of prevention, the probability
of contaminating other people will be lower.

With the confinement measures, the minimal percentage (critical fraction) of susceptible individuals that should
be confined to eliminate the COVID-19 equals to 1 − 1/R0 (see for instance [11, 40]). By confining more susceptible
individuals, we increase the kinetics of elimination of the disease. By fitting the model with the French data, we estimated
this fraction to p = 93%. This value belongs to the critical interval, namely ]1− 1/R0, 1] ']0.8, 1].

By analyzing the results of simulations, we can conclude that the containment measures appear to have slowed the
growth of the COVID-19 outbreak. Our model predicts that a second big wave of the epidemic may not be avoided if
the situation remains unchanged and if the French government does not maintain the current efforts on large scale tests,
obligation of wearing masks inside and in some cases outside and other prophylactic measures. However it also shows
that these measures are efficient to avoid such a risk, thus preserving public health and avoiding a new confinement and
all its terrible consequences, see Figure 3 and Figure 4. While if no measures were implemented, even only one infected
individual in the population would result in a new wave of infections and a new period of confinement. Some obligations
will succeed in avoiding a second wave of Covid-19.

In this article, we formulated a new model to describe the spread of COVID-19 to understand the effectiveness of the
containment and quarantine measures. It is able to reproduce observed data from France and probably other countries.

8 APPENDIX. Some details about the derivation of R0

In order to define R0, for model (1), we begin to find the disease-free equilibrium point by letting the compartments
Sc, Q,E, Ir, Iu, and R be zero and Su = Su(0).

Let F(Ir, Iu, E,Q) denotes the inflow of new individuals into the infected classes Ir, Iu, E and Q

F = (0, 0, (1− σ)β(%Ir + Iu)Su, σβ(%Ir + Iu)Su)T

and V(Ir, Iu, E,Q) denotes all other flows within and out of the infected classes,

V =


−µfE − θλQ+ ηrIr
−µ(1− f)E + ηuIu

µE
θQ

 .
Let F = DF and V = DV be the Jacobian matrices of the maps V and F , respectively, evaluated at the disease free
equilibrium.

F =


0 0 0 0
0 0 0 0

(1− σ)β%Su(0) (1− σ)βSu(0) 0 0
σβ%Su(0) σβSu(0) 0 0

 and V =


ηr 0 −µf −θλ
0 ηu −µ(1− f) 0
0 0 µ 0
0 0 0 θ

 .
A straightforward computation shows that

FV −1 =


0 0 0 0
0 0 0 0

(1− σ)β%Su(0)

ηr

(1− σ)βSu(0)

ηu
(1− σ)f

β%Su(0)

ηr
+ (1− σ)(1− f)

βSu(0)

ηu
(1− σ)λ

β%Su(0)

ηr
σβ%Su(0)

ηr

σβSu(0)

ηu
σf

β%Su(0)

ηr
+ σ(1− f)

βSu(0)

ηu
σλ

β%Su(0)

ηr


Following [34], the matrix FV −1 is well defined, and is the next generation matrix and R0 is the spectral radius of FV −1.
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