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Abstract

We study a kinetic toy model for a spray of particles immersed in an ambient fluid,
subject to some additional random forcing given by a mixing, space-dependent Markov pro-
cess. Using the perturbed test function method, we derive the hydrodynamic limit of the
kinetic system. The law of the limiting density satisfies a stochastic conservation equation
in Stratonovich form, whose drift and diffusion coefficients are completely determined by the
law of the stationary process associated with the Markovian perturbation.
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1 Introduction

1.1 Overview of the kinetic model

We consider a toy model for spray-like behavior, describing the motion of some particles im-
mersed in an ambient fluid, given by the following conservation equation

∂tf + εv · ∇xf +∇v · (F (t, x, v)f) = 0. (1.1)

The forcing term

F (t, x, v) = (ut(x)− v) +mt(x)

expresses how the speed of a particle tends to align with the local speed u(x) of the ambient
fluid. It is perturbed by some random forcing naturally modeled by a space-dependent, centered
Markov process (mt(x))t≥0. Assuming that the particles have very little impact on the behavior
of the ambient fluid, u ≡ ut(x) evolves according to

∂tu−∆u = ε2
∫

v
(v − u)fdv. (1.2)

We could easily add a nonlinear term of Burger’s type u ·∇xu in equation (1.2). This would not
yield any mathematical difficulty but would unnecessarily give heavier proofs.

In order for the system (1.1)-(1.2) to be well-posed and admit a solution (ft(x, v), ut(x)), we
need, in fact, to restrict to the one-dimensional case:

x ∈ T = R/Z, v ∈ R.

One can refer to section 8 below (and in particular Remark 8.2) for details regarding the well-
posedness of this system. The rescaled variables

f εt (x, v) := fε−2t(x, v), uεt (x) := ε−1uε−2t(x), mε
t (x) := mε−2t(x),

then satisfy 



∂tf
ε + ε−1v∂xf

ε + ε−2∂v
[
(εuε(x)− v +mε(x))f ε

]
= 0,

∂tu
ε − ∂2

xu
ε =

∫
(v − εuε)f εdv.

(1.3)

Introducing the integrated quantity

ρε(x) =

∫
f ε(x, v)dv, (1.4)

we are interested in the behavior of (ρε, uε) as ε goes to zero. In essence, we wish to describe
how the random forcing m added on a "mesoscopic level" translates on a "macroscopic level" in
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the scaling limit. More precisely, we shall determine the stochastic partial differential equation
satisfied by the limiting law of ρε as ε goes to 0.

This work is part of a program on stochastic diffusion-approximation in the context of kinetic
equation and fluid limits (see [5, 6, 7]). In the case considered here, it is to be noted that due
to the absence of collision term in the kinetic equation of (1.3), the limiting SPDE satisfied
by ρε will be of order one: it is in a fact a stochastic conservation equation when written in
Stratonovich form.

This latter stochastic equation is linear but our proof provides a solution which has very low
regularity and uniqueness in this context is not trivial. We need to use a duality argument and
backward SPDEs to prove uniqueness.

The study of the scaling limit relies essentially on the perturbed test function method, first
introduced in [10] and developed further in [9]. In contrast with previous works on the matter,
particular attention will be paid to the rigorous construction of the correctors involved in the
perturbed test function method. This will be achieved by handling infinitesimal generators
and their domains in an overall more cautious way, and by exploiting the mixing assumptions
made on the driving Markov process to properly solve Poisson equations associated with these
generators.

1.2 Main results

Throughout our study, we will be led to work with the following spaces:

Lpx,v := Lp(T × R), Lpx := Lp(T),

W s,p
x := W s,p(T), Hσ

x := W 2,σ(T).

We will denote by P(E) the set of probability measures on a metric space E. When it is well
defined, we will denote

〈f, g〉 =

∫
f(x, v)g(x, v)dxdv or

∫
f(x)g(x)dx.

depending on the context. Finally, we shall sometimes use the handy notation A(z) . B(z) to
signify that there exists a constant C > 0 such that A(z) ≤ CB(z) for all z.

Let us now state our diffusion-approximation result.

Theorem 1. Let (Ω,F , (Ft)t≥0,P) be a filtered probability space equipped with a Markov process
m = (mt)t≥0 satisfying Assumptions 1 through 4, described in section 2.2 below. Let T > 0.
Assume that the initial data (f ε0 , u

ε
0)ε>0 satisfy

f ε0 ≥ 0 and

∫ ∫
f ε0 (x, v)dxdv = 1,

ρε0 → ρ0 in L1
x, uε0 → u0 in Hα

x for some α ∈ (1/2, 3/2]

and, for all fixed ε > 0,

∫

x

∫

v
(1 + |v|4)|f ε0 |

2dxdv +

∫

x

∫

v
(1 + |v|)|∇x,vf

ε
0 |dxdv <∞, uε0 ∈ H

η
x for η(ε) > 3/2. (1.5)

Assume the following uniform bound:

sup
ε>0

∫

x

∫

v
|v|3f ε0dxdv <∞. (1.6)
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Let (f ε, uε) be the unique solution of (1.3) with initial data (f ε0 , u
ε
0) in the sense given in Propo-

sition 3.1 below. Then for all γ > 1/2 and β < α, there exists a subsequence (ρεk , uεk)k≥1 such
that

(ρεk , uεk)→ (ρ, u) in law in C([0, T ];H−γ
x ×Hβ

x )

where u satisfies the heat equation

∂tu− ∂
2
xu = 0, with u(0) = u0,

and ρ is a martingale solution (see [4], Chapter 8, for the definition) of

dρ = ∂x
[
(a− u)ρ

]
dt+ ∂x

[
ρQ1/2 ◦ dWt

]
, with ρ(0) = ρ0, (1.7)

satisfying supt∈[0,T ] ‖ρt‖L1
x
≤ 1 a.s. In (1.7), (Wt)t≥0 denotes a cylindrical Wiener process on

L2
x. The coefficient a ≡ a(x) and the trace operator Q on L2

x are completely determined by the
law of the stationary process (m̃t)t≥0 associated with the random driving term m (see section
2.2 below for a definition of m̃):

a(x) =
1

2

∫ ∞

0
E

[
∂xm̃0(x)m̃t(x)− m̃0(x)∂xm̃t(x)

]
dt +

∫ ∞

0
e−t

E

[
m̃0(x)∂xm̃t(x)

]
dt, (1.8)

Qf(x) =

∫

y
k(x, y)f(y)dy, with k(x, y) =

∫

R

E

[
m̃0(x)m̃t(y)

]
dt. (1.9)

Note that assumption (1.5) is only necessary to ensure that the system (1.3) can indeed be
uniquely solved for fixed ε > 0, as will be stated later on, in Proposition 3.1. The result of
Theorem 1 holds when the underlying probability space Ω is equipped with the probability Pµ

− so that Pµ[m0 ∈ A] = µ(A) − for any initial law µ ∈ P(E). For instance, one may consider
the case µ = δn where the process (mt)t≥0 starts at some fixed n ∈ E ; or one may consider
the case where µ = ν is the invariant measure of m, so that (mt)t≥0 := (m̃t)t≥0 is a stationary
process (see again section 2.2 below).

The weak existence result established in Theorem 1 is completed by the following strong
uniqueness result.

Theorem 2. Let ρ0 ∈ L
1
x and u0 ∈ W

4,∞
x . Assume furthermore that the coefficient a and the

kernel k defined in (1.8), (1.9) satisfy

a ∈W 4,∞
x , sup

y∈T

‖k(·, y)‖
W 10+δ,∞

x
<∞ for some δ > 0. (1.10)

Then a solution ρ ∈ C([0, T ];H−γ
x ) of (1.7) satisfying the bound

sup
t∈[0,T ]

‖ρt‖L1
x
≤ 1 a.s

is path-wise unique.

As a consequence of Theorem 2, Yamada-Watanabe’s Theorem guarantees that uniqueness
in law (i.e. weak uniqueness in the probabilistic sense) holds for (1.7) and the whole sequence
converges in Theorem 1. The regularity properties (1.10) will be satisfied under some adequate
assumptions on the driving process (mt)t≥0 (see the end of section 2.2).

In the limit where ε goes to 0, the rather complex random process (ρεt )t≥0 driven by a general
Markov process m = (mt)t≥0 can therefore be approximated by a much simpler diffusion (ρt)t≥0

whose drift and covariance are explicitely determined by the law of the associated stationary
process m̃ = (m̃t)t≥0. Let us give a quick overview of the proof of Theorems 1 and 2.
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In section 2 we start by introducing a rigorous framework for solving Poisson equations asso-
ciated with generators of Markov processes, which will be of great use in section 5 in particular.
The tools and results presented here are all very classical, however the authors could not find a
reference really suited for the specific setup adopted in the present work. We then describe the
assumptions made on the driving process m and their consequences in section 2.2. In section
3, we establish some estimates regarding the solutions of (1.3) and rigorously determine the
generator of the process (f ε, uε,mε). The essential work is developed in section 5 where we use
the perturbed test function method to determine the limiting equation (1.7) and pave the way
towards the convergence of the martingale problem. Section 6 concludes the proof by proving
the convergence announced in Theorem 1. Finally, the path-wise uniqueness of (1.7) stated in
Theorem 2 is looked upon in section 7.
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2 Generators and Poisson equations

2.1 Generalities on generators

On a filtered probability space (Ω,F , (Ft)t≥0), let us consider a càdlàg, time-homogeneous
Markov process X = (Xt)t≥0 taking values in some separable metric space X ≡ (X , dX ).
Throughout this paper, we will naturally use the handy notation (Xt(x))t≥0 to denote (Xt)t≥0

under the probability Pδx (that is X0(x) = x a.s). All the processes we shall encounter in this
work satisfy the following assumptions:

• X is stochastically continuous:

∀x ∈ X , ∀t ≥ 0, ∀ε > 0, P

[
dX (Xs(x),Xt(x)) > ε

]
−−→
s→t

0. (2.1)

• X is locally bounded (in space and time):

∀r > 0,∀T > 0,∃R > 0,∀x ∈ B(0, r), P

[
∀t ∈ [0, T ], Xt(x) ∈ B(0, R)

]
= 1. (2.2)

Let us denote by (Qt)t≥0 the semigroup associated to (Xt)t≥0. The local boundedness as-
sumption (2.2) allows to define it over locally bounded test functions: let us introduce the
spaces

Bloc(X ) = {ψ : X → R measurable, ψ maps bounded sets onto bounded sets } (2.3)

C locb (X ) = {ψ : X → R continuous, ψ maps bounded sets onto bounded sets } (2.4)

and define the semigroup Qt : Bloc(X )→ Bloc(X ) as

∀ψ ∈ Bloc(X ), Qtψ(x) = E[ψ(Xt(x))].

Note that, using assumption (2.1), the map t 7→ Qtψ(x) is continuous whenever ψ ∈ C locb (X ).
The Markov property

∀ψ ∈ Bloc(X ), E[ψ(Xt+s)|Fs] = Qtψ(Xs) a.s

yields in particular the semigroup property Qt+s = QtQs on Bloc(X ).
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Definition 2.1 (Infinitesimal generator). The infinitesimal generator of X is the operator

A : D(A) ⊂ Bloc(X )→ C locb (X )

defined as follows: for all ψ ∈ Bloc(X ) and θ ∈ C locb (X ),

ψ ∈ D(A) and Aψ = θ if and only if
Qtψ − ψ

t

b.p.c
−−−−→
t→ 0+

θ ∈ C locb (X )

where b.p.c denotes the (locally) bounded pointwise convergence:

θt
b.p.c
−−→ θ ⇐⇒




∀x ∈ X , θt(x)→ θ(x)
∀B ⊂ X bounded, sup

t>0
sup
x∈B
|θt(x)| <∞.

We then have the following classical result.

Proposition 2.1 (Kolmogorov’s equation). For all ψ ∈ D(A), for all t ≥ 0,

Qt+sψ −Qtψ

s

b.p.c
−−−→
s→0

QtAψ.

In particular, for all x ∈ X ,

d

dt
Qtψ(x) = QtAψ(x).

Remark 2.1. Provided that QtAψ ∈ C
loc
b (X ), this states that Qtψ ∈ D(A) and AQtψ = QtAψ.

Proof. For s > 0, we may write

Qt+sψ −Qtψ

s
(x) = Qt

[Qsψ − ψ
s

]
(x) = E

[Qsψ(Xt(x))− ψ(Xt(x))

s

]
.

Making use of (2.1) and (2.2), we may use dominated convergence as s goes to 0 to conclude for
the right derivative. As for the left derivative, we simply note that

Qtψ −Qt−sψ

s
= Qt−s

[Qsψ − ψ
s

−Aψ
]

+Qt−sAψ

and conclude in the same way, keeping in mind that Aψ ∈ C locb (X ) so that u 7→ QuAψ(x) is
continuous. .

The following property will be of great interest, and could in fact be an alternative way of
defining the generator A.

Proposition 2.2 (Martingale problem). For all ψ ∈ D(A), for all x ∈ X ,

Mψ(t) = ψ(Xt(x))−

∫ t

0
Aψ(Xs(x))ds, t ≥ 0

defines an (Ft)t≥0-martingale.

Proof. Let us write Xt := Xt(x) for simplicity. We need to check that, for all h bounded,
Fs-measurable,

E

[(
ψ(Xt)− ψ(Xs)

)
h
]

= E

[( ∫ t

s
Aψ(Xu)du

)
h
]
.
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Using the Markov property (twice) and Proposition 2.1, the right hand side can be written as

E

[
E

[ ∫ t

s
Aψ(Xu)du|Fs

]
h
]

= E

[( ∫ t

s

[
EAψ(Xu)|Fs

]
du
)
h
]

= E

[( ∫ t

s
Qu−sAψ(Xs)du

)
h
]

= E

[( ∫ t−s

0

d

du
Quψ(Xs)du

)
h
]

= E

[(
Qt−sψ(Xs)du− ψ(Xs)

)
h
]

= E

[(
ψ(Xt)− ψ(Xs)

)
h
]
.

Again, we have used the fact u 7→ QuAψ(x) is continous since Aψ is continuous.

Let us now give a natural context in which one can interchange generator and integral.

Proposition 2.3 (Generator under the integral sign). Let (t, x) ∈ R
+ × X 7→ ψt(x) ∈ R be a

measurable map, such that ψt ∈ D(A) for all t ≥ 0. Assume that, for all B ⊂ X bounded,

∫ ∞

0
sup
x∈B
|ψt(x)|dt <∞ (2.5)

∫ ∞

0
sup
x∈B
|Aψt(x)|dt <∞ (2.6)

Then ψ =

∫ ∞

0
ψtdt ∈ D(A) and Aψ =

∫ ∞

0
Aψtdt.

Proof. Let us not get into the questions of measurability. First, ψ is well defined, in Bloc(X),
and we have Qsψ(x) =

∫∞
0 Qsψt(x)dt. The interversion is justified by Fubini’s theorem since,

using (2.5),

E

[ ∫ ∞

0
|ψt|(Xs(x))dt

]
≤

∫ ∞

0
sup
y∈B
|ψt(y)|dt <∞

where B ⊂ X is a bounded set such that ∀σ ∈ [0, s], Xσ(x) ∈ B, P a.s. It follows that

Qsψ(x) − ψ(x)

s
=

∫ ∞

0

Qsψt(x)− ψt(x)

s
dt.

For x ∈ B(0, r) for some r > 0, for s ≤ 1, we have the bound

∣∣∣Qsψt(x)− ψt(x)

s

∣∣∣ ≤ sup
σ∈[0,s]

∣∣∣ d
dσ
Qσψt(x)

∣∣∣ = sup
σ∈[0,s]

∣∣∣QσAψt(x)
∣∣∣ ≤ sup

y∈B

∣∣∣Aψt(y)
∣∣∣

where B ⊂ X is bounded and such that ∀x ∈ B(0, r), ∀σ ∈ [0, 1], Xσ(x) ∈ B, P-a.s. Dominated
convergence then gives the b.p.c of

∫∞
0 s−1(Qsψt(x) − ψt(x))dt to

∫∞
0 Aψt(x)dt. Assumption

(2.6) and the fact that Aψt ∈ C
loc
b (X ) for all t ≥ 0 guarantee that

∫∞
0 Aψtdt is in C locb (X ), so

that we can indeed state ψ ∈ D(A).

Proposition 2.4 (Resolution of a Poisson equation Aψ = θ). Let θ ∈ D(A)∩C locb (X ). Assume
that, for all B ⊂ X bounded,

∫ ∞

0
sup
x∈B
|Qtθ(x)|dt <∞ (2.7)

∫ ∞

0
sup
x∈B
|QtAθ(x)|dt <∞ (2.8)

Then ψ = −

∫ ∞

0
Qtθdt ∈ D(A) and Aψ = θ.
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Proof. Since QtAθ is not necessarily continuous, we cannot exactly state that ψt = Qtθ ∈ D(A).
Let us hence be a little more careful: using the same arguments as the previous proof, we can
show that

Qsψ(x)− ψ(x)

s

b.p.c
−−−→
s→0

−

∫ ∞

0
QtAθ(x)dt = lim

T→∞
−

∫ T

0

d

dt
Qtθ(x)dt = θ(x)− lim

T→∞
QT θ(x).

Hence, limT→∞QT θ(x) exists and assumption (2.7) implies limT→∞QT θ(x) = 0. We have
shown

Qsψ − ψ

s

b.p.c
−−−→
s→0

θ

and θ is in C locb (X ) by assumption, so that we have indeed ψ ∈ D(A).

Remark 2.2. Assuming (2.7) only, one can still define the Bloc(X ) function ψ = −
∫∞

0 Qtθdt.
If for some reason we know in advance that ψ ∈ D(A), then we can conclude immediately that
Aψ = θ without assumption (2.8). Indeed,

Qsψ(x) = −

∫ ∞

0
Qt+sθ(x)dt = −

∫ ∞

s
Qtθ(x)dt

which gives, since t 7→ Qtθ(x) is continuous,

d

ds+
Qsψ(x)

∣∣∣
s=0

= Q0θ(x) = θ(x)

and using Kolmogorov’s equation, we know that

d

ds+
Qsψ(x)

∣∣∣
s=0

= Aψ(x).

2.2 The random driving term

We now describe the assumptions made on the process m = (mt)t≥0 driving equation (1.3). Let
us define its canonical filtration

Ft = σ(ms, 0 ≤ s ≤ t), t ≥ 0.

We assume that m = (mt)t≥0 is a càdlàg, stochastically continuous Markov process taking values
in some separable, complete normed space (E, ‖ · ‖E), satisfying the continuous embedding

mt ∈ E ⊂W
2,∞
x , with ‖ · ‖

W 2,∞
x

. ‖ · ‖E . (2.9)

This enables us to consider linear test functions of the form

ψh : n ∈ E 7→ 〈h, n〉, h ∈ (W 2,∞
x )′.

Assumption 1 (Bounded state space). For some C∗ > 0,

‖n‖E ≤ C
∗ for all n ∈ E. (2.10)

We denote by (Pt)t≥0 the semigroup associated to m and by (M,D(M)) its infinitesimal
generator, in the sense of the b.p.c convergence introduced in section 2.1.

