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ARTICLE

Bidimensional lamellar assembly by coordination of
peptidic homopolymers to platinum nanoparticles
Ghada Manai1,2,8, Hend Houimel1,8, Mathilde Rigoulet1, Angélique Gillet1, Pier-Francesco Fazzini 1,

Alfonso Ibarra3, Stéphanie Balor4, Pierre Roblin5, Jérôme Esvan6, Yannick Coppel 2, Bruno Chaudret1,

Colin Bonduelle 2,7✉ & Simon Tricard 1✉

A key challenge for designing hybrid materials is the development of chemical tools to control

the organization of inorganic nanoobjects at low scales, from mesoscopic (~µm) to nano-

metric (~nm). So far, the most efficient strategy to align assemblies of nanoparticles consists

in a bottom-up approach by decorating block copolymer lamellae with nanoobjects. This well

accomplished procedure is nonetheless limited by the thermodynamic constraints that

govern copolymer assembly, the entropy of mixing as described by the Flory–Huggins

solution theory supplemented by the critical influence of the volume fraction of the block

components. Here we show that a completely different approach can lead to tunable 2D

lamellar organization of nanoparticles with homopolymers only, on condition that few ele-

mentary rules are respected: 1) the polymer spontaneously allows a structural preorganiza-

tion, 2) the polymer owns functional groups that interact with the nanoparticle surface, 3) the

nanoparticles show a surface accessible for coordination.
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Structuring hybrid materials combining metallic nano-
particles (NPs) and polymers has stimulated a large effort to
make new physical properties emerging: optical, electronic,

or magnetic1–3. Such composites have the potential of improving
the functionality of devices ranging from memory storage to
sensors or microelectronic systems4,5. In addition, the structural
properties of the polymer matrix can give added value to the
hybrid materials, such as stimuli-responsiveness6 or chirality7.
Among a variety of possible structuring, disposing NPs in lines on
substrates paves a way toward anisotropic ordering of matter at
the nanoscale, which can be observed, manipulated, and con-
nected. To reach such a supraparticular organization, the most
efficient strategy developed so far consists in decorating diblock
copolymer lamellar assemblies by NPs, tuning the strength and
the nature of weak interactions between the two components
(essentially Van de Waals interactions)5–11. Diblock copolymer
templating is a robust and versatile approach that has been
extended to thermal evaporation12, atomic layer deposition13, or
for structuring molecules such as polyoxometallates14. The
obtained morphologies are driven by (1) the entropy of mixing of
the two blocks, described by the Flory–Huggins solution
theory15,16, and (2) their corresponding volume fractions17, tak-
ing into account that, in presence of NPs, there is a significant
decrease in the copolymers’ conformational entropy coming from
particle sequestration10. Although very promising in many
situations, the diblock copolymer approach shows important
limitations: (1) a constrained size ratio between the two blocks to
access lamellar assemblies (generally comprised between 0.4 and
0.6 volume fraction with random coil polymers), (2) in presence
of NPs, an imprecise control of their localization (as it is governed
by entropy) and (3) in solution, a strong dependence to experi-
mental conditions (concentration, temperature, presence of co-
solvent, etc.)10,15,16. Here, we present an alternative strategy to
dispose NPs in lines by simply mixing metallic ultra-small NPs
with structured peptidic homopolymers. The coordination
bonding between the polymer functional groups and the NP
surface indeed affords lamellar organization, where the patterning
distances are linearly controlled by the molecular weight of the
polymer.

Self-assembly is a widely applied strategy for preparing various
materials based on metallic NPs, which lead to e.g., innovative
photonic materials, new microelectronic devices, or structured
templates for nanolithography1. NPs are generally obtained by a
chemical approach that consists in constraining the growth of the
crystal by the presence of a limiting agent (ligand, polymer, etc.).
An elegant approach resides in decomposing organometallic
precursors in mild conditions to obtain clean NPs, i.e. having a
surface composition perfectly described and controllable. In this
work, we choose, as a standard, ultra-small (<2 nm) platinum
NPs, as their sizes are in the same range as the one of a monomer
moiety and their surfaces are only stabilized by carbon monoxide
(CO) and labile tetrahydrofuran (THF)18. The absence of strong
organic ligands gives the opportunity to fully describe the
coordination between the additional component, i.e. the poly-
peptide polymer, and the NP surface. So far, most approaches
involving NPs consider their assemblies as a packing of hard
spheres, but the ligand itself has emerged as a chemical leverage,
which enables exquisite control to promote supraparticular
chemistry19,20. Polypeptide polymers are simple macromolecules
in which an amino-acid moiety is repeated many times. They
adopt ordered secondary conformations such as α-helices or β-
sheets, which offer a way to guide structuration at the nanoscale
through intermolecular and/or intramolecular interactions21,22.
In this work, we choose poly(γ-benzyl-L-glutamate) (PBLG), a
synthetic polypeptide that gives rise to a rigid rod-like α-helical
conformation in organic solvents and that has often been

employed as a model system to drive lamellar morphologies,
when included in block copolymer structures23.

Results
Description of the nanostructuration. The NPs were synthe-
sized by decomposition of Pt2(dba)3 (dba= dibenzylideneace-
tone) under a CO atmosphere in THF, followed by complete
elimination of the organic dba residue by washing with pentane18.
TEM pictures showed well-dispersed NPs, with diameters of
1.2 ± 0.3 nm (Fig. 1a). On another hand, PBLG was synthesized
by initiating the ring-opening polymerization of γ-benzyl-L-glu-
tamate-N-carboxyanhydride with propargylamine in dimethyl-
formamide (Supplementary Fig. 1)24. A library of PBLGs spanning
a wide range of molecular weights were obtained (Fig. 1b), with
five degrees of polymerization (Dp), as measured by 1H NMR and
SEC chromatography (Supplementary Table 1): PBLG1 presented
a Dp of 28, PBLG2 of 69, PBLG3 of 120, PBLG 4 of 217, and
PBLG 5 of 481. Their α-helix secondary structures were confirmed
by circular dichroism measurements in THF (Fig. 1c and
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Fig. 1 Building blocks and self-assembly. a TEM image of pristine ultra-
small platinum nanoparticles of 1.2 ± 0.3 nm. b Chemical structure of PBLG
—in the present study, x= 28 (PBLG1), 69 (PBLG2), 120 (PBLG3), 217
(PBLG4), 481 (PBLG5). c Geometrical model of the α-helix conformation of
PBLG (example for x= 60). Lamellar structuration of an assembly of
platinum nanoparticles with PBLG4 at 0.5 eq.: d Low-magnification TEM
image; e, Tomographv 3D reconstruction at two viewing directions: each
yellow dot corresponds to an individual nanoparticle.
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Supplementary Fig. 2). The assembly of NPs and peptidic poly-
mers was carried out in THF: solutions of platinum NPs and of
PBLG were mixed and stirred for 2 h at different equivalent
numbers (eq. – defined as the ratio between the monomer unit
and the platinum atom quantities). Transmission electron
microscopy (TEM) on PBLG4 at 0.5 eq. showed unexpected
lamellar assemblies of the hybrid materials (Fig. 1d), alternating
zones containing (dark), or excluding (white) NPs. Such an
organization has been observed on both silicon substrates and
TEM grids by different microscopy techniques: atomic force
microscopy and scanning electron microscopy, in addition to
TEM (Supplementary Fig. 3a–c). Tomography imaging showed
that the NPs constitute cylindrical lamellae, without any pre-
ferential arrangement within each lamella (Fig. 1e and Supple-
mentary Fig. 3d, e). As we did not notice any effect of deposition
substrate (hydrophobic carbon vs. hydrophilic silicon), nor of
deposition process (drop-casting vs. spin-coating), we hypothe-
sized that these structured lamellae were present in solution and
did not form during the solvent evaporation. The existence of the
structured lamellae in solution was then confirmed by cryo-TEM
imaging, as a same morphology was observed after a fast freezing
of the assembly solution (Supplementary Fig. 4). Besides, in some
cases, we noticed the presence Moiré patterns, resulting from the
superimposition of up to four lamellae (Supplementary Fig. 5). As
the lamellae structures are preformed in solution, they can
deposit on top of each other during the drop casting of the TEM

