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THE ANNEALED CALDERÓN-ZYGMUND ESTIMATE AS
CONVENIENT TOOL IN QUANTITATIVE STOCHASTIC

HOMOGENIZATION

MARC JOSIEN AND FELIX OTTO

Abstract

This article is about the quantitative homogenization theory of linear elliptic equa-
tions in divergence form with random coefficients. We derive gradient estimates on
the homogenization error, i. e. on the difference between the actual solution and
the two-scale expansion of the homogenized solution, both in terms of strong norms
(oscillation) and weak norms (fluctuation). These estimates are optimal in terms
of scaling in the ratio between the microscopic and the macroscopic scale.

The purpose of this article is to highlight the usage of the recently introduced
annealed Calderón-Zygmund (CZ) estimates in obtaining the above, previously
known, error estimates. Moreover, the article provides a novel proof of these an-
nealed CZ estimate that completely avoids quenched regularity theory, but rather
relies on functional analysis. It is based on the observation that even on the level of
operator norms, the Helmholtz projection is close to the one for the homogenized
coefficient (for which annealed CZ estimates are easily obtained).

In this article, we strive for simple proofs, and thus restrict ourselves to ensembles
of coefficient fields that are local transformations of Gaussian random fields with
integrable correlations and Hölder continuous realizations. As in earlier work, we
use the natural objects from the general theory of homogenization, like the (po-
tential and flux) correctors and the homogenization commutator. Both oscillation
and fluctuation estimates rely on a sensitivity calculus, i.e. on estimating how
sensitively the quantity of interest does depend on an infinitesimal change in the
coefficient field, which is fed into the Spectral Gap inequality. In this article, the
annealed CZ estimate is the only form in which elliptic regularity theory enters.
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1. Introduction

1.1. The role of annealed CZ estimates1. We start with a preamble on lan-
guage. Homogenization capitalizes on a separation between two length scales: a
micro-scale set by the coefficient field a and a macro-scale set by the other data (e.g.
domain, right-hand side). In the case of stochastic homogenization, the micro-scale
is set by a correlation length of the ensemble 〈·〉; in this article, it is of the same or-
der as the (potentially much smaller) scale up to which the coefficient field a varies
little. In this article, the domain is always the whole d-dimensional space Rd, so the
macro-scale is just set by the scale intrinsic to the right-hand side. Throughout the
entire article, the micro-scale is set to be unity – the reader will (almost) nowhere
find the ε dear to the mathematical homogenization literature!

There is an intimate connection between elliptic regularity theory and quantitative
stochastic homogenization. This became already apparent in the first work on error
estimates [43], where Nash’s heat kernel decay for general uniformly elliptic coeffi-
cient fields a is used. Like for much of the last decade’s contributions, the present
article follows the strategy introduced in [38] of using a Spectral Gap inequality,
which is assumed to hold for the ensemble 〈·〉 under consideration and quantifies its
ergodicity, to capture stochastic cancellations. It is in the same article [38] where
CZ estimates for −∇ · a∇ in form of the L4

Rd -boundedness of the a-Helmholtz pro-
jection −∇(−∇ · a∇)−1∇· entered the stage as a part of the sensitivity estimate.
In that work, this boundedness was guaranteed by assuming a small ellipticity con-
trast, appealing to Meyers’ perturbative argument. In [21], the assumption of small
ellipticity was removed by using de Giorgi’s theory in order to obtain optimal decay
estimates on the Green function G(a;x, y), upgraded to optimal decay of its mixed
derivative with help of Caccioppoli’s estimate.

Those were quenched estimates on the quenched Green function G(a;x, y), that
is, estimates valid for almost every realization a of the coefficient field, but they
required some macroscopic spatial averaging in case of the derivatives. Optimal
pointwise decay estimates on the mixed derivative of the Green function were first
obtained in [32]; these estimates can only hold with high probability, and were for-
mulated as annealed estimates in the sense that all algebraic moments with respect
to the ensemble 〈·〉 have the desired behavior. Note that the mixed derivative of the
Green function is the kernel of the a-Helmholtz projection. Hence, loosely speaking,
the estimates in [32] yield “up to a logarithm” the boundedness of the a-Helmholtz
projection from LpRd(Lr〈·〉) to LpRd(Lr

′

〈·〉), with an arbitrarily small loss r′ < r in the
stochastic integrability. We call this family of estimates annealed CZ estimates.

The result in [32] showed that with overwhelming probability, the random Green
function has no worse decay than the constant-coefficient one. This emergence of
large-scale regularity is well-known in periodic homogenization since the work [6]
(see the recent monograph [40]), where like in classical regularity theory, a Cam-
panato iteration propagates Hölder regularity over dyadic scales, but unlike clas-
sical theory, the regularity of the homogenized operator is propagated downward
in scales, appealing to qualitative homogenization itself. In [5], this approach was
adapted to the random case, by substituting the compactness argument by a more
quantitative one, establishing the pivotal large-scale Lipschitz estimate. This was
refined to large-scale quenched Cα (Schauder) estimates for the a-Helmholtz pro-
jection in [20]. Here, by a large scale quenched regularity theory we mean that

1 The jargon of quenched and annealed is common in models of statistical physics, like the
Ising model with random interaction strength or, more relevant for us, a random walk in a random
environment. We use it freely here. Ultimately, the words come from metallurgy.
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there exists a stationary random radius r? ∼ 1 starting from which the theory
holds almost surely (which is reminiscent of the random time scale starting from
which Euclidean heat kernel decay holds in percolation theory). In [3], the large-
scale Lipschitz estimate was used to establish large-scale quenched CZ estimates,
which however had a small loss in terms of spatial integrability. The optimal large-
scale quenched CZ theory, that is, boundedness of the a-Helmholtz projection in
LpRdx

(L2
Br?(x)(x)) (loosely speaking, L2 up to scales r?, Lp-from scales r? onwards)

was first obtained in [20]. A simpler proof, based on modern kernel-free approaches
to classical CZ theory, may be found in [4] and [13, Proposition 6.4].

While in many error estimates of stochastic homogenization, weighted L2+ε-estimates
are an alternative to Lp-estimates, the usage of CZ estimates seems crucial for the
theory of fluctuations as conceived in [12], where again L4

Rd comes up naturally.
As worked out in [13], in particular in the elaborated case of a higher-order the-
ory of fluctuations considered there, the annealed version of CZ estimates is very
convenient. In that paper, see [13, Section 6], the annealed estimates were derived
from the quenched ones, appealing to the good stochastic integrability of r? estab-
lished in [20], and appealing to the same tool that was used to derive the quenched
estimates from the Lipschitz estimates.

In this paper, we completely avoid the large-scale quenched regularity theory, be it
Lipschitz, Schauder, or CZ. We derive the annealed CZ theory in a single step by,
loosely speaking, establishing that the a-Helmholtz projection is close in the corre-
sponding operator norm to the Helmholtz projection for the homogenized coefficient
ā. This amounts to a particularly strong version of an estimate of the homogeniza-
tion error. Indeed, on the level of the Helmholtz projection, which itself has no
regularizing effect, the homogenization error has a chance of being small only if the
r. h. s. lives on scales � 1. Estimating the homogenization error in an operator
norm thus requires splitting the r. h. s. into a large-scale part and its remainder.
This is best done intrinsically and here is carried out by considering the family
of elliptic operators with massive term 1

T − ∇ · a∇, which provides the flexibility
of choosing a length scale

√
T . The main challenge arises from the fact that the

estimate on the homogenization error relies on an estimate of the corrector which
because of its stochastic nature reduces the exponent r in LpRd(Lr〈·〉) and thus pre-
vents a straightforward buckling. The key idea is to trade-in smallness in terms of√
T to compensate the loss of integrability in terms of r in form of a (real) interpo-

lation argument. We hope that this functional-analytic argument finds applications
in situations where the more PDE-based argument does not apply.

1.2. The developments in quantitative stochastic homogenization. Quali-
tative stochastic homogenization has been studied for forty years [28,39]. Neverthe-
less, as opposed to the periodic framework, where optimal estimates of the homog-
enization error were obtained quite early (see e.g. [6, 42] and the monograph [40]),
quantitative stochastic homogenization remained long out of reach. On a quali-
tative level, for instance when it comes to the construction of the corrector, the
periodic case and the random ergodic case can be treated in parallel, by lifting the
corrector equation to the torus and the probability space, respectively. For a quan-
titative treatment, it is crucial that the torus admits a Poincaré estimate, while
there is no analogue in the general ergodic case, so that the qualitative sublinearity
cannot be easily improved upon.
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There has been substantial progress in quantitative stochastic homogenization in
the last decade: A suitable substitute for the missing Poincaré estimate on prob-
ability space has been identified in the mathematical physics literature [11, 38] in
form of a spectral gap estimate, which quantifies ergodicity. This was taken up and
combined with more elliptic regularity theory in [21] to treat, for the first time,
the standard non-perturbative situation; [18, 20] are key papers that pushed this
approach further. An alternative approach based on quantified ergodicity in terms
of a finite range assumption has been introduced in [5], extending the regularity
theory [6] from periodic to random, and culminating in the monograph [4].