Assumption 2 (Stationary measure). There exists some measure ν ∈ P(E) satisfying:

∀t ≥ 0, ∀ψ ∈ B(E),

∫

E
Ptψ(n)dν(n) =

∫

E
ψ(n)dν(n) (Stationary)

∀h ∈ (W 2,∞
x )′,

∫
ψh(n)dν(n) = 0. (Centered)

We shall denote by (m̃t)t≥0 the process with initial law ν.
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Note that it is possible to build a càdlàg stationary process (m̂t)t∈R indexed by t ∈ R: one
may indeed use the Kolmogorov extension theorem with the finite dimensional distributions

P

[
m̂s ∈ A0, m̂s+t1 ∈ A1, . . . m̂s+tn ∈ An

]
= P

[
m̃0 ∈ A0, m̃t1 ∈ A1, . . . m̃tn ∈ An

]

for s ∈ R and t1, . . . , tn ≥ 0. This extended stationary process will still be denoted by (m̃t)t∈R.

Furthermore, we require that m satisfies the following mixing property.

Assumption 3 (Mixing). There exists a non-increasing, integrable function γmix ∈ L
1(R+) such

that, for any initial state n ∈ E, there exists a càdlàg coupling (m∗
t (n), m̃∗

t )t≥0, whose marginal
laws are respectively those of (mt(n))t≥0 and (m̃t)t≥0, satisfying

E‖m∗
t (n)− m̃∗

t‖E ≤ γmix(t), t ≥ 0. (2.11)

An immediate consequence is the following: for any Lipschitz-continuous function ψ : E → R

such that
∫
E ψ(n)dν(n) = 0,

∣∣∣Ptψ(n)
∣∣∣ =

∣∣∣E[ψ(m∗
t (n))− ψ(m̃∗

t )]
∣∣∣ ≤ ‖ψ‖Lipγmix(t) ∈ L1

t (R
+). (2.12)

As a result, the coefficient a(x) and the kernel k(x, y) introduced in (1.8), (1.9) are well-defined:
for k(x, y) we may for instance write (using the stationarity of m̃)

∫

R

∣∣∣E
[
m̃0(x)m̃t(y)

]∣∣∣dt =

∫ ∞

0

∣∣∣E
[
m̃0(x)m̃t(y)

]∣∣∣dt+

∫ ∞

0

∣∣∣E
[
m̃0(y)m̃t(x)

]∣∣∣dt

and note that, using the Markov property,
∫ ∞

0

∣∣∣E
[
m̃0(x)m̃t(y)

]∣∣∣dt =

∫ ∞

0

∣∣∣
∫

E
n(x)E

[
mt(n)(y)

]
dν(n)

∣∣∣dt ≤ C∗
∫ ∞

0
γmix(t)dt <∞.

As discussed in section 2.1, the property (2.12) allows to solve a number of Poisson equations.
We may indeed define, for h ∈ (W 2,∞

x )′,

M−1ψh(n) = −

∫ ∞

0
Ptψh(n)dt = −

∫ ∞

0
E

〈
h,mt(n)

〉
dt.

It is then natural to introduce the function n ∈ E 7→M−1I(n) defined by

∀h ∈ (W 2,∞
x )′,

〈
M−1I(n), h

〉
= M−1ψh(n).

In other words,

M−1I(n) = −

∫ ∞

0
E[mt(n)]dt ∈W 2,∞

x . (2.13)

Note that the function M−1I is bounded: since E[m̃t] =
∫
E ndν(n) = 0 in W 2,∞

x , we have

‖M−1I(n)‖
W 2,∞

x
≤

∫ ∞

0
‖E[mt(n)]‖

W 2,∞
x

dt =

∫ ∞

0
‖E[m∗

t (n)− m̃∗
t ]‖W 2,∞

x
dt

≤

∫ ∞

0
E‖m∗

t (n)− m̃∗
t ‖Edt ≤

∫ ∞

0
γmix(t)dt <∞.

Assumption 4 (Generator). For all h ∈ (W 2,∞
x )′, M−1ψh ∈ D(M) and M−1I satisfies

‖M−1I(n)−M−1I(n′)‖W 2,∞
x

. ‖n− n′‖E . (2.14)

Furthermore, for all h ∈ L1
x,

|M−1ψh|
2 ∈ D(M) and

∣∣∣M |M−1ψh|
2(n)

∣∣∣ . ‖h‖2L1
x
. (2.15)
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Note that, as stated in Remark 2.2, the assumption M−1ψh ∈ D(M) guarantees that

M
〈
M−1I(n), h

〉
= 〈n, h〉.

It is typically obtained under the assumptions of Proposition 2.4. Combining (2.14) with the
mixing property (2.11) essentially allows to define M−2I, which shall prove necessary in the
calculations developed later on.

Let us conclude by discussing the additional assumption (1.10) made in Theorem 2. This
requires of course some more regularity for the stationary process m̃. A natural setup would be
the following: assume that the stationary measure ν is reversible (that is (m̃−t)t≥0 = (m̃t)t≥0 in
law) and supported in W 10+δ,∞

x , with

E‖m̃t‖
2
W 10+δ,∞

x
=

∫

E
‖n‖2

W 10+δ,∞
x

dν(n) <∞.

Making use of the time-reversibility (1.8) and (1.9) become

a(x) =

∫ ∞

0
e−t

E

[
m̃0(x)∂xm̃t(x)

]
dt, k(x, y) = 2

∫ ∞

0
E

[
m̃0(x)m̃t(y)

]
dt (2.16)

and it follows that

‖a‖W 4,∞
x

.
( ∫ ∞

0
e−tdt

)( ∫

E
‖n‖2

W 5,∞
x

dν(n)
)
<∞,

and

‖k(·, y)‖
W 10+δ,∞

x
≤ 2

∫ ∞

0

∥∥∥
∫

E
nE

[
mt(n)(y)

]
dν(n)

∥∥∥
W 10+δ,∞

x

dt

≤ 2
( ∫ ∞

0
γmix(t)dt

)( ∫

E
‖n‖

W 10+δ,∞
x

dν(n)
)
<∞.

Alternatively, one could drop the reversibility assumption on ν and assume that the whole
process (mt)t≥0 takes values in E ⊂W 10+δ,∞

x with ‖ · ‖
W 10+δ,∞

x
. ‖ · ‖E .

2.3 An elementary example

Let us give a simple example of a Markov process m = (mt)t≥0 satisfying the assumptions
detailed above, in the form of a jump process. Consider a discrete-time Markov chain (Mi)i∈N

whose (bounded) countable state space E consists of sufficiently smooth functions:

E = {nj , j ∈ N
∗} ⊂ Ck(Tx), ‖ · ‖E := ‖ · ‖Ck

x
,

for some k large enough, say k > 10. Let us denote by P = (P (n, n′))n,n′∈E its transition
matrix. Let us consider a probability space (Ω,F ,P) where an i.i.d sequence (Ui)i∈N∗ of random
variables uniformly distributed in [0, 1) is given. The trajectory of (Mi(n)) for any initial data
n ∈ E can then classically be simulated in the following manner: M0(n) = n and, for all i ∈ N,

Mi+1(n) = T (Mi(n);Ui+1),

where the jump function is given by

T (M ;U) = nj when
j−1∑

ℓ=1

P (M,nℓ) ≤ U <
j∑

ℓ=1

P (M,nℓ).
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We may define the time-continuous, constant-rate jump process associated with the discrete
Markov chain (Mi): considering a Poisson process (N(t))t≥0 of rate 1 with N(0) = 0, indepen-
dent of (Ui), we simply define

mt(n) = MN(t)(n), t ≥ 0.

Let us assume that the transition matrix P = (P (n, n′)) is irreducible, aperiodic and positive
recurrent. As a result, let us introduce the unique invariant law ν ∈ P(E) of the chain (Ni)i∈N

(which we may assumed to be centered, in accordance with Assumption 2).

Let us prove that the mixing property given in Assumption 3 is satisfied. To this intent, we
introduce a coupling similar to the one developed in the classical proof of the ergodic theorem for
Markov chains. Let us consider a random variable ñ ∈ E of distribution ν and an i.i.d sequence
(Ũi)i∈N∗ of uniform random variables, mutually independent and independent of (Ui)i∈N∗ . One
can then introduce the Markov chain (M̃i(ñ))i∈N∗ defined by M̃0(ñ) = ñ and, for all i ∈ N,

M̃i+1(ñ) = T (M̃i(n); Ũi+1).

As a result, (M̃i(ñ)) defines a stationary Markov chain of transition matrix P , independent of
(Mi(n)). For fixed n ∈ E, we then define the stopping time

τ = inf
{
i ≥ 0, Mi(n) = M̃i(ñ)

}

and the process

M∗
i (n) =

{
Mi(n) if i ≤ τ,

M̃i(ñ) if i > τ.

One can easily see that (M∗
i (n)) defines a Markov chain of transition matrix P , so that

(
M∗
i (n), i ≥ 0

)
∼
(
Mi(n), i ≥ 0

)
in law.

Moreover, (Ci)i∈N = (Mi(n), M̃i(ñ))iN defines a Markov chain on E × E, of transition matrix
P ⊗ P . The assumptions made on P guarantee that P ⊗ P is irreducible, and since ν ⊗ ν is an
invariant probability, it is also positive recurrent. As a result, since τ is the first hitting time
of the diagonal D = {(n, n), n ∈ E} by (Ci), we deduce that E[τ ] < ∞. Now, defining the
continuous-time processes

m∗
t (n) = M∗

N(t)(n), m̃∗
t = M̃N(t)(ñ), t ≥ 0,

the coupling (m∗
t (n), m̃∗

t )t≥0 has the expected marginal laws and

P

[
m∗
t (n) 6= m̃∗

t

]
= P

[
N(t) < τ

]
= E

[
e−t

τ−1∑

k=0

tk

k!

]
.

This tends to zero as t goes to infinity by dominated convergence. Regarding the integrability
in time, simple calculations give

∫ ∞

0
P

[
m∗
t (n) 6= m̃∗

t

]
dt =

∞∑

k=0

(k + 1)P(τ > k) =
1

2
E[τ(τ + 1)].

The mixing Assumption 3 is therefore satisfied as soon as the hitting time τ admits a second
moment. This holds for instance if the state space E is finite: it is indeed a well-known fact that
hitting times of Markov chains with finite state space have exponential tails (see e.g [12], Lemma
3.25). Another possible setup is the one where the transition matrix is given by P (n, n′) = ν(n′),
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that is when Mi+1 is drawn on E according to the law ν, independently of Mi.
In the general case, the generator of (mt)t≥0 is given by

Mψ(n) =
∑

n′∈E

P (n, n′)ψ(n′)− ψ(n)

and we derive that M−1I = (M−1I(n))n∈E satisfies the linear system

∀n ∈ E,
∑

n′∈E

P (n, n′)M−1I(n′)−M−1I(n) = n.

When the state space E is finite, it is clear that M−1I satisfies the Assumption 4. In the case
where P (n, n′) = ν(n′), since ν is centered, we get simply

M−1I(n) = −n.

3 Solutions of the kinetic system

For k ≥ 0, let us introduce the Banach space (Gk, ‖ · ‖Gk ) defined by

Gk :=

{
f ∈ L1

x,v, ‖f‖Gk :=

∫ ∫
(1 + |v|k)|f(x, v)|dxdv <∞

}
. (3.1)

When f ∈ G2, we shall denote

ρ(f)(x) =

∫
f(x)dv, J(f)(x) =

∫
vf(x)dv, K(f) =

∫
v2f(x)dv.

Since solutions f ε of (1.3) are of course expected to be probability densities, we also introduce
the complete normed space (Gk0 , ‖ · ‖Gk ) defined by

Gk0 := Gk ∩

{
f ≥ 0,

∫ ∫
f(x, v)dxdv = 1

}
. (3.2)

3.1 Path-wise weak solutions

Let us start by stating the well-posedness of the PDE system (1.3). Taking ε = 1 for simplicity,
it may be written as {

∂tf + v∂xf + ∂v
[
(m + u− v)f

]
= 0,

∂tu− ∂
2
xu = J(f)− ρu.

(3.3)

We consider a fixed ω ∈ Ω, so that a trajectory m ≡ m(ω) belongs to D([0, T ];E), space of
càdlàg functions taking values in the separable complete space E.
Whenever w ∈ D([0, T ];E) is given, the solution f [w] to the linear conservation equation




∂tf + v∂xf + ∂v

[
(w − v)f

]
= 0,

f0 ∈ L
1
x,v,

is naturally expressed as

ft[w](x, v) = etf0 ◦Φt
0(x, v), (3.4)

where Φt
s(x, v) = (Xt

s(x, v), V t
s (x, v)) is the flow associated to the characteristics:




d

ds
Xt
s = V t

s , Xt
t (x, v) = x,

d

ds
V t
s = ws(X

t
s)− V

t
s , V t

t (x, v) = v,

(3.5)
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which is clearly well defined since w is globally Lipschitz-continuous in the space variable. Note
that the fact that w is only càdlàg in time causes no issue since this differential problem should
be thought of in integral form. It is in fact easy to check that, for x ∈ D([0, T ]; R),

∀t ∈ [0, T ], yt =

∫ t

0
xsds if and only if ∀t ∈ [0, T ],

dy

dt+
= xt,

dy

dt−
= xt− .

In the following, we will sometimes write "full" derivatives d
dt for simplicity, but rigorously

speaking one should rather consider left and right derivatives. We may now state our well-
posedness result.

Proposition 3.1. Assume that
∫

x

∫

v
(1 + |v|4)|f0|

2dxdv +

∫

x

∫

v
(1 + |v|)|∇x,vf0|dxdv <∞, u0 ∈ H

η
x for η ∈ (3/2, 2). (3.6)

Then, for all β ∈ (3/2, η), there exists a unique couple (f, u) with u ∈ C([0, T ];Hβ
x ) solution of

the system (3.3) in the sense that




ft = ft[m + u] as defined in (3.4),

ut = S(t)u0 +

∫ t

0
S(t− s)

[
J(fs)− ρsus

]
ds,

(3.7)

where S(t) = et∂
2
x denotes the semigroup associated to the heat equation. For any k ≥ 0,

assuming f0 ∈ G
k
0, we have additionally f ∈ C([0, T ];Gk0).

The proof of Proposition 3.1 is based on a rather classical fixed point argument. Since it is
not a central aspect of the present work, it is postponed to section 8.

Remark 3.1. The uniqueness of the solutions via an explicit iterative construction method
classically guarantees that ω 7→ (ft(ω), ut(ω)) ∈ Gk0 ×H

β
x is Ft = σ(ms, 0 ≤ s ≤ t)-measurable.

It is of course to be expected that (ft, ut,mt)t≥0 defines a Markov process. We will not however
attempt to rigorously prove it, since it is in fact not necessary for the purpose of this work.

Let us simply justify here that the unique solution (f, u) in the sense of (3.7) satisfies some
weak formulation of (3.3). In particular, we derive some estimates that will be useful to rigorously
determine the generator of the process (ft, ut,mt)t≥0 later on.

In order to properly express the weak formulation of the equation satisfied by ft ∈ Gk,
we now introduce the space Ck which should be thought of as the natural dual of Gk "along"
equation (3.3).

Definition 3.1. For k ≥ 0 and ξ ∈ C1(T× R) let us introduce the norm

Nk(ξ) =
∥∥∥ ξ

1 + |v|k

∥∥∥
L∞

x,v

+
∥∥∥(1 + |v|)∇x,vξ

1 + |v|k

∥∥∥
L∞

x,v

(3.8)

and the associated normed space, given by the closure

Ck = {ξ ∈ C1(Td × Rd), Nk(ξ) <∞} .

Proposition 3.2. Let k ≥ 0 and assume that f0 ∈ G
k. Then for all ξ ∈ Ck,

〈ft, ξ〉 − 〈f0, ξ〉 =

∫ t

0

〈
fs, v∂xξ + (us +ms − v)∂vξ

〉
ds

and the following estimate holds: for all t, s ∈ [0, T ],

∣∣∣(ft+s, ξ)− (ft, ξ)

s

∣∣∣ ≤ C(k,C∗, ‖u‖L∞

t,x
, T )Nk(ξ)‖f0‖Gk . (3.9)
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Proof. Let us denote Φt := Φ0
t for simplicity. Since

〈ft+s, ξ〉 − 〈ft, ξ〉

s
=

∫ ∫
f0(x, v)

ξ ◦ Φt+s(x, v) − ξ ◦ Φt(x, v)

s
dxdv,

we want to dominate the integrand uniformly for t, t+ s ∈ [0, T ]. For all t ≥ 0,

ξ ◦ Φt+s(x, v)− ξ ◦ Φt(x, v)

s
=

1

s

∫ t+s

t

d

dσ
ξ(Φσ(x, v))dσ.

with

d

dt
ξ(Φt(x, v)) = Vt(x, v)∂xξ ◦Φt(x, v) + ((ut +mt)(Xt(x, v)) − Vt(x, v))∂vξ ◦ Φt(x, v)

which, by design, can be bounded by

(1 + C∗ + ‖u‖L∞

t,x
)Nk(ξ)(1 + |Vt(x, v)|k).

From the sub-linearity of the equation of characteristics (3.5), we easily derive

∀t ∈ [0, T ], |Vt(x, v)|k ≤ C(C∗, ‖u‖L∞

t,x
, T )(1 + |v|k).

Combining these bounds, we have dominated

∣∣∣f(x, v)
ξ ◦ Φt+s(x, v) − ξ ◦Φt(x, v)

s

∣∣∣

uniformly for t, t+ s ∈ [0, T ] by an expression of the form

C(k,C∗, ‖u‖L∞

t,x
, T )|f0(x, v)|(1 + |v|k).

This is exactly the expected estimate, and the dominated convergence theorem leads to

d

dt
〈ft, ξ〉 =

∫

x,v
f(x, v)

d

dt
ξ ◦Φt(x, v)dxdv =

〈
ft, v∂xξ + (ut +mt − v)∂vξ

〉
.

Similarly, u is a weak solution of the corresponding equation:

Proposition 3.3. For all ξ ∈ C2(T),

〈ut, ξ〉 − 〈u0, ξ〉 =

∫ t

0
〈us, ∂

2
xξ〉+

〈
J(fs)− ρsus, ξ

〉
ds.

We deduce the estimate: for all t, s ∈ [0, T ],

∣∣∣〈ut+s, ξ〉 − 〈ut, ξ〉
s

∣∣∣ ≤ C(‖u‖L∞

t,x
, ‖f0‖G1

, T )
(
‖ξ‖∞ + ‖∂2

xξ‖∞
)
. (3.10)

Proof. The weak formulation is classically derived from the mild form (3.7) (cf. [1] for example).
The estimate is easily deduced.
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3.2 Estimates uniform in ε

We now establish some uniform bounds for the solution (f ε, uε) of (1.3).