grid preparation. Such observations gave insight that the system
organized in a lamellae-within-lamellae hierarchical assembly25.
Information on the polymer structure before and after assembly
was first given by 13C HR-MAS NMR at slow speed (Supple-
mentary Fig. 6). After NP addition, an increase of the spinning
sideband intensities, due to stronger chemical shift anisotropies,
highlighted a stiffening of the PBLG in the assembly, which also
led to greater conformational homogeneity, as evidenced by the
resonance sharpening. Second, SAXS measurements showed a
broad peak centered at 0.25 Å−1 (Supplementary Fig. 7), mean-
ing that NPs were separated from each other by an average cor-
relation distance equal to 2.5 nm. The importance of the ratio
between the monomer unit and the platinum atom quantities was
then studied by varying the eq. number from 0.05 up to 5 eq. with
PBLG4. Without any polymer, the NPs simply aggregated
because of the capillary forces generated by THF evaporation
(Fig. 2a), without showing any specific average distance by SAXS
analysis (Supplementary Fig. 7). As soon as PBLG was added to
the reaction mixture, depletion zones without NPs formed
(Fig. 2b–d), attributed to the presence of the polymer. Very clean
patterns were obtained at 0.5 eq, with alternation of regular
lamellae. At higher ratios, this NP organization became looser
(1 eq.—Fig. 2d), and totally disappeared at 5 eq. (Supplementary
Fig. 8). A window of two orders of magnitude in eq. number
(from 0.05 to 5 eq.) was thus accessible to tune the pattern
structure of the lamellar assemblies.

a

c

b

d

x
H

H
N

N
H

O O

O

e f
x H

H
N

N
H

O O

O

Fig. 2 Effect of the relative quantity of polymer vs. nanoparticle and effect of the terminal group. TEM micrographs of the assemblies after 2 h of
reaction between platinum nanoparticles and: PBLG4 at a 0 eq. (nanoparticles alone); b 0.05 eq.; c 0.5 eq.; d 1 eq. (an equivalent eq. refers to the number
of introduced monomers per platinum atom). The assembly process occurs at an optimum relative ratio of polymer vs. nanoparticle equal to 0.5 eq. TEM
micrograph of the assemblies between platinum nanoparticles and: e PBLG4; f PBLG-H, at 0.5 eq., after 2 h of reaction. Insets represent the chemical
structures of the polymers. The nature of the terminal group of PBLG influences the global cohesion of the hybrid system, as alkyne groups lead to better
structuration than hexyl groups.
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Origin of the patterning. To determine key parameters at the
origin of the patterning, coordination of the polymer to the NP
surface was studied. First, a peptidic dimer DBLG was specifically
prepared and mixed with NPs to confirm the possible coordi-
nation of the alkyne moiety at the NP surface. 13C solid-state
MAS NMR showed the disappearance of the peaks at 72 and
80 ppm attributable to the alkyne moiety upon NP addition,
whereas the other peaks of the molecule remained unchanged
(Supplementary Fig. 9). This disappearance strongly supported
the occurrence of similar alkyne coordination to the NP surface
with PBLG4. A polymeric analogue without alkyne was then
synthesized from hexylamine, PBLG-H. After mixing with NPs,
TEM imaging showed a significantly less structured system, with
free NPs and more discontinuous NP arrangement within the
lamellae (Fig. 2e, f), thus confirming the importance of the alkyne
coordination. Second, another coordination bonding between the
NP surface and the polymer was identified by X-ray photoelec-
tron spectroscopy (XPS) at the N1s edge, which showed the
appearance of a new peak at 398 eV in addition to the neutral
component at 400 eV of the free polymer. The relative intensity of
this peak significantly increased when the eq. number decreased
(Fig. 3a–d and Supplementary Fig. 10), confirming a rise of the
electronic density on the PBLG amide nitrogen upon NP addi-
tion. Simultaneously, both the relative increase of surface plati-
num oxidation measured by XPS at the Pt4f edge (Supplementary
Fig. 11), and the progressive shift of the adsorbed CO peak in
infrared spectroscopy from 2040 cm−1 at 0 eq. to 2041 cm−1 at
0.05 eq. and to 2045 cm−1 at 0.5 and 1 eq. confirmed a decrease of
the electronic density at the NP surface upon PBLG addition

(Fig. 3e, f and Supplementary Fig. 12)18. Overall, both XPS and
infrared measurements reflected an electronic transfer from the
NP surface to reduce the PBLG nitrogen in the composite
materials, as already observed for amides in platinum molecular
complexes26,27. The present study thus indicates that the polymer
interacts with the NP surface by both coordinating the terminal
alkyne group of the polypeptide and its peptide linkages.

Influence of the degree of polymerization. We further explored
the Dp influence on the lamellar assemblies. No arrangement was
observed with PBLG1, but image analysis showed that the width
of the lamellae average periodicity regularly increased from
PBLG2 to PBLG5 (Fig. 4, Supplementary Fig. 13, and Supple-
mentary Table 2). Such a tendency was confirmed by SAXS
measurements (Supplementary Fig. 14 and Supplementary
Table 2). In addition, the average width of the white zones con-
taining the polymer was equal at any Dp to the length of the
PBLG model in α-helices conformation. Similarly, the evolution
of the average width of the dark zones containing the NPs as a
function of Dp (x) could be fitted by the diameter of gyration of a
random coil model Rg= R0 xν. The ν value was fixed to 0.6, as
predicted by theory and confirmed by experiments for excluded-
volume chains28. Extensive study on chemically unfolded proteins
found a R0 value equal to 1.3328, whereas the fit of our experi-
mental data gave a R0 value equal to 0.22, thus divided by six.
Such a result can be interpreted by the presence of an average of
6–7 bridges within the polymer29, which is coherent considering
the PBLG polymer in a coil disordered state, internally connected
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Fig. 3 Spectroscopic signature of coordination of the peptidic polymer to the nanoparticle surface. a XPS spectrum at the N1s edge of PBLG4 alone. XPS
spectra at the N1s edge of assemblies between platinum nanoparticles and PBLG4 at: b 1 eq. (12% of component at 398 eV); c 0.5 eq. (33% of component
at 398 eV); d 0.05 eq. (45% of component at 398 eV). e Infrared spectra of CO coordinated at the nanoparticle surface and of peptide bond of the polymer
within the assemblies (at 0 eq., 0.05 eq., 0.5 eq., and 1 eq.). The spectra are normalized to the signal of the CO vibration around 2040 cm−1. f Zoom on the
infrared spectra of Fig. 2e at the terminal CO region. The assembly process is characterized by a specific signature both in XPS and infrared spectroscopies.
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by NP bridges. Analysis of tomography reconstruction confirmed
that the thickness of the NP containing zones was comparable to
their width (Supplementary Fig. 15). Interpretation of TEM
imaging is thus in line with geometrical models where aligned
polymers in α-helices alternate with alignments of coiled poly-
mers interacting with NPs. Similar dependence with Dp was
obtained if the ratio of polymer number over NP was kept con-
stant (Supplementary Fig. 16, here the eq. number varied from
0.06 to 0.81), confirming the robustness of the patterning to
variations of the polymer to NP ratio. Our assembly approach is
thus a robust and simple alternative to diblock copolymer tem-
plating for structuring metallic NPs. It allows a large patterning
period window comprised between 10 and 100 nm, depending on
the polypeptide Dp, and can be easily described by simple geo-
metrical models of polymers (α-helices and excluded-volume
chains).

