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Abstract We prove an integrability criterion and a partial integrability criterion for homo-
geneous potentials of degree −1 which are invariant by rotation. We then apply it to the proof
of the meromorphic non-integrability of the n-body problem with Newtonian interaction in
the plane on a surface of equation (H, C) = (H0, C0) with (H0, C0) �= (0, 0) where C is the
total angular momentum and H the Hamiltonian, in the case where the n masses are equal.
Several other cases in the 3-body problem are also proved to be non integrable in the same
way, and some examples displaying partial integrability are provided.

Keywords Non-integrability · Homogeneous potentials · Central configurations ·
Differential Galois theory · n-body problem

Mathematics Subject Classification 37J30 · 70F15

1 Introduction

In this article, our aim is to study dynamical systems of the form

q̇i = pi ṗi = ∂

∂qi
V i = 1, . . . , n (1)

where V is a homogeneous function in q = (q1, . . . , qn) meromorphic for q ∈ C
n \ {0}, and

in particular the case of homogeneity degree −1 and its applications to Celestial Mechanics.
In the following, we will call such a function a meromorphic homogeneous potential. One
of the most important property in dynamical systems is integrability.

Definition 1 Let V be a meromorphic homogeneous potential. We say that the dynamical
system associated to the potential V is meromorphically integrable if there exist n functions
(p, q) −→ (I1(p, q), . . . , In(p, q)) meromorphic for (p, q) ∈ C

2n, q �= 0 such that
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320 T. Combot

– The functions Ii are constant along orbits, meaning that İi = 0, i = 1, . . . , n
– The functions Ii are in involution, meaning that for all i, j = 1 . . . , n, we have the

Poisson bracket {Ii , I j } = 0
– The functions Ii are independent almost everywhere, meaning that the Jacobian matrix of

the application (p, q) −→ (I1(p, q), . . . , In(p, q)) has maximal rank almost everywhere

Non-integrability of homogeneous potentials has been studied using mainly Morales-Ramis
theorem (Morales Ruiz 1999) and Ziglin theory (Ziglin 1982). These methods require a partic-
ular algebraic orbit of the corresponding potential. With homogeneous potentials, generically
there exist straight line orbits, corresponding to the Darboux points of the potentials.

Definition 2 (see for example Pina and Lonngi (2010); Lee and Santoprete (2009) on these
equations) Let V be a meromorphic homogeneous potential. We say that c ∈ C

n \ {0} is a
Darboux point if there exists α ∈ C such that

∂

∂qi
V (c) = αci ∀i = 1, . . . , n

We call α the multiplier, and we say that c is non degenerated if α �= 0. A Darboux point c
is also called a central configuration in the case of the n-body problem.

To these Darboux points we can associate homothetic orbits (or more generally straight
line orbits, Howard and Meiss 2009), which are explicit algebraic solutions of the differential
equation (1) (note that the orbit is an algebraic curve, but not necessarily algebraic in its time
parametrization). Using such orbits, Morales-Ramis method provides a mean to prove some
facts about non-integrability, particularly in the case of homogeneous potentials.

Theorem 1 (Morales Ruiz (1999), Theorem 4.1.) Let H be a Hamiltonian holomorphic on
a complex symplectic manifold M of dimension 2n, and Γ ⊂ M a non-stationary orbit of
H. If there are n meromorphic first integrals of H that are in involution and independent
over a neighbourhood of Γ , then the identity component of Galois group of the variational
equation near Γ is Abelian.

Theorem 2 (Morales-Ruiz and Ramis (2001c), Theorem 3.) Let V be a meromorphic homo-
geneous potential of degree −1 and c a Darboux point with multiplier −1. If V is meromor-
phically integrable, then

Sp
(
∇2V(c)

)
⊂ { 1

2 (k − 1)(k + 2), k ∈ N
}
.

Early work on this subject has been done in Yoshida (1983, 1987), similar statements
were made and applied in Morales-Ruiz and Ramis (2001a,b), generalizations were made
for higher variational equations in Morales-Ruiz et al. (2007) and for non Hamiltonian cases
in Ayoul and Zung (2010). Here we want to study variational equations and their Galois
group near another type of particular orbit that we often encounter when the potential is
invariant by rotation. In particular, if there exists a plane of Darboux points, invariant by
the rotational symmetry of V (this case is not rare), then we can build particular orbits with
non-zero angular momentum. Then we get a one parameter family of orbits on which we can
apply Morales-Ramis theory. For all of them, the identity component of the Galois group of
the variational equation should be Abelian, and thus we can expect a much stronger integra-
bility criterion than Yoshida (1987). One difficulty is that the variational equation is intricate
to study in the general case, thus we will make a complete analysis only in the case which
we will call “partially decoupled”. We find very strong conditions, only two eigenvalues are
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Non-integrability of n-body problems with non-zero angular momentum 321

Table 1 Integrability table for
homogeneous potential of degree
−1 invariant by rotation

(C, H) λ

C = 0 λ ∈
{

1
2 (k − 1)(k + 2), k ∈ N

}

C2 H = −1/2 λ ∈
{
−k2, k ∈ N

}

H = 0 λ ∈
{

1
2 (k − 1)(k + 2), k ∈ N

}

C2 H /∈ {0, −1/2} λ ∈ {0, −1}
(C, H) = (0, 0) λ ∈ C

possible instead of an infinity. Moreover we will see that this type of orbit allows us to study
a new type of partial integrability: the case where the potential would be integrable only for
a fixed value of the Hamiltonian and angular momentum.

The main theorem of this article is the following.

Theorem 3 The n-body problem with equal masses in the plane is neither meromorphically
integrable on any hypersurface of the form C2 H = α with α �= 0 fixed, nor on the hypersu-
face H = 0, nor on the hypersurface C = 0 (H being the Hamiltonian, and C the total
angular momentum).

This result generalizes some already known non-integrability proofs as Boucher (2000)
for n = 3, C = 0 (generalized in Maciejewski and Przybylska 2011), Morales-Ruiz and
Simon (2009) for n ≥ 3, C = 0 and Tsygvintsev (2001) for n = 3, H = 0 (later generalized
in Tsygvintsev 2007). Along the proof of Theorem 3, we will prove more generally that if
a homogeneous potential of degree −1 invariant by rotation is meromorphically integrable
on a surface with fixed energy and “angular momentum” (as defined by Eq. 3), then the
eigenvalue λ of the Hessian matrix of V on a Darboux point with multiplier −1 should
belong to the Table 1 (which is found through the analysis of the Galois group of varia-
tional equations near conic orbits). The complete statement is Theorem 8, in which there is
an additional a priori hypothesis, the “decoupling condition”. Partially integrable potential
exists effectively as given in (13). This integrability table also gives indications on which
particular level of energy and “angular momentum” we should focus when searching partial
integrability. These cases correspond also to regular confluences of the variational equations
(even without the “decoupling condition”), and the Galois group being typically smaller for
these cases, it is always worthwhile to consider them in particular. The case C2 H = −1/2
leads for the restricted 3-body problem to an additional first integral on this level (the Jacobi
integral), although this first integral is not valid everywhere on C2 H = −1/2. For the gen-
eral 3-body problem, this case will correspond to the energy and total angular momentum
of circular motions on Lagrange and Euler central configurations. Theorem 8 cannot solve
all problems of this kind because of this “decoupling condition”. A complete analysis of the
3-body case gives all the masses which satisfy this condition in Theorem 17, which are not
always symmetric. A non-integrability theorem like Theorem 3 is by the way immediate for
these masses, except for (m1, m2, m3) = (1, 5, 1).