Proposition 3.4. For all ε ∈ (0, 1), we have (almost surely)

∀t ∈ [0, T ], ‖f εt ‖L1
x,v

= ‖f ε0‖L1
x,v

= 1

and

sup
t∈[0,T ]

‖f εt ‖G1
≤ C(T,C∗, ‖uε0‖L∞

x
, ‖f ε0‖G1

),

sup
t∈[0,T ]

‖uεt‖L∞
x
≤ C(T,C∗, ‖uε0‖L∞

x
, ‖f ε0‖G1

).

Proof. The conservation of the L1 norm of f ε is clear from the transport form (3.7). Assuming
f ε0 ≥ 0, f ε0 ∈ C

∞
c (we conclude in the general case by density), we get

d

dt

∫

x

∫

v
|v|f εt (x, v)dxdv = −ε−2

∫

x

∫

v
|v|∂v

[
(mε

t + εuεt − v)f εt

]
dxdv

hence denoting J̄(f) =
∫
x

∫
v |v|fdxdv, (so that ‖f‖G1

= ‖f‖L1
x,v

+ J̄(f)) we get

d

dt
J̄(f εt ) ≤ ε−2(‖mε

t‖L∞
x

+ ε‖uεt‖L∞
x

) − ε−2J̄(f εt )

and Grönwall’s lemma gives

J̄(f εt ) ≤ e−ε−2tJ̄(f ε0 ) +

∫ t

0
ε−2e−ε−2(t−s)(‖mε

s‖L∞

x
+ ε‖uεs‖L∞

x
)ds.

We may note that
∫ t

0 ε
−2e−ε−2sds = 1− e−ε−2t ≤ 1 so that we get

J̄(f εt ) ≤ J̄(f ε0 ) + (C∗ + ε sup
s∈[0,t]

‖uεs‖L∞

x
). (3.11)

On the other hand, using the mild form (3.7) for uε, usual heat-semigroup estimates, and making

use of the embedding H
1/2+δ
x ⊂ L∞

x for any δ > 0, we have

‖uεt‖L∞
x
≤ ‖uε0‖L∞

x
+ C

∫ t

0
|t− s|−1/2−δ‖J(f εs )− ερεsu

ε
s‖L1

x
ds

≤ ‖uε0‖L∞
x

+ C

∫ t

0
|t− s|−1/2−δ‖J(f εs )‖L1

x
+ Cε

∫ t

0
|t− s|−1/2−δ‖uεs‖L∞

x
ds

≤ ‖uε0‖L∞

x
+ C(‖J(f ε0 )‖L1

x
+ C∗) + Cε

∫ t

0
|t− s|−1/2−δ sup

σ∈[0,s]
‖uεσ‖L∞

x
ds,

using (3.11). We finally get an estimate of the form

sup
s∈[0,t]

‖uε‖L∞

x
≤ C(‖uε0‖L∞

x
, ‖f ε0‖G1

, C∗)
(
1 + ε

∫ t

0
|t− s|−1/2−δ sup

σ∈[0,s]
‖uεσ‖L∞

x
ds
)

and deduce the desired estimates using a singular Grönwall inequality.

The higher v-moments for f are obtained by induction using the same arguments. For the
sake of brevity, we omit the proof.
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Proposition 3.5 (Higher moments for f). For all k ≥ 1, we have (almost surely)

sup
t∈[0,T ]

‖f εt ‖Gk ≤ C(k, T,C∗, ‖uε0‖L∞

x
, ‖f ε0‖Gk ).

Let us finally state some compactness estimate for uε.

Proposition 3.6 (Compactness for u). For α ∈ (1/2, 3/2), we have (almost surely)

‖uεt‖Hα
x
≤ C(α, T,C∗, ‖uε0‖Hα

x
, ‖f ε0‖G1

)

∀β < α ‖uεt − u
ε
s‖Hβ

x
≤ C(α, β, T,C∗, ‖uε0‖Hα

x
, ‖f ε0‖G1

)

∫ t

s
θ(σ)dσ,

where θ ∈ L1([0, T ]) is independent of ε.

Proof. Consider the mild form

uεt = S(t)uε0 +

∫ t

0
S(t− σ)gεσdσ, where gεσ = J(f εσ)− ερεσu

ε
σ. (3.12)

The embedding L1
x ⊂ H

−1/2−δ
x for all δ > 0, and a classical regularity estimate for the heat

kernel S(t) lead to
‖S(t)w‖Hα

x
. (1 + t−(α+1/2+δ)/2)‖w‖L1

x
, (3.13)

from which we derive

‖uεt‖Hα
x
. ‖uε0‖Hα +

∫ t

0
(1 + |t− σ|−(α+1/2+δ)/2) ‖gεσ‖L1

x
dσ.

Using Proposition 3.4, we have ‖gεt ‖L1
x,v
≤ C(T,C∗, ‖uε0‖L∞ , ‖f ε0‖G1

), which leads to the first

estimate, since (α+ 1/2 + δ)/2 < 1 for δ small enough.
For the second estimate, we first write, for all ξ ∈ H−β

x ,

∣∣∣〈S(t)uε0 − S(s)uε0, ξ〉
∣∣∣ =

∣∣∣
∫ t

s

〈
S(σ)uε0, ∂

2
xξ
〉
dσ
∣∣∣ ≤ ‖ξ‖

H−β
x

∫ t

s
‖S(σ)uε0‖H2+β

x
dσ

≤ C‖ξ‖
H−β

x
‖uε0‖Hα

x

∫ t

s

(
1 + σ−(2+β−α)/2

)
dσ,

which gives ‖S(t)uε0 − S(s)uε0‖Hβ
x
≤ ‖uε0‖Hα

x

∫ t
s θ1(σ)dσ with θ1 ∈ L

1 since (2 + β − α)/2 < 1.
Finally,

∥∥∥
∫ t

s
S(t− σ)gεσdσ

∥∥∥
Hβ

x

≤

∫ t

s
‖S(t− σ)gεσdσ‖Hβ

x
dσ

and we use again (3.13) with β instead of α to conclude from the mild form (3.12).

3.3 Generator of the process

As previously mentioned, (f εt , u
ε)t≥0 is not a Markov process in itself, however the process

(f εt , u
ε,mε

t )t≥0 is. In view of (1.3), its generator is naturally expected to be

Lεψ =
1

ε2
L#ψ +

1

ε
L♭ψ + L0ψ + εL1ψ, (3.14)

where 



L#ψ(f, u, n) = −
〈
∂v[(n − v)f ],Dfψ(f, u, n)

〉
+Mψ(f, u, n),

L♭ψ(f, u, n) = −
〈
v∂xf + u∂vf,Dfψ(f, u, n)

〉
,

L0ψ(f, u, n) =
〈
∂2
xu+ J(f),Duψ(f, u, n)

〉
,

L1ψ(f, u, n) = −
〈
ρu,Duψ(f, u, n)

〉
.

(3.15)
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Let us quickly get into the details of the notation ”D” used here. For ψ : Gk → R, let Difffψ
denote the usual differential in f ∈ Gk of ψ, that is

∀f ∈ Gk, Difffψ(f) ∈ (Gk)′ = L1
(
T
d × R

d, (1 + |v|k)dxdv
)′
≃ L∞

x,v.

There exists h(f) ∈ L∞
x,v such that

∀g ∈ Gk, Difffψ(f)(g) =
〈
g, h(f)

〉
Gk,(Gk)′

=
〈
g, (1 + |v|k)h(f)

〉
.

The differential Difffψ(f) is naturally identified with the L∞
x,v function h(f). For convenience,

we shall rather denote by Dfψ(f) the function (1 + |v|k)h(f), so that

∀g ∈ Gk, Difffψ(f)(g) =
〈
g,Dfψ(f)

〉
.

To avoid cluttering notation, we do not indicate the dependence of Dfψ(f) on the choice of the
parameter k ≥ 1. In section 5, where the perturbed test-function method is developed, the value
k = 3 is fixed for good. The natural bound on Dfψ is consequently

∥∥∥Dfψ(f)

1 + |v|k

∥∥∥
L∞

x,v

= ‖Difffψ(f)‖Gk ′ <∞.

Similarly, for ψ : Hβ
x → R, Duψ is defined so that

∀w ∈ Hβ
x , Diffuψ(u)(w) =

〈
w,Duψ(u)

〉
.

We will not properly identify the complete domain of the infinitesimal generator Lε: for the
purpose of this paper, it will in fact be sufficient to show that Lε satisfies the martingale problem
associated with (f ε, uε,mε) for a large enough class of test functions.

Definition 3.2 (Good test function). Let k ≥ 1 and α ∈ (1/2, 3/2) be given. Recalling the
space Gk0 introduced (3.2), define the state space for the process (f εt , u

ε
t ,m

ε
t )t≥0:

Xαk = Gk0 ×H
α
x × E. (3.16)

A function ψ : (f, u, n) ∈ Gk ×Hα
x × E → R is said to be a "good test function" on Xαk when:

1. ψ ∈ Bloc(Xαk )

2. For all (f, u) ∈ Gk0 ×H
α
x , ψ(f, u, ·) ∈ D(M) and Mψ ∈ C locb (Xαk )

3. For all (u, n) ∈ Hα
x × E, ψ(·, u, n) is Gk-differentiable and

Dfψ : Xαk −→ (Ck, Nk)
(f, u, n) 7−→ Dfψ(f, u, n)

is C locb (Xαk ; Ck),

where the normed space (Ck, Nk) has been introduced in Definition (3.1)

4. For all (f, n) ∈ Gk0 × E, ψ(f, ·, n) is Hα
x -differentiable and

Duψ : Xαk −→ C2(T)
(f, u, n) 7−→ Duψ(f, u, n)

is C locb (Xαk ;C2(T)).
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Note that the local boundedness required in point 3. can be expressed as





|Dfψ(f, u, n)| ≤ C
(
‖f‖Gk , ‖u‖Hα

x

)
(1 + |v|k),

|v∂xDfψ(f, u, n)| ≤ C
(
‖f‖Gk , ‖u‖Hα

x

)
(1 + |v|k),

|(1 + |v|)∂vDψ(f, n)| ≤ C
(
‖f‖Gk , ‖u‖Hα

x

)
(1 + |v|k),

which is a natural condition to ensure that Lεψ is well-defined and C locb (Xαk ). This suggests
that, when f ∈ Gk0 , typical good test functions involve moments of order at most k − 1 for f .
Later on, we will for instance consider the test function

ψ(f, n) =
〈
Jk−1(f), (∂xM

−1I(n))ξ
〉
, ξ ∈W 1,∞

x ,

and linear combinations of such functions. Introducing the canonical filtration of mε

Fεt = σ
(
mε
s, 0 ≤ s ≤ t

)
= Fε−2t, t ≥ 0,

the process t 7→ (f εt , u
ε
t ) ∈ G

k
0 ×H

α
x is naturally (Fεt )-adapted, as mentioned in Remark 3.1. We

can now state the following result:

Proposition 3.7. Let k ≥ 1, and α ∈ (1/2, 3/2) be given. Let ψ ≡ ψ(f, u, n) be a good test
function on Xαk . Then ψ satisfies the martingale problem for Lε in the sense that

∀(f, u, n) ∈ Xαk , L
εψ(f, u, n) is well-defined, Lεψ ∈ C locb (Xαk )

and for any (f ε0 , u
ε
0, n) ∈ Xαk (with f ε0 , u

ε
0 satisfying the assumption (3.6)),

M ε
ψ(t) = ψ(f εt , u

ε
t ,m

ε
t )−

∫ t

0
Lεψ(f εs , u

ε
s,m

ε
s)ds, t ≥ 0

defines a càdlàg, L2 martingale with respect to the filtration (Fεt )t≥0 under P(fε
0
,uε

0
,n).

Moreover, if |ψ|2 is also a good test function, the predictable quadratic variation is given by:

[
M ε
ψ

]
(t) =

1

ε2

∫ t

0

(
M |ψ|2 − 2ψMψ

)
(f εs , u

ε
s,m

ε, s)ds.

Remark 3.2. The predictable quadratic variation
[
M
]
(t) is the unique càdlàg, predictable,

increasing process such that |M(t)|2 −
[
M
]
(t) defines a martingale. When M(t) is moreover

continuous, this coincides with the standard quadratic variation (see [11], p.38).

Proof. The assumptions on ψ clearly guarantee that Lεψ is well defined and C locb (Xαk ). To
simplify, we shall consider the case ε = 1 and write (ft, ut,mt) instead of (f εt , u

ε
t ,m

ε
t ). The

estimates established in the previous subsections show that, (f0, u0) being fixed,

∀T > 0, ∀t ∈ [0, T ], ‖ft‖Gk + ‖ut‖Hα
x
≤ C(T ), ‖mt‖E ≤ C

∗,

almost surely under the probability P(fε
0
,uε

0
,n). If follows that M ε

ψ(t) is well defined and in L∞(Ω)
for t ≥ 0. We now need to prove that, for s < t and h bounded and Fεs−measurable,

E

[(
ψ(ft, ut,mt)− ψ(fs, us,ms)−

∫ t

s
Lεψ(fσ , uσ,mσ)dσ

)
h
]

= 0. (3.17)

To this purpose, let us formulate two natural lemmas:
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Lemma 3.1. We have

d

dt
ψ(ft, u, n) = ”

〈
Dfψ(ft, u, n), ∂tft

〉
”

:=
〈
ft, v∂xDfψ(ft, u, n) + (ut +mt − v)∂vDfψ(ft, u, n)

〉
.

Proof of the lemma. One can simply write

ψ(ft+s, u, n)− ψ(ft, u, n)

s
=
〈
Dfψ(ft, u, n),

ft+s − ft
s

〉
+Rs

with

Rs =

∫ 1

0

〈
Dfψ(ft + θ(ft+s − ft), u, n)−Dfψ(ft, u, n),

ft+s − ft
s

〉
dθ.

Since Dfψ(ft, u, n) ∈ Ck, Proposition 3.2 guarantees that

〈
Dfψ(ft, u, n),

ft+s − ft
s

〉
−−−→
s→0

”
〈
Dfψ(ft, u, n), ∂tft

〉
”

and that

|Rs| . sup
θ∈[0,1]

Nk

(
Dfψ(ft + θ(ft+s − ft), u, n)−Dfψ(ft, u, n)

)

which tends to 0 as s→ 0, since ft+s → ft in Gk0 and Dfψ is continuous.

This second lemma is proved in a similar fashion.

Lemma 3.2. We have

d

dt
ψ(f, ut, n) = ”

〈
Duψ(f, ut, n), ∂tut

〉
”

:=
〈
us, ∂

2
xDuψ(f, ut, n)

〉
+
〈
J(ft)− ρtut,Duψ(f, ut, n)

〉
.

Introducing a subdivision t0 = s < t1 < ... < tN = t of [s, t] of step δ = maxi |ti+1 − ti|, we
may split (3.17) into 3 terms:

A = E

[(∑

i

ψ(fti , uti ,mti+1
)− ψ(fti , uti ,mti)−

∫ ti+1

ti

Mψ(fσ, uσ ,mσ)dσ
)
h
]
,

B = E

[(∑

i

ψ(fti+1
, uti+1

,mti+1
)− ψ(fti , uti+1

,mti+1
)−

∫ ti+1

ti

〈
Dfψ(fσ, uσ,mσ), ∂σfσ

〉
dσ
)
h
]
,

C = E

[(∑

i

ψ(fti , uti+1
,mti+1

)− ψ(fti , uti ,mti+1
)−

∫ ti+1

ti

〈
Duψ(fσ , uσ,mσ), ∂σuσ

〉
dσ
)
h
]
.

Let us treat the first term A: conditioning with respect to Fεti and using the Markov property,

E

[(
ψ(fti , uti ,mti+1

)− ψ(fti , uti ,mti)
)
h
]

= E

[(
Pti+1−ti [ψ(fti , uti , ·)](mti)− ψ(fti , uti ,mti)

)
h
]
.

We note that, for all t ≥ 0 and (f, u, n) ∈ Xαk ,

Pt[ψ(f, u, .)](n) − ψ(f, u, n) =

∫ t

0
PσMψ(f, u, n)dσ = En

∫ t

0
Mψ(f, u,mσ)dσ,
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where we have used Kolmogorov’s forward equation from Proposition 2.1 and the interversion
E
∫

=
∫

E is justified since Mψ is locally bounded. We are hence led to

E

[(
ψ(fti , uti ,mti+1

)− ψ(fti , uti ,mti)
)
h
]

= E

[(
Emti

∫ ti+1−ti

0
Mψ(fti , uti ,mσ)dσ

)
h
]

= E

[( ∫ ti+1−ti

0
Mψ(fti , uti ,mti+σ)dσ

)
h
]

= E

[( ∫ ti+1

ti
Mψ(fti , uti ,mσ)dσ

)
h
]

where we have once again used the Markov property. It follows that A can be rewritten as

A = E

[( ∫ t

s
aδ(σ)dσ

)
h
]

with
aδ(σ) =

∑

i

1[ti,ti+1](σ)
(
Mψ(fti , uti ,mσ)−Mψ(fσ, uσ ,mσ)

)
.

For fixed σ ∈ [s, t], since t 7→ (ft, ut) ∈ G
k
0 × H

α
x and Mψ are continuous, it is clear that, as

δ → 0, we have aδ(σ) → 0 almost surely (hence in probability). Moreover, Mψ being locally
bounded, we get aδ ∈ L

∞([s, t] × Ω) with a bound uniform in δ. In particular, E[aδ(σ)h] tends
to 0 and is uniformly integrable in σ ∈ [s, t], so that we may conclude A −−−→

δ→0
0.

Using the two lemmas introduced earlier, one can write in a similar fashion

B = E

[( ∫ t

s
bδ(σ)dσ

)
h
]
, C = E

[( ∫ t

s
cδ(σ)dσ

)
h
]
,

with

bδ(σ) =
∑

i

1[ti,ti+1](σ)
〈
Dfψ(fσ , uti+1

,mti+1
)−Dfψ(fσ , uσ,mσ), ∂σfσ

〉

cδ(σ) =
∑

i

1[ti,ti+1](σ)
〈
Duψ(fti , uσ,mti+1

)−Duψ(fσ, uσ,mσ), ∂σuσ
〉

and conclude in the same way using the estimates from Propositions 3.2 and 3.3 and the fact
that (mt)t≥0 is stochastically continuous and Dfψ, Duψ are C locb (Xαk ).

If |ψ|2 is also a good test function, then Lε|ψ|2 is locally bounded, and M ε
|ψ|2(t) defines a

martingale. Using these facts, (we may refer to the proof of Theorem B.3 in [7] for details) one
can show that the predictable quadratic variation of M ε

ψ is given by

d[M ε
ψ ](t) =

(
Lε|ψ|2 − 2ψLεψ

)
(f εt , u

ε
t ,m

ε
t )dt

which, in our case, boils down to ε−2(M |ψ|2 − 2ψMψ) since D|ψ|2 = 2ψDψ for any first order
differential operator D.