First steps of the assembly. In order to give insight on the
lamellae formation mechanism, a time dependent study was
performed with PBLG3 and PBLG4 (Supplementary Fig. 17).
Although the standard assembly time was set to 2 h to be sure to
reach a steady state (Supplementary Fig. 17a, b), we noticed that
the lamellar structure was already present after five seconds, but
significantly less advanced (Supplementary Fig. 17c, d). Some free
NPs were indeed not assembled and aggregated around the
structured zones, and the NPs lamellae were discontinuous. In
order to probe effects of a fraction of second of mixing, we first
deposited the PBLG on the TEM grid and we added the NP in a
second time (Supplementary Fig. 17e, f). We confirmed a pre-
structuration of the polymer materials, illustrated by depletion
zones without NP, and a beginning of decoration of such zones by
the NP, which will then interact with and coordinate to the
functional groups of the peptidic polymer.

Discussion
The results of the present study show it is possible (1) to generate
anisotropic ordering of platinum NPs in lamellar assemblies by
mixing with peptidic homopolymers and (2) to easily tune the
dimension of these lamellar assemblies by simply varying the
molar mass of the homopolymer. Generally, NP-homopolymer
systems do not give extended nanostructured materials but
rosaries of NPs that decorate the polymer30. Our results can be
explained by the fact that PBLG adopt ordered secondary con-
formation, α-helices, which could spontaneously interact and
align with each other following a nematic liquid crystal beha-
vior23. The addition of NPs does not result in a simple decoration
of the liquid crystal31,32, and we hypothesized that a destructuring
of some of the α-helices occurred thanks to coordination of the
peptide linkages with the NP surface (a scheme of the self-
assembly process is presented on Supplementary Fig. 18). This
NP/polymer association would then drive a small amount of
PBLG to adopt a coil-disordered state, where the NPs bridge
some part of the polymers. The demixing of the two resulting
phases (the NP/coil polymer hybrid on one hand and the aligned
α-helices on the other hand) was facilitated by the coordination of
the terminal alkyne groups on the NP surface, and led to an
anisotropic ordering of NPs. In the future, to ensure optimal
performances, rational design of lamellar NP assembly including
polymer should consider functional and structured polymers such
as peptidic polymers and a fine-tuning of the chemical interaction
between the anchoring moieties of the polymers and the NP
surface.

Methods
Starting materials. All chemicals were purchased from Sigma-Aldrich and used as
received. γ-benzyl-L-glutamate N-carboxyanhydride (γ-BLG NCA) was purchased
from Isochem. Propargylamine and hexadecylamine were distilled before use. DMF
and THF were obtained from a Solvent Purification System and freshly used.
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Fig. 4 Effect of the degree of polymerization. TEM micrographs of assemblies between platinum nanoparticles and: a PBLG1; b PBLG2; c PBLG3; d
PBLG4; and e PBLG5. f, Evolution of average characteristics as a function of the degree of polymerization x (the α-helix model curve represents the length
of the polymer as shown in Fig. 1c for x= 60; the random coil model curve represents the diameter of gyration evolution of excluded volume random coil
model with R0= 0.22 and ν= 0.6). Positions corresponding to the micrographs of Fig. 4b, c, d, and e are made explicit on the x-axis.
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General procedure for the synthesis of PBLGs. The NCA monomer of γ-benzyl-
L-glutamate (BLG-NCA, 2 g, 7.6 mmol) was weighed in a glovebox under pure
argon, introduced in a flame-dried schlenk, and dissolved with 4 mL of anhydrous
DMF. The solution was stirred for 10 min, and propargylamine (for instance for
PBLG4, 2 μL, 0.03 mmol) was added with an argon purged syringe. The solution
was stirred for 3 days at room temperature under argon. The polymer was then
recovered by precipitation in diethylether and dried under high vacuum, analyzed
by 1H NMR (CDCl3+ 15% trifluoroacetic acid). Yield: 81–92%. Molar masses were
first determined by 1H NMR using the intensity of methylene protons of the
initiator at 3.9 ppm and the intensity of methylene protons of the PBLG at 5.1 ppm.
Representative 1H-NMR of the polypeptide backbone (400MHz, δ, ppm): 2.13 (m,
2H,CH2), 2.59 (t, 2H, CH2, J= 7.09 Hz), 4.37 (t, 1H, CH, J= 6.56 Hz), 5.13 (s, 2H,
CH2O), 6.75 (s, 1H, NH), 7.35 (m, 5H, ArH)24. PBLG1 presented a Dp of 25,
PBLG 2 a Dp of 59, PBLG3 a Dp of 92, PBLG 4 a Dp of 171, and PBLG 5 a Dp of
373 (Supplementary Table 1). PBLG-H was synthesized following the same pro-
cedure but was initiated by hexylamine instead. Polymer molar masses were
determined by SEC using dimethyformamide (DMF+ LiBr 1 g L−1) as the eluent.
Measurements were performed on an Ultimate 3000 system from Thermoscientific
equipped with diode array detector DAD. The system also includes a multi-angles
light scattering detector MALS and differential refractive index detector dRI from
Wyatt technology. Polymers were separated on three Shodex Asahipack gel col-
umns [GF-1G 7B (7.5 × 8 mm), GF 310 (7.5 × 300 mm), GF510 (7.5 × 300),
exclusion limits from 500–300 000 Da] at a flowrate of 0.5 mLmin−1. Easivial kit of
Polystyrene from Agilent was used as a standard (Mn from 162 to 364,000 Da).
Individual offline batch-mode measurements were performed to determine the
homopolymers accurate refractive index increments (dn/dc) at 50 °C. All the
samples (5 mgmL−1) were dissolved in DMF and were run at a flow rate of 0.5 mL
min−1 at 55 °C: PBLG1 presented a Dp of 28, PBLG2 a Dp of 69, PBLG3 a Dp of
120, PBLG 4 a Dp of 217, and PBLG 5 a Dp of 481.

The secondary structure of the PBLG blocks were studied by CD spectroscopy
in THF using the following procedure: the final concentration (the concentration in
the cuvette used for the CD analyses) was 180 μM in monomer units. The
pathlength used was 0.01 mm to decrease the THF UV absorbance and to access
correct CD signal down to 200 nm. In these conditions, the CD monitoring was
performed in high resolution mode. The molar ellipticity also called the mean
residue ellipticity has been calculated as follow: [ϕ] = (10 qobs)/(l × c). [ϕ] is
expressed in deg cm2 dmol−1. qobs was the observed ellipticity in degrees (deg), l is
the path length in dm, and c is the polypeptide concentration in mol L−1. The
range from 190 to 250 nm corresponds to the peptide bond absorption. The CD
shape of all PBLGs presented two minima at about 208 and 222 nm that were
attributable to α-helical structuring (Supplementary Fig. 1 for PBLG4 for which the
CD signature of the helix displayed a slightly smaller 208 nm minimum as
compared with a 222 nm minimum: [ϕ] value of −11.52 mdeg cm2 dmol−1 at
208 nm and −12.59 mdeg cm2 dmol−1 at 222 nm)22.

Synthesis of DBLG. The NCA monomer of γ-benzyl-L-glutamate (BLG-NCA, 2 g,
7.6 mmol) was weighed in a glovebox under pure argon, introduced in a flame-
dried schlenk, and dissolved with 6 mL of anhydrous DMF. The solution was
stirred for 10 min. at 0 °C, and 1 mL of a DMF solution containing propargylamine
(243 μL, 3.8 mmol) was added with an argon purged syringe. The solution was
stirred for 3 h at 0 °C under argon. Upon lyophilization, the crude residue was
purified by chromatography on silica gel using CH2Cl2/MeOH as an eluent. The
dimer was isolated as a white solid (54%, 0.9 g).

Synthesis of platinum nanoparticles. The PtNPs have been synthesized as
follows18,33: all operations were carried out using Fischer–Porter bottle techniques
under argon. A solution of Pt2(dba)3 (90 mg; 0.165 mmol of Pt) in 20 mL of freshly
distilled and deoxygenated THF was pressurized in a Fischer–Porter bottle with 1
bar of CO during 30 min at room temperature under vigorous stirring. During this
time, the solution color changed from violet to brown (attesting the formation of
the NPs). The mixture was evaporated and washed with pentane to eliminate the
dba (3 × 20 mL), and to obtain native NPs. The colloid was then redissolved in
20 mL of THF. The size of the NPs was found to be equal to1.2 ± 0.3 nm. For each
series of measurements, the sizes were determined by TEM imaging.