2 General properties

Definition 3 (see Gantmacher (1959); Craven (1969) for an overview of interesting prop-
erties.) We will call “norm” and scalar product the expressions
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322 T. Combot

‖v‖2=
n∑

i=1

v2
i 〈v, w〉 =

n∑
i=1

vi wi

even for complex v, w (in particular, the “norm” can vanish for non-zero v). We will say
moreover that a matrix is orthonormal complex if its columns X1, . . . , Xn are such that

〈Xi, Xj〉 =
n∑

k=1

(Xi)k(Xj)k = 0 ∀i, j ‖Xi‖2=
n∑

k=1

(Xi)
2
k = 1 ∀i

We note On(C) the complex orthogonal group which is the group generated by these matri-
ces, and SOn(C) the subgroup of On(C) of matrices with determinant 1 (corresponding to
rotations). In particular, the group On(C) conserve the “norm”.

Definition 4 Let V be a homogeneous meromorphic potential of degree −1 in dimension
n ≥ 2. We note

G = {g ∈ On(C), V (g.x) = V (x) ∀x ∈ C
n} (2)

We will call G the symmetry group of V . For v ∈ C
n , we note

Gv = {αg.v, α ∈ C, g ∈ G}
We will say that V is invariant by rotation if G contains at least a subgroup isomorphic to
SO2(C). We will say that v is an eigenvector of G if for all g ∈ G, v is an eigenvector of g.

In the following, we will have to consider three notions of angular momentum. The first
one (and the most general) is a (non constant) first integral of a potential V on C

n of the form

C =
∑

0≤i< j≤n

ai, j (pi q j − p j qi ) ai, j ∈ C (3)

that we will call an “angular momentum” (with quotes). The second one is the canonical
angular momentum on a plane P ⊂ C

n which equals to p2q1 − p1q2 for a direct ortho-
normal complex basis of P . Eventually, in the last part about the n-body problem, we will
consider the total angular momentum which is the sum of the canonical angular momentum
of each body with respect to the center of mass.

Theorem 4 Let V be a homogeneous potential of degree −1 in dimension n ≥ 2 and G its
symmetry group. Suppose there exists a Darboux point c with ‖c‖�= 0 and G̃ a subgroup of
G such that P = G̃c is a plane. Then it exists a conic orbit on P and the variational equation
near this conic orbit with parameters (C‖c‖2, H‖c‖2) ∈ C

2 (canonical angular momentum
on P and energy) is given by

t (−C2 + 2t + 2Ht2)Ẍ + (−t + C2)Ẋ = R−1
θ(t)∇2V(c)Rθ(t)X (4)

where Rθ(t) ∈ G̃ with coefficients in C

(
t,

√
2H − C2t−2 + 2t−1

)

Proof Let c be a Darboux point of V with multiplier −1 and G̃ a subgroup of G. After rotation
of the coordinates, we can suppose that c = (γ, 0, . . . , 0) and that the plane G̃c is generated
by (γ, 0, . . . , 0), (0, γ, 0, . . . , 0). A conic orbit for the Darboux point c corresponds to the
orbit given by

(q1, q2) = ϕt (1, 0) qi = 0 i = 3, . . . , n
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Non-integrability of n-body problems with non-zero angular momentum 323

where ϕt is given by

ϕt (x, y) = φ(t)

(
cos(θ(t)) − sin(θ(t))
sin(θ(t)) cos(θ(t))

)(
x
y

)
(5)

Replacing this in the Hamiltonian and canonical angular momentum (the potential V
restricted to the plane P is invariant by rotation), we get

1

2
φ̇2γ 2 + 1

2
γ 2φ2θ̇2 + V (c)

φ
= Hγ 2 Cγ 2 = γ 2φ2θ̇

And after replacing, we get

1

2
φ̇2γ 2 + γ 2 C2

2φ2 + V (c)
φ

= Hγ 2

Knowing that the multiplier is −1, we use Euler equation for V

γ 2 = −V (c)
1

2
φ̇2 + C2

2φ2 − 1

φ
= H

Therefore, the variational equation is of the form

Ẍ = 1

φ(t)3 ∇2V(Rθ(t)c)X

with Rθ(t) a rotation matrix. We also know that we are on some conic orbit (due to the fact
that the homogeneity degree is −1)

φ(t) = p

1 + e cos(θ)

with p and e some parameters depending on C, H . We get that cos(θ), sin(θ) are rational
fractions in φ, φ̇. Then, with variable change φ −→ t we get the following expression

t (−C2 + 2t + 2Ht2)Ẍ + (−t + C2)Ẋ = ∇2V(Rθ(t)c)X (6)

We know that the potential V is invariant by rotation. Then the matrix ∇2V(Rθ(t)c) corre-
sponds to ∇2V(c) after a basis change and gives

∇2V(Rθ(t)c) = R−1
θ(t)∇2V(c)Rθ(t) (7)

Replacing this in (6) gives us the Eq. (4). ��
Remark 1 The main difficulty of this variational equation is that it does not decouple after
basis change. Indeed, we can make a basis change with some matrix P, but this matrix P
should commute with the rotations Rθ(t).

Let us now give a proper definition of what we will call integrable on some level of first
integrals, as given in Theorem 3.

Theorem 5 Let V be a homogeneous meromorphic potential of degree −1 in dimension
n ≥ 2. Let I1, . . . , Ik be meromorphic first integrals such that

{Ii , I j } = 0 ∀i, j

where { , } is the Poisson bracket. We pose

O = {(p, q) −→ g(p, q, I1(p, q), . . . , Ik(p, q)) g holomorphic for q �= 0}
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324 T. Combot

the ring of holomorphic functions in (p, q, I1, . . . , Ik), q �= 0. We suppose that
< I1, . . . , Ik > is a prime ideal on O and we pose K = Frac(O/ < I1, . . . , Ik >) the
corresponding fraction field. Then the following functions are well defined

– For all i = 1, . . . , k, the functions ϕi : K −→ K , f −→ { f, Ii }.
– The function

Ψ :
(

k⋂
i=1

ϕ−1
i (0)

)2

−→ K , f, g −→ { f, g}

– The functions K n−k −→ K which associate to f1, . . . , fn−k a subdeterminant of size
n × n of the Jacobian matrix (a matrix of size 2n × n) of I1, . . . , Ik, f1, . . . , fn−k .

Proof Let us write a representant of f ∈ K as P/Q, P, Q ∈ O. We just need to check that
the value of the function ϕi does not depend on the choice of the representant. We consider
h1, . . . , hk, g1, . . . , gk ∈ O and we have

{
P +∑k

s=1 hs Is

Q +∑k
s=1 gs Is

, Ii

}
=
(

Q +
k∑

s=1

gs Is

)−1{
P +

k∑
s=1

hs Is, Ii

}

− P +∑k
s=1 hs Is

(Q +∑k
s=1 gs Is)2

{
Q +

k∑
s=1

gs Is, Ii

}

=
(

Q +
k∑

s=1

gs Is

)−1

{P, Ii } − P +∑k
s=1 hs Is

(Q +∑k
s=1 gs Is)2

{Q, Ii }

= Q−1{P, Ii } − P Q−2{Q, Ii } =
{

P

Q
, Ii

}

so the function is well defined on K .
Let us consider f1, f2 ∈ ∩k

i=1ϕ
−1
i (0) and we write P/Q a representant of f1. Using the

fact that {Ii , f2} = 0, we can do exactly the same calculations as before just replacing , Ii } by
, f2}. Using the fact that the Poisson bracket is symmetric, we can do the same interverting
the indices 1, 2. So the function Ψ is well defined.