4 The auxiliary process

In section 5, we will be led to solve Poisson equations relative to the partial generator L# defined
in (3.15). To this purpose, it is natural to study the auxiliary Markov process (gt,mt)t≥0 whose
generator is expected to be L#. We hence define gt ≡ gt(f, n) as the solution of

{
∂tgt + ∂v [(mt(n)− v)gt] = 0,

g0(f, n) = f, m0(n) = n,
(4.1)
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and let (Qt)t≥0 be the corresponding semigroup

∀ψ ∈ Bloc(Gk0 × E), Qtψ(f, n) = E[ψ(gt(f, n),mt(n))].

The characteristics associated with the conservation equation (4.1) solve

V̇t(v) = mt(x)− Vt(v),

leading to the explicit expression

Vt(v) = e−t
(
v +

∫ t

0
eumu(x)du

)
.

Definition 4.1. The solution of (4.1) is defined by

gt(f, n)(x, v) = etf
(
x, et

[
v − wt(n)(x)

])
, t ≥ 0 (4.2)

where

wt(n) =

∫ t

0
e−(t−s)ms(n)ds =

∫ t

0
e−smt−s(n)ds ∈W 2,∞

x . (4.3)

It is easy to verify that, for all f ∈ Gk0 , we have g(f, n) ∈ C([0, T ];Gk0) with a bound

‖gt(f, n)‖Gk ≤ C(T,C∗, ‖f‖Gk ).

Additionally, gt(f, n) defines a weak solution of (4.1) just as in Proposition 3.2.

4.1 Generator of the auxiliary process

With the explicit expression (4.2), one could easily prove that the auxiliary process (gt,mt)t≥0

rigorously defines a (locally bounded) Markov process on the state space Gk0 × E. In order to
solve Poisson equations later, it is of interest this time to truly characterize the generator in
terms of b.p.c convergence.

Proposition 4.1. Let k ≥ 1 be given, and let ψ ≡ ψ(f, n) be a good test function on Gk0 × E.
Then ψ ∈ D(L#) in the sense that L#ψ ∈ C

loc
b (Gk0 × E) and

Qtψ(f, n)− ψ(f, n)

t

b.p.c
−−−−→
t→ 0+

L#ψ(f, n).

Proof. The properties satisfied by the good test function ψ clearly guarantee that L#ψ is well
defined and C locb (Gk0×E). Let us denote (gt(f, n),mt(n)) by (gt,mt) for simplicity. We split the
ratio into two terms

Qtψ(f, n)− ψ(f, n)

t
= E

[ψ(f,mt)− ψ(f, n)

t

]
+ E

[ψ(gt,mt)− ψ(f,mt)

t

]
.

The first term is simply t−1(Ptψ(f, n)−ψ(f, n)) which converges toMψ(f, n) and can be bounded
as t→ 0 by

sup
t∈[0,1]

∣∣∣ d
ds
Psψ(f, n)

∣∣∣ = sup
t∈[0,1]

∣∣∣PtMψ(f, n)
∣∣∣

which is locally bounded in (f, n). For the second term, we write

ψ(gt,mt)− ψ(f,mt)

t
=
〈
Dfψ(f, n),

gt − f

t

〉
+Rt (4.4)

with

Rt =

∫ 1

0

〈
Dfψ(f + θ(gt − f),mt)−Dfψ(f, n),

gt − f

t

〉
dθ.

As in the proof of Lemma 3.1, we see that (4.4) converges to
(
Dfψ(f, n),−∂v [(n− v)f ]

)
and is

uniformly locally bounded in (f, n) as t→ 0. We conclude by dominated convergence.
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4.2 Limiting measures and mixing properties

We will now determine to some extent the limiting law of (gt,mt)(f, n) as t goes to infinity, which
naturally corresponds to an invariant measure for the semi-group (Qt)t≥0. More precisely, we
shall describe how the mixing assumption (2.11) on the driving process (mt)t≥0 impacts the
speed of convergence of Qt to this invariant measure, along a certain type of test functions.
From the explicit form (4.2) for example, we see that

ρ(gt(f, n)) = ρ(f),

for all t ≥ 0. The density ρ being invariant along the trajectory (gt,mt)(f, n), the limiting law
(which we define in (4.6)) will therefore be naturally parametrized by ρ.

Definition 4.2. For ρ : T → R+ with
∫
ρ(x)dx = 1 and w : T → R, we define the probability

measure ρ⊗ δw on T× R as

∀ξ ∈ Cb(T× R), 〈ξ, ρ⊗ δw〉 =

∫

x
ξ(x,w(x))ρ(x)dx,

Keeping in mind expression (4.2), we easily have

etf
(
x, et[v − w(x)]

)
−−−→
t→∞

ρ(x)⊗ δw(x)

in the distributions sense. Moreover, we will see that wt(n) =
∫ t

0 e
−smt−s(n)ds −−−→

t→∞
w̃ in law,

where

w̃ =

∫ 0

−∞
esm̃sds. (4.5)

We therefore expect the limiting measures to have the following form.

Definition 4.3 (Invariant measures). For ρ : T → R+ with
∫
ρ(x)dx = 1, we (partially) define

the probability measure µρ on P(T× R)× E by

∀ψ ≡ ψ(f, n), 〈〈ψ, µρ〉〉 :=

∫
ψ(f, n) dµρ(f, n) = E

[
ψ(ρ⊗ δw̃, m̃0)

]
. (4.6)

when this expression makes sense.

Remaining on a formal level, one may compute the first moments

ρ(ρ⊗ δw̃) :=

∫
ρ⊗ δw̃ dv = ρ,

J(ρ⊗ δw̃) :=

∫
vρ⊗ δw̃ dv = w̃ρ,

K(ρ⊗ δw̃) :=

∫
v2ρ⊗ δw̃ dv = w̃2ρ.

We are now ready to state the following result.

Proposition 4.2 (Mixing speed for the auxiliary process). Let us work with f ∈ Gk0 for k ≥ 3.
Let ψ be a function of the form

ψ(f, n) =
〈
ξ1(n)ρ, ξ2(n)

〉
or

〈
J(f), ξ1(n)

〉
or

〈
K(f), ξ

〉
(4.7)

with ξ1, ξ2 : E →W 1,∞
x Lipschitz-continuous functions:

‖ξi(n)− ξi(n
′)‖

W 1,∞
x

. ‖n− n′‖E
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or ξ ∈W 1,∞
x . Then for all (f, n) ∈ Gk0 × E, letting ρ = ρ(f), we have

Qtψ(f, n) −−−→
t→∞

〈〈ψ, µρ〉〉.

More precisely, for all B ⊂ Gk0 × E bounded,

sup
(f,n)∈B

∣∣∣Qtψ(f, n)− 〈〈ψ, µρ〉〉
∣∣∣ ∈ L1(R+),

sup
(f,n)∈B

Nk

(
Df

[
Qtψ(f, n)− 〈〈ψ, µρ〉〉

])
∈ L1(R+).

Remark 4.1. • Note that in particular, when 〈〈ψ, µρ〉〉 = 0, we have
∫ ∞

0
sup

(f,n)∈B

∣∣∣Qtψ(f, n)
∣∣∣dt <∞,

∫ ∞

0
sup

(f,n)∈B
Nk(DfQtψ(f, n))dt <∞.

This allows to define ψ1(f, n) =
∫∞

0 Qtψ(f, n)dt which then satisfies

ψ1 ∈ B
loc(Gk0 × E) and Dfψ1 ∈ C

loc
b (Gk0 × E; C1

k)

as in Definition 3.2 of a good test function.

• Later on, we will typically consider ξi(n) = n,M−1I(n), ∂xM
−1I(n) which are indeed

Lipschitz-continuous functions according to the assumptions made on the driving process.

• The proof of this result will in fact emphasize that it holds for any test function ψ such that

ψ
(
gt(f, n),mt(n)

)
depends "at most quadratically on n" with the general rule of thumb:

ξ(n) ( with ξ Lipschitz ) ←→ n,
ρ ←→ 1,

J(f) ←→ n,
K(f) ←→ n2.

For instance, the test function ψ(f, n) =
〈
ρ, ξ(n)

〉〈
J(f), ξ

〉
can be considered.

Proof. Recalling (4.2), simple computations lead to

ρ(gt(f, n)) = ρ(f) = ρ

J(gt(f, n)) = e−tJ(f) + wt(n)ρ(f)

K(gt(f, n)) = e−2tK(f) + 2e−twt(n)J(f) + wt(n)2ρ(f).

Let us introduce the coupling (m∗
t (n), m̃∗

t )t≥0 given by the mixing Assumption 3, and define

w∗
t (n) :=

∫ t

0
e−sm∗

t−s(n)ds, w̃∗
t :=

∫ 0

−∞
esm̃∗

t+sds.

Recalling (4.3) and (4.5), one can observe that, since (m̃t)t∈R is stationary,

(wt(n),mt(n)) ∼ (w∗
t (n),m∗

t (n)) in law, (w̃, m̃0) ∼ (w̃∗
t , m̃

∗
t ) in law.

The mixing assumption gives

E‖w∗
t (n)− w̃∗

t ‖E ≤

∫ t

0
e−s

E‖m∗
t−s(n)− m̃∗

t−s‖Eds+

∫ ∞

t
e−s

E‖m̃∗
t−s‖Eds

.

∫ t

0
e−sγmix(t− s)ds+ e−t.
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Noting that

∫ t

0
e−sγmix(t− s)ds ≤

∫ ∞

0
e−sγmix(t− s)ds −−−→

t→∞
0,

∫ ∞

t=0

∫ t

s=0
e−sγmix(t− s)dsdt =

∫ ∞

s=0
e−s

∫ ∞

t=s
γmix(t− s)dtds =

∫ ∞

0
γmix(t)dt <∞,

we have shown that
t 7→ E‖w∗

t (n)− w̃∗
t ‖E ∈ L

1(R+)

and tends to 0 as t→∞. Let us first consider ψ(f, n) =
〈
ξ1(n)ρ, ξ2(n)

〉
. In this case,

Qtψ(f, n)− 〈〈ψ, µρ〉〉 = E

〈
ξ1(m∗

t (n))ρ, ξ2(m∗
t (n))

〉
− E

〈
ξ1(m̃∗

t )ρ, ξ2(m̃∗
t )
〉
,

Df

[
Qtψ(f, n)− 〈〈ψ, µρ〉〉

]
= E

[
ξ1(m∗

t (n))ξ2(m∗
t (n))− ξ1(m̃∗

t )ξ2(m̃∗
t )
]
.

The Lipschitz assumption on ξi and the inequality

∣∣∣〈h, k〉 − 〈h̃, k̃〉
∣∣∣ ≤ ‖h‖‖k − k̃‖+ ‖k‖‖h − h̃‖ (4.8)

lead to
∣∣∣Qtψ(f, n)− 〈〈ψ, µρ〉〉

∣∣∣ . ‖f‖G0
γmix(t), Nk

(
Df

[
Qtψ(f, n)− 〈〈ψ, µρ〉〉

])
. γmix(t).

Let us now consider ψ(f, n) =
〈
J(f), ξ1(n)

〉
. In this case,

Qtψ(f, n)− 〈〈ψ, µρ〉〉 = e−t
E

〈
J(f), ξ1(mt(n))

〉
+
[
E

〈
w∗
t (n)ρ, ξ1(m∗

t (n))
〉
− E

〈
w̃∗
t (n)ρ, ξ1(m̃∗

t )
〉]

Df

[
Qtψ(f, n)− 〈〈ψ, µρ〉〉

]
= e−t

E[vξ1(mt(n))] + E

[
w∗
t (n)ξ1(m∗

t (n))− w̃∗
t (n)ξ1(m̃∗

t (n))
]
.

The first terms can be bounded by some Ce−t, and we can use (4.8) again to bound the second

terms. Finally, let us consider ψ(f, n) =
〈
K(f), ξ

〉
. In this case,

Qtψ(f, n)− 〈〈ψ, µρ〉〉 =e−2t
E

〈
K(f), ξ

〉
+ 2e−t

E

〈
wt(n)J(f), ξ

〉

+
[
E

〈
w∗
t (n)2ρ, ξ

〉
− E

〈
(w̃∗

t )
2ρ, ξ

〉]
,

Df

[
Qtψ(f, n)− 〈〈ψ, µρ〉〉

]
= e−2tv2ξ + 2e−t

E[wt(n)]vξ + E

[
w∗
t (n)2 − (w̃∗

t )
2
]
ξ.

We conclude in the same way.

Let us complete this section by pointing out some identities regarding the laws of w̃, m̃0,
and M−1I(m̃0) which will be useful for calculations later on.

Proposition 4.3. We have the following identities:

E

[
w̃(x)w̃(y)

]
=

1

2

∫

R

e−|t|
E

[
m̃0(x)m̃t(y)

]
dt, (4.9)

E

[
w̃(x)M−1I(m̃0)(y)

]
= −

∫ ∞

t=0
(1− e−t)E

[
m̃0(x)m̃t(y)

]
dt (4.10)

= E

[
m̃0(x)M−1I(m̃0)(y) + w̃(x)m̃0(y)

]
. (4.11)
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Proof. Recalling Definition 4.5 and using the fact that m̃ is stationary, the quantity E

[
w̃(x)w̃(y)

]

can be written
∫ 0

s=−∞

∫ 0

t=−∞
et+sE[m̃s(x)m̃t(y)]dtds =

∫ 0

s=−∞

∫ 0

t=−∞
et+sE[m̃0(x)m̃t−s(y)]dtds.

We set r = t− s and use Fubini’s Theorem to obtain the expression

∫ 0

r=−∞

( ∫ 0

s=−∞
e2sds

)
erE[m̃0(x)m̃r(y)]dr +

∫ ∞

r=0

( ∫ −r

s=−∞
e2sds

)
erE[m̃0(x)m̃r(y)]dr,

which gives (4.9). As for the second relation (4.10), we have

E

[
w̃(x)M−1I(m̃0)(y)

]
=

∫ 0

−∞
esE

[
m̃s(x)M−1I(m̃0)(y)

]
ds. (4.12)

For s ≤ 0, recalling definition (2.13) and using the Markov property,

E

[
m̃s(x)M−1I(m̃0)(y)

]
=

∫

E
E

[
ms(n)(x)M−1I(n)

]
dν(n)

= −

∫

E

∫ ∞

0
E

[
ms(n)(x)E[mt(n)(y)|F0]

]
dtdν(n)

= −

∫

E

∫ ∞

0
E

[
ms(n)(x)mt(n)(y)

]
dtdν(n)

= −

∫ ∞

0
E

[
m̃s(x)m̃t(y)

]
dt. (4.13)

It follows that (4.12) is equal to

−

∫ 0

s=−∞

∫ ∞

t=0
esE

[
m̃s(x)m̃t(y)

]
dsdt = −

∫ 0

s=−∞

∫ ∞

t=0
esE

[
m̃0(x)m̃t−s(y)

]
dsdt.

Setting again r = t− s and using Fubini’s Theorem leads to the expression

−

∫ ∞

r=0
(1− e−r)E

[
m̃0(x)m̃r(y)

]
dr

for (4.12). Using (4.13), we also recognize this to be (4.11)

5 The perturbed test function method

From this point on, we shall work in the state space (f, u, n) ∈ Xαk = Gk0 ×H
α
x × E, for k = 3

and α ∈ (1/2, 3/2). The aim of this section is to identify a "limiting generator" L satisfying, for
a large class of test functions φ,

Lεφε(f, u, n) = Lφ(ρ, u) +O(ε) (5.1)

where φε is a perturbed version of φ of the form

φε(f, u, n) = φ(f, u) + εφ1(f, u, n) + ε2φ2(f, u, n)

and the correctors φ1, φ2 are good test functions to be identified. The O(ε) is to be understood
as some Rε(f, u, n) such that supB |R

ε(f, u, n)| = O(ε) as ε → 0 for all bounded B ⊂ Xαk . Let
us start with a good test function φ ≡ φ(f, u) ∈ Bloc(Xαk ) of the form

φ(f, u) = Φ
(
〈f, ξ〉; 〈u, ζ〉

)
= Φ

(
〈ρ, ξ〉; 〈u, ζ〉

)
(5.2)
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with Φ ∈ C3(R2), and ξ ≡ ξ(x), ζ ≡ ζ(x) ∈ C2(T). Since, for fixed initial data f , the quantity
ρ(x) is conserved along the auxiliary equation (4.1), in the following we shall often write Φ, ∂iΦ

(etc...) instead of specifying Φ
(
〈ρ, ξ〉; 〈u, ζ〉

)
, ∂iΦ

(
〈ρ, ξ〉; 〈u, ζ〉

)
(etc...). Identifying the different

orders in ε in (5.1), we get the set of equations





ε−2 : L#φ(f, u, n) = 0,
ε−1 : L#φ1(f, u, n) + L♭φ(f, u, n) = 0,
ε0 : L#φ2(f, u, n) + L♭φ1(f, u, n) + L0φ(f, u, n) = Lφ(ρ, u),

as well as 



ε1 : L1φ(f, u, n) + L0φ1(f, u, n) + L♭φ2(f, u, n) = O(1),
ε2 : L1φ1(f, u, n) + L0φ2(f, u, n) = O(ε−1),
ε3 : L1φ2(f, u, n) = O(ε−2).

(5.3)

5.1 Order ε
−2

Given the form (5.2) for φ, we have φ(f, u) = φ(ρ(f), u), which is invariant along the trajectories
of the auxiliary process (gt,mt)t≥0. It follows that, indeed L#φ(f, u, n) = 0. Furthermore, one
may observe that

L♭φ(f, u) =
〈
J(f), ∂xDfφ(f, u)

〉
=
〈
J(f), ∂xξ

〉
∂1Φ

is a good test function satisfying the assumptions of Proposition 4.2.

5.2 Order ε
−1: first corrector

We wish to solve the Poisson equation in φ1:

L#φ1(f, u, n) = −L♭φ(f, u).

The solution is expected to be given by

φ1(f, u, n) =

∫ ∞

0
Qt[L♭φ](f, u, n)dt.

Proposition 4.2 guarantees that this corrector is indeed well-defined and locally bounded as long
as 〈〈L♭φ, µρ〉〉 = 0, and indeed, since m̃ is centered,

〈〈L♭φ, µρ〉〉 = E

〈
ρw̃, ∂xDfφ(ρ, u)

〉
= 0.

The first corrector φ1 can in fact be calculated explicitly:

φ1(f, u, n) =

∫ ∞

0
E

〈
f,wt(n)∂xDfφ(f, u)

〉
dt =

〈
f,

∫ ∞

0
E[wt(n)]dt ∂xDfφ(f, u)

〉
,

with
∫ ∞

0
E[wt(n)]dt =

∫ ∞

t=0

∫ t

s=0
e−(t−s)

E[ms(n)]dsdt =

∫ ∞

s=0
esE[ms(n)]

∫ ∞

t=s
e−tdtds

=

∫ ∞

s=0
E[ms(n)]ds = −M−1I(n).