Self-assembly. 1 mL of a solution of PBLG polymer in THF (2 mg in 1 mL for
0.50 eq.) was added to 4 mL of the native nanoparticle mixture under vigorous
mixing. The precursor concentrations were adapted to obtain the desired equiva-
lent of PBLG monomer per introduced Pt. The brown solution was agitated for 2 h.
Drops of the crude solution were deposited on specific substrates for each char-
acterization (see below).

Spectroscopy for PBLG polymers. 1H NMR spectra were recorded on a Bruker
AC 400 spectrometer.

For circular dichroism in THF: CD spectra were recorded on a JASCO J-815
Spectropolarimeter between 205 and 260 nm (far-UV), by using a quartz cell of
0.1 cm path length, at 20 °C. The measure parameters were optimized as follows:
high sensitivity, between 5 and 20 mdeg, 0.01 mdeg resolution, 8 s response time
(digital integration time), 1 nm bandwidth and 5 nmmin−1 scanning rate.

Microscopy. Samples for TEM were prepared by deposition of one drop of the
crude solution on a carbon covered holey copper grid. TEM analyses were per-
formed at the centre de microcaractérisation Raimond Castaing using a JEOL JEM
1400 electron microscope operating at 120 kV. The mean size of the particles and
the mean widths of the white and dark zones of the lamellae were determined by
image analysis on a large number of objects (~300) using the ImageJ software. The
auto-correlation analysis, for determining the average periodicity of the lamellae
(shown on Supplementary Fig. 13), has been perform with Gatan DigitalMicro-
graph software. Low resolution electron tomography has been performed on a
JEOL JEM 1400 microscope operated at 120 kV installed in the METI platform in
Toulouse. Angles between −60° and 60° with a 2° interval where used for the
acquisition. The 3D volume reconstruction has been obtained using the weighted
back projection algorithm in IMOD. High resolution STEM HAADF tomography
was performed at the Advanced Microscopy Laboratory (LMA), Instituto Uni-
versitario de Nanociencia de Aragon (INA), Zaragoza, Spain, by a FEI Tecnai field
emission gun operated at 300 kV. 3D reconstruction was carried out with FEI
tomography acquisition software, Inspect 3D and Amira 3D reconstruction soft-
ware after the acquisition of 140 images.

Cryo-TEM has been performed on a JEOL 2100 microscope, equipped with a
LaB6 cathode, and operated at 200 kV under low dose conditions. To prepare the
samples, 3 µL of sample were deposited onto glow-discharged lacey carbon grids
and placed in the thermostatic chamber of a Leica EM-GP automatic plunge
freezer, set at 20 °C and low humidity. Excess solution was removed by blotting
with Whatman n°1 filter paper for 0.5 s, and the grids were immediately flash
frozen in liquid nitrogen. The frozen specimens were placed in a Gatan 626 cryo-
holder for imaging. Images were acquired with SerialEM software, with defocus of
1–2 μm, on a Gatan US4000 CCD camera. This device was placed at the end of a
GIF Quantum energy filter (Gatan, Inc.), operated in zero-energy-loss mode, with a
slit width of 25 eV. Images were recorded at a nominal magnification of 4000
corresponding to calibrated pixel sizes of 1.71 Å.

AFM images were performed with an AIST-NT SmartSPM 1000 microscope.
We used silicon tips (Mikromash HQNSC15/ALBS). SEM images were acquired.
For both AFM and SEM experiments, the samples were prepared by drop casting of
one drop of the crude solution on silicon wafers.

FT-IR spectra were recorded on a Thermo Scientific Nicolet 6700 FT-IR
spectrometer in the range 4000–700 cm−1, using a Smart Orbit ATR platform. The
sample deposition was performed by drop casting of the crude solution on the
germanium crystal of the platform; the measurement was acquired after
evaporation of the THF solvent.

Diffraction measurement. X-ray diffraction patterns were recorded on a PANa-
lytical Empyrean diffractometer using the Co Ka radiation. Small angle measure-
ments were performed on a microscopy glass, on which the crude solution was
drop-casted. An advantage of working with particles smaller than 2 nm is that the
inter-particle distance is sufficiently small to observe correlation distances between
two particles with a regular XRD diffractometer without the need of any dedicated
SAXS facilities.

Regular Small Angle X-Ray Scattering (SAXS) measurements were performed
on a XEUSS 2.0 laboratory source equipped with a pixel detector PILATUS 1M
(DECTRIS) and an X-ray source provided by GeniX3D with a fixed wavelength
based on Cu Kα radiation (λ= 1.54 Å). The sample to detector distance was fixed
at 1216.5 mm giving a q range starting from 0.005 to 0.5 Å−1 assuming that q is the
scattering vector equal to 4π/λ sin θ with 2θ the scattering angle. The distance was
calibrated in the small angle region using silver behenate (d001= 58.34 Å).
Measurements were performed on samples in solution in capillaries. Concentration
of the sample was necessary to observe a signal, so that measurements have been
performed on a system that started to precipitate. The capillaries were sealed to
prevent solvent evaporation and traces of water, and placed on motorized sample
holder. To remove scattering and absorption from air, a primary vacuum has been
applied to the entire instrument. Acquisition time per sample was set to 1 h and all
scattering curves were corrected for the solvent and capillary contributions, divided
by the transmission factor, acquisition time and optical path in order to obtain
SAXS curves in absolute units (cm−1).

Spectroscopy. X-Ray Photoelectron Spectroscopy (XPS) analyses were performed
at CIRIMAT Laboratory (Toulouse) using a Thermoelectron Kalpha device.
The photoelectron emission spectra were recorded using Al-Kα radiation (hν=
1486.6 eV) from a monochromatized source. The analyzed area was about
0.15 mm2. The pass energy was fixed at 40 eV. The spectrometer energy calibration
was made using the C1s (284.5 ± 0.1 eV) photoelectron lines. XPS spectra were
recorded in direct mode N(Ec). The background signal was removed using the
Shirley method. The atomic concentrations were determined from photoelectron
peak areas using the atomic sensitivity factors reported by Scofield, taking into
account the transmission function of the analyzer. The photoelectron peaks were
analyzed by Gaussian/Lorentzian (G/L= 50) peak fitting.

Solid-state NMR experiments were recorded on a Bruker Avance III HD
400 spectrometer equipped with a 4 mm probehead. Samples were wetted with
20 μl of THF-d8 and spun between 1 and 5 kHz at 293 K. 1H MAS was performed
with DEPTH pulse sequence and a relaxation delay of 3 s. For 13C MAS, single
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pulse experiments were performed with a recycle delay of 2 s. All chemical shifts
for 13C and 1H are relative to TMS.

Data availability
Data are provided in the article or in Supplementary information. Original data are
available from the corresponding authors upon reasonable request.
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Supplementary Figure 1. PBLG synthesis. Synthetic scheme depicting poly(-benzyl-L-glutamate) 

(PBLG) polymers preparation. In the present study, x = 28 (PBLG1), 69 (PBLG2), 120 (PBLG3), 

217 (PBLG4), 481 (PBLG5).  

 

  



Sample NCA 
Propargyl

-amine 

Theoretical 

Dp [a] 

Dp from 
1H NMR [b] 

Mn PBLG from 

SEC (Dp) [c] 

PDI PBLG 

from SEC [c] 

PBLG1 2g 16 µL 30 25 6200 (28) 1.23 

PBLG2 2g 8 µL 60 59 15100 (69) 1.21 

PBLG3 2g 4 µL 120 92 26500 (120) 1.25 

PBLG4 2g 2 µL 240 171 47500 (217) 1.25 

PBLG5 2g 1.2 µL 400 373 105000 (481) 1.33 

 

Supplementary Table 1. Chemical characterizations of the PBLG polymers. [a] Theoretical degree of 

polymerization ([M]/[I]); [b] Number average molar mass (Mn) determined by 1H NMR (see 

methods). [c] Absolute number average molar mass (Mn) and dispersity (Đ) determined by SEC using 

a multi-angle static light scattering detection (SEC in DMF (+LiBr), see methods).  