Let us consider x one of the 2n variables p, q, f ∈ K and P/Q a representant. We have
the classical formula

∂x

(
P

Q

)
= Q−1∂x P − P Q−2∂x Q

So adding elements of 〈I1, . . . , Ik〉 to P and Q corresponds to add in the determinant a lin-
ear combination of ∂x I1, . . . , ∂x Ik . The determinant being multilinear, this will not change
the value of the determinant because it contains the columns of the derivatives of Ii , i =
1, . . . , k. ��

One needs to be extremely cautious when manipulating these derivatives, because K is
not a differential field, so we cannot conclude directly that all notions we will need (Poisson
brackets, independence) are well defined. For example, the Jacobian matrix itself is not well
defined on K , only its sub-determinants of size n × n are. Remark that, in the following,
we will always consider a representant and will forget the field K , and so this complicated
definition will have no impact. This theorem is here to give a proper definition of integra-
bility on some particular level of first integrals, and this complicated presentation has some
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Non-integrability of n-body problems with non-zero angular momentum 325

advantage as it also includes all singular levels thanks to the prime ideal condition (we never
ask for example the first integrals Ii to be independent).

Definition 5 Let V be a homogeneous meromorphic potential of degree −1 in dimension
n ≥ 2. Let I1, . . . , Ik be meromorphic first integrals satisfying the hypotheses of Theorem
5. We say that V is meromorphically integrable on the manifold (I1, . . . , Ik) = 0 if there
exists F1, . . . , Fn−k ∈ K (K is defined as in Theorem 5) such that

{H, Fi } = 0 ∈ K ∀i {Ii , Fj } = 0 ∈ K ∀i, j {Fi , Fj } = 0 ∈ K ∀i, j

and such that at least one of the sub determinants of size n × n of the Jacobian matrix of
I1, . . . , Ik, F1, . . . , Fn−k is not 0 in K (this corresponds to the condition of independence
almost everywhere).

Remark 2 This definition of partial integrability implies the integrability of the differential
system restricted to ∩k

i=1 I −1
i (0) in the Bogoyavlensky sense (1998). Indeed in the case of

a partially integrable potential with Definition 5, the restricted corresponding differential
system is of dimension 2n − k, there are n − k first integrals Fi and n commutating vec-
tor fields given by J∇ Ii , i = 1, . . . , k, J∇Fi , i = 1, . . . , n − k (J is the matrix of the
canonical symplectic form). Moreover, for this broader definition of integrability, we have
the following generalization of Theorem 1.

Theorem 6 (Ayoul and Zung 2010) Assume that a dynamical system given by a holomor-
phic vector field X on a complex analytic variety M is meromorphically integrable in the
Bogoyavlensky sense, and let Γ ⊂ M a non-stationary solution of X. Then for any natural
number n ≥ 1, the identity component of the differential Galois group of the variational
equation of order n of X along Γ is Abelian.

Theorem 7 Let V �= 0 be a homogeneous meromorphic potential of degree −1 in dimension
n ≥ 2 and suppose it exists a non trivial first integral C of V of the form (3). Let us fix the
value of the Hamiltonian H = H0 �= 0 and C = C0 �= 0. If V is integrable on this manifold
of codimension 2, then V is integrable on the hypersurface C2 H = C2

0 H0.

Proof We consider the following transformation

ϕ C
2n −→ C

2n (p, q) −→ (αp, α−2q) (8)

We see that the transformation ϕ just multiplies the Hamiltonian H −→ α2 H , and this
does not change the integrability of H . Let us suppose that H be integrable on the manifold
(H, C) = (H0, C0). We have

H(ϕ(p, q)) = α2 H C(ϕ(p, q)) = α−1C (C2 H)(ϕ(p, q)) = C2 H

Then H is also integrable on the manifold (H, C) = (α2 H0, α
−1C0). We also have

⋃
α∈C∗

(
H−1(α2 H0) ∩ C−1(α−1C0)

) = {(p, q) ∈ C
2n, C(p, q)2 H(p, q) = C2

0 H0
}

because C2
0 H0 �= 0. This gives the theorem. ��

Remark 3 Using Noether theorem (a simple statement can be found in Sarlet and Cantrijn
1981), when a potential is invariant by rotation, we can build a first integral of the form (3).
We can see that the study of integrability on a specific manifold makes sense only if this man-
ifold is invariant by ϕ, because if it is not the case, then our potential will be integrable on a
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326 T. Combot

manifold with higher dimension. Remark that the ideals 〈C −C0, H − H0〉, 〈C2 H −C2
0 H0〉

are always prime for C2
0 H0 �= 0 and V �= 0, so integrability on these manifolds is well

defined, contrary to the case 〈C2 H〉 which will need to be split in two parts 〈C〉, 〈H〉.

3 Integrability table

Theorem 8 Let V be a homogeneous meromorphic potential of degree −1 in dimension
n ≥ 2 and G its symmetry group. We consider c a Darboux point of V with ‖c‖�= 0 and
multiplier −1, and E an eigenspace of ∇2V(c). Suppose it exists G̃ a subgroup of G such
that P = G̃c is a plane and that E is invariant by G̃. Considering an “angular momentum”
whose restriction to P is the canonical angular momentum on P, if V is meromorphical-
ly integrable (respectively on some specific level (H0, C0) ∈ C

2 of the Hamiltonian and
“angular momentum”), then the following equation possesses a Galois group whose identity
component is Abelian (respectively for the parameters (H, C) = ‖c‖−2(H0, C0))

t (−C2 + 2t + 2Ht2)Ẍ + (−t + C2)Ẋ = λX H, C, λ ∈ C (9)

where λ is the eigenvalue of ∇2V(c) associated to the eigenspace E.

Proof This is a direct application of Theorem 4. We have a plane P = G̃c and all vectors in
this plane are Darboux points. The potential restricted to this plane is invariant by rotation
(because G̃ is a subgroup of the symmetry group of V ). On the eigenspace E , the matrix
∇2V(c) corresponds to λIdE . Moreover we know that the space E is invariant by the rotations
Rθ(t) which correspond to elements of G̃. Thus we have

R−1
θ(t)∇2V(c)Rθ(t)

∣∣∣
E

= λIdE

So the Eq. (4) on the eigenspace E simplifies and becomes Eq. (9). The condition on the
Galois group of Eq. (9) comes either from Theorem 1 in the case of complete integrability,
or from Theorem 6 in the partially integrable case (in this case X is the Hamiltonian vector
field restricted to the level (H0, C0), and the manifold M is an open neighbourhood of the
conic orbit on this level). ��
Remark 4 The Theorem 8 has lots of hypotheses, but in fact only one of them is really
restrictive. The existence of an invariant plane G̃c on which the potential is invariant by
rotation is common in practical cases. This often results from the symmetry of the system.
This is for example always the case in the n-body problem. The restrictive condition is the
existence of E invariant by G̃. In fact, this is a condition very similar to the codiagonaliza-
tion constraint that Maciejewski–Przybylska found when studying potentials which are the
sum of two homogeneous potentials. In fact, a potential invariant by rotation in dimension
n can also be reduced to become a potential in dimension n − 1 which will be a sum of a
homogeneous potential and the potential C2/r2. This new potential is not homogeneous and
our condition corresponds to the commutation of the Hessian matrices (at least on some non
trivial subspace).

