N

N
N

HAL

open science

Uncertain Reasoning in Rule-Based Systems Using PRM

Gaspard Ducamp, Philippe Bonnard, Pierre-Henri Wuillemin

» To cite this version:

Gaspard Ducamp, Philippe Bonnard, Pierre-Henri Wuillemin. Uncertain Reasoning in Rule-Based
Systems Using PRM. FLAIRS 33 - 33rd Florida Artificial Intelligence Research Society Conference,
May 2020, Miami, United States. pp.617-620.

hal-02612521

HAL Id: hal-02612521
https://hal.science/hal-02612521
Submitted on 19 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02612521
https://hal.archives-ouvertes.fr

The Thirty-Third International
FLAIRS Conference (FLAIRS-33)

Uncertain Reasoning in Rule-Based Systems Using PRM

Gaspard Ducamp, Philippe Bonnard
IBM France Lab
9 rue de Verdun, 94250 Gentilly, France

gaspard.ducamp @ibm.com, philippe.bonnard @fr.ibm.com

Abstract

Widely adopted for more than 20 years in industrial fields,
business rules offer the opportunity to non-IT users to de-
fine decision-making policies in a simple and intuitive way.
When used conjointly with probabilistic graphical models
(PGM) their expressiveness increase by introducing the no-
tion of probabilistic production rules (PPR). In this paper we
will present a new model for PPR and suggest a way to han-
dle the combinatorial explosion due to the number of par-
ents of aggregators in PGM such as Bayesian networks and
Probabilistic Relational Models in an industrial context where
marginals should be computed rapidly.

1 Context

Business Rules Management Systems (BRMS), such as IBM
Operational Decision Manager (ODM), are developed since
the 90’s to facilitate editing, authoring, deploying and ex-
ecuting business policies by domain users, in the form of
conditions/actions rules. Syntactically close to the business
language, these ease the translation of decision-making and
business strategies, making them accessible to users with no
programming experience.

Many approaches have been used in the rule-based sys-
tem community to deal with uncertainty, using certainty fac-
tors (Buchanan and Shortliffe 1984), likelihood ratio (Hart,
Duda, and Einaudi 1978) or even fuzzy logic (Zadeh 1965).
However, there was some limitations using such methods,
mainly due to interpretation being incoherent with probabil-
ity theory (Heckerman et al. 1992) or inconsistency in the
conclusions when performing chains of inference (Ng et al.
1990). Bayesian techniques, mostly based of Bayesian net-
works (Pearl 1988; Weber et al. 2012), have been used to
model domains with uncertainty but are not suited for com-
plex systems involving high design and maintenance costs
(Koller et al. 1997). Another solution could be to use models
that combines first-order logic and probabilistic reasoning,
such as Markov logic networks (Richardson and Domingos
2006), but their abstract structure is incompatible with busi-
ness rules’ principles.

Copyright (© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

617

Pierre-Henri Wuillemin
LIP6 (UMR 7606), Sorbonne Université
4 place Jussieu, 75005 Paris, France
pierre-henri.wuillemin @lip6.fr

This paper will start with a short introduction on prob-
abilistic rules and their relevance in an industrial context
as well as their current limitations. We will then illustrate
how we propose to inscrease their expressivity using a tight
coupling of a BRMS with an object-oriented probabilistic
graphical model as well as a way to compute a certain type
of probabilistic aggregators efficiently. To illustrate our pa-
per we will take the example of a state willing to monitor and
manage its cities’ water resources according to their daily
consumption and possible episodic drought.

2 Probabilistic production rules

When using a BRMS, users have to define the objects that
will be manipulated by the rule engine through classes and
attributes declaration. They will be dynamically instantiated
in a working memory during the execution of the program.
In our case the working memory will contain objects repre-
senting cities, water towers and level sensors (that could be
either working or broken), as shown in the Figure 1.

WaterTower

State City, IdTower Sensor
1 1 Type 1
Name IdSensor
Name . k>—— Manufacturer k>—
Population | '-"| Population 0-n| Capacity '| Model
IdState iy LastMaintenance LastMaintenance
WaterLevel Enabled State

Level

Figure 1: UML class diagram for the water shortage example

Alongside the object data model, users have to define a set
of rules. The activation/execution of those rules is managed
by inference algorithms such as RETE (Forgy 1982). The
rule presented in Figure 2, for example, is used to identify
broken sensors inside water towers, allowing technicians to
be alerted when a maintenance is required.

However one would like to add uncertainty in rules, for
instance to perform predictive maintenances rather than cor-
rective ones, reducing the risk of unexpected breakdowns.
Studies including (Agli 2017) showed that a loose coupling
between a rule engine and probabilistic graphical models al-
lowed reasoning about uncertain data.