 

  



 

Supplementary Figure 2. Circular dichroism spectrum of PBLG4. The specific negative bands at 

208 and 222 nm confirm the -helix conformation of the polymer in THF. It is to note that the 

resolution of the CD measurement is strongly limited by the UV absorbance of the THF and implies 

the use of a specific set up before analysis (see methods). 



 

Supplementary Figure 3. Imaging of the lamellar structure of self-assembly of platinum 

nanoparticles with PBLG4, by different techniques: a, Atomic Force Microscopy on silicon; b, 

Scanning Electron Microscopy on silicon; c, Low-magnification Transmission Electron Microscopy 

on carbon. d,e, Tomographv 3D reconstructions at different viewing directions: d, at low 

magnification and e, at high magnification. 

  



 

Supplementary Figure 4. Cryo-TEM imaging. Cryo-TEM imaging of self-assembly of platinum 

nanoparticles with PBLG4. Fast freezing of the THF solution confirms the presence of the lamellar 

structures in solution. 

  



 

Supplementary Figure 5. Moiré patterns of lamellar self-assemblies of platinum nanoparticles 

with PBLG4. a, TEM image. Up to four 2D lamellar structures superimpose on each other to form 

specific Moiré patterns: zone (1) single layer – no Moiré, zone (2) two layers, zone (3) three layers, 

zone (4) four layers. b, Corresponding schematics for each zone, where the scheme of n layers is 

obtained by superimposing the scheme of 1 layer to the scheme of n-1 layers with a tilt of 45°. c, 

Picture of the same layer superimposed to itself 0, 1, 2, and 3 times after rotation; the same Moiré 

patterns as in zones (1) to (4) of Supplementary Fig. 5a were then artificially reconstructed. 

  



 

 

Supplementary Figure 6. 13C HR-MAS NMR study of PBLG4. a, Chemical structure of PBLG, 

and carbon position labelling (here x = 217). b, Spectrum of self-assembly of platinum nanoparticles 

with PBLG4. c, Spectrum of PBLG4 alone. The spectra were obtained in THF at 1,8 kHz (* = 

rotation bands). The appearance of new rotation bands and the narrowing of the polymer peaks show a 

rigidifying of the polymer structures in the self-assembly. 

  



 

Supplementary Figure 7. Interparticle distance. Small angle X-ray scattering patterns for platinum 

nanoparticles alone (without PBLG – NPs alone) and for the self-assembly of platinum nanoparticles 

with PBLG4 (SA). The nanoparticles alone don’t show any specific signal in addition to the 

continuous background, whereas the self-assembly shows a broad peak, which corresponds to a 

specific correlation distance between the nanoparticles equal to 2.5 nm (2π / qmax). 

  



 

Supplementary Figure 8. Absence of self-assembly in high quantity of PBLG. TEM micrograph of 

mixing of platinum nanoparticles with 5eq. of PBLG4. 

 

  



 

Supplementary Figure 9. 13C solid-state MAS NMR study of DBLG. a, Chemical structure of 

DBLG. b, Spectrum of self-assembly of platinum nanoparticles with DBLG. c, Spectrum of DBLG 

alone. The spectra were obtained at 10 kHz. The disappearing of the peaks at 72 and 80 ppm is in 

agreement with the coordination of the alkyne moiety of the polymer to the nanoparticle surface in the 

self-assembly. 

  



 

Supplementary Figure 10. Reduced component at 5 eq. XPS spectrum at the N1s edge of mixing of 

platinum nanoparticles with 5eq. of PBLG4 (4% of contribution at 398 eV). We start to observe the 

appearance of the reduced contribution of nitrogen at 5 eq. 

 

  



 

Supplementary Figure 11. Relative oxidation of platinum upon addition of PBLG. XPS spectra at 

the Pt4f edge of assemblies between platinum nanoparticles and PBLG4 at: a, 0.05 eq. (18% of 

oxidized contribution); b, 0.5 eq. (19% of oxidized contribution); c, 1 eq.  (26% of oxidized 

contribution); d, 5 eq. (28% of oxidized contribution). The progressive increase of the oxidized 

contribution at ~73.4 and ~76.7 eV from 0.05 eq. to 5 eq. and the slight increase of the global Pt4f 

binding energies (a dashed line is added as a guide for the eye) confirmed an increase of the relative 

platinum oxidation at the NP surface upon addition of PBLG. 



 

Supplementary Figure 12. FT-IR spectra. a, Full range FT-IR spectra of PBLG4 alone and of the 

self-assemblies between platinum nanoparticles and PBLG4 (at 0 eq., 0.05 eq., 0.5 eq., and 1 eq.) and 

b, zoom on the PBLG4 fingerprint region – the spectra are shifted for clarity. The esters (1770 cm-1) 

and amide (1770 cm-1 and 1770 cm-1) vibrations are not affected by the NP addition. The spectra are 

normalized on the signal of the CO vibration around 2040 cm-1. 

  



 

Supplementary Figure 13. Effect of the degree of polymerization – image analysis. TEM 

micrographs at two scales of self-assemblies between platinum nanoparticles and: a, f, PBLG1; b, g, 

PBLG2; c, h, PBLG3; d, i, PBLG4; and e, j, PBLG5. Autocorrelation images of : k, a; l, b; m c; n, 

d; o, e; p, f; q, g; r, h; s, i; t, j. u, Profiles represented on images k, l, m, n, and o. v, Profiles 

represented on images p, q, r, s, and t. (Inset : zoom on the central region of the profile). Systematic 

image analysis gives the average periodicity of the lamellas as shown on Fig. 4f and Supplementary 

Table 2. 

  



 

Supplementary Figure 14. SAXS measurements. SAXS measurements on self-assemblies between 

platinum nanoparticles and PBLG1, PBLG2, PBLG3, PBLG4, and PBLG5. The SAXS curves show 

the presence of multiple correlation peaks. For all samples, the large peak around 0.23 Å-1 gives an 

average distance of 2.7 nm corresponding to the correlation distance between the nanoparticles, as 

already observed (Supplementary Fig. 7). The presence of one peak (for PBLG1 and PBLG2) or two 

peaks (for PBLG2, PBLG3 and PBLG4) in the first part of the curve comes from interactions at 

medium distances, and proves the presence of the lamellae in the macroscopic sample. The 

corresponding periodicities deduced from the position of the first peak are represented on the curves 

and reported in Supplementary Table 2. The second peak, when distinguishable, corresponds to the 

harmonic at a double q value, confirming the spacing is constant at higher distances than a single 

period. The SAXS measurements confirmed the increasing of the average inter-lamellar distance with 

the degree of polymerization. The broadness of the peaks reflects a distribution of distances, as 

observed by TEM imaging.  



Periodicity (nm) TEM SAXS 

PBLG1 - 6 

PBLG2 11 9 

PBLG3 19 14 

PBLG4 32 22 

PBLG5 65 48 

 

Supplementary Table 2. Comparison of the periodicities of the self-assemblies obtained by TEM 

(Supplementary Fig. 13) and SAXS (Supplementary Fig. 14) measurements. Structural and 

microscopy analyses gave coherent trends, where the periodicity of the lamellae increased with the 

degree of polymerization of the polymer. Differences of absolute values can be explained by the 

beginning of precipitation occurring during the SAXS measurements (and thus to a compression of the 

system due to the solvent exclusion). On the contrary, sample preparation for electron microscopy 

corresponds to a quenching of the system in solution (as the solvent is rapidly absorbed by a filter 

paper during the TEM grid preparation). The periodicity for the cryo-TEM images with PBLG4 was 

found to be 31 nm (Supplementary Fig. 4), in line with the TEM measurements. 