One merit of homogenization is the reduction in numerical complexity it entails,
reducing the need to resolve the micro-scale to a couple of model calculations.
Numerics is indeed a major motivation behind a quantitative theory for stochastic
homogenization, see the review [2]. In particular, devising efficient methods for
computing the homogenized coefficient from the knowledge of the heterogeneous
media has attracted much attention. See in particular [18,35] for general methods,
and the attempts [10,14,31] to reduce different sources of error (namely the random
and the systematic one) in specific settings.

1.3. Organization of the paper. Next to providing a novel, and self-contained,
proof for the annealed CZ estimates, see Proposition 7.1, the second purpose of
this paper is to display their benefit in error estimates. To this aim, we display
how the annealed CZ estimate is crucial in obtaining two natural estimates of
the homogenization error on the level of the gradient, namely in strong norms
(oscillations), cf. Corollary 5.1, and in weak norms (fluctuations), cf. Proposition
6.1. These results are not new, see [20] for oscillations, and [12] for fluctuations.
The usage of the annealed CZ estimates to derive fluctuation estimates was recently
introduced in [13].

However, the statements given here are more transparent and the proofs are simpler
because we allow ourselves to work in the simplest class of ensembles 〈·〉, namely
those that can be obtained by a pointwise Lipschitz transformation of stationary
Gaussian ensembles with integrable correlations (which is the crucial large-scale
assumption) and Hölder continuous realizations (which is a convenient small-scale
assumption). Also, presenting the corrector estimates, cf. Proposition 4.1, along-
side with the oscillation and fluctuation estimates allows us to highlight the many
similarities: the use of an annealed CZ estimate in the perturbative regime in
Proposition 4.1, the explicit representation of the Malliavin derivatives in Proposi-
tion 4.1 and 6.1 via auxiliary dual problems on which the annealed CZ estimates
are applied, and the use of the Lp-version of the Spectral Gap estimate.

This presentation, together with the new proof of Proposition 7.1, stresses the role
of functional analysis techniques for quantitative stochastic homogenization, and
minimizes the use of finer PDE-ingredients, which hopefully resonates well with
some audiences. In this sense, the article has also the nature of a review article – in
fact, it grew out of a mini-course the second author gave in Toulouse in the spring
of 2019. We now address the content of the individual sections.

In Section 2, we introduce the deterministic part of the setting: Next to the uni-
formly elliptic coefficient fields a on Rd, we recall the notions of the (extended)
correctors (φi, σi)i=1,··· ,d, of the homogenization commutator, and of the two-scale
expansion. In order to stress the importance of a few key identities involving these
quantities, which will be crucially used in later sections, and for the convenience of
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the reader not familiar with homogenization, we derive two elementary statements
in the spirit of Tartar’s H-convergence in Proposition 2.1.

In Section 3, we get to the stochastic part of the setting by introducing the class of
ensembles 〈·〉 of coefficient fields a considered here, and derive the two main features
that we actually need: 1) An Lp〈·〉-version of the Spectral Gap estimate with the
carré-du-champs L2

Rdx
(L1

B1(x)) (i.e. L1 on scales up to 1 and L2 on scales larger than
1) and 2) classical Schauder and CZ regularity theory for the elliptic operator on
scales up to 1 with overwhelming probability, see Lemma 3.1.

In Section 4, we state and prove the corrector estimates, which take a particularly
simple form thanks to Lemma 3.1, see Proposition 4.1. In particular, this allows
for a simple passage from the estimate of spatial averages of the gradient ∇φi to
the estimates of increments of φi, and for a simple passage from the flux qi :=
a(ei + ∇φi) to ∇σi. Modulo this easy post-processing, Proposition 4.1 relies on
the estimate of spatial averages of the field/flux pair (∇φi, qi), which requires the
buckling of a stochastic and a deterministic estimate. The stochastic estimate relies
on a representation of the Malliavin derivative of the spatial average with help of
the solution ∇v of a dual problem, the estimate of ∇v via the perturbative version
of the annealed CZ estimate, and the Lp-version of the Spectral Gap estimate.
The deterministic estimate relies on an elementary but subtle regularity property
of a-harmonic functions, here applied to the harmonic coordinate xi + φi, which is
reminiscent of [8, Lem. 4]. While none of the elements is novel, the combination
here is slightly more efficient than in the existing literature.

In Section 5 , as a simple application of Proposition 4.1, we derive the oscillation
estimates, cf. Corollary 5.1. In the case of LpRd with p 6= 2, we use Proposition 7.1
in a straightforward way.

In Section 6, we state and prove the fluctuation estimates, cf. Proposition 6.1. In
the proof, we stress the similarity with the proof of Proposition 4.1. Proposition
7.1, in its non-perturbative part, now enters in a substantial way.

In Section 7, we finally establish the annealed CZ estimate, cf. Proposition 7.1. In
the perturbative regime, this is done via Meyers’ argument and does not involve
a loss of stochastic integrability. As discussed in Section 7.2, we derive this non-
perturbative part of Proposition 7.1 from Proposition 4.1 – this is not circular, since
in the latter proposition, only the perturbative part of Proposition 7.1 enters. We
will need a version of Proposition 7.1 for −∇·a∇ replaced by the massive operator
1
T −∇·a∇ which will be established along the same lines (see Proposition 7.3). The
strategy for the proof of Proposition 7.1 is discussed in all detail there. In Section
7.6, we briefly sketch the alternative strategy relying on quenched CZ estimates.

The appendix contains several auxiliary statements, in particular those that have
to do with the usage of local regularity on scales less than 1.

1.4. Notations. Throughout this article, a few conventions will be used without
further notice.

We denote by ei the canonical basis of Rd. We use Einstein’s convention for sum-
mation. The symbol · denotes the scalar product. In particular, ∇· stands for the
divergence operator. The divergence of a matrix is taken with respect to the second
coordinate, that is,

ej · (∇ · σi) = ∂kσijk.
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For simplicity, we omit the parentheses when considering operators of the type
∇ · a∇: We write ∇ · a∇u for ∇ · (a∇u). If f and g are vector fields with m and
n coordinates in the canonical basis, respectively, we denote by (f, g) the (m+ n)-
dimensional vector field obtained by concatenating the coordinates of f and g. For
simplicity, we omit to specify explicitly in the functional space the dimension of
the vector field it refers to. For example, we may abusively write L2(Rd) instead of
L2(Rd,Rd).

The symbol “.α1,··· ,αn ” reads “≤ C for a constant C depending only on the tuple
(α1, · · · , αn) of previously defined parameters”. Similarly, the symbol “�α1,··· ,αn
1” (“�α1,··· ,αn 1”) in an assumption reads “sufficiently small” (“sufficiently large”,
respectively) in the sense of being below a threshold that depends only on the
parameters α1, · · · , αn. For simplicity, in the course of the proofs, the subscript
might be omitted.

We denote by BR(x) the ball of center x and radius R. When it is clear from the
context, the variables x and R may be omitted (by default, we have BR := BR(0)).
Also, if B is the ball BR(x) we abusively denote by 1

2B the ball BR/2(x). The
function 1Ω is the characteristic function of a domain Ω. When the set of integration
is omitted, we use the convention that the integral is taken on the whole space Rd;
namely

´
Rd f :=

´
f . Also, unless otherwise stated, the equations we consider are

satisfied on Rd. We denote the homogeneous Hölder semi-norm and the Hölder
norm:

[h]Cβ(Ω) := sup
x,x′∈Ω

|h(x)− h(x′)|
|x− x′|β

and ‖h‖Cβ(Ω) = [h]Cβ(Ω) + ‖h‖L∞(Ω).

If p ∈ [1,∞] is an exponent, its conjugated exponent is denoted p? and is defined
by 1/p+ 1/p? = 1.

2. General notions in homogenization

2.1. Correctors, homogenization commutator, and two-scale expansion.
This article is concerned with the following elliptic equation in divergence form

∇ · (a∇u+ f) = 0 in Rd,

where a is a λ-uniformly elliptic coefficient field, i.e. for some λ > 0, there holds

ξ · a(x)ξ ≥ λ|ξ|2 and ξ · a−1(x)ξ ≥ |ξ|2.(1)

While we adopt scalar notation and language, everything remains unchanged if u
has values in some finite-dimensional vector space.