1: rule SensorMaintenance {

2: when {

3 c: City() ;

4: wt: WaterTower() in c.watertowers;

5 s: Sensor(s.state==broken) in wt.sensor;
6: } then {change the sensor}}

Figure 2: Example of rule used in a BRMS

A Bayesian network (BN) is a graphical compact repre-
sentation of a joint probability distribution over a set of ran-
dom variables where each node is associated with a condi-
tional probability table (CPT) that contains the conditional
probabilities of the random variable with respect to its par-
ents. BNs are inadequate for modeling large scale world;
they quickly loses their expressivity due to the large num-
ber of obtained variables.

Probabilistic Relational Models (PRM), on the contrary,
are combining notions from BNs and from the paradigm of
object-oriented languages (Torti, Wuillemin, and Gonzales
2010), where the focus is set on classes of objects and rela-
tions between them (using classes, attributes, relations, in-
terface, inheritance and instantiations). Such expressiveness
makes it possible to answer the problems of reusability and
scalability of graphical models (Medina Oliva et al. 2010).
The structuration of information in a PRM being close to
the one in the object data model of the rule engine allows
us to generate it directly from an annotated version of the
model. Figure 3 shows an example of relation schema for
PRM classes generated from the model described in Fig-
ure 1 where red attributes correspond to probabilistic vari-
ables that will have to be handled by a probabilistic engine.
A class City contains an attribute called waterlevel charac-
terizing the availability of water resources: it is acting as a
sum aggregator over the level attribute of the water towers
present in the reference slot (dashed oval). Each tower is
linked to a sensor analyzing its water level.

WaterTower

{ sensor 1

Sensor

Figure 3: PRM class dependencies schema

By manipulating the object model during compilation, the
previous works allowed users to define a first set of proba-
bilistic rules. (Agli 2017) raised two major issues:

o Business user friendliness: such rules can be difficult to
define and to understand by a business user, expressing a
probability on particular conditions requiring a deep level
of knowledge of the probabilistic models used.

e Performance: ODM provides the ability for users to de-
fine different types of conditions (for example, using fil-
ters, aggregators, and nested conditions). Neither these
constructions, more complex, nor their impacts on the per-
formances have been studied.

618

3 A new definition of PPR

To address the business user friendliness issue, we have re-
defined the treatment of uncertainty in the expression of
rules by replacing the probability thresholds attached to sin-
gle variables by a notion of acceptable risk on the evaluation
of the conditions of the rule as a whole. The action part of a
rule will therefore be executed only if the set of conditions
is verified with a probability greater than the defined accept-
able risk. This will allow our probabilistic rules to be both
more complex and intuitive, but it requires a redefinition of
the rules compilation phase to redistribute the overall risk to
each individual condition. In the example in Figure 4, a city
will restrict its water usages if there is a high probability
that either its temperature is high or a low water resources
are lower than 10* megalitres.

1: rule RestrictAccessToWater {

2: when {

3: c: City(c.temperature > 40°C or c.waterlevel <10%) ;
4: } [with probability > .9] then

5 {restrict water usage to key functions} }

Figure 4: Syntax of a probabilistic rule

To achieve this, it is necessary to generate the PRM from
the object model but also from the set of rules. Since the rule
engine can not interpret a probability over a set of conditions
it is necessary to change its toolchain and intervene during
the rewriting phase to make such rules usable.

Compilation, PRM model and rule rewriting

Adapting the PRM model begins with the creation of a new
class for each rule (in red in Figure 5), then (i) the predicates
present in the conditions are added to the class, as well as the
operators that connect them; (ii) arcs are added and opera-
tor’s CPTs generated according to their nature; (iii) the con-
ditions are finally connected to a boolean random variable
called risk whose value will be queried at each inference, it
acts as a conjunction between the conditions.

WaterTower
{ sensor

city

Sensor

Figure 5: Class dependencies schema of the enhanced PRM

The rule evaluation will be based on the use of the prob-
abilistic engine. Once the PRM enhanced, the probabilistic
rules are rewritten; after all the conditions, an evaluation of
the comparison between the value of the risk node and the
specified threshold is added. It is at this level of the rule that
the main interaction between the rule engine and the proba-
bilistic engine will occur. Figure 6 shows how the previous
rule is rewritten.

1: rule RestrictAccessToWater {

2: when {

3: c: City ();

4 evaluate (PRMengine.getRisk(“WaterShortageMode”, [c],
[c.temperature>40])>0.9) ;

5: } then {restrict water usage to key functions}}

Figure 6: Syntax of the rewritten rule

When executing the rule and if the rule engine finds ele-
ments verifying the conditions in the working memory, the
calculation function of risk of the engine is called with the
following parameters (i) the name of the class of the rule, in
order to instantiate it in the probabilistic engine; (ii) the ob-
jects in the condition part that are necessary to evaluate the
value of the risk variable; (iii) the value of the deterministic
elements encoded in the class, used as evidences.