  



 

Supplementary Figure 15. Geometrical analysis of tomography reconstructions. Analysis of 

tomography reconstruction of self-assemblies between platinum nanoparticles and: a, PBLG3 and b, 

PBLG4 confirmed similar thicknesses and width of the NP containing zones. The local periodicity is 

coherent with average values obtained by systematic image analysis (Fig. 4, Supplementary Fig. 13, 

and Supplementary Table 2). 

 

  



 

Supplementary Figure 16. Effect of the degree of polymerization. TEM micrographs at two scales 

of self-assemblies, keeping the polymer on nanoparticle ratio constant between platinum nanoparticles 

and a, PBLG1 (0.06 eq.). b, PBLG2 (0.16 eq.). c, PBLG3 (0.28 eq.). d, PBLG4 (0.50 eq.). e, 

PBLG5 (0.81 eq.). Similar structures are obtained by keeping the monomer units per nanoparticle 

(Supplementary Fig. 13a to j) or the polymer number per nanoparticle constant. 

  



 

Supplementary Figure 17. First steps of self-assembly. TEM micrographs of self-assemblies 

between platinum nanoparticles and a, c, e: PBLG3; b, d, f: PBLG4: a, b: after 2 h of reaction. c, d: 

after 5 s of reaction. e, f: after a fraction of second of reaction – the nanoparticles are drop-casted on 

pre-deposited PBLG. The assembly behavior was comparable at the two different Dp (see main text).   

  



 

Supplementary Figure 18. Scheme of the self-assembly process. -helices of PBLG tend to 

spontaneously align in THF solution. Upon mixing with platinum nanoparticles, some part of them are 

destructured thanks to interaction with their amide functional groups and the nanoparticle surface, and 

form random coils that interact with an average of 6-7 nanoparticles. Demixing between such a hybrid 

phase and the excess of PBLG in -helices led to the alternation of lamellae, stabilized by the 

coordination of the alkyne terminal group of the polymer to the surface of accessible nanoparticles. 

 



Reviewers' comments: 

Reviewer #1 (Remarks to the Author): 

The authors produced mixtures of nanoparticles and a homopolymer in THF as solvent. The 

nanoparticles were very spherical Pt nanoparticles with a diameter of 1.2 ± 0.3 nm as determined 

with electron microscopy. The homopolymer was poly(gamma-benzyl-L-glutamate) with different 

molar masses. In The absence of nanoparticles this polymer forms an alpha helix in THF. 

The new finding of the work is that lamellar nanostructures are formed upon mixing. This lamellar 

phase consists of alternating lamellae of type 1 and type 2. The lamellae of type 1 are enriched in 

nanoparticles while no nanoparticles are present in type 2. This was visualized with TEM and found 

for a wide range of compositions. 

Similar nanostructures are well reported for block-copolymers but not for homopolymers. The 

explanation for such nanoparticle-enriched lamellae in block-copolymers is straight-forward as can 

be found in the literature cited by the authors. 

Normally one expects that either the polymer decorates the nanoparticle or vice versa the 

nanoparticles decorate the polymer. Such depend to the molar masses, concentrations, strength of 

interaction of the polymers and the nanoparticles etc. 

But the formation of lamellar structures of the named homopolymer is highly unexpected and to 

me not sufficiently explained by the authors. For each polymer chain the nanoparticles need to 

induce a change of the conformation from an alpha helix to a random coil. But only for that 

fraction of the chain which is then located in the nanoparticle-rich lamellae type 1. The remaining 

part of each chain is still in an alpha-helical conformation forming lamellae type 2. When assuming 

this mechanism, a kind of pseudo block-copolymer is formed: therein block 1 is the random coil 

and block 2 is the alpha helix. In principle such is possible and can explain the lamellar structures. 

But such scenario is very unlikely. 

Instead, I assume that the lamellar structures are formed during deposition of the mixtures on 

surfaces prior to TEM measurements. It needs to be excluded that a phenomenon similarly to the 

coffee ring effect produces the lamellar structures. Further experiments for ensemble averaging 

data are needed. 

The authors are already going in the right direction with their SAXS measurements. But the SAXS 

data presented in Figure S6 is absolutely not sufficient. The peak in the scattering curve could 

simply result from a so-called correlation hole as found for many polymeric structures. The peak is 

no proper evidence for the existence of a lamellar structure in solution. Here a reasonable 

modelling of the SAXS curves is needed and data should be measured from all the samples that 

correspond to the TEM pictures presented in Figures 1 and 2. The SAXS measurements should be 

performed from samples in solution in a capillary. Otherwise the data are prone to artifacts. A 

normal lab SAXS instruments is suitable. The lamellar structures must provide a very strong 

scattering intensity and a distinctive scattering pattern, if they exist in solution as claimed by the 

authors. Data evaluation can be performed with open source small-angle scattering programs. 

These programs provide appropriate models for lamellar structures to simulate the measured 

curves. 

In summary, the manuscript needs major revision that provides clear evidence for the presence of 

the lamellar structure in solution. 

Reviewer #2 (Remarks to the Author): 

The entitled work “Beyond Flory-Huggins theory: bidimensional lamellar assembly by coordination 

of peptidic homopolymers to platinum nanoparticles” by Manai et al. reported the use of 

homopolymers to control the organization of nanoparticles. The authors confirmed that PBLG 

polypeptide homopolymers coordinated with nanoparticles by 13C NMR spectroscopy. We could 

imagine that the homopolymers formed brush layers on the surfaces of nanoparticles, which 

makes this system perfectly fit into the frame of the Flory-Huggins theory. In previous studies, the 



phase behaviors of the conjugates (or amphiphiles) of nanoparticles, e.g. Au NPs (Mei et al. Chem 

Eur J 2019, 1) or POSS (Wu et al. Macromolecules 2014, 4622; Zhang et al. Soft Matter 2019, 

7108), and polymers have been well documented. The PBLG-Pt nanoparticle conjugates in this 

work were in-situ generated upon the mixing of PBLG and Pt nanoparticles, which made it different 

from previous reports on ex-situ synthesized nanoparticle-polymer conjugates. This work does not 

have enough novelty for publication in Nature Communications. 

Additional comments: 

1. The authors claimed that the lamellar structures formed in the solution, but they characterized 

the films after the evaporation of solvent. It would be more convincing to use cryo-TEM to 

characterize the solution structure. 

2. The exact structure is still unclear. It will be helpful to capture the structures at the early stage 

and characterize the kinetics of the self-assembly process. 

3. The use of “Beyond the Flory-Huggins theory” in the tile might not be appropriate. 

Reviewer #3 (Remarks to the Author): 

The manuscript by Manai et al. describes the self-assembly of a mixture of small platinum 

nanoparticles (NP) and poly(benzyl-L-glutamate) (PBLG) into periodic lamellar structures. The 

formation of microphase-separated structures is driven by the coordination interactions between 

the surface of NPs and the functional groups of PBLG. The authors systematically investigated the 

effect of substrates, polymer length, and volume ratio of NPs to polymers on the assembly 

morphologies. The present work expands on the mechanism of polymer-guided assembly of 

inorganic NPs in films. 

The presented work is sound, and experimental data gives deep insight into the assembly of 

polymer-NP composites. There is no doubt that this paper reports significant advancement in a 

field. Thus, I would recommend the publication of this work in Nature Communications, after few 

concerns are addressed: 

1. The authors carefully characterized the interactions between NPs and PBLG. However, it is still 

not straightforward for readers to understand how the lamellar structures are formed on the basis 

of these interactions. I would suggest the authors include a new scheme illustrating the 

mechanism of microphase separation in the main text or SI. 

2. Is it possible that the immiscibility between the exposed surface of NPs and homopolymers is 

the driving force of phase separation? One quick experiment may be considered to verify this 

possibility: mixing and assembling NPs with homopolymers (e.g., PS) with the same end functional 

group. 