In most general terms, homogenization means relating the heterogeneous coefficient
field a to a homogeneous coefficient ā. In homogenization, this does not rely on
the smallness of a − ā in a strong or (usual) weak sense. Almost tautologically,
the suitable topology is provided by the notion of H-convergence [1, Def. 1.2.15,
p. 25]. On a purely algebraic level, this topology is captured on the level of an a-
Helmholtz decomposition, giving rise to a scalar potential (inducing the definition of
the corrector φi) and a vector potential (inducing the definition of the flux corrector
σi); for d 6= 3, the vector potential is replaced by a skew symmetric tensor field
(i. e. an alternating (d− 2)-form).

We decompose (a− ā)ei into two parts as follows:

(a− ā)ei = −a∇φi +∇ · σi,(2)
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in the sense of aji − āji = −ajk∂kφi + ∂kσijk. Here, φi is a scalar field and σi is a
skew-symmetric tensor field:

σijk = −σikj .(3)

Equation (2) is an a-Helmholtz decomposition of (a − ā)ei in the following sense:
The first r. h. s. term of (2) is the product of a and a curl-free vector field (which, in
case of the trivial topology of Rd, amounts to a gradient field), whereas the second
one is a divergence-free vector field. This is an a-Helmholtz decomposition since the
identification of the 1-form ∇φi with a (d− 1)-form is done via the “metric” a. We
introduce the analogous objects (φ?i , σ

?
i ) on the level of the transposed coefficient

field a?:

(a? − ā?)ei = −a?∇φ?i +∇ · σ?i .(4)

Decomposition (2) immediately implies the classical equation for φi:

−∇ · a∇(xi + φi) = ∇ · (āei +∇ · σi)
(3)
= 0.(5)

Thus, the functions φi are called correctors, for they correct the ā-harmonic coor-
dinates xi to a-harmonic functions xi + φi. (By a-harmonic functions, we mean
functions u such that ∇ · a∇u = 0.) It is clear that this notion is only useful
when the correctors grow sublinearly. The corrector φi induces a natural quantity,
namely the flux (or current) qi defined by

qi := a(ei +∇φi).(6)

We call the functions σi flux correctors, for they correct the flux as follows:

qi = a(ei +∇φi) = āei +∇ · σi.(7)

Note that (2) does not determine σ (not even up to the addition of a constant as
in the case of φ). In fact, σi, which should be considered as an alternating (d− 2)-
form only determined up to a (d − 3)-form. A natural choice of gauge is given by
−∆σi = ∇× qi, where we use the (d = 3)-notation as an abbreviation for

−∆σijk = ∂jqik − ∂kqij .(8)

Note that (8) is indeed consistent with (2) in the form of (7) because in view of
∇ · qi = 0 it yields −∆(∇ · σi − qi) = 0. We will henceforth call the pair (φ, σ)
extended correctors.

The extended correctors appear in two fundamental identities, which are proved at
the end of the section. The first one is at the core of homogenization in form of
H-convergence: The effective tensor ā is supposed to relate macroscopic averages
of fields to macroscopic averages of fluxes. It is easiest to make this precise on the
level of a-harmonic functions u, for which ∇u is (up to the sign) the field and a∇u
the flux, so that the homogenization commutator a∇u − ā∇u should have small
macroscopic averages. This is embodied by the following formula

ej · (a∇u− ā∇u) = −∇ · ((φ?ja+ σ?j )∇u) provided ∇ · a∇u = 0.(9)

Indeed, due to its divergence form, macroscopic averages of the r. h. s. are smaller
than those of each term on the l. h. s., provided of course that the extended cor-
rectors grow sublinearly.

The second fundamental identity intertwines the variable-coefficient operator −∇ ·
a∇ with the constant-coefficient operator −∇ · ā∇ via what is called the two-scale
expansion, namely

ũ := (1 + φi∂i)ū,(10)
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where here and in the sequel we use Einstein’s convention of implicit summation
over repeated indexes. This intertwining is embodied by the following formula

∇ · a∇(1 + φi∂i)ū = ∇ · ā∇ū+∇ · ((φia− σi)∇∂iū).(11)

Note that for affine ū, (11) turns into the familiar (5). For general macroscopically
varying ū, the two-scale expansion (10) provides a microscopic modulation adapted
to the variable-coefficient operator. Indeed, the second r. h. s. term of (11) will be
much smaller than the first r. h. s. term because of the additional derivative on the
macroscopically varying ū, again provided the extended correctors grow sublinearly.

Typically, (11) is used in the following way: Given a square integrable f , let the
square integrable ∇u and ∇ū solve

∇ · (a∇u+ f) = 0,(12)
∇ · (ā∇ū+ f) = 0,(13)

where here and in the sequel we think of these equations as being posed on the
entire Rd if not stated otherwise. Then we have

−∇ · a∇
(
u− (1 + φi∂i)ū

)
= ∇ · ((φia− σi)∇∂iū).(14)

Summing up, we learn from (9) that a∇u − ā∇u is small in the weak topology,
while we learn from (14) that ∇u − ∇(1 + φi∂i)ū is small in the strong topology.
We will make this precise in Section 2.2.

Let us close with a numerical consideration. Homogenization in general and the
two-scale expansion (10) in particular are useful from a numerical point of view.
Indeed, the problem (13) defining ū is far simpler than (12), since it involves a
homogeneous coefficient instead of a heterogeneous one. Also, the homogenized
coefficient ā and the correctors φi are independent of f and may be recovered from
(5). If a is periodic, solving the latter equation is simple, since it reduces to a
problem set on a periodic cell. In the stochastic context, recovering ā and the
correctors φi is more difficult, since (5) is posed on the entire Rd [2]. However, it
is definitely an efficient strategy when one needs to solve (12) for a large number
of right-hand sides ∇ · f , as may be the case inside an optimization procedure. In
this case, ā and φi can be computed –at least approximately– and stored during an
“offline” stage while (12) is solved in an “online stage”.

Argument for (9) and (11). First note that for any function v there holds

∇ · (v∇ · σi) = (∇ · σi)∇v = −∇ · (σi∇v).(15)

Indeed, written componentwise, (15) takes the form

∂j(v∂kσijk)
(3)
= ∂kσijk∂jv = ∂k(σijk∂jv)− σijk∂k∂jv

(3)
= −∂k(σikj∂jv).

We now prove (9) by a straightforward computation:

ei · (a∇u− ā∇u) = ((a? − ā?)ei) · ∇u
(4)
= (−a?∇φ?i +∇ · σ?i ) · ∇u
= −∇φ?i · a∇u+ (∇ · σ?i )∇u

(15)
= φ?i∇ · a∇u−∇ · (φ?i a∇u)−∇ · (σ?i∇u).
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Here comes the proof of (11). We note

a∇((1 + φi∂i)ū) = ∂iūa(ei +∇φi) + φia∇∂iū
(2)
= ∂iū(āei +∇ · σi) + φia∇∂iū
= ā∇ū+ ∂iū∇ · σi + φia∇∂iū.

Applying the divergence, we obtain (11) from (15). �

2.2. H-convergence. The main goal of this section is to familiarize the reader
with the notions introduced in the previous section; later parts of the paper do not
rely on it. Proposition 2.1 below (see [20, Prop. 1]) relates the relative error in the
two-scale expansion to the sublinearity of the extended corrector. The qualitative
arguments establishing Proposition 2.1 below are at the core of the notion of H-
convergence.

Proposition 2.1. Assume that the coefficient field a : Rd → Rd×d satisfies (1) and
admits ā ∈ Rd×d as a constant homogenized coefficient and (φ, σ) and (φ?, σ?) as
extended correctors in the sense of (2) and (4). Let ε > 0 be given. Then, provided
δ �d,λ,ε 1, the following properties hold:

(i) For any ball B ⊂ Rd of radius R > 0, if the extended correctors satisfy the
following estimate:

1

R

(
−
ˆ

B

|(φ, φ?, σ, σ?)|2
) 1

2 ≤ δ,(16)

then, for any a-harmonic function u in B and for any ā-harmonic function ū in B
so that u = ū on the boundary ∂B, there holds:

1

R2
−
ˆ

B

(u− ū)2 ≤ ε−
ˆ

B

|∇u|2.(17)

(ii) Moreover, we have the following interior bound on the error of the two-scale
expansion:

−
ˆ

1
4 B

|∇u− ∂iū(ei +∇φi)|2 ≤ ε−
ˆ

B

|∇u|2.(18)

Proof of Proposition 2.1. The proof of (17) and (18) rely on the two fundamental
algebraical formulas (9) and (14), respectively. The proof is divided into two steps.
First, we make use of (9) in order to obtain that a∇u − a∇ū weakly vanishes
when δ ↓ 0. Then, by a compactness argument that is reminiscent of the H-
convergence [1, Def. 1.2.15], we deduce from this fact that (17) holds. In Step 2,
thanks to (14), we upgrade the latter estimate to (18). In this proof, the symbols
. will only depend on d and λ (but not on ε).

