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Abstract
In this paper, we present a tool allowing dynamic prediction and visualization of an individual’s local brain activity during a conversation.
The prediction module of this tool is based on classifiers trained using a corpus of human-human and human-robot conversations
including fMRI recordings. More precisely, the module takes as input behavioral features computed from raw data, mainly the
participant and the interlocutor speech but also the participant’s visual input and eye movements. The visualisation module shows in
real-time the dynamics of brain active areas synchronised with the behavioral raw data. In addition, it shows which integrated behavioral
features are used to predict the activity in individual brain areas.
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1. Introduction

Studying human social interactions using functional Mag-
netic Resonance Imaging (fMRI) has become increasingly
popular in recent years. Recently, we recorded a corpus
of human-human and human-robot conversations while
participants brain activity was recorded with fMRI (Rauch-
bauer et al., 2019). This corpus has the potential to bring
new insights about how the human brain behaves during
natural conversations, and allows comparisons between
the cases where the interlocutor is a human or a robot.
Unsurprisingly, visualization of brain activity is necessary
when dealing with this type of tasks.

In the literature, several projects have been developed
to visualize brain activity, and many works have been
proposed to predict the fMRI signals based on behavioral
features (Mitchell et al., 2008; Huth et al., 2016; Knops
et al., 2009). However, we did not find works providing
tools for displaying together brain activity prediction
of non-controlled conversations, the raw material used
in this prediction as well as the features used for these
predictions. In this paper, we tackle this problem, and
we propose a new tool for predicting and visualising the
local brain activity during conversations. It consists of two
modules, the first one is for generating predictions based
on the conversation’s raw behavioral data. It includes the
audios of the participant and the interlocutor, the video
of the interlocutor and the eye movement recordings of
the participant. And the second part is for visualising the
activation of the brain areas during the conversation based
on the obtained predictions.

The prediction module used is based on classifiers that we
trained on a corpus of human-human and human-robot
conversations recorded during an fMRI experiment per-
formed on 24 participants in which the brain activity and
the behavioral signals were recorded synchronously. This
module consists of two processing steps. In the first step,

the integrated behavioral time series from the raw signals
of the conversation are computed. The idea here is to
extract, from raw recordings of the conversation, high
level multi-modal descriptive features that will be used as
predictor variables of the prediction models. The second
processing of the prediction module consists in applying
classifiers to predict if a local brain area is active or not,
i.e., a binary classification. Two types of conversations are
taken into account, human-human and human-robot, thus,
depending on the type of the interaction, the prediction
module chooses the appropriate prediction models, and
selects the relevant behavioral features.

The second part of our tool allows the visualization of the
brain activity predictions during the conversation using two
forms, the first one as a time series showing the evolution
of the brain areas activation over time, and the second one
showing the activation of the studied areas in the brain
directly using the Visbrain Python library (Combrisson et
al., 2019).

In this paper, we focus on the global functioning and the
visualisation part of the tool since the prediction module is
”plug and play” and can be updated depending on the task.
We propose to illustrate the tool on a specific example of
individual brain area prediction depending on behavioral
cues during human-human or human-robot interactions.

The rest of the paper is organized as follows. The next
section contains a description of the multi-modal behav-
ioral signals used by the tool, and a description of the ex-
tracted time series used as predictive features of the predic-
tion models. In Section 3, we describe the functioning, the
inputs and the outputs of the proposed tool. We illustrate
its use in Section 4. And Section 5 is for conclusions and
future work.
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2. Datasets
As mentioned in Section 1, the proposed tool extracts multi-
modal time series from the conversation signals before ap-
plying prediction models. These models are trained on con-
versational data and neurophysiological signals recorded
during a fMRI experiment (see Figure 1). In this section,
we describe this experiment, the recorded raw signals, and
the extracted time series.