Runtime, PRM system and working memory

Once the PRM model is defined, the instances are created
by mapping the object existing in the working memory into
a PRM system. As said before an object corresponding to the
rule is instantiated as well during the risk evaluation process.
Figure 7 shows such a system in a case where the working
memory contains two cities, each linked to a certain number
of water towers. If we were computing the risk value given
that the city c; is being evaluated an object r of type Restric-
tAccessToWater would be created, r.city mapped to ¢; and
the value of r.temp > 40 updated with the truth value of
cy.temperature > 40.

System S

Cities : ¢4,Co

Water towers : wty,wtp,wig
Sensors : $1,52,53
RestrictAccessToWater : r

cq.watertowers = [wtq,wts]

cp.watertowers = [wtg]
wty.sensor = sq
wip.sensor = sp
wtz.sensor = s3

r.city = ¢4

Figure 7: Relational skeleton based on the schema in Fig. 5

From a relation skeleton we can generate a BN called
grounded BN, as shown on Figure 8; we create a node for
each attributes of the objects in the skeleton and linked them
according to the dependencies in the PRM model. Once the
grounded BN generated, we can compute the marginal of the
r.risk node given all the evidences. The complexity of an in-
ference in a BN is NP-Hard (Cooper 1990), growing expo-
nentially in the tree-width of the network, which is bounded
below by the size of the largest family (a node and its par-
ents) (Robertson and Seymour 1986). This is one of the ma-
jor issues when dealing with probabilistic aggregators, espe-
cially when they have a high number of parents.

619

co.watelevel

cq.watelevel r.waterlevel<10

Figure 8: Grounded BN based on the Figure 7

4 Aggregators and combinatorial explosion

Aggregation functions can be considered as a way to sum-
marize information over a set of data. (Jesus, Baquero, and
Almeida 2015) present many algorithms about distributed
data aggregation, but none specific to the case of proba-
bilistic aggregation in BNs. For probabilistic aggregation we
need to provide, for each possible instantiation of the aggre-
gated objects, a value in its CPT. Here, we provide more
precise definitions (1 and 3 are given by Jesus, Baquero, and
Almeida), and consider that the process consists in the com-
putation of an aggregation function defined by:

Definition 1 (Aggregation function) An aggregation func-
tion f takes a multiset of elements from a domain I and
produces an output of a domain O, f : N + O

Definition 2 (Probabilistic aggregation function) An aggre-
gate function f : NI — O is a probabilistic aggregate func-
tion if a function g exists such that:

g N x O~ [0,1] Vze N, Zg(:c,y) =1
yeO

In the case of our waterlevel aggregator, if our city is
linked to 7 water towers (each charaterized by 11 values),
f :[0,10]" — [0,70] and we will need to store 71 - 117
values. Table 1 shows the inference time using Lazy Prop-
agation algorithm (Madsen and Jensen 1999) and generated
file size (from the grounded BN), allowing us to have an
idea of the space and time complexity of such cases, even
for a small number of parents. We will denote the set of n’s
parents as Pa(n) and | Pa(n)] its size.

Table 1: Inference time to compute city’s water level and
size of the generated file, depending on | Pa |

| Pa| time file size
3 8e-2s 89Ko
4 1.4e-1s 1.2Mo
5 1.9s 16.8Mo
6 30s 241.7Mo
7 > 6h* | 2.81Go

Some aggregation functions can be, however, computed
by computing the aggregate for subsets, and then aggregat-
ing these results, reducing the size of the concerned CPTs.

Definition 3 (Self-decomposable aggreation function) An
aggregation function f : N! — O is said to be self-
decomposable if, for some merge operator ¢ and all non-
empty multisets X and Y, f(XWY) = f(X)o f(Y).

In the above, W denotes the union of multiset. Given that the
aggregation result is the same for all possible partitions of
a mutliset, it means that the operator ¢ is commutative and
associative. Many probabilistic aggregators such as MIN,
MAX and SUM are self-decomposable, as shown below :

SUM({z}) =2, SUM(X WY) = SUM(X)+ SUM(Y)

To face our issue with aggregation being a bottleneck
we will manipulate the grounded BN before the genera-
tion of its attributes’ CPTs. When the BN contains a self-
decomposable aggregator n with | Pa(n)| > 2 we can create
intermediate aggregators between its parents, grouping them
by pairs, then linking these aggregators by pairs themselves.
Figure 9 shows how such manipulation is changing a simple
BN with one sum aggregator having 5 parents. In this exam-
ple, each attribute ; € {x1,...,x,} can take 10 values. In
the decomposed counterpart the largest CPT contains 2500
times less parameters than in the original one.