Step 1: Argument for (17). We start with a couple of simplifications. W. l. o. g.
by scaling, we may restrict to R = 1 and by translation invariance to x = 0, so
that B = B1(0). Also, we assume that −́

B
u = 0, so that, by the Poincaré-Wirtinger

inequality,

−
ˆ

B

u2 . −
ˆ

B

|∇u|2.
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By the triangle inequality combined with the Poincaré inequality, once more the
triangle inequality, and the energy estimate, we deduce that

−
ˆ

B

ū2 . −
ˆ

B

(ū− u)2 +−
ˆ

B

u2 . −
ˆ

B

|∇(ū− u)|2 +−
ˆ

B

|∇u|2

. −
ˆ

B

|∇ū|2 +−
ˆ

B

|∇u|2 . −
ˆ

B

|∇u|2.

As a consequence, by homogeneity, we may w. l. o. g. suppose that
ˆ

B

(u2 + |∇u|2 + ū2 + |∇ū|2) ≤ 1.(19)

Also, up to choosing δ sufficiently small, we may assume that:

ξ · āξ ≥ 1

2
λ|ξ|2 and ξ · ā−1ξ ≥ 1

2
|ξ|2.(20)

(The easy argument of how this follows from (1) and (16) via (2) is skipped since (20)
automatically holds, even without the factor 1

2 , in stochastic homogenization [20,
(4)].)

We now give an indirect argument for (17). We consider a sequence an with asso-
ciated homogenized matrices ān, extended correctors (φn, σn) and (φ?n, σ

?
n), as well

as an-harmonic functions un and ān-harmonic functions ūn, satisfying

lim
n↑∞
−
ˆ

B

|(φn, φ?n, σn, σ?n)|2 = 0 and lim inf
n↑∞

−
ˆ

B

(un − ūn)2 > 0(21)

next to (19). We argue that such a sequence cannot exist, thus establishing (17).
Up to a subsequence, the following convergences hold: ān → ā and, by the Rellich
theorem,

(un, ūn)→ (u, ū) and (∇un,∇ūn) ⇀ (∇u,∇ū) in L2(B).

We will obtain a contradiction to (21) by arguing that u = ū.

By assumption, u = ū on ∂B (in the sense of u− ū ∈ H1
0(B)), so that it remains to

argue that

−∇ · ā∇u = 0 in H−1(B).(22)

Indeed, by weak convergence of ∇ūn and convergence of ān, we know that ū is
ā-harmonic. Identity (22) will follows from

an∇un ⇀ ā∇u in L2(B),

which is equivalent to

an∇un − ān∇un ⇀ 0 in L2(B).(23)

The latter is a consequence of (9). Indeed, for any v ∈ C∞0 (B) and j ∈ {1, · · · , d},
ˆ

B

vej · (an∇un − ān∇un)
(9)
=

ˆ
B

∇v · (φ?n,jan + σ?n,j)∇un → 0

since ∇v ∈ L∞(B), φ?n,ja+ σ?n,j → 0 in L2(B) and ∇un is bounded in L2(B). This
establishes (23) and therefore (22).
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Step 2: Argument for (18). The proof of (18) relies on the previous step and on
two ingredients from elliptic regularity. The first one is the well-known Caccioppoli
estimate: If w solves ∇ · (a∇w + f) = 0 in 1

2B, then

−
ˆ

1
4 B

|∇w|2 . −
ˆ

1
2 B

(w2 + |f |2).(24)

(Recall that B = B1(0).) We reproduce in Appendix A.1 a proof of this estimate
in a generalized context. The second ingredient is an interior regularity result for
elliptic equations with constant coefficients. More precisely, if ū is ā-harmonic in
B, then there holds

sup
1
2 B

(|∇2ū|2 + |∇ū|2) . −
ˆ

B

|∇ū|2.(25)

(It is an easy consequence of the Sobolev embedding and an iterated application of
the Caccioppoli estimate to derivatives of the constant-coefficient elliptic equation.)

Equipped with (24) and (25), we proceed with the proof of (18). Appealing to (14),
we apply (24) to w := u− (1 + φi∂i)ū and f := (φia− σi)∇∂iū:

−
ˆ

1
4 B

|∇u− ∂iū(ei +∇φi)|2 . −
ˆ

1
4 B

|∇w|2 +−
ˆ

1
4 B

|φi∇∂iū|2

(24)
. −
ˆ

1
2 B

w2 +−
ˆ

1
2 B

|(φ, σ)|2|∇2ū|2

. −
ˆ

1
2 B

(u− ū)2 +−
ˆ

1
2 B

|(φ, σ)|2(|∇2ū|2 + |∇ū|2).

Making use of (25), this yields

−
ˆ

1
4 B

|∇u+ ∂iū(ei +∇φi)|2 . −
ˆ

1
2 B

(u− ū)2 +−
ˆ

B

|(φ, σ)|2−
ˆ

B

|∇u|2.

Appealing to (17), this finally shows (18) for δ �d,λ,ε 1. �

3. Our framework for stochastic homogenization

3.1. General assumptions. In stochastic homogenization, one is given a proba-
bility measure on the space of coefficient fields a that are λ-uniformly elliptic in
the sense of (1) (with the topology induced by the H-convergence, which makes it
into a compact space). Using physics jargon, we call this probability measure an
ensemble and denote the expectation by 〈·〉. This ensemble is assumed to be:

• stationary, that is, for all shift vectors z ∈ Rd, a(· + z) and a(·) have the
same law under 〈·〉;

• ergodic (see [28, Chap. 7 pp. 222–225]). Since this assumption will be
strengthened below in Section 3.2, we do not state it precisely. Let us just
mention that this property is required to use the Birkhoff ergodic theorem
[28, Th. 7.2, p. 225], which relates the expectation to the spatial average.

Under these assumptions, by [20, Lem. 1], there exists a random scalar field φi (the
corrector), a random tensor field σi (the flux corrector) for i ∈ {1, · · · , d}, and a
deterministic coefficient ā (the homogenized coefficient) that are related to a in the
sense of (2), (3), and (8), respectively. Moreover, the following properties hold:



THE ANNEALED CALDERÓN-ZYGMUND ESTIMATE IN HOMOGENIZATION 13

• ∇φi and∇σi are stationary. We say that a random field f(a, x) is stationary
if it is shift-covariant in the sense of

f(a(·+ z), x) = f(a(·), x+ z) for all x, z ∈ Rd and for 〈·〉-a.e. a.
It implies that f(a, ·) and f(a, ·+ z) have the same law under 〈·〉.

• ∇φi and ∇σi have a finite second moment and vanishing expectation, that
is,

〈|∇φi(x)|2〉+ 〈|∇σi(x)|2〉 . 1,(26)
〈∇φi(x)〉 = 0 and 〈∇σi(x)〉 = 0.(27)

(By stationarity, this estimate and these identities are independent of x ∈
Rd).

• The coefficient ā can be expressed as āei = 〈qi〉 for qi defined by (6), and
it satisfies (1).

These results are only qualitative. In order to obtain a quantitative theory of
stochastic homogenization, we additionally assume that the ensemble 〈·〉 satisfies
a spectral gap [18]. This condition amounts to a quantification of ergodicity. It
reads: For any random variable F , which is a (measurable) functional of a, there
holds

〈(F − 〈F 〉)2〉 ≤
〈ˆ ∣∣∂F

∂a

∣∣2〉,(28)

where the random tensor field ∂F
∂a (depending on (a, x)) is the functional (or vertical,

or Malliavin) derivative of F with respect to a defined by

(29) lim
ε→0

F (a+ εδa)− F (a)

ε
=

ˆ
∂F (a)

∂aij(x)
(δa)ij(x)dx.

The spectral gap replaces the Poincaré inequality used in the periodic case. It leads
to a sensitivity analysis through the study of the functional derivative.

In the next section, we consider a more specific class of ensembles 〈·〉 satisfying the
above assumptions.

3.2. A class of Gaussian ensembles. In this section, we introduce the class of
ensembles we will be working with. Let 〈·〉 denote an ensemble of stationary and
centered Gaussian fields g (with values in some finite dimensional vector space, but
we adopt scalar language and notation). It is thus characterized by its covariance
function c, the (non-negative) Fourier transform Fc of which is assumed to satisfy

Fc(k) ≤ (1 + |k|)−d−2α for all k ∈ Rd,(30)

for some fixed exponent α ∈ (0, 1). Loosely speaking, (30) encodes that the covari-
ance function is integrable at infinity (in a somewhat weakened way) and 2α-Hölder
continuous at the origin. These assumptions contain the popular Matérn kernel [41,
p. 31 & (32), p. 49], the Fourier transform of which reads Fc(k) := C(1+|k|2)−ν−d/2

for C > 0 and ν > 0.