2.1. Processing fMRI signals
Standard functional MRI acquisition procedures were used,
described in details in (Rauchbauer et al., 2019). Blood
Oxygen-Level Dependent (BOLD) signal 3-dimensional
images are recorded in the whole brain every 1.205 sec-
onds. Standard SPM12 preprocessing procedures are used
(Penny et al., 2011), including correction for time delays
in slice acquisition (”slice timing”), image realignment,
magnetic field inhomogeneities correction, normalization
to the standard MNI space using the DARTEL procedure
for coregistration of individual participants’ anatomy
(Ashburner, 2007), and finally spatial smoothing with a
5-mm full-width half-maximum 3-dimensional Gaussian
kernel. Extraction of the BOLD raw time series in regions
of interest is performed using the conn toolbox (Whitfield-
Gabrieli and Nieto-Castanon, 2012), and includes several
denoising procedures, firstly a linear detrending using a
high-pass filter with a threshold of 128 seconds, secondly
using realignment parameters to calculate nuisance regres-
sors related to participants’ movement during scanning,
thirdly taking heartbeat and breathing recordings to remove
physiological artifacts with the PhysIO toolbox (Kasper
et al., 2017), and finally extracting BOLD signal in the
white matter and cerebrospinal fluid and using the 5 first
eigenvariates of the time-series as nuisance representing
signal fluctuations in non-cortical brain tissues. A par-
cellation based on functional and anatomical connectivity
patterns (Fan et al., 2016) defines 275 regions of interest
(ROIs) for the whole brain, and specific regions are chosen
based on their anatomical locations and known functions.
Continuous time-series (385 time points) are extracted for
each ROI, and each session and participant, representing
the mean activity after denoising.

For the current demonstration, we focus on 6 ROIs chosen
in order to validate our approach using well-defined func-
tional areas: the left and right Fusiform Gyrus ROIs corre-
sponds to the Fusiform Face Area involved in face percep-
tion, the left and right Motor Cortex ROIs support speech
production, and the left and right Superior Temporal Sulcus
ROIs which are involved in speech perception, In the rest of
this paper, we use the following abbreviations of the names
of the ROIs:

• Motor Cortex: MC

• Superior Temporal Sulcus: STS

• Fusiform Gyrus: FG

2.2. Processing multimodal behavioral signals
We describe in this part how we analysed the multimodal
behavioral signals in order to extract time series that can be

used as input features for prediction models.
The speeches of the conversations are first transcribed into
text, then we annotated and segmented them word-by-word
automatically using SPPAS (Bigi, 2015). From the ob-
tained transcriptions, we extracted linguistic time series
that consist of the speech activity (the presence of the
speech), overlaps, laughters, filled pauses and the reaction
time, which represents in our case the amount of time taken
by an interlocutor to speak after the other interlocutor fin-
ishes his turn (Rauchbauer et al., 2020).
We also focused on interpersonal particles items, i.e., words
that may express the mood of the speaker (e.g., but, well,
maybe), discourses markers, which are expressions used to
make the discourse organized (e.g., I mean, so, therefore,
okay) (Schiffrin, 1987), and feedback lexical items, which
are words representing reaction and perception (e.g., yes,
no, okay, right) (Gravano et al., 2011). The time series
describing these items are resampled according to the fMRI
acquisition frequency by calculating the percentage of their
existence in each 1.205s time bin.
We also included lexical richness based on two metrics
from (Ochs et al., 2018), that consider the number of
the different words (type-token ratio) and the number of
adjectives plus the number of adverbs resp., divided by the
number of total words in the text of each speaking turn.
Sentiment analysis is also considered by calculating the po-
larity and the subjectivity using the Pattern library (Smedt
and Daelemans, 2012). The polarity score fluctuates
between −1 (negative behavior) and 1 (positive behavior).
The subjectivity is between 0 (objective) and 1 (personal).
The method of their calculations is based first on a manual
association of the polarity and the subjectivity scores to a
set of adjectives among the most used. Second, another
set is extracted with the most frequent nouns and the
preceding adjectives as features. Finally, a kNN classifier
is learned to determine the scores of neighbor adjectives
to those manually annotated (Smedt and Daelemans, 2012).