3. What is the thickness of the films? Is the assembly morphology dependent on the film 

thickness? 

4. The formation of Moiré patterns in the assembly is interesting and rarely observed in polymer 

systems. Why? A reasonable explanation would be very helpful. 

5. Some figure captions are not clear: 

a. "Figure 1 Building blocks...", but this figure includes both building blocks and assembly 

structures. 

b. "...Evolution of characteristic widths as a function of the degree of polymerization x: squares: 



average periodicity of the lamellas; white circles: average width of the white...". The format is a 

bit confusing.



Response to the reviewers. 

 

Reviewers' comments: 

 

Reviewer #1 (Remarks to the Author): 

 

The authors produced mixtures of nanoparticles and a homopolymer in THF as solvent. The 

nanoparticles were very spherical Pt nanoparticles with a diameter of 1.2 ± 0.3 nm as 

determined with electron microscopy. The homopolymer was poly(gamma-benzyl-L-

glutamate) with different molar masses. In The absence of nanoparticles this polymer forms 

an alpha helix in THF. 

The new finding of the work is that lamellar nanostructures are formed upon mixing. This 

lamellar phase consists of alternating lamellae of type 1 and type 2. The lamellae of type 1 are 

enriched in nanoparticles while no nanoparticles are present in type 2. This was visualized 

with TEM and found for a wide range of compositions. 

Similar nanostructures are well reported for block-copolymers but not for homopolymers. The 

explanation for such nanoparticle-enriched lamellae in block-copolymers is straight-forward 

as can be found in the literature cited by the authors. 

Normally one expects that either the polymer decorates the nanoparticle or vice versa the 

nanoparticles decorate the polymer. Such depend to the molar masses, concentrations, 

strength of interaction of the polymers and the nanoparticles etc. 

But the formation of lamellar structures of the named homopolymer is highly unexpected and 

to me not sufficiently explained by the authors.  

 

Following the remarks of Reviewer #1, and suggestions of Reviewer #2 and Reviewer #3, 

several additions has been made in the manuscript in order to explain better the formation of 

the lamellar structure.  

 

A paragraph has been added to describe the self-assemblies at short times of mixing (p. 7), the 

Discussion section is now more detailed (p. 7-8) and an explicative figure has been added in 

SI (Fig. S18). 

 

 

For each polymer chain the nanoparticles need to induce a change of the conformation from 

an alpha helix to a random coil. But only for that fraction of the chain which is then located in 

the nanoparticle-rich lamellae type 1. The remaining part of each chain is still in an alpha-

helical conformation forming lamellae type 2. When assuming this mechanism, a kind of 

pseudo block-copolymer is formed: therein block 1 is the random coil and block 2 is the alpha 

helix. In principle such is possible and can explain the lamellar structures. But such scenario 

is very unlikely. Instead, I assume that the lamellar structures are formed during deposition of 

the mixtures on surfaces prior to TEM measurements. It needs to be excluded that a 

phenomenon similarly to the coffee ring effect produces the lamellar structures. Further 

experiments for ensemble averaging data are needed. 

 

The coffee ring effect is a pattern left by a puddle of particle-laden liquid after it evaporates. It 

originates from combination of evaporation of solvent, capillary flow and Marangoni flow. It 

has a purely physical origin. Such an effect has been observed in our systems, and influenced 

the morphology of the assemblies at the micrometer scale, as shown in the picture below. 



 
 

We prefer avoiding speaking about coffee ring effect in the present manuscript, as it is in the 

margin of the main message: a description of the superstructures at the nanometer scale, 

where the main driving forces of the assembly are dipolar interactions and molecular 

interaction, such as Van der Waals forces or coordination bounds.  

 

 

The authors are already going in the right direction with their SAXS measurements. But the 

SAXS data presented in Figure S6 is absolutely not sufficient. The peak in the scattering 

curve could simply result from a so-called correlation hole as found for many polymeric 

structures. The peak is no proper evidence for the existence of a lamellar structure in solution. 

Here a reasonable modelling of the SAXS curves is needed and data should be measured from 

all the samples that correspond to the TEM pictures presented in Figures 1 and 2. The SAXS 

measurements should be performed from samples in solution in a capillary. Otherwise the 

data are prone to artifacts. A normal lab SAXS instruments is suitable. The lamellar structures 

must provide a very strong scattering intensity and a distinctive scattering pattern, if they exist 

in solution as claimed by the authors. Data evaluation can be performed with open source 

small-angle scattering programs. These programs provide appropriate models 

for lamellar structures to simulate the measured curves.  

 

As asked by Reviewer #1, SAXS measurements have been performed on assemblies with 

PBLG1 to PBLG5. In addition to confirming a constant inter-particle average distance, such 

measurements proved the coherence of the lamellar structure at the macroscopic scale and 

confirmed an increase of the inter-lamellar distance with the degree of polymerization of the 

PBLG.  

 

The corresponding figure and a table comparing the periodicities in TEM and SAXS have 

been added in SI (Fig. S14 and Table S2). A new sentence has been added in the main 

manuscript (p. 6), and the experimental section has been completed accordingly (p. 11). Pierre 

Roblin, who conceived and performed the SAXS measurements, has been added to the list of 

co-authors. 



In summary, the manuscript needs major revision that provides clear evidence for the 

presence of the lamellar structure in solution.  

 

To get signals in SAXS, we had to concentrate the samples and measurements were 

performed at the beginning of precipitation. To provide clear evidence of the presence of the 

lamellar structure in solution, we also performed cryo-TEM microscopy (as suggested by 

Reviewer #2). After adaptation of the classical cryo-TEM techniques to work with THF, we 

succeeded in observing the lamellae in solution.  

 

This supplementary characterization provides a direct and indisputable proof of the presence 

of lamellae in solution. A corresponding figure has been added in SI (Fig. S4) and a 

descriptive sentence has been added in the main text (p. 4). Stéphanie Balor, who conceived 

and performed the cryo-TEM imaging, has been added to the list of co-authors. 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

The entitled work “Beyond Flory-Huggins theory: bidimensional lamellar assembly by 

coordination of peptidic homopolymers to platinum nanoparticles” by Manai et al. reported 

the use of homopolymers to control the organization of nanoparticles. The authors confirmed 

that PBLG polypeptide homopolymers coordinated with nanoparticles by 13C NMR 

spectroscopy. We could imagine that the homopolymers formed brush layers on the surfaces 

of nanoparticles, which makes this system perfectly fit into the frame of the Flory-Huggins 

theory. In previous studies, the phase behaviors of the conjugates (or amphiphiles) of 

nanoparticles, e.g. Au NPs (Mei et al. Chem Eur J 2019, 1) or POSS (Wu et al. 

Macromolecules 2014, 4622; Zhang et al. Soft Matter 2019, 7108), and polymers have been 

well documented. The PBLG-Pt nanoparticle conjugates in this work were in-situ generated 

upon the mixing of PBLG and Pt nanoparticles, which made it different from previous reports 

on ex-situ synthesized nanoparticle-polymer conjugates. This work does not have enough 

novelty for publication in Nature Communications. 

 

Whereas the references proposed by Reviewer #2 are very interesting, the mechanism 

proposed therein cannot describe the system presented in our manuscript. First, we observed 

coordination of the peptide bonds of the polymers to the nanoparticles surface. This 

experimental observation clearly rules out the formation of simple conjugates composed of 

two "blocks", i.e. in our case, nanoparticles only linked by the end-alkyne terminal groups of 

the polymer. Second, in the references mentioned by Reviewer #2, the rod behavior of the 

system is provided by the inorganic part of the conjugate; we then agree that the behavior of 

the organic part is in agreement with the Flory-Huggins theory. In marked contrast, it is the 

organic part – the PBLG part adopting -helical conformation – that exhibits the rod-like 

behavior in our system. Based on the data from Figure 4 and Table S2, we can establish a 

scaling law of the lamellae thickness vs. the average molar mass proportional to Mn0.98 (see 

the figure below). With diblock copolymers, a bibliographic study indicates that a scaling law 

exponent of lamellae thickness vs. molar mass varies experimentally from 0.5 for the lower 

masses (e.g. < 10000 g/mol) to 0.7 for the larger ones (Sandre Olivier et al., Polymer, 2010, 

21 (21), 4673-4685). These values are in principle close to the reference exponent of 0.643 

predicted by Helfand (Helfand, E., Macromolecules 1975,8, 552-556; Helfand, E.; 

Wasserman, Z. R., Macromolecules 1976,9, 879-888), which is significantly lower than the 

exponent value of 0.98 estimated from our data. 