In this framework, we set a := A(g), where A is a Lipschitz map from R to the
set of d × d tensors satisfying (1) (see Figure 1 for an example). For conciseness,
we henceforth suppress the dependence in the estimates on the 4-tuple of fixed
constants

(31) γ :=
(
d, λ, α, ‖A′‖L∞

)
.

Assumption (30) on the ensemble 〈·〉 has two beneficial consequences: On the one
hand, we have a spectral gap estimate with a carré-du-champs that behaves like
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Figure 1. A realization of a random (scalar) coefficient field a
generated by a Gaussian field.

the L1-norm on scales up to order one and like the L2-norm on scales larger than
order 1 (and thus is smaller than the L2-norm, thereby strengthening the spectral
gap property w. r. t. (28)). On the other hand, the realizations of g and thus a are
Hölder continuous. More precisely, we show the following result (the proof of (33)
is relegated to Appendix A.3.1):

Lemma 3.1. Let g and a satisfy the above assumptions. Then, for any functional
F = F (a) and r ∈ [1,∞), there holds

〈(F − 〈F 〉)2r〉 1
r .γ,r

〈( ˆ (
−
ˆ

B1(x)

∣∣ ∂F
∂a(y)

∣∣dy)2

dx
)r〉 1

r

,(32)

and, for any 0 < α′ < α and r ∈ [1,∞), there holds〈
‖a‖r

Cα′ (B1)

〉 1
r .γ,r,α′ 1.(33)

En passant, notice that estimate (33) allows to appeal to classical Schauder and
CZ estimates for scales up to order 1 since the dependence of these estimates on
‖a‖Cα′ (Rd) scales polynomially, see Lemma A.3 with T = ∞. In particular, if u is
a-harmonic in B1, then

(34) 〈|∇u(0)|r
′
〉 1
r′ .γ,r′,r 〈‖∇u‖rL2(B1)〉

1
r for all 1 ≤ r′ < r <∞.

Proof of (32). W. l. o. g. we assume that 〈F 〉 = 0. We derive (32) by a two-step
argument. First, we show that we have the following strengthening of (28):

〈(F − 〈F 〉)2〉 .
〈 ˆ (

−
ˆ

B1(x)

∣∣∂F
∂g

∣∣)2

dx
〉
,(35)

from which we deduce (32) in a second step.
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Step 1: Argument for (35). On the Fourier side, the Helffer-Sjöstrand representation
[26, (2.2)] implies1

〈F 2〉 ≤
〈 ˆ ˆ ∂F

∂g(x)
c(x− y)

∂F

∂g(y)
dydx

〉
=
〈 1

(2π)d

ˆ
Fc
∣∣F ∂F

∂g

∣∣2dk
〉
.

Therefore, in view of (30), it is enough to estimate the carré-du-champs for an
arbitrary function ζ = ζ(x) as follows:ˆ

(1 + |k|)−d−2α|Fζ|2dk .
ˆ (
−
ˆ

B1(x)

|ζ|
)2

dx,

which by duality is equivalent toˆ
sup

B1(x)

ζ2dx .
ˆ

(1 + |k|)d+2α|Fζ|2dk.(36)

Since the Sobolev inequality (36) is unrelated to homogenization, we relegate its
proof to Appendix A.2.

Step 2: Conclusion. We now improve (35) to (32). By the chain rule,

∂

∂g(y)
= A′(g(y))

∂

∂a(y)
,

and since A′ is bounded (recall the definition (31) of γ), (35) yields

〈(F − 〈F 〉)2〉 .
〈 ˆ (

−
ˆ

B1(x)

∣∣∂F
∂a

∣∣)2

dx
〉
.(37)

We apply (37) to F replaced by |F |r for r ≥ 1:

〈F 2r〉 . 〈|F |r〉2 +
〈 ˆ (

−
ˆ

B1(x)

∣∣ ∂
∂a
|F |r

∣∣)2〉
.(38)

By the chain rule

∂

∂a
|F |r = r|F |r−2F

∂F

∂a
,

and using the Hölder inequality in probability, we obtain

(39)

〈 ˆ (
−
ˆ

B1(x)

| ∂
∂a
|F |r|

)2

dx
〉

= r2
〈
F 2(r−1)

ˆ (
−
ˆ

B1(x)

∣∣∂F
∂a

∣∣)2

dx
〉

≤ r2〈F 2r〉
r−1
r

〈( ˆ (
−
ˆ

B1(x)

∣∣∂F
∂a

∣∣)2

dx
)r〉 1

r

.

Moreover, the Hölder inequality followed by the spectral gap (37) yields

〈|F |r〉2 ≤ 〈F 2r〉
r−2
r−1 〈F 2〉

r
r−1 . 〈F 2r〉

r−2
r−1

〈 ˆ (
−
ˆ

B1(x)

∣∣∂F
∂a

∣∣)2

dx
〉 r
r−1

.

Applying Jensen’s inequality to the last factor, we deduce

〈|F |r〉2 . 〈F 2r〉
r−2
r−1

〈( ˆ (
−
ˆ

B1(x)

∣∣∂F
∂a

∣∣)2

dx
)r〉 1

r−1

.(40)

Now, (32) follows from inserting (39) and (40) into (38) and appealing to Young’s
inequality. �

1Here, the Fourier transform is normalized in the following way: Fu(k) :=
´

e−ikxu(x)dx.
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4. Stochastic corrector estimates

Estimates on the extended corrector are at the core of quantitative stochastic ho-
mogenization. The following proposition collects all the estimates needed in this
paper:

Proposition 4.1. Under the assumptions of Section 3.2, for any r ∈ [1,∞), there
holds:

〈|∇(φ, σ)|2r〉 1
r .γ,r 1.(41)

Moreover, the spatial averages of the gradient of the extended correctors display
cancellations:〈∣∣∣ˆ g · ∇(φ, σ)

∣∣∣2r〉 1
r

.γ,r

ˆ
|g|2 for all deterministic vector fields g.(42)

Last, the increments of the extended correctors are controlled as follows:

〈|(φ, σ)(x)− (φ, σ)(0)|2r〉 1
r .γ,r µ

2
d(|x|) for all x ∈ Rd,(43)

where the function µd is defined by

µd(r) :=


√
r + 1 if d = 1,

ln
1
2 (r + 2) if d = 2,

1 if d > 2.

(44)

Estimate (42) is identical to what one would obtain if ∇(φ, σ) were replaced by
white noise. It is thus not surprising that the large-scale behavior of increments of
the extended corrector, cf. (43), is that of the Gaussian free field (on small scales,
(φ, σ) is more regular).

Proof of Proposition 4.1. For abbreviation, we denote

ui(x) := xi + φi(x),(45)

and henceforth omit the index i.

Strategy of the proof . The proof is divided into two main parts. Part 1 deals with
the corrector φ and Part 2 deals with the flux corrector σ.

We describe the first part: In Step 1, we derive a representation formula for the
Malliavin derivative ∂

∂a

´
g · ∇φ. In Step 2, the Lr version (32) of the spectral gap

is used to estimate the r-th moments of the spatial averages of ∇φ as〈∣∣∣ˆ g · ∇φ
∣∣∣2r〉 1

r

.
〈(
−
ˆ

B1

|∇u|2
)r〉 1

r

ˆ
|g|2 for 1� r <∞.(46)

There, the representation formula for Malliavin derivative derived in Step 1 plays
a central role, as well as an annealed CZ estimate of Proposition 7.1(i). Step 3
involves a PDE ingredient, namely the Caccioppoli estimate, to control the r-th
moments of −́

B1
|∇u|2 by spatial averages of ∇u〈(
−
ˆ

B1

|∇u|2
)r〉 1

r

. Rd(1− 1
r )
〈∣∣∣−ˆ

BR

∇u
∣∣∣2r〉 1

r

for R� 1.(47)

In Step 4, the two above inequalities (46) and (47) are combined in order to buckle,
yielding 〈(

−
ˆ

B1

|∇u|2
)r〉 1

r

. 1.(48)
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By the local regularity estimate (34), we deduce (41) for ∇φ. Inserting this into
(46) yields (42) for ∇φ. Finally, in Step 5, potential theory shows that (43) is a
consequence of (42). The second part is divided into three steps: We show the
analogue of (47) for the flux qi− āei, which, using the estimate (41) for ∇φ, entails
that ∇σ satisfies (42), from which we deduce that σ also satisfies (43).

Part 1, Step 1: Representation formula for the Malliavin derivative. We establish
the following representation formula for the Malliavin derivative:

∂

∂a

ˆ
g · ∇φ = ∇v ⊗∇u,(49)

where ∇v denotes the square-integrable solution of

(50) ∇ · (a?∇v + g) = 0.