For facial features, in the experiment we recorded the
videos of the interlocutors. The Openface (Baltrusaitis et
al., 2018) software is used to detect facial landmark coor-
dinates (based on the pixel coordinate system), head pose
translations and rotations, and facial action units (Bartlett
et al., 1996), which represent the existence and the inten-
sity of movement of well-defined facial expressions based
on the Facial Action Coding System (Ekman and Friesen,
1976). The time series associated with these features are
constructed by analyzing each image of the videos.
Eyetracking data of the participants are recorded using the
”EyeLink 1000 Plus” system (SR Research, 2019) dur-
ing the fMRI experiment. The raw data are recorded in
European Data Format files with a frequency of 1000HZ.
They contain the coordinates of the gaze on the screen us-
ing the pixel coordinate system, and other information like
the beginning and end of conversations, fixations, saccades,
and blinks. From the obtained coordinates, we compute
the speed of the gaze movements, and we extract ocular
saccades and blinks as separate features. Then, we com-
bine the gaze movements coordinates with Openface out-
put, more precisely the landmarks, to detect where the sub-
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Figure 1: The fMRI experiment.

ject is looking in at each time step (face, eyes, mouth). Fi-
nally, the computed behavioral features are re-sampled and
gathered together to build multivariate time series with the
same number of observations for each subject.

3. Description of the tool
The tool is composed of two main separate modules: a ma-
chine learning part, dealing with computing features and
prediction, and a visualisation part. It is designed in a mod-
ular way, allowing fast update in case new prediction mod-
els have to be added or new features have to be extracted.
The interface of the tool is developed using Qt Creator with
C++ (The Qt Company, 2019), while the prediction module
is implemented in Python. 1

3.1. Inputs
The inputs of the tool are raw recordings of a conversation
between a participant and an interlocutor. The interlocutor
can be a human or a robot. The recordings consist of the
video of the interlocutor, a file containing the eye move-
ment coordinates of the participant, and the audios of both
the participant and the interlocutor. The video of the partic-

1The BrainPredict tool is still undergoing development,
but a first version is provided in https://github.com/
Hmamouche/BrainPredict, including the code source of the
prediction module and the interface, the detailed prediction re-
sults, and a demo showing its utilization.

Audio, Video

Audio, Eye-
tracking data

Input Signals Prediction Module

Features
extraction

Prediction

Visualisation

Figure 2: Schema of the BrainPredict tool.

ipant is not used, as the current experimental setup didn’t
allow its recording inside the MRI scanner.

3.2. Outputs
The outputs consist of a time series format of the predic-
tions, showing the evolution of brain area activation dur-
ing the conversation. Time is in abscissa, while the ordi-
nate shows the binary 0 for inactive and 1 for active. A
brain visualisation is also provided using the Visbrain li-
brary (Combrisson et al., 2019) by constructing in real-time
a video where each image contains a visualisation of the
predicted areas at the corresponding time of the conversa-
tion. The color code matches the time-series predictions
and the saturation of the color matches the activity (low for
inactive, high for active). The tool also shows the names

https://github.com/Hmamouche/BrainPredict
https://github.com/Hmamouche/BrainPredict
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of the integrated behavioral time series used for the predic-
tion of the selected brain area. They are used by the tool,
but they are also recorded in an external file as well as the
obtained predictions, which can be useful to the user for
further investigations.

3.3. Functioning
The goal is to visualise the brain activity of specific brain
areas based on previous values of the extracted behavioral
features from the conversation. This tool is specific to pre-
dictions of the BOLD signal following the fMRI acquisition
protocol used in the training step, where a whole brain im-
age is recorded every 1.205 seconds. We detail in the rest
of this part the prediction procedure used by the tool, in-
cluding feature extraction, and the way the used classifiers
are evaluated and trained.

3.3.1. Features extraction
Feature extraction is performed using the same approach
applied in the data processing step. Subsection 2.2. de-
scribes this approach including the tools used to compute
the features from raw signals. Concretely, Table 1 contains
the names of all the extracted behavioral features.

Raw signals Extracted Features
Speech Speech activity, Particles items, Dis-

course Markers, Overlap, Reaction
Time, Filled-breaks, Feedbacks,
Laughters, Lexical Richness, Polarity,
Subjectivity.

Video Facial Action Units, Head pose coor-
dinates, Gaze coordinates.

Eyetracking data Coordinates of the gaze movement of
the participant, and binary variables
categorizing resp. the presence of sac-
cades, and if the participant is looking
at the face, the eyes of the mouth of
the interlocutor.