 
 

Additional comments: 

 

1. The authors claimed that the lamellar structures formed in the solution, but they 

characterized the films after the evaporation of solvent. It would be more convincing to use 

cryo-TEM to characterize the solution structure. 

 

The experiment has been done and gave convincing results. We thank Reviewer #2 for his 

suggestion. 

 

A corresponding figure has been added in SI (Fig. S4) and a descriptive sentence has been 

added in the main text (p. 4). 

 

 

2. The exact structure is still unclear. It will be helpful to capture the structures at the early 

stage and characterize the kinetics of the self-assembly process. 

 

Regular experiments are done with 2 hours of agitation to be sure to reach a steady state. 

Following Reviewer #2’s suggestion, we explored very short time of reactions and noticed the 

structures are generally formed after 5 min. Specific experiments have thus been done to catch 

the very beginning of the self-assembly process, which turns out to start in the first seconds of 

mixing. 

 

To take into account this comment, a descriptive paragraph has been added in the main text 

(p. 7), and a corresponding figure has been added in SI (Fig. S17). 

 

 

3. The use of “Beyond the Flory-Huggins theory” in the tile might not be appropriate.  

 

Even if we are convinced that our systems cannot be described by the conventional formalism 

developed for diblock-copolymer, as detailed above, we decided to modify the title in line 

with Reviewer #2’s comment. 

 

 

 



Reviewer #3 (Remarks to the Author): 

 

The manuscript by Manai et al. describes the self-assembly of a mixture of small platinum 

nanoparticles (NP) and poly(benzyl-L-glutamate) (PBLG) into periodic lamellar structures. 

The formation of microphase-separated structures is driven by the coordination interactions 

between the surface of NPs and the functional groups of PBLG. The authors systematically 

investigated the effect of substrates, polymer length, and volume ratio of NPs to polymers on 

the assembly morphologies. The present work expands on the mechanism of polymer-guided 

assembly of inorganic NPs in films.  

 

The presented work is sound, and experimental data gives deep insight into the assembly of 

polymer-NP composites. There is no doubt that this paper reports significant advancement in 

a field. Thus, I would recommend the publication of this work in Nature Communications, 

after few concerns are addressed:  

 

1. The authors carefully characterized the interactions between NPs and PBLG. However, it is 

still not straightforward for readers to understand how the lamellar structures are formed on 

the basis of these interactions. I would suggest the authors include a new scheme illustrating 

the mechanism of microphase separation in the main text or SI.  

 

A corresponding figure has been added in SI (Fig. S18) and the Discussion section of the 

main text is now more detailed (p. 7-8). 

 

 

2. Is it possible that the immiscibility between the exposed surface of NPs and homopolymers 

is the driving force of phase separation? One quick experiment may be considered to verify 

this possibility: mixing and assembling NPs with homopolymers (e.g., PS) with the same end 

functional group. 

 

The experiment has been done using PS with a DP of 336, in the same order of magnitude as 

the one used for PBLG in exactly the same experimental conditions. We see in TEM imaging 

(see picture below - left) that some kind of structuration appears, but clearly different from the 

well-ordered lamellae obtained with PBLG. Immiscibility between the homopolymer and the 

NP zone thus clearly plays a role in the structuration, but the presence of coordinating groups 

is crucial to go a step further and interact with the NP, as detailed throughout the manuscript. 

If the system is only governed by repulsive forces, arrangement between the components 

generally tends to form isotropic structure (like the spherical aggregates observed with PS – 

see picture below - right). There might be some interest to study such a phenomenon in more 

details in the scope of a separate study. 

 

 
 



3. What is the thickness of the films? Is the assembly morphology dependent on the film 

thickness?  

 

Analysis of the tomography picture already obtained for PBLG4 showed that the thickness of 

the film is comparable to the width of the NP lamella. We performed tomography microscopy 

with PBLG3 to confirm this trend.  

 

A corresponding figure has been added in SI (Fig. S15) and a descriptive sentence has been 

added in the main text (p. 6). 

 

 

4. The formation of Moiré patterns in the assembly is interesting and rarely observed in 

polymer systems. Why? A reasonable explanation would be very helpful.  

 

Thanks to the present revision of the manuscript, we have demonstrated that the assembly 

formed in solution. If the lamellae are pre-formed in solution, they can deposit on top of each 

other during the drop casting of the TEM grid preparation, if the solution is sufficiently 

concentrated. We should notice that such an effect has been observed by chance. It will be of 

interest to study it in more details the scope of another work. But we think it is interesting to 

mention it in the present manuscript as it gives a supplementary indirect proof of the existence 

of the lamellae in solution. 

 

A sentence of explanation as been added in the main text (p. 4). 

 

 

5. Some figure captions are not clear:  

a. "Figure 1 Building blocks...", but this figure includes both building blocks and assembly 

structures. 

 

The caption has been corrected (p. 16). 

 

b. "...Evolution of characteristic widths as a function of the degree of polymerization x: 

squares: average periodicity of the lamellas; white circles: average width of the white...". The 

format is a bit confusing. 

 

A legend has been added in the figure and the caption has been adapted (p.19). 

 

 



REVIEWERS' COMMENTS: 

Reviewer #2 (Remarks to the Author): 

I agreed with the argument in the response "This experimental observation clearly rules out the 

formation of simple conjugates composed of two "blocks", i.e. in our case, nanoparticles only 

linked by the end-alkyne terminal groups of the polymer. “ It did not form a ‘diblock” conjugate, 

but they are hairy nanoparticles with PLBG as the corona. The difference is that PLBG had rod-like 

conformation, while the polymers in previous studies might form random coils. I suggested the 

authors acknowledging previous works on nanoparticle-polymer conjugates in the revised version. 

Reviewer #3 (Remarks to the Author): 

The authors have performed additional experiments and addressed the comments raised by the 

reviewers. The revised manuscript is now suitable for publication in Nature Communications as is.



Response to the reviewers. 

 

Reviewers' comments: 

 

Reviewer #2 (Remarks to the Author): 

 

I agreed with the argument in the response "This experimental observation clearly rules out 

the formation of simple conjugates composed of two "blocks", i.e. in our case, nanoparticles 

only linked by the end-alkyne terminal groups of the polymer. “ It did not form a ‘diblock” 

conjugate, but they are hairy nanoparticles with PLBG as the corona. The difference is that 

PLBG had rod-like conformation, while the polymers in previous studies might form random 

coils. I suggested the authors acknowledging previous works on nanoparticle-polymer 

conjugates in the revised version. 

 

The review suggested by Reviewer #2 in the previous comments has been added [Mei, S., 

Staub, M. & Li, C. Y. Directed Nanoparticle Assembly through Polymer Crystallization. 

Chem. – Eur. J. 26, 349–361 (2020).], as well as another recent one [Yi, C., Yang, Y., Liu, B., 

He, J. & Nie, Z. Polymer-guided assembly of inorganic nanoparticles. Chem. Soc. Rev. 49, 

465–508 (2020).]. They are now refs  2 and 3 in the new version of the manuscript. 

 

Reviewer #3 (Remarks to the Author): 

 

The authors have performed additional experiments and addressed the comments raised by the 

reviewers. The revised manuscript is now suitable for publication in Nature Communications 

as is. 
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