Appealing to (29), we give ourselves a smooth and compactly supported infinitesi-
mal variation δa of a and denote by ∇δφ the corresponding infinitesimal variation
of ∇φ, which is the square-integrable solution of2

−∇ · a∇δφ = ∇ · δa(e+∇φ).(51)

Since g is deterministic, this impliesˆ ( ∂
∂a

ˆ
g · ∇φ

)
: δa =

ˆ
g · ∇δφ.

Inserting the variational formulations of (50) and (51) into this, we getˆ ( ∂
∂a

ˆ
g · ∇φ

)
: δa = −

ˆ
∇v · a∇δφ =

ˆ
∇v · δa∇u.

This yields (49).

Part 1, Step 2: Proof of (46). The proof relies on three ingredients. The first one
is the Lr version (32) of spectral gap. The second one is the representation formula
for the Malliavin derivative (49). The third one is the annealed CZ estimate given
by Proposition 7.1(i) below.

Equipped with these ingredients, we establish (46). From (27), (32), and (49),
followed by the Cauchy-Schwarz inequality in L2(B1(x)), we deduce that〈∣∣∣ˆ g · ∇φ

∣∣∣2r〉 1
r

.
〈( ˆ (

−
ˆ

B1(x)

|∇v ⊗∇u|
)2

dx
)r〉 1

r

≤
〈( ˆ (

−
ˆ

B1(x)

|∇v|2
)(
−
ˆ

B1(x)

|∇u|2
)

dx
)r〉 1

r

.

Thus by duality in probability, with 1/r + 1/r? = 1,

(52)
〈∣∣∣ˆ g · ∇φ

∣∣∣2r〉 1
r

. sup
〈F 2r? 〉=1

〈
F 2

ˆ (
−
ˆ

B1(x)

|∇v|2
)(
−
ˆ

B1(x)

|∇u|2
)

dx
〉
.

We use the Hölder inequality and the stationarity of ∇u (cf. (26)) to the effect of

(53)

ˆ 〈
F 2
(
−
ˆ

B1(x)

|∇v|2
)(
−
ˆ

B1(x)

|∇u|2
)〉

dx

≤
ˆ 〈(

−
ˆ

B1(x)

|F∇v|2
)r?〉 1

r?

dx
〈(
−
ˆ

B1

|∇u|2
)r〉 1

r

.

2The argument for this identity is formal, since ∇φ is only defined for 〈·〉-a.e. a, see Section 3.1.
However, this is fully justified in [19, p. 21], and we also refer to (185) where we work with the
massive corrector which is defined for every a.
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Since u 7→ 〈|u|r?〉 1
r? is a norm, by Jensen’s inequality,

(54)

ˆ 〈(
−
ˆ

B1(x)

|F∇v|2
)r?〉 1

r?

dx ≤
ˆ
−
ˆ

B1(x)

〈(|F∇v|2)r
?

〉 1
r? dx

=

ˆ
〈|F∇v|2r

?

〉 1
r? ,

where we used in the last equality the identityˆ
h(x)dx =

ˆ
−
ˆ

B1(x)

h(y)dydx.(55)

Then, since (50) may be written as ∇ · (a?∇(Fv) + Fg) = 0, we learn from Propo-
sition 7.1(i) below that

(56)
ˆ 〈
|F∇v|2r

?〉 1
r? .

ˆ
〈|Fg|2r

?

〉 1
r? = 〈F 2r?〉 1

r?

ˆ
|g|2.

In the last lines, we have extensively used that F is a random variable independent
of x, whereas g is deterministic. The application of Proposition 7.1(i) requires
|2r? − 2| � 1, which amounts to r � 1. Inserting (54) and (56) into (53), which
we use in (52), entails (46).

Part 1, Step 3: Proof of (47). By stationarity we have〈(
−
ˆ

B1

|∇u|2
)r〉 1

r

=
〈
−
ˆ

BR

(
−
ˆ

B1(x)

|∇u|2
)r

dx
〉 1
r

.

We now appeal to the elementary string of inequalities:

−
ˆ

BR

(
−
ˆ

B1(x)

|∇u|2
)r

dx = −
ˆ

BR

(
−
ˆ

B1(x)

|∇u|2
)r−1(

−
ˆ

B1(x)

|∇u|2
)

dx

≤ (2R)d(r−1)
(
−
ˆ

B2R

|∇u|2
)r−1

−
ˆ

BR

−
ˆ

B1(x)

|∇u|2dx

≤ 2d(2R)d(r−1)
(
−
ˆ

B2R

|∇u|2
)r
.

Therefore, we obtain〈(
−
ˆ

B1

|∇u|2
)r〉 1

r

. Rd(1− 1
r )
〈(
−
ˆ

B2R

|∇u|2
)r〉 1

r

.(57)

Since u is a-harmonic, c.f. (45) and (5), the above right-hand term may be bounded
thanks to the Caccioppoli estimate (192) (with T =∞)

−
ˆ

B2R

|∇u|2 . 1

R2
−
ˆ

B4R

(u− c)2 for all constants c.(58)

We denote by uR′ the mollification of u on scale R′ ≤ R by convolution:

(59) uR′(x) := −
ˆ

BR′ (x)

u.

Choosing c := −́
B4R

uR′(x), using the convolution estimate and the Poincaré-Wirtinger
estimate, that is,

−
ˆ

B4R

(u− uR′)2 . R′
2−
ˆ

B8R

|∇u|2 and −
ˆ

B4R

(uR′ − c)2 . R2−
ˆ

B4R

|∇uR′ |2,



THE ANNEALED CALDERÓN-ZYGMUND ESTIMATE IN HOMOGENIZATION 19

we obtain by the triangle inequality

(60)
−
ˆ

B4R

(u− c)2 . −
ˆ

B4R

(
u− uR′

)2
+−
ˆ

B4R

(
uR′ − c

)2
. R′

2−
ˆ

B8R

|∇u|2 +R2−
ˆ

B4R

|∇uR′ |2.

Inserting this into (58) entails

−
ˆ

B2R

|∇u|2 .
(R′
R

)2−ˆ
B8R

|∇u|2 +−
ˆ

B4R

|∇uR′ |2.(61)

Since we may cover B8R by balls B2R(xn) for n ∈ {1, · · · , N} and N . 1,

−
ˆ

B8R

|∇u|2 .
N∑
n=1

−
ˆ

B2R(xn)

|∇u|2.

Therefore, by the stationarity of ∇u and the triangle inequality,〈(
−
ˆ

B8R

|∇u|2
)r〉 1

r

.
〈(
−
ˆ

B2R

|∇u|2
)r〉 1

r

.(62)

As a consequence, it follows from (61) that〈(
−
ˆ

B2R

|∇u|2
)r〉 1

r

.
(R′
R

)2〈(−ˆ
B2R

|∇u|2
)r〉 1

r

+
〈(
−
ˆ

B4R

|∇uR′ |2
)r〉 1

r

.

Hence, if R′ = θR with θ � 1, the first right-hand term may be absorbed in the
left-hand side. Inserting this into (57) yields:〈(

−
ˆ

B1

|∇u|2
)r〉 1

r

. Rd(1− 1
r )
〈(
−
ˆ

B4R

|∇uθR|2
)r〉 1

r

.

By Jensen’s inequality and the stationarity of ∇u, we finally obtain〈(
−
ˆ

B1

|∇u|2
)r〉 1

r

. Rd(1− 1
r )
〈
|∇uθR|2r

〉 1
r ,

which may be rewritten as (47) (by replacing θR R).

Part 1, Step 4: Buckling procedure, i.e. proof of (48). Note that, in light of (48),
(46) reduces to 〈∣∣∣ ˆ g · ∇φ

∣∣∣2r〉 1
r

.
ˆ
|g|2 for all 1� r <∞.(63)

Also, taking advantage of the local regularity estimate (34), estimate (48) may be
upgraded to

〈|∇u|2r〉 1
r . 1.(64)

Therefore, we obtain (41) and (42) for ∇φ.

Here comes the argument for (48). W. l. o. g. we may assume that r � 1 (Jensen’s
inequality will provide the full range [1,∞)). With the abbreviation gR = 1

|BR|1BR ,
we obtain 〈∣∣∣−ˆ

BR

∇u
∣∣∣2r〉 1

r
(45)
≤ 1 +

〈∣∣∣ˆ gR∇φ
∣∣∣2r〉 1

r

(46)
. 1 +

〈(
−
ˆ

B1

|∇u|2
)r〉 1

r

ˆ
g2
R

. 1 +R−d
〈(
−
ˆ

B1

|∇u|2
)r〉 1

r

.
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Inserting this estimate into (47) yields〈(
−
ˆ

B1

|∇u|2
)r〉 1

r

. Rd(1− 1
r ) +R−

d
r

〈(
−
ˆ

B1

|∇u|2
)r〉 1

r

.

Choosing R� 1, the above r. h. s. may be absorbed into the above left-hand side.
This establishes (48).