Table 1: The extracted behavioral features.

3.3.2. Prediction
Since we focus on predicting if a brain area is active or
not, we first discretize the BOLD signal in each ROI into a
binary variable. The BOLD time series of each participant
are normalized, then a threshold for each ROI is used for
discretization. Different thresholds are tested, and the most
appropriate discretization threshold in terms of prediction
scores is used for each ROI .
Knowing that the BOLD signal response to a behavioral
event reaches its peak around 5 seconds after the event
(Gössl et al., 2001), we compute each prediction based
on the values of behavioral features in the previous 5 sec-
onds. This delay (5s) is not fix for all ROIs and partic-
ipants. Therefore, our approach consists in considering
more points near to this delay, i.e., we model the BOLD
signal at time t based on sequences of lagged variables of
each feature between t− 7s and t− 3s. This model has an
auto-regressive form, and can be written as follows:

Y (t) = f(X1(t−τ1 : t−τ2), . . . , Xk(t−τ1 : t−τ2))+U(t),
(1)

where f is the function between the BOLD variable and
the behavioral features that we aim to determine, Y (t)
represents the discretized BOLD variable, {X1, . . . , Xk}
are k behavioral features, Xi(t− τ1 : t− τ2) is a sequence
of temporal variables of the feature Xi where τ1 = 7s and
τ2 = 3s, and U(t) represents the error of the model.

This problem can be modeled using binary prediction. The
classifiers used are from the Scikit-learn library (Pedregosa
et al., 2011): Support-Vector Machine (SVM), Random
Forest (RF), and the Logistic Regression (LREG). We also
used the Long Short Term Memory (LSTM) network from
the Tensorflow library (Abadi et al., 2016), since the pre-
dictive variables are in form of sequences of original behav-
ioral features. We also included a baseline classifier gener-
ating random predictions based on 3 strategies: a stratified
way, by generating predictions regarding the distribution of
the training data, a uniform way by generating random pre-
dictions uniformly, and a last strategy that consists in gener-
ating constant predictions based on the most frequent label.

The evaluation procedure: Two evaluations preformed
independently, according to the type of the conversations
where the interlocutor is a human or a robot. In total,
for each condition, we have the data of 24 participants,
which consists of 13248 observations, where the predictive
variables represent the temporal variables associated to
the behavioral features, and the target variables are the
discretized BOLD signal of 6 ROIs: left and right Motor
Cortex (MC), Left and right Superior Temporal Sulcus
(STS), and left and right Fusiform Gyrus (FG).

The data of all subjects are concatenated in order to have
generic prediction models independent from participants.
One particular remark that we should mention is that when
handling multi-subjects tasks, it is important not to use the
data of a given subject in the training and test sets, even with
different observations, because this may cause over-fitting
and inflate predictions.
Therefore, we kept the data of 4 participants as test set,
which is almost 17% of all data. And data from the rest of
participants (20) are used are as a training set.
To evaluate the models, we considered 3 classification mea-
sures, the weighted recall, precision and F-score. We con-
centrate here on the weighted F-score since it considers the
recall and the precision. Moreover, it is more preferable
than the accuracy for imbalanced data, because it takes into
account the frequencies of both classes.
A 10-fold-cross-validation is applied on the training data
to find the best parameters of each classifier with a feature
selection step to find the most relevant predictive variables
for each ROI, where each time, the data of 2 participants
are used as a validation set. Then, the best parameters of
each classifier are chosen based on the mean of the ob-
tained 10 F-scores. The 10-fold-cross-validation is applied
on all classifiers except the LSTM network because it takes
a huge amount of time. For this specific model, we ap-
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plied a training-test pass directly with a fixed architecture
composed of one LSTM hidden layer and a fully connected
output layer containing one neuron to provide one predic-
tion each time using the sigmoid activation function. The
network is trained using the stochastic gradient descent al-
gorithm and uses the binary cross-entropy as a loss func-
tion.
Finally, the classifiers with the best parameters found in the
10-fold-cross-validation are trained on the training set, then
evaluated on test data.