Theorem 9 The differential equation (9) is a Fuchsian equation with 4 singularities, of Heun
type (Ronveaux 1995). The Galois group is SL2(C) except if the values of (C, H, λ) belong
to the Table 1.

Proof We first remark that in the case H = C = 0, Eq. (9) simplifies to

2t2 Ẍ − t Ẋ = λX
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Non-integrability of n-body problems with non-zero angular momentum 327

which always has an Abelian Galois group. Thus from now we will suppose (H, C) �= (0, 0).
Using a linear variable change t −→ αt in Eq. (9), we get the following equation

t (2Hα2t2 + 2αt − C2)Ẍ − (αt − C2)Ẋ = αλX (10)

For C2 H �= 0, we can choose α = (
√

1 + 2C2 H − 1)/(2H) which gives the equation

2t (t − 1)
((

1 −
√

1 + 2C2 H + C2 H
)

t + C2 H
)

Ẍ

+
((

1 −
√

1 + 2C2 H
)

t + 2C2 H
)

Ẋ =
(
−1 +

√
1 + 2C2 H

)
λX

(11)

We begin by the case C2 H �= −1/2. The Eq. (11) has exactly 4 regular singularities on

0, 1,
C2 H

γ − 1 − C2 H
,∞

where γ = √
1 + 2C2 H . We make Frobenius expansion on these 4 singularities, and we

find a logarithmic term for t = 0 and for t = ∞. More precisely, we get

X (t) = c1t2
(

1 − (λ − 2)(γ − 1)

6C2 H
t + O(t2)

)

+ c2

(
ln t

(
λ(1 + λ)(1 − γ + C2 H)

2C4 H2 t2 + O
(
t3)
)

− 2 − (γ − 1)λ

C2 H
t + O(t2)

)

X (t) = c1

(
1+ (γ − 1)λ

4(1 − γ + C2 H)t
+O

(
1

t2

))
+c2

(
ln t

(
(1 + λ)(γ − 1)

2(1 − γ + C2 H)
+ O

(
1

t

))

−t

(
1 − (γ − 1)

2(1 − γ + C2 H)t
+ O

(
1

t2

)))

These expansions are valid for λ �= −1, 0. In the case λ = −1, we can compute explicitly
the solutions and we find

X (t) = c1 (t − γ − 1) + c2

√
(t − 1)

(
γ + 1 + C2 H(t + 1)

)

The Galois group is then Z/2Z, Abelian. In the case λ = 0, we find the solution

X (t) = c1 + c2

√
(t − 1)(2t − 2tγ + 2C2 H(t + 1))

+ c2 ln

(
−1 − tγ + t +

√
(t − 1)(2t − 2tγ + 2C2 H(t + 1))

)

The identity component of the Galois group is then C, thus Abelian. Let us consider the case
λ �= −1, 0. Among the three solvable cases of Kovacic’s algorithm (Kovacic 1986), the only
possible one with a logarithmic term requires the existence of a solution of the form

X (t) = exp

(∫
F(s)ds

)
F ∈ C(t)

If F has singularities of order more than 2 then X does not have a Puiseux expansion near
this singularity. This is impossible because all singularities are regular. If the degree of F is
positive, then the expansion at infinity is not a Puiseux series. Then the particular solution
X (t) should be of the following form

X (t) =
k∏

i=1

(t − ti )
mi
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If mi is not a non-negative integer, then ti is a singularity of X and equals to one of the sin-
gularities of the equation. This gives even more constraints on the mi because the Frobenuis
exponents on 1, C2 H/(γ − 1 − C2 H) are 0, 1/2. On 0, the possible exponent is 2, and on
infinity it is 0 (the other ones correspond to the logarithmic behavior). This implies that the
sum of the mi is zero. The mi being all non-negative, all of them are zero. The only left
possibility is then X (t) = 1. We replace in Eq. (11) and we find λ = 0, case already done.
Then the Galois group is SL2(C).

The cases C = 0, H = 0, C2 H = −1/2 correspond to confluences. These confluences
are all regular (this has probably something to do with the fact that the system comes from a
variational equation of a Hamiltonian system). The case C = 0 has already been treated by
Yoshida (1987) and Morales Ruiz (1999). Let us study the case H = 0. This corresponds to
the parabolic case (some study of this case has already been done by Tsygvintsev (2001)).
Putting α = C2/2, Eq. (10) becomes

2t (t − 1)Ẍ − (t − 2)Ẋ = λX

There is a logarithmic term for the singularity t = 0

X (t) = c1t2
(

1 +
(

1

3
− 1

6
λ

)
t + O(t2)

)

+ c2

(
ln t

((
1

4
λ2 + 1

4
λ

)
t2 + O(t3)

)
− 2 − λt −

(
1

2
λ + 1

4

)
t2 + O(t3)

)

for λ �= 0,−1. In the cases λ ∈ {0,−1}, we find the solutions

X (t) = c1 + c2
√

t − 1(2 + t) X (t) = c1(t − 2) + c2
√

t − 1

The Galois group is then Z/2Z in both cases, then Abelian. We now look at the caseλ �= 0,−1.
The possible exponents are {2} at 0, {0, 1/2} at 1 and

{
−3

4
+ 1

4

√
8λ + 9,−3

4
− 1

4

√
8λ + 9

}

at ∞. As before, we prove that we need a solution of the form

X (t) =
k∏

i=1

(t − ti )
mi

All possible exponents outside infinity are integers or half integers, non-negative, thus the
sum of the mi is a non-negative integer or half integer. Then

−3

4
+ 1

4

√
8λ + 9 = 1

2
(k − 1) k ∈ N

∗

We solve this equation and we find

λ = 1

2
(k − 1)(k + 2) k ∈ N

∗

This is exactly the condition of Theorem 9. We now want to compute the Galois group for
these remaining cases. We write the solutions of the equation in the following form (it is a
hypergeometric equation, and the solutions can be written using hypergeometric series 2 F1)
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X (t) = c1 2 F1

([
1 − 1

2
k,

1

2
k + 3

2

]
,

[
1

2

]
,−t + 1

)
t2

+ c2 2 F1

([
2 + 1

2
k,

3

2
− 1

2
k

]
,

[
3

2

]
,−t + 1

)√
t − 1t2

These hypergeometric series are finite if the first bracket in 2 F1 contains a non-positive inte-
ger. For k ≥ 2, we see that either 1 − 1

2 k or 3
2 − 1

2 k is a non-positive integer. Then one of
the two functions is a polynomial. We always have a solution in C[t, √t − 1], and then the
identity component of the Galois group is Abelian.