Part 1, Step 5: Proof of (43) for φ. This step is dedicated to proving

〈|φ(x)− φ(0)|2r〉 1
r . µ2

d(|x|).(65)

By the triangle inequality and the stationarity of x 7→ φ(x)− −́
B1(x)

φ, it is sufficient
to show the following estimates:〈∣∣∣−ˆ

B1(x)

φ−−
ˆ

B1(0)

φ
∣∣∣2r〉 1

r

. µ2
d(|x|),(66)

〈∣∣∣φ(0)−−
ˆ

B1(0)

φ
∣∣∣2r〉 1

r

. 1.(67)

Here comes the argument for (66). We have the representation formula

−
ˆ

B1(x)

φ−−
ˆ

B1(0)

φ =

ˆ
∇ū · ∇φ,(68)

where ū denotes the decaying solution of

−∆ū =
1

|B1|
(1B1(x) − 1B1(0)).

By classical potential theory3, ˆ
|∇ū|2 . µ2

d(|x|).(69)

Since ū is deterministic, as a consequence of (63) and (68), we obtain〈∣∣∣−ˆ
B1(x)

φ−−
ˆ

B1(0)

φ
∣∣∣2r〉 1

r

.
ˆ
|∇ū|2,

which entails (66) by (69).

We now argue for (67). By a Sobolev embedding, provided 2r > d, there holds:∣∣∣φ(0)−−
ˆ

B1(0)

φ
∣∣∣2r . −ˆ

B1(0)

|∇φ|2r.

Hence, taking the expectation, and recalling that ∇φ is stationary and satisfies
(41), we deduce that〈∣∣∣φ(0)−−

ˆ
B1(0)

φ
∣∣∣2r〉 . 〈−ˆ

B1(0)

|∇φ|2r
〉
. 1.

This shows (67) and concludes the proof of (65).

3Indeed, for d > 3, this follows from the energy identity
´
|∇ū|2 = −́

B1(x)
ū − −́B1(0)

ū via

the Sobolev inequality (
´
ū

2d
d−2 )

d−2
2d . (

´
|∇ū|2)

1
2 . In dimension d = 2, we may appeal to the

explicit representation ∇ū(y) = −́B1
(∇G(y− x− z)−∇G(y− z))dz via the fundamental solution

∇G(y) := 1
2π

y
|y|2 .
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Part 2, Step 1: Proof of (42) for ∇σ. We first show the analogue of (63) for the
flux qi (cf. (6)); that is, if g is a deterministic vector field, then〈∣∣∣ˆ g · (qi − āei)

∣∣∣2r〉 1
r

.
ˆ
|g|2,(70)

from which we shall deduce (42) for ∇σ. The only change is in the representation
formula:

∂

∂a

ˆ
g · (qi − āei) = (∇v + g)⊗∇ui,(71)

where the square-integrable vector field ∇v satisfies ∇·a?(∇v+ g) = 0. Indeed, we
have ˆ ( ∂

∂a

ˆ
g · (qi − āei)

)
: δa

(6)
=

ˆ
g · (δa(ei +∇φi) + a∇δφi),

where ∇δφi satisfies (51). The rightmost term in the integrand is dealt with as in
(49), so that (71) is proved.

Next, we show that∇σ satisfies (42). Denoting by∇v̄ the square-integrable solution
of ∆v̄ +∇ · g = 0, we obtainˆ

g · ∇σijk = −
ˆ

(v̄∂jqik − v̄∂kqij)
(2)
=

ˆ (
∂j v̄(qik − āki)− ∂kv̄(qij − āji)

)
,

where (70) justifies this formal integration by parts. Therefore, we deduce from
(70) that 〈∣∣∣ ˆ g · ∇σijk

∣∣∣2r〉 1
r

.
ˆ
|∇v̄|2 ≤

ˆ
|g|2.

Part 2, Step 2: Proof of (41) for ∇σ. By the CZ estimates applied to the constant-
coefficient equation (8) (by a post-processing of [17, Th. 9.11, p. 235]), there holds

−
ˆ

BR

|∇σ|2r .
(
−
ˆ

B2R

|∇σ|2
)r

+−
ˆ

B2R

|q|2r.

By ergodicity and stationarity, when R ↑ ∞, each of these spatial averages converges
almost surely to the associated expectation (this is a consequence of the Birkhoff
theorem). Therefore, we get

〈|∇σ|2r〉 1
r . 〈|∇σ|2〉+ 〈|q|2r〉 1

r ,

from which we deduce that ∇σ satisfies (41), by (26) and (64).

Part 2, Step 3: Proof of (43) for σ. By arguments identical to Part 1, Step 5, we
deduce that σ satisfies (43). �

5. Oscillations: Estimate of homogenization error in strong norms

Equipped with the stochastic corrector estimates, we now may tackle the homoge-
nization error. In this section, we address the error in the two-scale expansion on
the level of the gradient in strong Lp-norms. In fact, in view of (14), the error es-
timate is a corollary of the corrector estimates in Proposition 4.1 and the annealed
CZ estimate of Proposition 7.1(ii).

Corollary 5.1. Suppose that f a deterministic, smooth, and compactly supported
vector field. Under the assumptions of Section 3.2, let the square-integrable vector
fields ∇u, ∇ū be related to f by

∇ · (a∇u+ f) = 0 = ∇ · (ā∇ū+ f).
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Then, for any p ∈ (1,∞) and r ∈ [1,∞), there holds:〈(ˆ
|∇(u− (1 + φi∂i)ū)|p

)r〉 1
pr

.γ,p,r
(ˆ ∣∣µd(| · |)∇f ∣∣p) 1

p

.(72)

It is customary to rescale the space variable according to macroscopic coordinates
x̂ = εx, where ε � 1 corresponds to the ratio of the microscale coming from the
coefficient field (implicitly contained in our assumption (30)) and the macroscale
coming from the r. h. s. f . By scaling, we have

dx̂ = εddx, ∇̂ = ε−1∇, û(x̂) = εu(x) and φ̂(x̂) = εφ(x).

In this new notation, Corollary 5.1 reads:

Corollary 5.2. Suppose that f̂ a deterministic, smooth, and compactly supported
vector field. Under the assumptions of Section 3.2, let the square-integrable vector
fields ∇û, ∇ū be related to f̂ by

∇̂ ·
(
a
( ·
ε

)
∇̂û+ f̂

)
= 0 = ∇̂ · (ā∇̂ū+ f̂)

for some ε ≤ 1. Then, for any p ∈ (1,∞) and r ∈ [1,∞), there holds:〈( ˆ ∣∣∇̂(û− (1 + φ̂i∂̂i
)
ū
)∣∣pdx̂)r〉 1

pr

.γ,p,r,f̂ εµd(1/ε)

=


ε

1
2 if d = 1,

ε ln
1
2 (1/ε+ 2) if d = 2,

ε if d > 2.

(73)

Hence, for dimensions d > 2, stochastic homogenization has linear order of conver-
gence in ε, as in periodic homogenization. In fact, higher-order correctors provide
the dimension-dependent order of convergence d/2 (with a logarithmic correction
in even dimensions), c.f. [13, Prop. 2.7].

Proof of Corollary 5.1. We first note that is it sufficient to establish〈(ˆ
|∇(u− (1 + φi∂i)ū)|p

)r〉 1
r

.γ,p,r

ˆ ∣∣µd(| · |)∇2ū
∣∣p.(74)

Indeed, observe that µpd(| · |) is a Muckenhoupt weight of class Ap [24, Def. 7.1.3,
p. 503] if d ≥ 2. Thus, by weighted CZ estimates [24, Th. 7.4.6, p. 540] for the
operator ∇(−∇ · ā∇)−1∇·, there holdsˆ ∣∣µd(| · |)∇2ū

∣∣p . ˆ ∣∣µd(| · |)∇f ∣∣p.
(This estimate is trivially true if d = 1.) As a consequence, (74) yields (72).

Here comes the argument for (74). We multiply (14) by an arbitrary random
variable F = F (a) ≥ 0, to the effect of

−∇ · a∇(F (u− (1 + φi∂i)ū)) = ∇ · F (φia− σi)∇∂iū.

By Proposition 7.1 (ii), this yieldsˆ
〈|F∇(u− (1 + φi∂i)ū)|p〉 .

ˆ
〈F s|(φia− σi)∇∂iū|s〉p/s

for some s > p to be fixed later. The integrand of the above right-hand side may be
estimated by means of the Hölder inequality with t, t? > 1 satisfying 1/t+ 1/t? = 1
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(to be fixed later) as

〈F s|(φia− σi)∇∂iū|s〉p/s = 〈F s|φia− σi|s〉p/s|∇∂iū|p

≤ 〈F st
?

〉
p
st? 〈|φia− σi|st〉

p
st |∇∂iū|p.