We hence get the expression

φ1(f, u, n) =
〈
∂x[M−1I(n)ρ− J(f)],Dfφ(f, u)

〉
, (5.4)
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that is, with (5.2),

φ1(f, u, n) =
〈
J(f)−M−1I(n)ρ, ∂xξ

〉
∂1Φ,

which is clearly a good test function, thus in the domain of generator L#. Making use of
Remark 2.2, we have hence rigorously proven the following.

Proposition 5.1. The first corrector given by (5.4) is a good test function which satisfies

L#φ1(f, u, n) = −Lbφ(f, u).

A simple calculation then leads to
〈
Dfφ1(f, u, n), h

〉
=

〈
∂x[M−1I(n)ρ(h)− J(h)],Dfφ(ρ, u)

〉

+D2
fφ(ρ, u)

(
ρ(h), ∂x[M−1I(n)ρ− J(f)]

)
.

(5.5)

5.3 Order ε
0: Limiting generator and second corrector

We now wish to solve the Poisson equation in φ2:

L#φ2(f, u, n) = −L♭φ1(f, u, n)− L0φ(f, u, n) + Lφ(ρ, u).

Again, the solution is expected to be given by

φ2(f, u, n) =

∫ ∞

0
Qt
[
L♭φ1 + L0φ− Lφ(ρ, u)

]
(f, u, n)dt.

which should converge whenever

Lφ(ρ, u) = 〈〈L♭φ1, µρ〉〉+ 〈〈L0φ, µρ〉〉. (5.6)

This last condition determines the form of the limiting generator Lφ.

5.3.1 Limiting generator

We first compute L♭φ1(f, u, n): letting h = −(v∂xf + u∂vf) in (5.5), noting that

ρ(h) = −∂xJ(f), J(h) = −∂xK(f) + uρ

leads to the expression

L♭φ1(f, u, n) =
〈
∂x
[
−M−1I(n)∂xJ(f) + ∂xK(f)− uρ

]
,Dfφ(ρ, u)

〉

+D2
fφ(ρ, u)

(
− ∂xJ(f), ∂x[M−1I(n)ρ− J(f)]

)
. (5.7)

According to (5.6), the first contribution Lρ to the limiting generator is hence given by

Lρφ(ρ, u) := 〈〈L♭φ1, µρ〉〉 = E

〈
∂x
[
∂x[(w̃)2ρ]−M−1I(m̃0)∂x[w̃ρ]− uρ

]
,Dfφ(ρ, u)

〉

+ED2
fφ(ρ, u)

(
∂x[w̃ρ], ∂x

[(
w̃ −M−1I(m̃0)

)
ρ
])
.

(5.8)

Similarly, recalling that

L0φ(f, u) =
〈
∂2
xu+ J(f),Duφ(f, u)

〉
(5.9)

the second contribution Lu to the limiting generator is given by

Luφ(ρ, u) := 〈〈L0φ, µρ〉〉 =
〈
∂2
xu,Duφ(ρ, u)

〉
. (5.10)

Defining the operator L as

Lφ(ρ, u) = Lρφ(ρ, u) + Luφ(ρ, u), (5.11)

let us now describe the corresponding process.
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5.3.2 Limiting SPDE

The limiting process corresponding to the generator L, will be denoted by (ρt, ut)t≥0 for sim-
plicity in this subsection only. Since it appears to be a diffusion process, we are naturally led to
determine the associated SPDE.

Firstly, note that this limiting process (ρt, ut)t≥0 is decoupled: the contribution Luφ given
by (5.10) corresponds to the simple deterministic PDE

∂tu = ∂2
xu.

Let us hence focus on the contribution Lρφ given by (5.8) which describes the evolution of
(ρt)t≥0. The second order differential in φ is associated to to the diffusive part of the SPDE: we
must identify the corresponding covariance operator. Let us assume that D2

fφ(ρ, u) is associated
to some symmetric kernel Ψ. Then,

E

[
D2
fφ(ρ, u)

(
∂x[w̃ρ], ∂x

[(
w̃ −M−1I(m̃0)

)
ρ
])]

= E

∫

x

∫

y
Ψ(x, y)∂x[w̃ρ](x)∂y

[
(w̃ −M−1I(m̃0))ρ

]
(y)dxdy

= E

∫

x

∫

y
Ψ(x, y)∂x

[
∂y
[
w̃(x)

(
w̃ −M−1I(m̃0)

)
(y)ρ(x)ρ(y)

]]
dxdy. (5.12)

We are thus naturally led to study the kernel E

[
w̃(x)

(
w̃(y)−M−1I(m̃0)(y)

)]
. Note that since

Ψ is symmetric in (5.12), we may as well consider the symmetrized version

E

[
w̃(x)w̃(y)

]
−

1

2

(
E

[
w̃(x)M−1I(m̃0)(y)

]
+ E

[
w̃(y)M−1I(m̃0)(x)

])
.

Making use of the expressions obtained in Proposition 4.3 as well as the stationary character of
(m̃t)t∈R, we easily derive

E

[
w̃(x)w̃(y)

]
−

1

2

(
E

[
w̃(x)M−1I(m̃0)(y)

]
+ E

[
w̃(y)M−1I(m̃0)(x)

])
=

1

2
k(x, y) (5.13)

where k(x, y) is the kernel defined in (1.9). Let us denote by Q the linear operator on L2
x

associated to this kernel:

∀f ∈ L2
x, Qf(x) =

∫

y
k(x, y)f(y)dy. (5.14)

Proposition 5.2. The operator Q is self-adjoint, compact and non-negative:

∀f ∈ L2(T; R) (Qf, f) ≥ 0.

We refer to [6], Lemma 1 for a proof. As a result, we can introduce the square root Q1/2 of
the operator Q, and denote by q the associated kernel:

Q1/2f(x) =

∫

y
q(x, y)f(y)dy, k(x, y) =

∫

z
q(x, z)q(z, y)dz.

We may now define the operator on L2
x

∂x
[
ρQ1/2

]
(f)(x) :=

∫

y
∂x
[
ρ(x)q(x, y)f(y)

]
dy, (5.15)

whose adjoint is given by

∂x
[
ρQ1/2

]∗
(g)(y) =

∫

x
∂x
[
ρ(x)q(x, y)

]
g(x)dx.
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A straight-forward calculation then leads to

∂x
[
ρQ1/2

]∗
D2φ(ρ, u)∂x

[
ρQ1/2

]
(f)(t) =

∫

z
N(t, z)f(z)dz

where

N(t, z) =

∫

x

∫

y
∂x
[
ρ(x)q(x, t)

]
Ψ(x, y)∂y

[
ρ(y)q(y, z)

]
dxdy.

We can now get back to (5.12) and derive

E

[
D2
fφ(ρ, u)

(
∂x[w̃ρ], ∂x

[(
w̃ −M−1I(m̃0)

)
ρ
])]

=
1

2

∫

x

∫

y
Ψ(x, y)∂x

[
∂y
[
ρ(x)ρ(y)k(x, y)

]]
dxdy

=
1

2

∫

x

∫

y

∫

z
Ψ(x, y)∂x

[
∂y
[
ρ(x)ρ(y)q(x, z)q(z, y)

]]
dxdydz =

1

2

∫

z
N(z, z)dz

=
1

2
Tr
(
∂x
[
ρQ1/2

]∗
D2
fφ(ρ)∂x

[
ρQ1/2

])
.

Consequently, the contribution Lρ to the limiting generator L may finally be rewritten as

Lρφ(ρ, u) =
〈
AIρ,Dfφ(ρ, u)

〉
+

1

2
Tr
(
∂x
[
ρQ1/2

]∗
D2
fφ(ρ, u)∂x

[
ρQ1/2

])
, (5.16)

where AI denotes the second order differential operator

AIρ = E

[
∂x
(
∂x[w̃2ρ]−M−1I(m̃0)∂x[w̃ρ]− ρu

)]
. (5.17)

This naturally corresponds to the following SPDE, given in Itô form

dρt = AIρt dt + ∂x
[
ρtQ

1/2dWt

]
. (5.18)

Finally, let us determine the Stratonovich form associated with (5.18). Recalling (5.13), the Itô
operator AI may be rewritten as

AIρ =
1

2
∂2
x

[
k(x, x)ρ

]
+ ∂x

[
E

(
∂x[M−1I(m̃0)]w̃

)
ρ
]
− ∂x[uρ].

The correction from the Itô to the Stratonovich form is given by the formula

∂x
[
ρQ1/2 ◦ dWt

]
= ∂x

[
ρQ1/2dWt

]
+AI→Sρ

where

AI→Sρ :=
1

2
∂x
[ ∫

y
q(x, y)∂x

(
ρ(x)q(x, y)

)
dy
]

=
1

2
∂2
x

[
k(x, x)ρ

]
−

1

4
∂x
[(
∂xk(x, x)

)
ρ
]

since k(x, x) =
∫
y q(x, y)2dy. Hence, (5.18) can be expressed in Stratonovich form as

dρt = ASρt dt + ∂x
[
ρQ1/2 ◦ dWt

]

where the differential operator AS is of order one:

ASρ = AIρ−AI→Sρ = ∂x
[(

E∂x[M−1I(m̃0)]w̃ +
1

4
∂xk(x, x)− u

)
ρ
]
.

Using once again expression (5.13) and the identities from Proposition 4.3, straight-forward
calculations give

ASρ = ∂x
[
(a− u)ρ

]

where a ≡ a(x) is given by (1.8).
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5.3.3 Second corrector

Using the form (5.2) for φ, recalling (5.7) and (5.9), calculations lead to the expressions

L♭φ1(f, u, n) = −
〈
J(f), ∂x(M−1I(n)∂xξ)

〉
∂1Φ +

〈
K(f), ∂2

xξ
〉
∂1Φ +

〈
ρ, u∂xξ

〉
∂1Φ

−
〈
J(f), ∂xξ

〉〈
ρ,M−1I(n)∂xξ

〉
∂2

1Φ +
〈
J(f), ∂xξ

〉2
∂2

1Φ
(5.19)

and

L0φ(f, u) =
〈
u, ∂2

xζ
〉
∂2Φ +

〈
J(f), ζ

〉
∂2Φ. (5.20)

We now prove the following result.

Proposition 5.3. The second corrector given by

φ2(f, u, n) =

∫ ∞

0
Qt
[
L♭φ1 + L0φ− Lφ

]
(f, u, n)dt

defines a good test function which satisfies

L#φ2(f, u, n) = −L♭φ1(f, u, n)− L0φ(f, u, n) + Lφ(ρ, u), (5.21)

where L is the limiting generator given by (5.11).

Proof. Firstly, note that θ := L♭φ1 + L0φ− Lφ ∈ C
loc
b (Xαk ) (recall that k = 3) has the form of

a good test function. In particular, it is in the domain of L#. For B ⊂ Xαk bounded, we shall
prove the following points:

1. First point:

∫ ∞

0
sup

(f,u,n)∈B

∣∣∣Qt
[
L♭φ1L0φ− Lφ

]
(f, u, n)

∣∣∣dt <∞,

2. Second point:

∫ ∞

0
sup

(f,u,n)∈B

∣∣∣QtL#

[
L♭φ1 + L0φ− Lφ

]
(f, u, n)

∣∣∣dt <∞,

3. Third point:

∫ ∞

0
sup

(f,u,n)∈B
Nk

(
DfQt

[
L♭φ1 + L0φ− Lφ

]
(f, u, n)

)
dt <∞,

4. Fourth point:

∫ ∞

0
sup

(f,u,n)∈B
‖DuQt

[
L♭φ1 + L0φ− Lφ

]
(f, u, n)‖C2(T)dt <∞,

Point 1 shows that φ2 is well defined and in Bloc(Xαk ). Once point 2 is obtained, we can use
Corollary 2.4 to conclude immediately that φ2 ∈ D(L#) and satisfies (5.21). It then remains to
prove that φ2 is a good test function.

Points 3 and 4 guarantee that φ2 meets the last two requirements of Definition 3.2. Moreover,
using the same decomposition as in the proof of Proposition 4.1, we may write

Ptφ2(f, u, n)− φ2(f, u, n)

t
=
Qtφ2(f, u, n)− φ2(f, u, n)

t
− E

[φ2(gt, u,mt)− φ2(f, u,mt)

t

]
.

Considering the b.p.c convergence of each term of the right hand side as t goes to zero, we obtain
φ2(f, u, ·) ∈ D(M) and

Mφ2(f, u, n) = L#φ2(f, u, n)−
〈
∂v[(v − n)f ],Dfφ2(f, u, n)

〉

which is in C locb (Xαk ), concluding the proof. Let us now review the different points.
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First point It is clear from the explicit expressions (5.19) and (5.20) that L♭φ1 and L0φ are
linear combinations of functions satisfying the assumptions of Proposition 4.2, i.e essentially
"quadratic in n". By definition, Lφ(f, u) = 〈〈L♭φ1 + L0φ, µρ〉〉, so that

Qt
[
L♭φ1 + L0φ− Lφ

]
= Qt

[
L♭φ1 + L0φ

]
− 〈〈L♭φ1 + L0φ, µρ〉〉.

One can easily check that the estimates obtained from Proposition 4.2 are also locally bounded
in u ∈ L∞

x ⊂ H
α
x (since α > 1/2).

Second point Let us compute explicitely L#

[
L♭φ1 + L0φ− Lφ

]
, recalling that

L#ψ(f, n) =
〈
h,Dfψ(f, n)

〉
+Mψ(f, n)

where h = ∂v[(v−n)f ]. Since Lφ ≡ Lφ(ρ, u), we have L#[L♭φ1 +L0φ−Lφ] = L#L♭φ1 +L#L0φ.
Using Proposition 4.2 once again, we simply need to show that the test functions involved have
the right form and are centered with respect to the invariant measure µρ of the auxiliary process.
Calculations give, for χ ≡ χ(x),

〈h, χ〉 = 〈ρ(h), χ〉 = 0,

〈J(h), χ〉 = 〈nρ− J(f), χ〉,

〈K(h), χ〉 = 2
〈
nJ(f)−K(f), χ

〉
.

Let us review the different terms in (5.19) and express the corresponding parts in L#L♭φ1.

The first term is ψ1(f, n) = −
〈
J(f), ∂x(M−1I(n)∂xξ)

〉
∂1Φ. We get

Mψ1(f, n) = −
〈
J(f), ∂x(n.∂xξ)

〉
∂1Φ,

〈
h,Dψ1(f, n)

〉
=
〈
J(f)− nρ, ∂x(M−1I(n).∂xξ)

〉
∂1Φ,

so that L#ψ1 has the form required in Proposition 4.2. Calculations give the following expression
for 〈〈L#ψ1, µρ〉〉:

E

[
−
〈
w̃ρ, ∂x(m̃0.∂xξ)

〉
+
〈
w̃ρ, ∂x(M−1I(m̃0).∂xξ)

〉
−
〈
m̃0ρ, ∂x(M−1I(m̃0).∂xξ)

〉]
∂1Φ.

Using the identity (4.11) from Proposition 4.3, this is indeed 0.

The next term is ψ2(f, n) =
〈
K(f), ∂2

xξ
〉
∂1Φ. We get

Mψ2(f, n) = 0,
〈
h,Dψ2(f, n)

〉
= 2

〈
nJ(f)−K(f), ∂2

xξ
〉
∂1Φ,

so that L#ψ2 satisfies the assumption of Proposition 4.2. Here,

〈〈L#ψ2, µρ〉〉 = 2E

〈
(m̃0w̃ − w̃

2)ρ, ∂2
xξ
〉
∂1Φ.

Using the identity (4.9) from Proposition 4.3 as well as the stationarity of m̃, we see that
E(m̃0w̃) = E(w̃2), so that this is indeed 0.
The next term 〈ρ, u∂xξ〉∂1Φ is in fact constant along the trajectories of (gt,mt)t≥0, giving no

contribution. The following term is ψ3(f, n) = −
〈
J(f), ∂xξ

〉〈
ρ,M−1I(n)∂xξ

〉
∂2

1Φ. We get

Mψ3(f, n) = −
〈
J(f), ∂xξ

〉〈
ρ, n∂xξ

〉
∂2

1Φ,
〈
h,Dψ3(f, n)

〉
= −

〈
nρ− J(f), ∂xξ

〉〈
ρ,M−1I(n).∂xξ

〉
∂2

1Φ,

31



so that L#ψ3 satisfies the assumption of Proposition 4.2. Here,

〈〈L#ψ3, µρ〉〉 =E

[
−
〈
w̃ρ, ∂xξ

〉〈
ρ, m̃0.∂xξ

〉
−
〈
m̃0ρ, ∂xξ

〉〈
ρ,M−1I(m̃0).∂xξ

〉

+
〈
w̃ρ, ∂xξ

〉〈
ρ,M−1I(m̃0).∂xξ

〉]
∂2

1Φ.

Again, using the identity (4.11) from Proposition 4.3, this is indeed 0. Finally, the last term is

ψ4(f, n) =
〈
J(f), ∂xξ

〉2
∂2

1Φ. We get

Mψ4(f, n) = 0,
〈
h,Dψ4(f, n)

〉
= 2

〈
nρ− J(f), ∂xξ

〉〈
J(f), ∂xξ

〉
∂2

1Φ,

so that L#ψ4 satisfies the assumption of Proposition 4.2. Here,

〈〈L#ψ4, µρ〉〉 = 2E

[〈
m̃0ρ, ∂xξ

〉〈
w̃ρ, ∂xξ

〉
−
〈
w̃ρ, ∂xξ

〉〈
w̃ρ, ∂xξ

〉]
∂2

1Φ. (5.22)

Using the identity (4.9) as well as the stationarity of m̃, we see that

1

2
E[m̃0(x)w̃(y) + m̃0(y)w̃(x)] = E[w̃(x)w̃(y)]

hence, making use of the symmetry of (5.22), it is indeed 0. It remains to study L#L0φ(f, u).

The first term 〈u, ∂2
xζ〉∂2Φ is constant. As for the second term

〈
J(f), ζ

〉
∂2Φ, we get

L#

[〈
J(f), ζ

〉
∂2Φ

]
=
〈
J(h), ζ

〉
∂2Φ =

〈
nρ− J(f), ζ

〉
∂2Φ

which satisfies the assumption of Proposition 4.2 and

〈〈
〈
nρ− J(f), ζ

〉
∂2Φ, µρ〉〉 = E

〈
m̃0ρ− w̃ρ, ζ

〉
∂2Φ = 0.

This concludes the proof of the second point.

Third point Once again, we simply use Proposition 4.2 (the part regarding the mixing speed
of DfQtψ) since, as previously mentioned,

Qt
[
L♭φ1 + L0φ− Lφ

]
=
(
Qt[L♭φ1]− 〈〈L♭φ1, µρ〉〉

)
+
(
Qt[L0φ]− 〈〈L0φ, µρ〉〉

)

and the different terms in (5.19), (5.20) are good test functions satisfying the requested assump-
tions.