Let us now study the case C2 H = −1/2. The Eq. (11) becomes

−t (t − 1)2 Ẍ − (t − 1)Ẋ = λX

The expansion on 0 is the following

X (t) = c1t2
(

1 +
(

1

3
− 1

6
λ

)
t +
(

1

96
λ2 − 11

96
λ + 3

16

)
t2 + O(t3)

)

+ c2

(
ln t

((
1

4
λ2 + 1

4
λ

)
t2 + O(t3)

)
− 2 − λt −

(
1

2
λ + 1

4

)
t2 + O(t3)

)

and possesses a logarithmic term for λ �= 0,−1. The expansion at infinity is

X (t) = c1

(
1 − λ

2t
+ λ(λ − 5)

12t2 + O(t−3)

)

+ c2

(
ln t

(
λ + 1 − λ(λ + 1)

2t
+ O(t−2)

)
+ t + 1 − 4 + 11λ + 3λ2

4t
+ O(t−2)

)

Then there is always at least one logarithmic term for λ �= −1. Remark that we already
know that this equation has an Abelian Galois group for λ = 0,−1 (either using the limiting
process of the generic solution for all C , or running Kovacic’s algorithm for these specific
cases). So now we will suppose that λ �= 0,−1. We know that if the Galois group is not
SL2(C), then it exists a solution of the form

X (t) = exp

(∫
F(s)ds

)
F ∈ C(t)

The equation is Fuchsian and then X (t) can be written

X (t) =
k∏

i=1

(t − ti )
mi

The mi need to be non-negative integers except maybe at singularities. The exponents at 1
are +√−λ,−√−λ. Then one of the following equation is satisfied

2 + √−λ + k = 0 or 2 − √−λ + k = 0 k ∈ N

Then

λ = −(k + 2)2 k ∈ N

We add the cases λ = 0,−1 and this gives exactly the condition given by Theorem 9. We
now need to compute the Galois group for these specific cases. We write the solutions of
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the equation in the following form (it is a hypergeometric equation, and the solutions can be
written using hypergeometric series)

X (t) = c1 2 F1

([
2 − i

√
λ, 1 − i

√
λ
]
,
[
1 − 2i

√
λ
]
, 1 − t

)
t2(t − 1)−i

√
λ

+ c2 2 F1

([
1 + i

√
λ, 2 + i

√
λ
]
,
[
1 + 2i

√
λ
]
, 1 − t

)
t2(t − 1)i

√
λ

These hypergeometric series are finite if the first bracket in the hypergeometric series 2 F1

contains a non-positive integer. We see that for λ = −k2 k ∈ N
∗, it is the case for the

solution in c1. There is always a polynomial solution and then the Galois group is always
Abelian. ��

Remark that such a work can also be done using the classification of hypergeometric
equation which are solvable by quadrature in Kimura (1969).

4 Algebraic potentials

In the following sections, we will often need to consider algebraic potentials instead of mero-
morphic ones. This is a problem because Theorem 2 deals only with meromorphic potentials.
This problem is often not addressed, except in Ziglin (2000), but in fact his procedure does
not work. This is because making cuts in the complex plane does not allow afterwards to
make all possible monodromy paths. Then, the monodromy group will be reduced. It could
have no consequences, but here there are important consequences because we absolutely
need to be able to turn around the point 0 in the variational equation (this is because for the
two other singularities, the exponents are 0, 1/2, thus if we restrict ourselves to these ones,
the monodromy group will always be Abelian). Let us now make a precise statement

Definition 6 Let V be a meromorphic function on an algebraic complex manifold S of
dimension n. We define the critical set of V by

Σ(V ) = {x ∈ S, V is not C∞ on x}
Theorem 10 Let V be a meromorphic homogeneous potential of degree −1 on an algebraic
complex manifold S of dimension n ≥ 2 and G its symmetry group. We consider c /∈ Σ(V )

a Darboux point of V with ‖c‖�= 0 and multiplier −1, and E an eigenspace of ∇2V(c).
Suppose it exists G̃ a subgroup of G such that P = G̃c is a plane and that E is invariant by
G̃. Considering an “angular momentum” whose restriction to P is the canonical angular
momentum on P, if V is integrable (respectively on some specific level (H0, C0) ∈ C

2 of
the Hamiltonian and “angular momentum”) with first integrals meromorphic on S, then the
identity component of the Galois group of Eq. (9) is Abelian (respectively for the parameters
(H, C) = ‖c‖−2(H0, C0)).

Proof This is almost the statement of Theorem 8, and the only difference is that we consider
V on an algebraic complex manifold S. We know that V is homogeneous and invariant by
G̃, then so is the critical set Σ(V ) ⊂ S. Therefore, if c /∈ Σ(V ), then the whole conic orbit
is not in Σ(V ) except maybe for q = 0. Noting Γ the algebraic curve corresponding to the
conic orbit (without the singular point q = 0), we pose M ⊂ S an open neighbourhood of Γ

on which the potential is holomorphic (recall that for each x ∈ S \Σ(V ), V is holomorphic
on a neighbourhood of x). The first integrals of V are meromorphic on S, and so are mero-
morphic on M . We can then apply Theorem 1 with the manifold M (respectively Theorem
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6 with X the Hamiltonian vector field of H restricted to the level (H0, C0) and M restricted
to this level). Following the proof of Theorem 8, Eq. (9) is the variational equation near Γ

restricted to the eigenspace E , and so has a virtually Abelian Galois group.
To conclude, we now need to precise that the Galois group in Theorems 1, 6 is over the

field of meromorphic functions on Γ , which corresponds after variable change to meromor-
phic functions in t,

√
2E − C2t−2 + 2t−1, t �= 0. As Morales and Ramis using Kimura

table Kimura (1969) have done, we are in fact computing the Galois group of (9) over the
base field C(t). This is not a problem here because in all cases, the variational equation (9)
is Fuchsian and so is regular at zero and infinity, and then so are the first integrals. We know
that a meromorphic function on C̄ is in fact rational, so the field we should consider is in fact

C

(
t,
√

2E − C2t−2 + 2t−1
)

This is just an extension of degree 2 of the field C(t), so the identity component of the Galois
group will be the same.

5 The case of dimension 3

In the particular case of dimension 3, we get

Theorem 11 Let V be a potential meromorphic in
√

x2 + y2,
√

x2 + y2 + z2, z2 and homo-
geneous of degree −1 in dimension 3 (this implies that the symmetry group of V contains
Z/2Z × O2). Suppose that V (1, 0, 0) �= 0,∞. If V is meromorphically integrable, then it
belongs to one of the following families

V = a√
x2 + y2 + z2

a ∈ C
∗ V = b√

x2 + y2
b ∈ C

∗ (12)

This theorem is almost the best we can have (with a reasonable statement). To apply our
previous theory, we need an invariant plane on which the potential is invariant by rotation.
Such an invariant plane comes here from the symmetry in z. The constraint V (1, 0, 0) �= ∞
cannot be removed, but the constraint V (1, 0, 0) �= 0 could maybe be removed with a lot of
additional work. There are two keys which allow us to give such a complete statement, which
are the fact that the decoupling condition is always satisfied, and then that the potential
can be reduced on a plane for which an almost complete classification is already done in
arXiv:1110.6130 (for a finite number of eigenvalues).