@ ®®® g
Coum)

(a)

(b)

Figure 9: (a) is a BN before its decomposition, its largest
CPT contains 50 - 10° values. (b) is the same BN, after de-
composition. Its largest CPT contains 50 - 40 - 10 values.

Table 2 shows the time needed to decompose and com-
pute marginals in the water shortage example. As expected
reducing the size of the aggregator’s node helped us reduc-
ing the complexity of the inference, we are now able to per-
form them in more acceptable times, even with an important
number of parents.

Table 2: Decomposition and inference time to compute city’s
water level and size of the generated file, depending on | Pa |

[Pa| || decomposition | inference | file size
5 3e-4s 6e-3s 103Ko
25 2e-4s 6e-1s 11Mo
50 le-3s 5s 85Mo

100 le-2s Tls 673Mo

5 Conclusion

In this paper, we have proposed a new model of probabilis-
tic production rules that responds to an industrial need for a
simplified syntax, at the cost of adding a layer of complexity
in the compilation phase of a rule engine, partially due to the
requirements of high interoperability with the probabilistic
engine. The technical contribution is implemented as a plu-
gin used in a modern BRMS and don’t have, to the extent of
our knowledge, any element of comparison.

Subsequently, we defined a way to make self-
decomposable probabilistic aggregator usable in a context

620

where inferences are expected to be fast and reliable. We
will try, as a future work, to find ways to embed large factors
into compact representations in order to reduce inference
time in incrementally changing large-scale worlds.

Acknowledgments. This work was supported by IBM
France Lab/ANRT CIFRE grant #2018/0251

References

Agli, H. 2017. Uncertain reasoning for business rules. Ph.D.
Dissertation, Université Pierre et Marie Curie - Paris V1.

Buchanan, B., and Shortliffe, E. 1984. Rule-based Expert System
— The MYCIN Experiments of the Stanford Heuristic Programming
Project.

Cooper, G. E. 1990. The computational complexity of probabilistic
inference using bayesian belief networks. Artificial Intelligence
42(2):393 —405.

Forgy, C. L. 1982. Rete: A fast algorithm for the many pat-
tern/many object pattern match problem. Artificial Intelligence
19(1):17 - 37.

Hart, P. E.; Duda, R. O.; and Einaudi, M. T. 1978. Prospector-a
computer-based consultation system for mineral exploration. Jour-
nal of the International Association for Mathematical Geology.

Heckerman, D., and Shortliffe, E. 1992. From certainty factors to
belief networks. Artificial Intelligence In Medicine.

Jesus, P.; Baquero, C.; and Almeida, P. 2015. A survey of dis-
tributed data aggregation algorithms. IEEE Communications Sur-
veys and Tutorials 17(1):381-404.

Koller, D., and Pfeffer, A. 1997. Object-oriented bayesian net-
works. Proceedings of the Thirteenth Annual Conference on Un-
certainty in Artificial Intelligence (UAI-97) 302-313.

Madsen, A. L., and Jensen, F. V. 1999. Lazy propagation: a junc-
tion tree inference algorithm based on lazy evaluation. Artificial
Intelligence.

Medina Oliva, G.; Weber, P.; Levrat, E.; and Tung, B. 2010. Use
of probabilistic relational model (prm) for dependability analy-
sis of complex systems. In IFAC Proceedings Volumes (IFAC-
PapersOnline).

Ng, K. C., and Abramson, B. 1990. Uncertainty management in
expert systems. IEEE Expert-Intelligent Systems and their Appli-
cations.

Pearl, J. 1988. Probabilistic reasoning in intelligent systems: net-
works of plausible inference (Morgan kaufmann series in represen-
tation and reasoning). Morgan Kaufmann Publishers, San Mateo,
Calif.

Richardson, M., and Domingos, P. 2006. Markov logic networks.
Machine learning 62(1-2):107-136.

Robertson, N., and Seymour, P. 1986. Graph minors. ii. algorithmic
aspects of tree-width. Journal of Algorithms 7(3):309 — 322.

Torti, L.; Wuillemin, P.-H.; and Gonzales, C. 2010. Reinforcing the
object-oriented aspect of probabilistic relational models. In Pro-
ceedings of the 5th European Workshop on Probabilistic Graphical
Models, PGM 2010.

Weber, P.; Medina-Oliva, G.; Simon, C.; and Iung, B. 2012.
Overview on bayesian networks applications for dependability, risk
analysis and maintenance areas. Engineering Applications of Arti-
ficial Intelligence.

Zadeh, L. 1965. Fuzzy sets. Information and Control 8(3):338—
353.