Fourth point Reviewing Qt
[
L♭φ1 + L0φ− Lφ

]
, we see that it is a sum of terms of the form

(
Qtψ(f, n)− 〈〈ψ, µρ〉〉

)
∂ijΦ((f, ξ); (u, ζ)).

with i, j = 1 or 2 and ψ of the form required in Proposition 4.2 (the terms involving u in (5.19)
and (5.20) are constant along the trajectories of (gt,mt)t≥0 and are hence canceled out). The
differential with respect to u of such a term is hence simply

(
Qtψ(f, n)− 〈〈ψ, µρ〉〉

)
∂2∂

i
jΦ((f, ξ); (u, ζ))ζ.

Since we assumed Φ ∈ C3, its ‖ · ‖C2(T) norm over B ⊂ Xαk can be bounded by

C sup
(f,u,n)∈B

∣∣∣Qtψ(f, n)− 〈〈ψ, µρ〉〉
∣∣∣‖ζ‖C2(T)

which is integrable over R
+ according to Proposition 4.2.
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5.4 Consequence

Note that since φ, φ1, φ2 are good test functions, the equations with a positive order (5.3) are
automatically satisfied since L⋆φ, L⋆φi are locally bounded for i = 1, 2, and ⋆ = 0, 1, ♭. Let us
summarize the results we have obtained: for all φ good test-function of the form

φ(f) = Φ((ρ, ξ); (u, ζ))

with Φ ∈ C3(R2), ξ ≡ ξ(x), ζ ≡ ζ(x) ∈ C2(T), there exist correctors φ1, φ2 which are good test
functions, such that the perturbed test function φε = φ+ εφ1 + ε2φ2 satisfies

Lεφε(f, u, n) = Lφ(ρ, u) +Rε(f, u, n)

where L is the limiting generator identified in (5.11), and Rε/ε is locally bounded. As a result,
we know from Proposition 3.7 that

M ε
φ(t) = φε(f εt , u

ε
t ,m

ε
t )−

∫ t

0
Lεφε(f εs , u

ε
s,m

ε
s)ds, t ≥ 0

defines a (Fεt )t≥0-martingale, so that

N ε
φ(t) = φ(ρεt , u

ε
t )−

∫ t

0
Lφ(ρεs, u

ε
s)ds, t ≥ 0

is "almost" a martingale, up to some O(ε). This is an essential step towards our diffusion-
approximation result.

6 Diffusion-approximation

6.1 Tightness

We now prove the following result.

Proposition 6.1. Let α ∈ (1/2, 3/2] and assume that

sup
ε
‖uε0‖Hα

x
+ sup

ε
‖f ε0‖G3

<∞.

Then the family of random variables (ρε, uε)ε>0 is tight in the space

C([0, T ];H−γ
x )×C([0, T ];Hβ

x ), γ > 1/2, β < α.

Proof. The estimates from Proposition 3.6 guarantee that (uε)ε lies in a (deterministic) compact
subset of C([0, T ];Hβ

x ). We only need to prove the tightness of (ρε)ε in C([0, T ];H−γ
x ). To this

intent, we will once again use the perturbed test function method, but this time only up to the
first order. Firstly, note that since the injection L1

x ⊂ H
−γ
x is compact for γ > 1/2, it is sufficient

to prove

lim sup
ε

P(‖ρε‖L∞

t L1
x
> M) −−−−→

M→∞
0, (6.1)

∀r > 0, lim sup
ε

P(wγ(ρε; δ) > r) −−−→
δ→0

0, (6.2)

where wγ(ρ; δ) denote the modulus of continuity

wγ(ρ; δ) = sup
|t−s|≤δ

‖ρt − ρs‖H−γ
x
.
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One may refer to [2], Chapter 2, for details on this tightness criterion. The first point (6.1) is
obvious since ‖ρεt‖L1

x
= ‖ρε0‖L1

x
= 1. Note that for any η > γ an interpolation inequality gives,

for some θ ∈ (0, 1),

wγ(ρ; δ) ≤
(
2 sup
t∈[0,T ]

‖ρt‖L1
x

)θ
wη(ρ; δ)1−θ

so that it is in fact sufficient to establish (6.2) for γ large enough. Let us define the diagonal
operator

J = (Id−∆x)−1/2

that is, considering the L2(T) Hilbert-base
{
ej(x) = (2π)−1/2eijx, j ∈ Z

}
,

Jξ =
∑

j

(1 + |j|2)−1/2〈ξ, ej〉ej ,

so that
‖Jγρ‖2L2 =

∑

j

|〈ρ, Jγej〉|
2 =

∑

j

(1 + |j|2)−γ |〈ρ, ej〉|
2 = ‖ρ‖2

H−γ
x
.

For fixed j ∈ Z, we consider the good test function

φj(f) = 〈ρ, Jγej〉. (6.3)

which is indeed of the form (5.2) used in the perturbed test function method, with

‖Jγej‖C2 = (2π)−1/2|j|2(1 + |j|2)−γ/2.

The associated first corrector

φ1
j (f, n) =

〈
J(f)−M−1I(n)ρ, ∂xJ

γej
〉

(6.4)

is designed so that L#φ
1
j(f, n) = −L♭φj(f). Defining the first order perturbation

φεj(f, n) = φj(ρ) + εφ1
j (f, n)

it results that
Lεφεj(f, u, n) = L♭φ

1
j (f, u, n) = O(1) (6.5)

in the sense that it can be bounded by C‖Jγej‖C2 when (f, n) lies in a bounded B ⊂ Xαk . Let
us choose γ large enough so that

∑

j

‖Jγej‖
2
C2 <∞,

that is in fact, γ > 5/2. We now define

θε(t) = J−γ
∑

j

φεj(f
ε
t ,m

ε
t )ej ∈ H

−γ
x

and notice that, using the form (6.4) and Proposition 3.4, for all t ∈ [0, T ],

‖ρεt − θ
ε(t)‖H−γ

x
= ‖Jγρεt − J

γθε(t)‖L2 =
∑

j

∣∣∣φj(ρεt )− φεj(f εt ,mε
t )
∣∣∣
2

= ε
∑

j

∣∣∣φ1
j(f

ε
t ,m

ε
t )
∣∣∣
2

≤ εC(T,C∗, ‖uε0‖L∞

x
, ‖f ε0‖G1)

∑

j

‖Jγej‖
2
C1 . ε.

34



We deduce that (6.2) can be derived from the tightness of (θε)ε in D([0, T ];H−γ
x ): indeed, ρε

being continuous,

wγ(ρε; δ) . w′
γ(ρε; δ) . w′

γ(θε; δ) + ε

where w′
γ denotes the modulus of continuity in D([0, T ];H−γ

x ) (see again [2], Chapter 3, for
details). We apply Aldou’s criterion to prove the tightness of (θε)ε and conclude: let δ > 0 and
τ1, τ2 be two (Fεt )t≥0-stopping time satisfying

τ1 ≤ τ2 ≤ τ1 + δ, τ2 ≤ T. (6.6)

Introducing the square integrable martingale

M ε
j (t) = φεj(f

ε
t ,m

ε
t )−

∫ t

0
Lεφεj(f

ε
s , u

ε
s,m

ε
s)ds

we have

E‖θε(τ2)− θε(τ1)‖2
H−γ

x
=
∑

j

∣∣∣φεj(f ετ2
,mε

τ2
)− φεj(f

ε
τ1
,mε

τ1
)
∣∣∣
2

=
∑

j

E

∣∣∣M ε
j (τ2)−M ε

j (τ1)−

∫ τ2

τ1

Lεφεj(f
ε
s , u

ε
s,m

ε
s)ds

∣∣∣
2
.

On one hand, using Doob’s optional sampling theorem, we have

E

∣∣∣M ε
j (τ2)−M ε

j (τ1)
∣∣∣
2

= E

(
|M ε

j (τ2)|2 − |M ε
j (τ1)|2

)
= E

([
M ε
j

]
(τ2)−

[
M ε
j

]
(τ1)

)

where [M ε
j ](t) denotes the predictable quadratic variation of M ε

j (t). We know from Proposition
3.7 that it is given by

[
M ε
j (t)

]
=

1

ε2

∫ t

0

(
M |φεj |

2 − 2φεjMφεj

)
(f εs ,m

ε
s)ds =

∫ t

0

(
M |φ1

j |
2 − 2φ1

jMφ1
j

)
(f εs ,m

ε
s)ds

after some straight-forward calculation. Using expression (6.4) and the quadratic inequality
(2.15), we deduce that the integrand can be bounded over [0, T ] by C‖Jγej‖

2
C1 , so that

∑

j

E

∣∣∣M ε
j (τ2)−M ε

j (τ1)
∣∣∣
2
. δ. (6.7)

On the other hand, making use of (6.5),

∣∣∣
∫ t

s
Lεφεj(f

ε
s , u

ε
s,m

ε
s)ds

∣∣∣
2
.

∫ t

s
|Lεφεj(f

ε
s , u

ε
s,m

ε
s)|

2ds . ‖Jγej‖
2
C2 |t− s|

so that the choice of γ guarantees that

∑

j

E

∣∣∣
∫ τ2

τ1

Lεφεj(f
ε
s , u

ε
s,m

ε
s)ds

∣∣∣
2
. δ. (6.8)

Combining (6.7) and (6.8) and using Markov’s inequality, we conclude that

∀r > 0, lim sup
ε

sup
τ1,τ2

P

(∣∣∣θε(τ2)− θε(τ1)
∣∣∣ > r

)
−−−→
δ→0

0,

where the supremum is taken over all stopping times τ1, τ2 satisfying (6.6). Aldou’s criterion is
met, which concludes the proof.
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In the following, let us fix γ > 1/2 and β < α and a subsequence (ρεj , uεj )j≥1 which
converges in law to some (ρ, u). Using Skorokhod’s representation theorem, we may introduce
some probability space (Ω∗,P∗) hosting some random variables (ρ

εj
∗ , u

εj
∗ )j≥1 , (ρ∗, u∗) satisfying

(ρ
εj
∗ , u

εj
∗ ) ∼ (ρεj , uεj ), (ρ∗, u∗) ∼ (ρ, u) in law in C([0, T ];H−γ

x )× C([0, T ];Hβ
x )

and
(ρ
εj
∗ , u

εj
∗ ) −−−→

j→∞
(ρ∗, u∗) a.s in C([0, T ];H−γ

x )× C([0, T ];Hβ
x ).

Additionally, note that passing to the limit in the equality ‖ρε∗(t)‖L1
x

= 1 leads to the inequality

sup
[0,T ]
‖ρ∗(t)‖L1

x
≤ 1 a.s

or equivalently, regarding the limiting law,

P

[
sup
t∈[0,T ]

‖ρt‖L1
x
≤ 1

]
= 1. (6.9)

6.2 Convergence of the martingale problem

Let us consider a good test-function φ of the form (5.2). The final result obtained in section 5
can be summarized as follows: for any s1 < s2 < . . . < sn = s < t and any θ : (H−γ

x ×H
β
x )n → R

continuous and bounded,

E

[(
φ(ρεt , u

ε
t )− φ(ρεs, u

ε
s)−

∫ t

s
Lφ(ρεσ, u

ε
σ)dσ

)
θ(ρεs1

, uεs1
, . . . , ρεsn

, uεsn
)
]

= O(ε). (6.10)

Regarding the adaptedness of the process, note that since ω 7→ (ρεt , u
ε
t )(ω) ∈ L1

x × H
α
x is Fεt -

measurable, and since the injection L1
x ×H

α
x ⊂ H−γ

x ×Hβ
x is continuous, the random variable

ω 7→ (ρεt , u
ε
t )(ω) ∈ H−γ

x × Hβ
x is also Fεt -measurable. The martingale property (6.10) only

depends on the law of (ρε, uε) ∈ C([0, T ];H−γ
x ×Hβ

x ), so that we may in fact write, on the new
probability space (Ω∗,P∗),

E
∗
[(
φ(ρ

εj
∗ (t), u

εj
∗ (t))− φ(ρ

εj
∗ (s), u

εj
∗ (s))−

∫ t

s
Lφ(ρ

εj
∗ (σ), u

εj
∗ (σ))dσ

)
θ∗

]
= O(ε),

where θ∗ = θ(ρ
εj
∗ (s1), . . . , u

εj
∗ (sn)). From the expressions (5.8), (5.10) and (5.11), we easily

deduce that Lφ is continuous and locally bounded on H−γ
x ×H

β
x as soon as the functions ξ and

ζ involved in (5.2) have enough regularity (namely ξ ∈ Hγ+2
x , ζ ∈ H2−β

x ). We may then apply
the dominated convergence theorem on the probability space Ω∗ to send εj to zero. Using once
again the invariance of the law, we obtain

E

[(
φ(ρt, ut)− φ(ρs, us)−

∫ t

s
Lφ(ρσ, uσ)dσ

)
θ(ρs1

, us1
, . . . , ρsn , usn)

]
= 0.

This equality holding true for any s1 < . . . < sn = s < t and θ, we deduce that

Nφ(t) = φ(ρt, ut)− φ(ρ0, u0)−

∫ t

0
Lφ(ρs, us)ds, t ≥ 0

defines a continuous martingale, starting at 0, with respect to the natural filtration

Ft = σ
(
(ρs, us) ∈ H

−γ
x ×Hβ

x , s ∈ [0, t]
)
, t ≥ 0.
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This reasoning also holds for the good test function |φ|2 which is still of the form (5.2), so that
N|φ|2(t) defines a continuous martingale as well. As mentioned in the proof of Proposition 3.7
(see again [7], Theorem B.3) we derive that the quadratic variation of Nφ(t) is given by

[
Nφ

]
(t) =

∫ t

0

(
L|φ|2 − 2φLφ

)
(ρs, us)ds.

Let us consider φ(ρ, u) = (ρ, ξ) + (u, ζ). Simple calculations from the expression (5.16) give

Lφ(ρ, u) = (AIρ, ξ) + (∂2
xu, ζ),

(
L|φ|2 − 2φLφ

)
(ρ, u) =

∫

x

∫

y
k(x, y)ρ(x)∂xξ(x)ρ(y)∂yξ(y)dxdy.

where the operator AI and the kernel k(x, y) are defined in (5.17) and (1.9). Let us introduce
the H−γ−2

x ×Hβ−2
x -valued process

N(t) =
(
ρt − ρ0 −

∫ t

0
AIρsds , ut − u0 −

∫ t

0
∂2
xusds

)
, t ≥ 0.

Then for all (ξ, ζ) ∈ Hγ+2
x ×H2−β

x ,
〈
N(t), (ξ, ζ)

〉
, t ≥ 0

defines a continuous real-valued (Ft)t≥0-martingale of quadratic variation

[〈
N, (ξ, ζ)

〉]
(t) =

∫ t

0

∫

x

∫

y
k(x, y)ρt(x)∂xξ(x)ρt(y)∂yξ(y)dxdy. (6.11)

Using the polarization formula 〈N,h1〉〈N,h2〉 = 1
4

(
〈N,h1 + h2〉 − 〈N,h1 − h2〉

)
, we derive from

(6.11) that
〈
N(t), (ξ1nζ1)

〉〈
N(t), (ξ2, ζ2)

〉
−
〈
V (t)ξ1, ξ2

〉
, t ≥ 0

is a continuous real-valued (Ft)t≥0-martingale, where the operator V (t) is given by

〈
V (t)ξ1, ξ2

〉
=

∫ t

0

∫

x

∫

y
k(x, y)ρt(x)∂xξ1(x)ρt(y)∂yξ2(y)dxdy

=

∫

z

( ∫

x
∂x(ρt(x)q(x, z))ξ1(x)dx

)( ∫

x
∂x(ρt(y)q(y, z))ξ2(y)dy

)
dz

=

∫

z

(
∂x[ρtQ

1/2]∗ξ1(z)
)(
∂x[ρtQ

1/2]∗ξ2(z)
)
dz.

We have used the notation introduced in (5.15). That is in fact

V (t) = ∂x[ρtQ
1/2]∂x[ρtQ

1/2]∗.

We may therefore apply the martingale representation theorem [4, Theorem 8.2]: there exists
some filtered probability space (Ω̂, (F̂t)t≥0) equipped with a Wiener process Ŵ and a process
(ρ̂, û) defined on Ω̂ whose law is that of (ρ, u), such that the process

N̂(t) =
(
ρ̂t − ρ0 −

∫ t

0
AI ρ̂sds , ût − u0 −

∫ t

0
∂2
xûsds

)
, t ≥ 0.

can be represented as the Wiener integral

N̂(t) =
( ∫ t

0
∂x
[
ρ̂tQ

1/2dŴt

]
; 0
)
.

This shows that the limiting process (ρt, ut)t≥0 is a weak solution of the expected SPDE (1.7),
which concludes the proof of Theorem 1.
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7 Uniqueness for the limiting SPDE

We now prove the path-wise uniqueness for the limiting SPDE stated in Theorem 2. For con-
veniency, let us drop the hats on the quantities ρ̂, û introduced earlier and consider the limiting
process (ρ, u) ∈ C([0, T ];H−γ

x ×H
β
x ), where ρ satisfies the SPDE of (1.7) given on a filtered proba-

bility space (Ω, (Ft)t≥0) equipped with a Wiener process W = (Wt)t≥0. Of course, u = (ut)t∈[0,T ]

is completely determined as the solution the deterministic heat equation with initial data u0.
Let us denote

bt(x) = a(x)− ut(x),

with a given by (1.8). Diagonalizing the compact operator Q1/2 involved in (1.7), we may
introduce functions (φk)k≥0 such that

Q1/2 ◦ dWt =
∑

k

φk ◦ dβ
k
t , (βk) independent Brownian motions.

As a consequence, equation (1.7) can be re-written as
{
dρt + ∂x(btρt)dt = ∂x

(
ρt ◦

∑
k φkdβ

k
t

)
,

ρ(0) = ρ0 ∈ L
1
x,

or, equivalently, in Itô form,
{
dρt +

(
∂x(btρt)−

1
2

∑
k ∂x(φk∂x(φkρt))

)
dt =

∑
k ∂x(φkρt)dβ

k
t

ρ(0) = ρ0 ∈ L
1
x,

(7.1)

Recall that, as mentioned in (6.9), the solution ρ constructed as a weak limit of (ρε)ε in Theo-
rem 1 satisfies the additional bound

sup
t∈[0,T ]

‖ρt‖L1
x
≤ 1, a.s. (7.2)

Under the additional regularity assumptions of Theorem 2, it is clear that b ∈ L∞([0, T ];W 4,∞
x ).

Regarding the regularity of φk, one may note that, for σ > 4 + 1/2,
∑

k

‖φk‖
2
W 4,∞

x
≤
∑

k

‖φk‖
2
Hσ

x
= ‖Q1/2‖2L2(L2;Hσ

x ) = TrL2

(
J−2σQ

)

where J is the positive regularizing diagonal operator introduced in (6.1). Applying Corollary
C.2 and Proposition C.3 from appendix C of [4], we deduce, for any θ > 1,

TrL2
x

(
J−2σQ

)
= TrL2

x
(JθJ−θJ−2σQ) ≤ TrL2

x
(Jθ) ‖J−(θ+2σ)Q‖L(L2

x).