Proof The potential V possesses a symmetry group G such that

G ⊃
〈⎛
⎝

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

⎞
⎠ ,

⎛
⎝

1 0 0
0 1 0
0 0 −1

⎞
⎠
〉

We consider P the plane z = 0. This is an invariant plane because ∂z V (x, y, 0) = 0 thanks
to parity in z. Using the hypotheses, the restriction of V to the plane P is not zero or infinite.
Therefore the point c = (1, 0, 0) is a non degenerated Darboux point. The matrix ∇2V(c)
contains a stable subspace of dimension 2 associated to P . Then the supplementary space
generated by the vector (0, 0, 1) is also an eigenspace. The rotation group generated by the
rotations around the z-axis let the vector (0, 0, 1) invariant. The conditions of Theorem 10
are satisfied and the “vertical” (normal to the plane P) variational equation is then

t (−C2 + 2t + 2Et2)Ẍ + (−t + C2)Ẋ = ∂zz V (c)X
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This equation is integrable for all values of C only if

∂zz V (c) ∈ {0,−1}
with c with multiplier equal to −1. We now restrict our potential to the plane P̃ : y = 0.
The potential V is invariant by rotation around the z-axis, then P̃ is an invariant plane and
we consider the restriction Ṽ : P̃ �→ C̄.
The restriction of the function

√
x2 + y2 to y = 0 gives a bivaluated function whose values

are +x or −x . We can choose either for the restriction Ṽ (because Ṽ should be integrable
for both possibilities anyway), and we choose arbitrary

√
x2 + y2

∣∣∣∣
y=0

= x

The function Ṽ (x, z) is then meromorphic in x,
√

x2 + z2, z. It possesses a Darboux point
c = (1, 0), and it is non degenerated. There are only two possible eigenvalues for the Hessian
matrix on this Darboux point, and so we have a complete classification of such integrable
potentials. Then, applying the symmetry group, we find that if V is meromorphically inte-
grable, then it should be of the form (12). These potentials effectively possess an additional
first integral, respectively I = pz x − px z and I = pz , which are functionally independent
with the Hamiltonian and the canonical angular momentum px y − py x . ��

Remark 5 We can see here the importance of the symmetry group structure in the study of
integrability. Here, the vertical variational equation is simple because in dimension 3, a group
of rotations (except SO3) always possesses a common eigenvector. This is no more the case
in dimension 4 and higher. In particular, the complexity of the variational equation is closely
linked to the symmetry group, and if it is too complicated, we will need additional proper-
ties on the matrix ∇2V (c). As we will see afterwards, in the n-body problem, an explicit
decoupling condition appear because the symmetry group contains the rotations

Rθ =
(

cos θIn − sin θIn
sin θIn cos θIn

)

and this group does not possess a common eigenvector of eigenvalue 1.

Now we can wonder whether the Theorems 8, 9, 10 are really “useful” and not only purely
theoretical possibilities without any examples. Does it exist effectively some potentials that
would be integrable only for a specific energy and value of an “angular momentum”? Using
Hietarinta’s (1983) direct method and then our non-integrability approach, we find the fol-
lowing potentials (the second one probably being new).

Theorem 12 We consider the potentials

V1 =
√

x2 + y2

x2 + y2 − z2 V2 = x2 + y2 + z2

(x2 + y2)3/2 (13)

The potential V1 is integrable for zero canonical angular momentum C = px y − py x = 0,
but not on any other hypersurface C2 H = α, α ∈ C

∗ (the question about integrability on
H = 0 is still open).
The potential V2 is integrable on the hypersurface H = 0 of zero energy, but neither on any
other hypersurface C2 H = α, α ∈ C

∗, nor on the hypersurface C = 0.
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Proof The first integral of V1 is given by

I1 = (xpx + ypy)pz√
x2 + y2

− z

x2 + y2 − z2

The potential V1 possesses a Darboux point (1, 0, 0), and the associated eigenvalue is λ = 2.
Using the integrability Table 1, this value is the only possible one for the hypersurfaces
C = 0 and H = 0. Then V1 is not meromorphically integrable on any hypersurface of the
form C2 H = α, α ∈ C

∗.
The first integral of V2 is given by

I2 = (x2 + y2 − z2)2 p2
z − 4z(x2 + y2 − z2)pz(xpx + ypy) + 4z2(xpx + ypy)

2

The potential V2 possesses a Darboux point (1, 0, 0), and the associated eigenvalue is λ = 2.
Using the integrability Table 1, this value is the only possible one for the hypersurfaces C = 0
and H = 0. We know it is integrable for H = 0. Suppose it is integrable for C = 0. Then,
we could reduce the potential by rotation and we would obtain the following potential (on
the plane y = 0)

Ṽ2 = x2 + z2

x3

This potential possesses a Darboux point (1, 0) and the associated eigenvalue is λ = 2. But
in this case, it already has been proved that the potential should belong to one of the following
families (after rotation)

V = a

x
+ b

z
a, b ∈ C

∗ V = a(x2 + z2)

(x + εi z)3 + a

x + εi z
a ∈ C

∗, ε = ±1 (14)

The second case is impossible because it is always complex. For the first one, we apply a
rotation to Ṽ2 of angle θ

Ṽ2θ = x2 + z2

(cos(θ)x + sin(θ)z)3

and this never coincide with expression (14). Then V2 is not integrable on the hypersurface
C = 0. ��

6 Application to the n-body problem

We consider V the potential of the n-body problem in the plane

V =
∑
i> j

mi m j

‖qi − qj‖ (15)

with positive masses mi , qi ∈ C
2. The symmetry group is (at least)

G =
〈(

cos θIn − sin θIn
sin θIn cos θIn

)
, θ ∈ C

〉

Let c be a Darboux point with multiplier −1 and such that ‖c‖2 �= 0. Then Gc is a plane and
inside this plane we can build a conic orbit (by definition, the mutual distances between the
bodies are not zero). For the following, we will pose
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Wi, j = 1

mi

(
∇2V(c)

)
i, j

W ∈ M2n(C) (16)

using notation mi+n = mi . Remark for the following that the potential of the n-body problem
as given by (15) is not reduced at all. This means in particular that the kinetic part is

n∑
i=1

‖pi‖2

2mi

and so does not correspond exactly to the case we studied before. Still, it is almost the same
and we just have to make a variable change pi −→ pi

√
mi . The matrix ∇2V(c) becomes

notably the matrix given by (16).

6.1 General properties

Definition 7 Let V be the potential of the n-body problem with positive masses mi , c a
Darboux point with multiplier −1. We will say that the variational equation near a conic
orbit is partially decoupled if it exists a non trivial vector space Ṽ and λ ∈ C such that

Wv = λv ∀v ∈ Ṽ

and Ṽ is stable by the rotations

Rθ =
(

cos θIn − sin θIn
sin θIn cos θIn

)

Remark 6 This definition corresponds exactly to the existence of a non trivial eigenspace E
satisfying Theorem 10.

Theorem 13 Let V be the potential of the n-body problem with positive masses mi , c a
Darboux point with multiplier −1 and W ∈ M2n(C) the associated matrix (given by Eq. 16).
The variational equation near a conic orbit is partially decoupled if and only if it exists a
vector v ∈ C

2n \ {0} and λ ∈ C such that

Wv = J−1WJv = λv (17)

where J ∈ M2n(C) is matrix of the canonical symplectic form.