The results: Figure 3 provides results for the baseline
and the classifiers for each brain area, for both conditions,
i.e., human-human and human-machine conversations. The
values represent the obtained scores of the test data set,
while the error bars represent the standard deviations of
the 10-fold-cross-validation results. The results show that
globally the Random Forrest is almost the best or very close
to the best classifier for all ROIs. The LSTM network does
not provide good predictions for some ROIs. This is logical
because generally artificial neural networks need many ex-
amples to learn, while in our case we still do not have a lot
of observations considering the fMRI recording frequency.
The baseline classifier provides F-scores between 0.5 and
0.55, while the best F-scores vary between 0.65 and 0.75.
Logically, it is hard to get scores close to 1, because the
ROIs activation’s depends on other factors that are not
recorded during the fMRI experiment, like the personality
of each participant for example. But what is important is
that we can detect the most relevant set of behavioral fac-
tors that allows predicting each brain area.
We have also conducted a statistical test using the Student’s
T-test to test the equality (null hypothesis) of the means of
the F-scores between the best and the baseline classifiers
obtained by the 10-fold-cross-validation on the training
data. This statistical test is investigated in (Dietterich,
1998) and it is one of recommended methods to compare
the performance of machine learning algorithms. For the
hardest ROI for which we got the worst predictions, which
is the right FG, the test provides a p-value (the probability
of the null hypothesis) equal to 0.0005 for human-human,
and 0.003 for human-robot conditions. Therefore, the
obtained F-scores of the best algorithms are significantly
better than the baseline classifier at threshold of statistical
significance less that 0.01.

In the utilization part, based on the obtained F-scores, we
select the best classifier and the best set of behavioral pre-
dictors for each brain area that will be used by the predic-
tion module.

4. Example
Let’s illustrate the outputs of the BrainPredict tool using
the example provided in Figure 5. In this example, the in-
puts are the visual input of the interlocutor (the video of
the robotic conversational agent in its feminine version in
this case, shown in the ”interlocutor” window) and the au-
dio from both the scanned participant and the interlocutor.
The regions of interest are selected for the current proof-
of-concept as they correspond to brain areas involved in
speech production (left and right MC), speech perception

(left and right STS), and face perception (left and right FG).
The time series are displayed in the order given in the top
left selection window, and the colour corresponds to the
brain areas colors displayed on the left. As the sampling
rate of the fMRI is one volume every 1.205 seconds, we
have 50 observations for a conversation of 1 min.
The illustration shows the predictions until approximately
the time 45s of the conversation, when it is predicted that
both the left and the right ventral primary motor cortex will
not be activated, which is shown in grey in the first line
in the window ”Time series” and on the brain render (top,
right). For the FG, only the left area that is activated and
shown in green on the bottom view of the brain render. Sim-
ilarly, the left STS is predicted to be activated but not the
right STS (pink and cyan lines).
The obtained predictor features of the selected brain areas
are stored in a csv file, but can be viewed in a separate table
via the button ”Show Predictors”. An illustration of this ta-
ble is shown in Figure 4, where the features are organized
by modalities: speech (speech features of the interlocutor),
speech left (speech features of the participant), and facial
features. For each brain region, each modality contains a
subset from its behavioral features (see Table 1). For exam-
ple, the IPU represents the speech activity, the AUi are the
facial action units, and {pose Rx, pose Ry, pose Rz} are
the head rotation coordinates.

5. Conclusion
In this paper, we have proposed a new tool for the predic-
tion and visualisation of local brain activity. The raw data
recorded during the fMRI experiment investigating natural
human-human and human-robot conversations are the pri-
mary sources of the prediction module of this tool. Predic-
tion entails calculating integrated behavioral time-series on
the basis of these raw recordings. The tool also contains a
visualisation module allowing to see the brain activity un-
fold during a given conversation.
We have developed this project with the goal to provide
a machine learning tool that can be used by social cogni-
tive neuroscience researchers to analyse the dependencies
between behavioral features and local brain areas, and to
study the differences between human-human and human-
robot interactions during unconstrained interactions.
In the future, we aim to include the possibility to visualize
areas from the whole brain, as well as extracting more be-
havioral time series as predictors to improve the prediction
models.
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