On one hand, TrL2
x
(Jθ) =

∑
k(1 + |k|2)−θ/2 < ∞ since θ > 1. On the other hand, for f ∈ L2

x,
we have

J−(θ+2σ)Qf(x) =

∫

y

(
Id− ∂2

x

)(θ+2σ)/2
k(x, y)f(y)dy

so that the bound ‖J−(θ+2σ)Q‖L(L2
x) <∞ is ensured as soon as

sup
y∈T

‖k(·, y)‖
W θ+2σ,∞

x
<∞.

The number θ + 2σ can be chosen as close to 1 + 2 × (4 + 1/2) = 10 as desired. Hence, the
regularity assumption (1.10) of Theorem 2 leads to

∑

k

‖φk‖
2
W 4,∞

x
<∞.

It is now clear that the proof of Theorem 2 boils down to that of the following result.
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Proposition 7.1. Assume that ρ0 ∈ L
1
x and

b ∈ L∞([0, T ];W 4,∞
x ),

∑

k

‖φk‖
2
W 4,∞

x
<∞. (7.3)

Then a solution ρ ∈ C([0, T ];H−γ
x ) a.s of (7.1) satisfying (7.2) is path-wise unique.

We are naturally led to consider the dual BSPDE (Backward SPDE) associated with (7.1),
of unknown (ψ,Z):

{
dψt +

(
− bt∂xψt + 1

2

∑
k φk∂x(φk∂xψt)−

∑
k φk∂xZ

k
t

)
dt =

∑
k Z

k
t dβ

k
t

ψ(T ) = ψT .
(7.4)

For σ > 0, let us define the spaces (where "prog." stands for "progressively measurable")

H
σ
ψ =

{
ψ : Ω× [0, T ]→ Hσ

x prog., ‖ψ‖2Hσ := E

∫ T

0
‖ψt‖

2
Hσ

x
dt <∞

}
,

H
σ
Z =

{
Z = (Zk)k : Ω× [0, T ]→ Hσ

x prog., ‖Z‖2Hσ :=
∑

k

E

∫ T

0
‖Zt‖

2
Hσ

x
dt <∞

}
.

The existence theory for (7.4) is linked to the uniqueness for (7.1) in the following way.

Lemma 7.1. Assume that for some s > 1/2, for all FT -measurable ψT : Ω → C∞(Tx), (7.4)
has a solution (ψ,Z) ∈ H

s+2
ψ ×H

s+1
Z . Then the conclusion of Proposition 7.1 holds.

Proof of the lemma. Considering two solutions ρ1, ρ2 of (7.1), let us define ρ = ρ1 − ρ2, so that
ρ(0) = 0. We start by regularizing (7.1) using an appropriate kernel kδ ∈ C

∞(Tx), δ > 0 (one
may for instance consider the Féjer kernel). Denoting ρδ = kδ ∗ ρ and ∂δ = kδ ∗ ∂x, we have




dρδt +

(
∂δ(btρt)−

1
2

∑
k ∂δ(φk∂x(φkρt))

)
dt =

∑
k ∂δ(φkρt)dβ

k
t

ρδ(0) = kδ ∗ ρ0 := ρδ0

in the "strong sense" that (ρδt )t≥0 is an L2
x-valued semi-martingale. Itô’s formula is now licit (one

may verify that the assumptions of [4] Theorem 4.17 are satisfied) and gives

d〈ρδt , ψt〉 =
[
−
〈
∂δ(btρt), ψt

〉
−
〈
ρδt , b∂xψt

〉]
dt

+
[1

2

∑

k

〈
∂δ(φk∂xφkρt)), ψt

〉
−
〈
ρδt , φk∂x(φk∂xψt)

〉]
dt

+
[∑

k

〈
ρδt , φk∂xZ

k
t

〉
+
〈
∂δ(φkρt), Z

k
t

〉]
dt

+
∑

k

[〈
∂δ(φkρt), ψt

〉
+
〈
ρδt , Z

k
t

〉]
dβkt .

The assumptions easily guarantee that the last term defines a square-integrable martingale. We
may hence write

E

[
〈ρT , kδ ∗ ψT 〉

]
= −E

∫ T

0

〈
ρt, bt∂x(kδ ∗ ψt)− kδ ∗ [bt∂xψt]

〉
dt

−
1

2
E

∑

k

∫ T

0

〈
ρt, φk∂x(φk∂x(kδ ∗ ψt))− kδ ∗ [φk∂x(φk∂xψt)]

〉
dt (7.5)

− E

∑

k

∫ T

0

〈
ρt, kδ ∗ [φk∂xZ

k
t ]− φk∂x(kδ ∗ Z

k
t )
〉
dt. (7.6)
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The left-hand side easily goes to E[〈ρT , ψT 〉],while the right-hand side vanishes as δ → 0. For
instance, using (7.2), one may control the second term (7.5) with

∑

k

E

∫ T

0
‖φk∂x(φk∂x(kδ ∗ ψt))− kδ ∗ [φk∂x(φk∂xψt)]‖L∞

x
dt

The assumptions guarantee that ψt ∈ H
s+2
x ⊂W 2,∞

x a.s, so that the integrand tends to 0 for all
fixed k, t and almost every ω. With the uniform bound

‖φk∂x(φk∂x(kδ ∗ ψt))− kδ ∗ [φk∂x(φk∂xψt)]‖L∞

x
≤ C‖φk‖

2
W 1,∞

x
‖ψt‖W 2,∞

x
≤ C‖φk‖

2
W 1,∞

x
‖ψt‖Hs+2

x

and the regularity assumption (7.3), we may apply dominated convergence to conclude. Note
that the bound for the third term (7.6) is

‖kδ ∗ [φk∂xZ
k
t ]− φk∂x(kδ ∗ Z

k
t )‖L∞

x
≤ ‖φk‖L∞‖Zkt ‖W 1,∞

x
≤ ‖φk‖

2
L∞ + ‖Zkt ‖

2
Hs+1

x
.

Since ‖ρT ‖L1
x
≤ 1 a.s, the equality E[〈ρT , ψT 〉] = 0 for all FT -measurable ψT : Ω → C∞(T)

leads to ρT (x) = 0 for almost every (x, ω) ∈ T × Ω. This holds for all T > 0 and since
ρ ∈ C([0, T ];H−γ

x ) almost surely, we conclude ρ = 0 a.s.

It now remains to prove the existence of sufficiently regular solutions to the BSPDE (7.4).
Let us consider the equation perturbed with an additional ε

2∂
2
xψ:

{
dψt +

( (
−bt + 1

2

∑
k φk∂xφk

)
∂xψt −

∑
k φk∂xZ

k
t

)
dt + 1

2

(∑
k φ

2
k + ε

)
∂2
xψtdt =

∑
k Z

k
t dβ

k
t

ψ(T ) = ψT .
(7.7)

In this super-parabolic setup, in view of the assumptions (7.3) on the coefficients, assuming
furthermore that

ψT ∈ L
2
(
(Ω,FT );H4

x

)
,

Theorem 2.3 of [8] guarantees the existence of a solution (ψε, Zε) of (7.7) such that

(ψε, Zε) ∈ H
5 × H

4 and E

[
sup
t∈[0,T ]

‖ψεt ‖
2
H4

x

]
<∞. (7.8)

Of course, the corresponding estimates in these spaces may depend on ε > 0.

Proposition 7.2. For all 0 ≤ m ≤ 4, the solution (ψε, Zε) ≡ (ψ,Z) of (7.7) satisfies the
estimate

1

2
‖∂mx ψt‖

2
L2

x
+

1

2

∫ T

t

(
ε‖∂m+1

x ψs‖
2
L2

x
+
∑

k

‖∂mx Z
k
s +m(∂mx ψs)(∂xφk)− ∂x(∂mx ψsφk)‖

2
L2

x

)
ds

≤
1

2
‖∂mx ψT ‖

2
L2

x
+ C

∫ T

t

(
‖ψs‖

2
Hm

x
+
∑

k

‖Zks ‖
2
Hm−1

x

)
ds−

∑

k

∫ T

t

〈
∂mx ψs, ∂

m
x Z

k
s

〉
dβks , (7.9)

with the convention ‖Z‖Hm−1
x

= 0 when m = 0, where the constant C depends only on the
quantities involved in (7.3).

Remark 7.1. Note that (7.8) guarantees that, for 0 ≤ m ≤ 4,

Mt =
∑

k

∫ t

0

〈
∂mx ψs, ∂

m
x Z

k
s

〉
dβks , t ≥ 0
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defines a real-valued L1 martingale. Indeed,

VT :=
∑

k

∫ T

0

∣∣∣
〈
∂mx ψt, ∂

m
x Z

k
t

〉∣∣∣
2
dt ≤ sup

t∈[0,T ]
‖ψt‖

2
Hm

x

∑

k

∫ T

0
‖Zkt ‖

2
Hm

x
dt <∞ a.s

ensures that Mt is a local martingale. Burkholder-Davis-Gundy’s inequality [3] then gives

E

[
sup
t∈[0,T ]

|Mt|
]
. E

[
V

1/2
T

]
. E

[
sup
t∈[0,T ]

‖ψt‖
2
Hm

x

]
+
∑

k

E

∫ T

0
‖Zkt ‖

2
Hm

x
dt <∞.

Let us now give a proof of Proposition 7.2.

Proof. We apply Itô’s formula to ‖∂mx ψt‖
2
L2

x
. To make it rigorous (so that the assumptions of

[4] Theorem 4.17 are again satisfied), one may start by regularizing the coefficients b and (φk)k
involved in (7.7), so that [8] provides the regularity (ψ,Z) ∈ H

6 ×H
5. We obtain

1

2
d‖∂mx ψt‖

2
L2

x
=
(
A1
t +A2

t +A3
t +A4

t +A5
t

)
dt +

〈
∂mx ψt, ∂

m
x ZtdWt

〉
,

with

A1
t := −

ε

2

〈
∂mx ψt, ∂

m+2
x ψt

〉
, A2

t :=
〈
∂mx ψt, ∂

m
x (bt∂xψt)

〉
, A3

t :=
∑

k

〈
∂mx ψt, ∂

m
x (φk∂xZ

k
t )
〉
,

A4
t :=

1

2

∑

k

‖∂mx Z
k
t ‖

2
L2

x
, A5

t := −
1

2

∑

k

〈
∂mx ψt, ∂

m
x (φk∂x(φk∂xψt))

〉
dt.

Let us review the different terms. The first term A1
t appears untouched in (7.9). We may expand

the second term into

A2
t =

〈
∂mx ψt, bt∂

m+1
x ψt

〉
+
m−1∑

l=0

(
m

l

)〈
∂mx ψt, ∂

m−l
x bt∂

l+1
x ψs

〉

= −
1

2

〈
|∂mx ψt|

2, ∂xbt
〉

+
m−1∑

l=0

(
m

l

)〈
∂mx ψt, ∂

m−l
x bt∂

l+1
x ψs

〉
,

which can be bounded by C‖b‖L∞

t Wm,∞
x
‖ψt‖

2
Hm

x
. Similarly, the third term can be expanded into

A3
t =

[∑

k

〈
∂mx ψt, φk∂

m+1
x Zkt

〉
+m

〈
∂mx ψt, ∂xφk∂

m
x Z

k
t

〉]

+
[∑

k

m−2∑

l=0

(
m

l

)〈
∂mx ψt∂

m−l
x φk, ∂

l+1
x Zkt

〉]
:= B1

t +B2
t .

The term B2
t can be bounded by

C
∑

k

‖ψt‖Hm
x
‖φk‖Wm,∞

x
‖Zkt ‖Hm−1

x
. ‖ψt‖

2
Hm

x

∑

k

‖φk‖
2
Wm,∞

x
+
∑

k

‖Zkt ‖
2
Hm−1

x
.

Using a polarizing identity, the term B1
t may be rewritten as

B1
t = −

∑

k

〈
∂x(∂mx ψtφk)−m∂

m
x ψt∂xφk, ∂

m
x Z

k
t

〉

= −
1

2

∑

k

‖∂mx Z
k
t ‖

2
L2

x
−

1

2

∑

k

‖∂x(∂mx ψtφk)−m∂
m
x ψt∂xφk‖

2
L2

x

+
1

2

∑

k

‖∂mx Z
k
t +m∂mx ψt∂xφk − ∂x(∂mx ψtφk)‖

2
L2

x

=: C1
t + C2

t + C3
t .
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The term C1
t cancels out A4

t . The term C3
t appears untouched in (7.9). We are hence left to

study

Dt := A5
t + C2

t = −
1

2

∑

k

(
∂mx ψt, ∂

m
x (φk∂x(φk∂xψt))

)
−

1

2

∑

k

‖∂x(∂mx ψtφk)−m∂
m
x ψt∂xφk‖

2
L2

x
.

By expanding the derivatives and integrating by parts as done previously, we get the expression

−
1

2

∑

k

[(
|∂mx ψt|

2, ∂x(φk∂xφk)
)
−
(
|∂m+1
x ψt|

2, |φk|
2
)

+
m−2∑

l=0

(
m

l

)(
∂mx ψt, ∂

m−l
x φk∂

l+1
x (φk∂xψt)

)]

for the term A5
t , and

C2
t = −

1

2

∑

k

[(
|∂mx ψt|

2, (m− 1)2|∂xφk|
2 + (m− 1)∂x(φk∂xφk)

)
+
(
|∂m+1
x ψt|

2, |φk|
2
)]
.

We see that the unwanted terms involving ∂m+1
x ψt therefore cancel out in Dt, and the remaining

terms can once again be bounded by C‖ψt‖
2
Hm

x

∑
k ‖φk‖

2
Wm,∞

x
.

From Proposition 7.2, we derive the following uniform bound.

Corollary 7.1. The solution (ψε, Zε) of (7.7) satisfies the bound

‖ψε‖2
H4 + ‖Zε‖2

H3 . 1.

The constant involved in . depends only on T and the quantities of (7.3).

Proof. Let us simply denote (ψ,Z) = (ψε, Zε). As mentioned in Remark 7.1, we may take the
expectation in (7.9), which gives, in particular, for 0 ≤ m ≤ 4, the estimate

E‖ψt‖
2
Hm

x
≤ E‖ψT ‖

2
Hm

x
+ C

( ∫ T

t
E‖ψs‖

2
Hm

x
ds+

∑

k

∫ T

t
E‖Zks ‖

2
Hm−1

x
ds
)
. (7.10)

Writing

‖∂mx Z
k
s ‖L2

x
≤ ‖∂mx Z

k
s +m(∂mx ψs)(∂xφk)− ∂x(∂mx ψsφk)‖L2

x
+ ‖m(∂mx ψs)(∂xφk)− ∂x(∂mx ψsφk)‖L2

x
,

and using (7.9) again, we also obtain

∑

k

∫ T

t
E‖Zks ‖

2
Hm

x
ds ≤ E‖ψT ‖

2
Hm

x
+ C

( ∫ T

t
E‖ψs‖

2
Hm+1

x
ds+

∑

k

∫ T

t
E‖Zks ‖

2
Hm−1

x
ds
)
. (7.11)

Recalling the convention ‖Z‖H−1
x

= 0, in Proposition 7.2, inequality (7.11) yields, for 0 ≤ m ≤ 3,

∑

k

∫ T

t
E‖Zks ‖

2
Hm

x
ds . E‖ψT ‖

2
H3

x
+

∫ T

t
E‖ψs‖

2
H4

x
. (7.12)

Coming back to (7.10), we get, for 0 ≤ m ≤ 4,

E‖ψt‖
2
H4

x
. E‖ψT ‖

2
H4

x
+

∫ T

t
E‖ψs‖

2
H4

x
ds

and Grönwall’s Lemma provides the desired estimate for ψ. The estimate for Z is obtained by
taking t = 0 in (7.12).
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Now, let us consider ε1, ε2 > 0 and denote (ψ,Z) = (ψε1 − ψε2 , Zε1 − Zε2). In the same
fashion as Proposition 7.2, one can prove the following estimate, for 0 ≤ m ≤ 3:

1

2
‖∂mx ψt‖

2
L2

x
+

1

2

∫ T

t

∑

k

‖∂mx Z
k
s +m(∂mx ψs)(∂xφk)− ∂x(∂mx ψsφk)‖

2
L2

x
ds

≤ C|ε2 − ε1|

∫ T

0

(
‖ψε1

s ‖
2
Hm+1

x
+ ‖ψε2

s ‖
2
Hm+1

x

)
ds+ C

∫ T

t

(
‖ψs‖

2
Hm

x
+
∑

k

‖Zks ‖
2
Hm−1

x

)
ds

−
∑

k

∫ T

t

(
∂mx ψs, ∂

m
x Z

k
s

)
dβks .

Relying on the bound from Corollary 7.1 and applying similar calculations as in its proof, we
deduce

‖ψε1 − ψε2‖2
H3 + ‖Zε1 − Zε2‖2

H2 . |ε1 − ε2|.

As a consequence, (ψε, Zε) converges to some (ψ,Z) in the Banach space H
3 × H

2 as ε goes
to zero. It is now easy to send ε to zero in (7.7) and verify that (ψ,Z) ∈ H

3 × H
3 is indeed a

solution of (7.4). Lemma 7.1 may be applied, which concludes the proof of Proposition 7.1, and
therefore that of Theorem 2.

8 Appendix: Well-posedness of the path-wise kinetic system

For the sake of completeness, we wish to prove the well-posedness of the deterministic PDE
system {

∂tf + v∂xf + ∂v
[
(m + u− v)f

]
= 0,

∂tu− ∂
2
xu = J(f)− ρu.

(8.1)

Here, we consider a fixed ω ∈ Ω, so that m ≡ m(ω) belongs to D([0, T ];E), space of càdlàg
functions taking values in the separable complete space E.

8.1 L
1 and L

2 estimates for a conservation equation with Lipschitz coefficients

Recall that, whenever w ∈ D([0, T ];E) is given, the solution f [w] to the linear conservation
equation 



∂tf + v∂xf + ∂v

[
(w − v)f

]
= 0,

f0 ∈ L
1
x,v,

is naturally expressed as
ft[w](x, v) = etf0 ◦Φt

0(x, v),

where Φt
s(x, v) = (Xt

s(x, v), V t
s (x, v)) is the flow associated to the characteristics:





d

ds
Xt
s = V t

s , Xt
t (x, v) = x

d

ds
V t
s = ws(X

t
s)− V

t
s , V t

t (x, v) = v

(8.2)

Grönwall’s lemma immediately gives the following result.

Lemma 8.1. Let w, w̃ ∈ D([0, T ];E) and let Φ[w],Φ[w̃] denote the respective flows. Then,

∀s, t ∈ [0, T ],
∥∥∥Φt

s[w]− Φt
s[w̃]

∥∥∥
L∞

x,v

. ‖w − w̃‖L∞

t L∞
x
.

The constant involved in . depends on T, ‖∂xw‖L∞

t,x
, ‖∂xw̃‖L∞

t,x
only.
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Let us now fix some w ∈ D([0, T ];E) and give some estimates regarding the v-moments of
ft[w]. Recall the notation, for f ∈ G1,

ρ(f)(x) =

∫
f(x, v)dv, J(f)(x) =

∫
vf(x, v)dv.