Proof Suppose at first that v is not an eigenvector of Rθ (these matrices commute so they
have the same eigenvectors). We just have to take Ṽ = Span(v, Jv) because the space gener-
ated by Rθ v, ∀θ is a 2-dimensional space which contains v, Jv (Ṽ is always 2-dimensional
because v is not an eigenvector of J = Rπ/2). Using the hypotheses, v and Jv are eigenvec-
tors of W with the same eigenvalue, so Ṽ is an eigenspace of W stable by the rotations Rθ .
If v is an eigenvector of Rθ , then we take Ṽ = C.v and Ṽ is an eigenspace of W stable by
the rotations Rθ .
Conversely, if we have an eigenspace Ṽ stable by the rotations Rθ , we take any vector v ∈ Ṽ
and it satisfies (17) because J = Rπ/2 and then Jv ∈ Ṽ , and so it is likewise an eigenvector
of eigenvalue λ. ��
Theorem 14 Let V be the potential of the n-body problem with positive masses mi , c a
Darboux point with multiplier −1 and W ∈ M2n(C) the associated matrix (given by Eq. 16).
If the variational equation near a conic orbit is partially decoupled then the matrix W of
(16) has a double eigenvalue.
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Proof If dim(Ṽ ) ≥ 2 then by definition the matrix W has a double eigenvalue. Let us con-
sider the case dim(Ṽ ) = 1. The corresponding vector has to be a common eigenvector of J
and W. The eigenvectors J are of the form (w, iw), w ∈ C

n . In particular, they have zero
“norm”. But if W has only simple eigenvalues, then it is diagonalizable, so diagonalizable
in an orthonormal complex basis (this is a small linear algebra proof done in Craven (1969)
Theorem 1, 3). So if W has an eigenvector with zero “norm”, then this eigenvector is a linear
combination of two eigenvectors and this implies the existence of an eigenspace of dimension
≥ 2, so a double eigenvalue. ��
Theorem 15 Let V be the potential of the n-body problem with positive masses mi , c a
Darboux point with multiplier −1 such that the bodies are aligned and W ∈ M2n(C) the
associated matrix (given by Eq. (16)). We suppose that W is diagonalizable. Then the vari-
ational equation near a conic orbit has a Galois group G such that

G ∼ G̃ with G̃ ⊂ C × Sp(2)n−2

where Sp(2) is the 4 dimensional symplectic group.

Proof For an aligned Darboux point, we have the following property (found by direct com-
putation)

W =
(

A 0
0 − 1

2 A

)
J−1WJ =

(− 1
2 A 0
0 A

)
(18)

Then W and J−1WJ commute. Then it exists a common eigenvector basis of W and J−1WJ.
Then there exists a decomposition of C

2n in spaces Vi of dimension 2 with the Vi stable by
rotations Rθ . We can then write the variational equation under the following form

t (−C2 + 2t + 2Ht2)Ẍ + (−t + C2)Ẋ = R−1
θ(t)AiRθ(t)X i = 1 . . . n

with Ai a 2×2 matrix (we can choose Ai diagonal after a basis change). Among the matrices
Ai, there is one corresponding to the motion of the center of mass and this gives A1 = 0.
There is also a matrix corresponding to the Hamiltonian and total angular momentum (which
are first integrals), and this corresponds to A2 = diag(2,−1). The other matrices do not have
a priori special properties. Then the Galois group for the cases i = 1, 2 is C, and for the
others, it is at most Sp(2). ��
Theorem 16 Let V be the potential of the n-body problem with positive masses mi , c an
aligned Darboux point with multiplier −1 and W ∈ M2n(C) the associated matrix (given
by Eq. (16)). The variational equation near a conic orbit is partially decoupled if and only
if det(W) = 0.

Proof For an aligned Darboux point, we have the equalities (18). We pose v = (w1, w2). If
v is an eigenvector of W, then w1 is an eigenvector of A and − 1

2 A with the same eigenvalue.
Then det(A) = 0. Conversely, if det(W) = 0, then it exists an eigenvector w of eigenvalue
0 of A, and then v = (w, w) is admissible. ��
6.2 The 3-body problem and some specific cases

We already know that in all cases, the matrix W should have a double eigenvalue. Our
approach will be the following. We search masses and Darboux points such that W has a
double eigenvalue. Then for the corresponding eigenvector v, there are two possibilities.
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– Either Jv is also an eigenvector of W with the same eigenvalue. This corresponds to the
case where the associated eigenspace is of dimension ≥ 2.

– Or v can be written v = (w, iw), and the matrix W is not diagonalizable.

For the aligned case, it is easier because we just have to look at the determinant. But in fact
for the real ones, there is no zero eigenvalue if the Darboux point is real (this is due to the
result of Pacella 1987), so we need to look at complex cases. But, even there, this constraint
is much stronger than expected. We find the following theorem

Theorem 17 Let V be the potential of the 3-body problem with positive masses m1, m2, m3

such that m1 + m2 + m3 = 1. Then V possesses a Darboux point such that the variational
equation near a conic orbit is partially decoupled if and only if

(m1, m2, m3) =
(

1

3
,

1

3
,

1

3

)
,

(
1

7
,

5

7
,

1

7

)
,

(
1

4
+

√
21 +

√
126 + 42

√
21

84
,

1

2
−

√
21

42
,

1

4
+

√
21−

√
126 + 42

√
21

84

)

(19)

or permutation of these cases.

Proof Let us begin with aligned case. After renormalization, we can take c = (−1, 0, ρ)

with ρ �= 0,−1 and we have the Euler quintic equation

L = (−m1 − m2) ρ5 + (−3m1 − 2m2) ρ4 + (−3 m1 − m2) ρ3

+ (3m3 + m2) ρ2 + (3m3 + 2m2) ρ + m2 + m3 = 0

We search the eigenvalues of W, and we find that det(W) = 0 if and only if

2ρ2 + 3ρ + 2 = 0

After taking the resultant, we have

Res(2ρ2 + 3ρ + 2, L , ρ) = 7m2
2 − 35m1m2 − 35m2m3 + 56m2

1 + 63m1m3 + 56m2
3

We want this resultant to vanish, and the only possibility for real positive masses is

(m1, m2, m3) =
(

1

7
,

5

7
,

1

7

)

We can permute the masses in the equation and this gives all the possible permutations of this
solution. But there is still a “complex order” and the corresponding potential is the following

V = m1m2

q1 − q2
− m1m3

q1 − q3
+ m2m3

q2 − q3

The Darboux point equation leads to

L = (−m1 − m2) ρ5 + (−3 m1 − 2 m2) ρ4 + (−3 m1 + 2 m3 − m2) ρ3

+ (−2 m1 + 3 m3 + m2) ρ2 + (3 m3 + 2 m2) ρ + m2 + m3 = 0

The eigenvalues of W never vanish in this case. Let us look now at the Lagrange configuration.
For complex coordinates, this corresponds to the case

r3
1 = r3

2 = r3
3
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where r1, r2, r3 are the mutual distances between the bodies. We begin by the case r1 = r2 =
r3. We need a double eigenvalue and we find the condition

3m2
2 − 3m2m3 − 3m1m2 + 3m2

3 − 3m1m3 + 3m2
1 = 0

whose unique solution is

(m1, m2, m3) =
(

1

3
,

1

3
,

1

3

)

We check that the associated eigenspace of eigenvalue 1/2 is invariant by J, and it is the case.
Let us look now at the complex cases. Among the 27 − 1 possibilities lots of them are in fact
the same after dilatation-permutation. After these reductions, we find that there are only 3
essentially different cases