Lemma 8.2 (L1 moments estimates). Let f0 ∈ L
1
x,v. Then for all t ∈ [0, T ],

‖ft[w]‖L1
x,v

= ‖f0‖L1
x,v
.

Assume furthermore that f0 ∈ G
k, k ≥ 1. Then for all t ∈ [0, T ],

‖ft[w]‖Gk . ‖f0‖Gk .

The constant involved in . depends on T, k and ‖w‖L∞

t,x
only.

The estimate for the first moment is precisely:

‖J(ft[w])‖L1
x,v
≤
(
‖J(f0)‖L1

x
+ t sup

s∈[0,t]
‖ws‖L∞

x
‖f0‖L1

x,v

)
e−t

Proof. Without loss of generality, we may assume f0 ≥ 0. When w ∈ D([0, 1];E) is smooth, it is
clear that the flow Φ[w̃] is a globally-defined C∞-diffeomorphism, whose Jacobian determinant
is given by JΦt

0[w̃] = det(DΦt
0[w̃]) = et. The conservation of the L1-norm is then obtained by a

change of variable using the form (3.4). The result is generalized to w ∈ D([0, 1];E) by density
using Lemma 8.1.

For simplicity, we only prove the estimate in G1: the estimates on higher moments can
be obtained by induction using the same process. Assuming f0 ∈ C∞

c (T × R), the following
calculations are justified:

d

dt
‖J(ft)‖L1

x
=

d

dt

∫

x

∫

v
|v|ft(x, v)dxdv = −

∫

x

∫

v
|v|
(
v∂xf + ∂v[(wt(x)− v)ft(x, v)]

)
dxdv

= −

∫

v
sign(v)wt(x)ft(x, v)dv +

∫

v
|v|ft(x, v)dv,

so that

d

dt
‖J(ft)‖L1

x
≤ ‖wt‖L∞

x
‖f0‖L1

x
− ‖J(ft)‖L1

x
≤ sup

s∈[0,t]
‖ws‖L∞

x
‖f0‖L1

x
− ‖J(ft)‖L1

x
,

that is, integrating over [0, t],

‖J(ft)‖L1
x
≤
(
‖J(f0)‖L1

x
+ t sup

s∈[0,t]
‖ws‖L∞

x
‖f0‖L1

x

)
−

∫ t

0
‖J(fs)‖L1

x
ds.

Grönwall’s lemma gives the expected result. Again, the inequality holds for a general initial
data f0 ≥ 0 by a density argument, using Fatou’s Lemma.

Corollary 8.1. Let f0 ∈ L
2
x,v. Then for all t ∈ [0, T ],

‖ft[w]‖L2
x,v

= et/2‖f0‖L2
x,v
.

Assume furthermore that |f0|
2 ∈ Gk, k ≥ 1. Then for all t ∈ [0, T ],

‖ft[w]2‖Gk . ‖f2
0 ‖Gk .

The constant involved in . depends on T , k and ‖w‖L∞

t,x
only.
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Proof. Simply note that ht := e−t(ft[w])2 = etf2
0 ◦Φt

0 and apply Lemma 8.2 to h.

Corollary 8.2 (L2 moments estimates). Let f0 ∈ L
2
x,v and f2

0 ∈ G4. Then, for all t ∈ [0, T ],

‖ρ(ft[w])‖L2
x
. ‖f2

0 ‖
1/2
G2
,

‖J(ft[w])‖L2
x
. ‖f2

0 ‖
1/2
G4
.

The constants involved in . depends on T and ‖w‖L∞

t,x
only.

Proof. For instance, for the second estimate, Hölder’s inequality gives

( ∫

v
|v|fdv

)2
=
( ∫

v
(1 + |v|)|v|f ×

1

1 + |v|
dv
)2
≤
( ∫

v
(1 + |v|)2|v|2f2dv

)( ∫

v

1

(1 + |v|)2
dv
)

from which we deduce
∫
x J(f)2dx ≤ C‖f2‖G4

, and we use the estimate from Corollary 8.1.

We will now establish some kind of stability estimate for f as a function of w. Let us start
with a lemma regarding the gradient.

Lemma 8.3 (L1 gradient estimates). Assume that ‖∇x,vf0‖L1
x,v

<∞. Then,

‖∇x,vft[w]‖L1
x,v
≤ C(T, ‖∂xw‖L∞

t,x
)‖∇x,vf0‖L1

x,v
.

Assume furthermore that ‖v∇x,vf0‖L1
x,v

<∞. Then,

‖v∇x,vft[w]‖L1
x,v
≤ C(T, ‖w‖L∞

t,x
, ‖∂xw‖L∞

t,x
, ‖∇x,vf0‖L1

x,v
, ‖v∇x,vf0‖L1

x,v
).

Proof. Let us assume that f0 ∈ C
∞
c , so that we are dealing with smooth, compact-supported,

strong solutions. The general case is once again deduced by density arguments. From

∂tf + v∂xf + (w − v)∂vf − f = 0

we derive that g1 = ∂xf, g2 = ∂vf satisfy

∂tg1 + v∂xg1 + ∂xw g2 + (w − v)∂vg1 − g1 = 0, (8.3)

∂tg2 + g1 + v∂xg2 + (w − v)∂vg2 − 2g2 = 0 (8.4)

Multiplying (8.3) by sign(g1) and integrating over time (to be rigorous, one should replace
sign(x) by sη(x) = x/(|x| + η) and carefully let η go to zero), we are easily led to

d

dt

∫

x

∫

v
|g1|dxdv ≤ ‖∂xw‖L∞

t,x

∫

x

∫

v
|g2|dxdv.

Similarly, multiplying (8.4) by sign(g2) we get

d

dt

∫

x

∫

v
|g2|dxdv ≤

∫

x

∫

v
|g1|dxdv +

∫

x

∫

v
|gs|dxdv.

Summing these and applying Grönwall’s inequality gives the expected estimate. Let us now
establish the estimate on ‖v∇x,vf‖L1

x,v
. From (8.3), (8.4), we derive that h1 := v∂xf and

h2 := v∂vf satisfy

∂th1 + v∂xh1 + (∂xw)h2 + v(w − v)∂vg1 − h1 = 0,

∂th2 + h1 + v∂xh2 + v(w − v)∂vg2 − 2h2 = 0
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Now since (w − v)∂vhi = (w − v)gi + v(w − v)∂vgi, we can rewrite

v(w − v)∂vgi = (w − v)∂vhi + hi − wgi

and get

∂th1 + v∂xh1 + (∂xw)h2 + (w − v)∂vh1 − wg1 = 0,

∂th2 + h1 + v∂xh2 + (w − v)∂vh2 − h2 − wg2 = 0.

We then use the same approach to obtain

d

dt
‖h1(t)‖L1

x,v
≤ ‖∂xw‖L∞

t,x
‖h2(t)‖L1

x,v
− ‖h1(t)‖L1

x,v
+ ‖w‖L∞

t,x
‖g1(t)‖L1

x,v

d

dt
‖h2(t)‖L1

x,v
≤ ‖h1(t)‖L1

x,v
+ ‖w‖L∞

t,x
‖g2(t)‖L1

x,v

and conclude by applying the previous estimates and Grönwall’s inequality.

Corollary 8.3 (L1 stability). Let w, w̃ ∈ D([0, T ];E). Assume

‖(1 + |v|)∇x,vf0‖L1
x,v

< +∞.

Then the following estimates hold:

‖ρt[w] − ρt[w̃]‖L1
x
≤ ‖ft[w] − ft[w̃]‖L1

x,v
. ‖w − w̃‖L∞

t,x
,

‖J(ft[w]) − J(ft[w̃])‖L1
x
. ‖w − w̃‖L∞

t,x
.

The constants involved in . depend on T , ‖(1 + |v|)∇x,vf0‖L1
x,v

, ‖w‖L∞

t,x
, ‖w̃‖L∞

t,x
, ‖∂xw‖L∞

t,x
,

and ‖∂xw̃‖L∞

t,x
only.

Proof. Let us once again assume that f0 ∈ C
∞
c . Let us denote ft = ft[w], f̃t = ft[w̃], F = f − f̃

and W = w − w̃. These quantities satisfy

∂tF + v∂xF + ∂v
[
(w − v)F +Wf̃

]
= 0

which can be rewritten as

∂tF + v∂xF + (w − v)∂vF − F +W∂vf̃ = 0.

Multiplying by sign(F ), we get

∂t|F |+ v∂x|F |+ (w − v)∂v |F | − |F |+ sign(F ) W∂vf̃ = 0

and we deduce

d

dt
‖F (t)‖L1

x,v
≤ ‖W‖L∞

t,x
‖∇x,vf̃‖L1

x,v
.

Using the L1 gradient estimates on f̃ from Lemma 8.3, we get the first inequality. Now let
G = vF . Multiplying (8.1) by v, we get

∂tG+ v∂xG+ v(w − v)∂vF −G+ vW∂vf̃ = 0.

Since (w − v)∂vG = (w − v)F + v(w − v)∂vF this can be rewritten as

∂tG+ v∂xG+ (w − v)∂vG− wF + vW∂vf̃ = 0.

Multiplying by sign(G), we get

∂t|G|+ v∂x|G|+ (w − v)∂v |G| − sign(G)wF + sign(G)Wv∂v f̃ = 0

and we deduce

d

dt
‖G(t)‖L1

x,v
≤ −‖G(t)‖L1

x,v
+ ‖w‖L∞

t,x
‖F (t)‖L1

x,v
+ ‖W‖L∞

t,x
‖v∇x,vf̃(t)‖L1

x,v
.

Using the L1 gradient estimates on f̃ and the inequality we just showed, Grönwall’s lemma gives
the expected estimate.

46



8.2 Existence and uniqueness

We are now ready to prove the following result.

Proposition 8.1. Assume that
∫

x

∫

v
(1 + |v|4)|f0|

2dxdv +

∫

x

∫

v
(1 + |v|)|∇x,vf0|dxdv <∞, u0 ∈ H

η
x for η ∈ (3/2, 2).

Then, for all β ∈ (3/2, η), there exists a unique couple (f, u) with u ∈ C([0, T ];Hβ
x ) solution of

the system (3.3) in the sense that




ft = ft[m + u] as defined in (8.1),

ut = S(t)u0 +

∫ t

0
S(t− s)

[
J(fs)− ρsus

]
ds,

where S(t) = et∂
2
x denotes the semigroup associated to the heat equation. For any k ≥ 0,

assuming f0 ∈ G
k, we have additionally f ∈ C([0, T ];Gk).

Remark 8.1. The "numerical constants" used in the following proof may all depend on the
quantity supt∈[0,T ] ‖mt(ω)‖W 1,∞

x
, which is in any case assumed to be bounded in Assumption 1.

Let us define the recursive sequences

fn ∈ C([0, T ];L1
x,v), n ≥ 0

un ∈ C([0, T ];Hη
x ), n ≥ 0

as follows: (f0
t , u

0
t ) = (f0, u0) and

fn+1
t = ft[m + un] as defined in (8.1), (8.5)

un+1
t = S(t)u0 +

∫ t

0
S(t− s)

[
J(fn+1

s )− ρn+1
s uns

]
ds. (8.6)

Claim 1: these sequences are well-defined

Since η > 3/2, and we work in dimension 1, the embedding Hη
x ⊂ W 1,∞

x guarantees that
ft[m + un] can be properly defined as long as un takes values in Hη

x . We have

‖un+1
t ‖Hη

x
≤ ‖u0‖Hη

x
+

∫ t

0

∥∥∥S(t− s)
[
J(fn+1

s )− ρn+1
s uns

]∥∥∥
Hη

x

ds

with the classical estimate

∀w ∈ L2, ‖S(t)w‖Hη
x
. (1 + t−η/2)‖w‖L2

x
.

The L2 estimates for fn+1
t = ft[m + un] from Lemma 8.2 give

‖J(fn+1
s )− ρn+1

s uns ‖L2
x
≤ C

(
sup
t∈[0,T ]

‖unt ‖L∞
x

)(
1 + sup

t∈[0,T ]
‖unt ‖L∞

x
)
)

from which we deduce

‖un+1
t ‖Hη

x
≤ ‖u0‖Hη

x
+ C

(
sup
t∈[0,T ]

‖unt ‖L∞

x
)
) ∫ t

0
(1 + s−η/2)ds. (8.7)

Since η < 2, it follows that, for all n ≥ 0, un ∈ C([0, T ];Hη
x ) and fn is well defined.

Remark 8.2. This calculation explains why we have to restrict ourselves to the one-dimensional
case x ∈ T.
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Claim 2: (un)n is bounded in C([0, T ];L∞
x )

We have

‖un+1
t ‖L∞

x
≤ ‖u0‖L∞

x
+

∫ t

0

∥∥∥S(t− s)
[
J(fn+1

s )− ρn+1
s uns

]∥∥∥
L∞

x

ds

and since H
1/2+δ
x ⊂ L∞

x for δ > 0, we get L1
x ⊂ H

−1/2−δ
x and the estimate

∀w ∈ L1
x, ‖S(t)w‖L∞

x
≤ ‖S(t)w‖

H
1/2+δ
x

. (1 + t−1/2−δ)‖w‖
H

−1/2−δ
x

. (1 + t−1/2−δ)‖w‖L1
x
.

The L1 estimates for fn+1
t = ft[m + un] from Lemma 8.2 give

‖J(fn+1
s )− ρn+1

s uns ‖L1
x
. 1 + sup

σ∈[0,s]
‖unσ‖L∞

x
+ ‖uns ‖L∞

x
. 1 + sup

σ∈[0,s]
‖unσ‖L∞

x
.

It follows that (forgetting the δ > 0 for simplicity)

‖un+1
t ‖L∞

x
≤ ‖u0‖L∞

x
+ C

∫ t

0

(
1 + (t− s)−1/2

)(
1 + sup

σ∈[0,s]
‖unσ‖L∞

x

)
ds.

Introducing, for µ > 0, the norm

∀w ∈ C([0, T ], L∞
x ), ‖w‖µ = sup

t∈[0,T ]
e−µt‖wt‖L∞

x
, (8.8)

is is easy to check that ‖un+1‖µ ≤ aµ‖u
n‖µ + b with aµ ∈ [0, 1) for µ chosen large enough. It

follows that supn ‖u
n‖µ <∞, hence the result claimed.

Claim 3: (un)n is bounded in C([0, T ];Hη
x )

Since supt∈[0,T ] ‖u
n‖L∞

x
. 1, this follows directly from (8.7).

Claim 4: (un)n is compact in C([0, T ];Hβ
x )

Noting that, with gn = J(fn)− ρnun−1,

∀ξ ∈ C∞
c (T), 〈unt , ξ〉 − 〈u

n
0 , ξ〉 =

∫ t

0
〈uns , ∂

2
xξ〉+ 〈gns , ξ〉ds,

we are led to

∣∣∣〈unt2 − u
n
t1 , ξ〉

∣∣∣ ≤
∫ t2

t1
|〈uns , ∂

2
xξ〉|+ |〈g

n
s , ξ〉|ds

≤ |t2 − t1|
(
‖un‖C([0,T ];Hη

x )‖ξ‖H2−η
x

+ ‖gn‖C([0,T ];L2
x,v)‖ξ‖L2

x

)

. |t2 − t1|‖ξ‖H2−η
x

,

that is in fact un ∈ C0,1([0, T ];Hη−2
x ) with a Lipschitz constant uniform in n. Ascoli’s theorem

therefore guarantees the compactness of (un)n ∈ C([0, T ];Hη−2
x ). Recalling the bound from

Claim 3, we get the compactness of (un)n ∈ C([0, T ];Hβ
x ) by interpolation.

48



Conclusion

We simply note that the mapping un 7→ un+1 is a contraction on C([0, T ];L∞
x ):

∥∥∥un+1
t − unt

∥∥∥
L∞

x

=
∥∥∥
∫ t

0
S(t− s)

[
J(fn+1

s )− J(fns )− (ρn+1
s uns − ρ

n
su

n−1
s )

]
ds
∥∥∥
L∞

x

(8.9)

.

∫ t

0

(
1 + (t− s)−1/2

)(
‖J(fn+1

s )− J(fns )‖L1
x

+ ‖ρn+1
s un+1

s − ρnsu
n−1
s ‖L1

x

)
ds.

Since fn+1 = f [m+ un] and fn = f [m+ un−1], using Corollary (8.3) and the fact that (un)n is
bounded in C([0, T ];W 1,∞

x ), we get for all s ∈ [0, T ]

‖J(fn+1
s )− J(fns )‖L1

x
. sup

σ∈[0,s]
‖unσ − u

n−1
σ ‖L∞

x
,

and

‖ρn+1
s uns − ρ

n
su

n−1
s ‖L1

x
≤ ‖ρn+1

s (uns − u
n−1
s )‖L1

x
+ ‖(ρn+1

s − ρns )un−1
s ‖L1

x

. sup
σ∈[0,s]

‖unσ − u
n−1
σ ‖L∞

x
.

Therefore,

‖un+1
t − unt ‖L∞

x
.

∫ t

0

(
1 + (t− s)−1/2

)
sup
σ∈[0,s]

‖unσ − u
n−1
σ ‖L∞

x
ds.

Using once again the norm ‖.‖µ defined in (8.8), we are easily led to

‖un+1 − un‖µ ≤ kµ‖u
n − un−1‖µ

with kµ ∈ [0, 1) for µ large enough. As a result, un converges to some u in the Banach
space C([0, T ];L∞

x ). Since (un)n is also compact in C([0, T ];Hβ
x ) we deduce that un → u in

C([0, T ];Hβ
x ). We may now introduce f = f [m + u]. Using the same estimates as before (only

replacing un+1 by u in (8.9)), we easily derive, as n goes to infinity,

ut = S(t)u0 +

∫ t

0
S(t− s)

[
J(fs)− ρsus

]
ds.

Hence, (f, u) is indeed a solution to (8.1). If (f̃ , ũ) is another solution with ũ ∈ C([0, T ];Hβ
x )

and f̃ = f [m+ ũ], the same estimates lead to

‖u− ũ‖µ ≤ kµ‖u− ũ‖µ,

so that ũ = u and f̃ = f . This concludes the proof of the well-posedness of (8.1).

Finally, let us assume that f0 ∈ G
k and prove that f ∈ C([0, T ];Gk). It is clearly enough

to show that ‖ft − f0‖Gk → 0 as t goes to 0. Given the form (8.1) and Lemma 8.1, this result
is easily obtained by dominated convergence when f0 ∈ Cc(R

2d). It may then be generalized by
density to any f0 ∈ G

k, since, given f̃0 ∈ Cc(R
2d)

∀t ∈ [0, 1], ‖ft − f̃t‖Gk =

∫
(1 + |V t

0 (z)|k)|f0(z) − f̃0(z)|dz . ‖f0 − f̃0‖Gk .

We have used the estimate |V t
0 (x, v)|k . 1 + |v|k easily derived from the sub-linearity of (8.2),

with ‖m + u‖L∞

t,x
<∞.
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