(r1, r2, r3) = (1, 1, j), (1, 1, j2), (1, j, j2) j = e
2iπ

3

The last one is also an aligned Darboux point (it is both Lagrange and Euler configuration),
therefore it has already been treated. First we search for masses such that W has a double
eigenvalue. We find for (1, 1, j) and (1, 1, j2) a single real positive solution, which is the last
one of (19). This is the same for both Darboux points because they are conjugated. We look at
the corresponding eigenspace (the double eigenvalue is 1/2), and we find that the eigenspace
is only 1-dimensional. This is not enough for the case dim(Ṽ ) ≥ 2. In the case dim(Ṽ ) = 1,
we know that W should be non-diagonalizable. Moreover, the eigenvector should be of the
form v = (w, iw). We check these properties and they are satisfied. ��
Remark 7 The last case of (19) is very interesting for many reasons. We can study the varia-
tional equations and we see that the structure of the equations is not so degenerated as in the
other cases. Because of this, a far deeper analysis should be possible. For example, another
notion of partial integrability is considered in Maciejewski et al. (2007), Morales-Ruiz and
Simon (2009) about the existence of a single additional first integral. For this last masses
case, the two notions could probably be fused together to prove the non existence of a sin-
gle additional first integral restricted to a single level of the Hamiltonian and total angular
momentum. This is because the variational equation on the characteristic space associated
to the eigenvalue 1/2 is simple enough to allow complete study, but is not trivial. Moreover,
the fact that these masses do not possess any symmetry will avoid to consider special invari-
ant sub manifold as the isosceles 3-body problem in, for example, the complete search of
algebraic invariant manifold for the 3-body problem with these masses.

Theorem 18 (see Corbera et al. 2009 for examples) We consider V the potential of the n
body problem in the plane with positive masses, and c a real central configuration such that
there exists a rotation

Rθ , θ /∈ {kπ, k ∈ Z}
in the plane which sends the configuration on itself (conserving also the masses). Then the
matrix W(c) has a double eigenvalue and the associated eigenspace is of dimension ≥ 2.

Proof Let Rθ be a rotation such that θ /∈ {kπ, k ∈ Z} which sends the configuration c on
itself and conserves the masses. We pose W(c) as in (16) and we have then the identities

W(Rθ c) = R−θ W(c)Rθ W(Rθ c) = W(Pc) = P−1W(c)P
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with P a permutation matrix (the rotation conserves the configuration and the masses of the
bodies, but not the numeration of the bodies). Then

W(c) = (Rθ P−1)−1W(c)Rθ P−1

Let v be an eigenvector of W(c). Then Rθ P−1v is also an eigenvector with the same eigen-
value. We just have to prove it is not the same. We can write in a good basis

Rθ =
(

cos θIn − sin θIn
sin θIn cos θIn

)
P =

(
Pσ 0
0 Pσ

)

with Pσ a permutation matrix. We find then that P and Rθ commute. We know that the
rotation Rθ is of finite order (because there are only a finite number of bodies and that the
configuration is real). Then θ = 2π/k with k ∈ N

∗, and k ≥ 3. The matrix P is then also of
order k.

Let us consider the body number i with coordinates qi . We look at the orbit Rθ
j qi , j =

0, . . . , k − 1. This orbit contains either k elements or a single one (and this case could only
happen once, for a body placed on the center of mass). We conclude that the permutation
matrix should be of the following form

Pσ =

⎛
⎜⎜⎝

T 0 . . . 0
0 . . . 0 0
0 . . . T 0
0 . . . 0 Id

⎞
⎟⎟⎠ orPσ =

⎛
⎜⎜⎝

T 0 . . . 0
0 . . . 0 0
0 . . . T 0
0 . . . 0 T

⎞
⎟⎟⎠ with T =

⎛
⎜⎜⎝

0 1 . . . 0
0 0 1 0
0 . . . 0 1
1 0 . . . 0

⎞
⎟⎟⎠

We conclude that the matrix Rθ P can be diagonalized in the form

Rθ P ∼ diag

(
eiθ , e−iθ ,

(
ei( j+1)θ , . . . , ei( j+1)θ , ei( j−1)θ , . . . , ei( j−1)θ

)
j=0..,k−1

)

or Rθ P ∼ diag

((
ei( j+1)θ , . . . , ei( j+1)θ , ei( j−1)θ , . . . , ei( j−1)θ

)
j=0..,k−1

)

We know that the masses are positive and that the Darboux point is real, then all eigenvectors
v of W(c) are real. Suppose that W(c) does not have any eigenspace of dimension ≥ 2. Then
all its eigenvectors are eigenvectors of Rθ P. As Rθ P is real, if v is a real eigenvector of Rθ P,
then the associated eigenvalue is real and so the associated eigenvalue is ±1. This would
mean that

Sp(Rθ P) ⊂ {−1, 1}
This is impossible because k ≥ 3.

6.3 The equal masses case

Theorem 19 Let V be the potential of the n-body problem in the plane with equal masses,
c the Darboux point given by the following

ci = α cos

(
2π(i − 1)

n

)
ci+n = α sin

(
2π(i − 1)

n

)
i = 1, . . . , n

where α is such that the multiplier equals to −1. Let v be the vector given by

vi = cos

(
4π(i − 1)

n

)
vi+n = sin

(
4π(i − 1)

n

)
i = 1, . . . , n
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Then (17) is satisfied with

λ = 2 − 2 sin
(

π
n

)

1 − cos
(

π
n

)
⎛
⎝

n−1∑
j=1

1

sin
(

π j
n

)
⎞
⎠

−1

(20)

Proof The proof is only a direct computation of the matrix W and then of Wv and the use
of (lots of) trigonometric formulas. ��
We can now eventually prove Theorem 3.

Proof Using Theorem 9, one just need to avoid specific values for λ. We will then build a
majoration and minoration for λ given by formula (20). First of all, we remark that for n ≥ 3

2 sin
(

π
n

)

1 − cos
(

π
n

)
⎛
⎝

n−1∑
j=1

1

sin
(

π j
n

)
⎞
⎠

−1

> 0

Then λ < 2. Let us prove now that λ > 0. First we prove the following inequality

sin(z) <
1

sin(z)
∀z ∈]0, π/2[∪]π/2, π[

and we compute the formula

sin
(

π
n

)

1 − cos
(

π
n

) =
n−1∑
j=1

sin

(
π j

n

)

Using both of them, this gives for n ≥ 3

sin
(

π
n

)

1 − cos
(

π
n

) <

n−1∑
j=1

1

sin
(

π j
n

)

So we get that λ > 0. Using the integrability table of Theorem 9, there are no exceptional
values in ]0, 2[. ��

The case C2 H = 0 is special. In this case, we have either C = 0 or H = 0 (or both).
The case H = 0 corresponds to parabolic orbits. These orbits are used by Tsygvintsev in
Tsygvintsev (2001), and he solves the case for 3 bodies with equal masses (he also studies the
existence of a single additional first integral in Tsygvintsev (2007) that we do not consider).
In the case of C = 0, the problem is solved by Morales-Ruiz and Simon (2009) for the n
equal masses. Our reasoning is also valid for all these cases.

Remark 8 The only left case is H = C = 0. Here, the variational equation is always inte-
grable and in fact it is always the case at all orders. This is linked to the fact that we can
reduce the system using homogeneity and rotation, allowing to diminish the dimension of
4. We obtain then a “direction” field (we loose notion of time after reduction, but not the
integrability notions) on a manifold of dimension 4n−8. This, however, destroy Hamiltonian
structure, and moreover, the Darboux points correspond now to fixed points of this field. One
would need a new particular orbit (explicit) to apply Morales-Ramis method, but no such
orbit is known.
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