W. l. o. g. we may assume the anchoring (φ, σ)(0) = 0 so that by Proposition 4.1
we have

〈|(φia− σi)(x)|st〉
p
st . µpd(|x|).

Therefore, we deduce from the above estimates that〈
F p
ˆ
|∇(u− (1 + φi∂i)ū)|p

〉
. 〈(F p)

st?

p 〉
p
st?

ˆ ∣∣µd(| · |)∇2ū
∣∣p.(75)

We now pick an exponent t? < r? and specify

s :=
pr?

t?
> p.

Hence, (75) reads〈
F p
ˆ
|∇(u− (1 + φi∂i)ū)|p

〉
. 〈F pr

?

〉 1
r?

ˆ ∣∣µd(| · |)∇2ū
∣∣p,

so that a duality argument yields (74). �

Proof of Corollary 5.2. Rescaling (72), we obtain:〈( ˆ ∣∣∇̂(û− (1 + φ̂i∂̂i
)
ū
)∣∣pdx̂)r〉 1

pr

.
(ˆ ∣∣εµd( |x̂|

ε

)
∇̂f̂
∣∣pdx̂) 1

p

.

Recalling the expression (44) of µd directly yields (73) for d 6= 2. If d = 2, we
additionally make use of the inequality ln(|x|/ε+ 2) . ln(|x|+ 2) ln(1/ε+ 2) to get
(73). �

6. Fluctuations: Estimate of homogenization error in weak norms

This section is devoted to studying the fluctuations of an observable

G :=

ˆ
g · ∇u,(76)

where the square-integrable vector fields ∇u and f are related through (12) for
deterministic vector fields g and f . More precisely, we are interested in macroscopic
observables, that is

g(x) := εdĝ(εx) and f(x) := f̂(εx),(77)

where ĝ and f̂ are fixed vector fields of scale 1 and ε � 1. In [32], it has been
observed that the variance of G has a central-limit theorem scaling in ε−1. More-
over, in [25], it is shown that the leading order (in ε� 1) of this variance may be
explicitly characterized in terms of a quartic tensor Q introduced in [36].

Surprisingly enough, the naive (but natural) idea of replacing ∇u by its two-scale
expansion in (76) gives the wrong leading order, as was discovered by [25]. However,
the two-scale expansion may be used in a more subtle way, as was discovered in [12]:
We define ∇v̄ as the square-integrable vector field related to g through

∇ · (ā?∇v̄ + g) = 0.(78)

Then, G may be written in terms of the homogenization commutator (see (9)) as

G = −
ˆ
∇v̄ · ā∇u =

ˆ
∇v̄ · (a− ā)∇u+ F,(79)
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where F = −
´
∇v̄ · a∇u =

´
∇v̄ · f is deterministic. It turns out that in the

homogenization commutator (a − ā)∇u, it is legitimate to approximate ∇u by its
two-scale expansion. This leads to the standard homogenization commutator, which
is the stationary random field Ξ defined by

Ξei := (a− ā)(ei +∇φi)(80)

(see [12], and the discussion of the literature there). This observation is made
rigorous in the result below. This result is identical to [13, Prop. 3.2], which itself
is a continuum version of [12, Th. 2]. We reproduce the streamlined proof in order
to highlight the similarity to the one of Proposition 4.1 and the use of the annealed
CZ estimates, namely Proposition 7.1(ii).
Proposition 6.1. Let the ensemble 〈·〉 be defined as in Section 3.2. Assume that
h and f are square-integrable deterministic vector fields. Let the square-integrable
vector fields ∇u and ∇ū be related to f through (12) and (13). Then, the random
variable

H :=

ˆ
h · (a− ā)

(
∇u− ∂iū(ei +∇φi)

)
(81)

satisfies, for µd defined by (44),

〈(H − 〈H〉)2r〉 1
r .γ,r

(ˆ
|h|4
ˆ ∣∣µd(| · |)∇f ∣∣4 +

ˆ
|f |4
ˆ ∣∣µd(| · |)∇h∣∣4) 1

2

.(82)

Let us briefly compare Proposition 6.1 and Corollary 5.1. Both give an estimate
on the error in the two-scale expansion on the level of the gradient ∇(u − (1 +
φi∂i)ū) ' ∇u − ∂iū(ei +∇φi). While Corollary 5.1 gives an estimate in a strong
norm (oscillations), Proposition 6.1, modulo the homogenization commutator, gives
an estimate in a weak norm (fluctuations), i.e. when tested against a macroscopic
h.

Proposition 6.1 allows to approximate the random variable G defined by (76) by
its two-scale expansion G̃ defined by

(83) G̃ :=

ˆ
∇v̄ · Ξ∇ū.

This is valuable because G̃ only relies on solving the constant-coefficient problem
(13), the dual constant-coefficient problem (78), and involves randomness only in
form of the standard homogenization commutator (80), which is independent on
the r. h. s. f and the averaging function g. In fact, on large scales, Ξ−〈Ξ〉 behaves
like (tensorial) white noise and is characterized by the above-mentioned quartic
tensor Q. As for ā, Q may be approximated by the representative volume element
method [12, Th. 2].

Corollary 6.2. Let the ensemble 〈·〉 be defined as in Section 3.2. Assume that f̂
and ĝ are smooth and compactly supported, and let f and g be defined by (77). Let
∇u,∇ū, and ∇v̄ be square-integrable functions satisfying (12), (13), and (78). Let
G and G̃ be defined by (76) and (83). Then, for µd defined by (44) and r ∈ [1,∞),
there holds

(84) ε−d/2〈(G− G̃− 〈G− G̃〉)2r〉 1
2r .γ,r,f̂ ,ĝ εµd(1/ε).

Proof of Corollary 6.2. By (79) and as a consequence of Proposition 6.1, there holds

〈(G− G̃− 〈G− G̃〉)2r〉 1
r

.
(ˆ
|h|4
ˆ ∣∣µd(| · |)∇f ∣∣4 +

ˆ
|f |4
ˆ ∣∣µd(| · |)∇h∣∣4) 1

2
(85)



THE ANNEALED CALDERÓN-ZYGMUND ESTIMATE IN HOMOGENIZATION 25

for h := ∇v̄. We recall that, in dimensions d ≥ 2, µ4
d(| · |) are Muckenhoupt weights

of class A4. Therefore, by weighted CZ estimates [24, Th. 7.4.6, p. 540], we also
have

(86)
ˆ
|h|4 .

ˆ
|g|4 and

ˆ ∣∣µd(| · |)∇h∣∣4 . ˆ ∣∣µd(| · |)∇g∣∣4.
(A similar estimate also holds in dimension d = 1.) Hence, using the scaling induced
by (77), estimate (85) yields

〈(G− G̃− 〈G− G̃〉)2r〉 1
r .

(ˆ
|εdĝ(εx)|4dx

ˆ ∣∣µd(|x|)ε∇̂f̂(εx)
∣∣4dx

) 1
2

+
( ˆ
|f̂(εx)|4dx

ˆ ∣∣µd(|x|)εd+1∇̂ĝ(εx)
∣∣4dx

) 1
2

,

which implies (84) by the change of variables x̂ = εx. �

Proof of Proposition 6.1. The proof, which has the same ingredients as the proof of
Proposition 4.1, is divided into three steps. In Step 1, which is reminiscent of Part
1, Step 1 of the proof of Proposition 4.1, we derive the following representation of
the Malliavin derivative of H:

(87)

∂H

∂a
= hj(ej +∇φ?j )⊗ (∇w + φi∇∂iū)

+ (∇w? + φ?j∇hj)⊗∇u
− (∇w?i + φ?j∇(hj∂iū))⊗ (ei +∇φi),

where ∇w, ∇w?, and ∇w?j are the square-integrable solutions of

∇ · (a∇w + (φia− σi)∇∂iū) = 0,(88)
∇ · (a?∇w? + (φ?ja

? − σ?j )∇hj) = 0,(89)
∇ · (a?∇w?j + (φ?i a

? − σ?i )∇(hi∂j ū)) = 0.(90)

(Note that (89) and (90) define d + 1 functions w?, w?1 , · · · , w?d.) Step 2 relies on
the spectral gap (32) and makes use of the annealed estimate in Proposition 7.1(ii)
below. Finally, in Step 3, we appeal to the correctors estimates to establish (82).

Step 1: Here comes the argument for (87). Given a smooth and compactly sup-
ported infinitesimal variation δa of a, since h is deterministic, we have for the
generated infinitesimal variation of H defined by (81)

(91) δH =

ˆ
h · δa(∇u− ∂iū(ei +∇φi)) +

ˆ
h · (a− ā)(∇δu− ∂iū∇δφi).

Since f is deterministic, differentiating the equation (12) satisfied by u we obtain

∇ · (a∇δu+ δa∇u) = 0.(92)

Moreover, we recall that ∇δφi satisfies (51). Next, we note, and will prove below,
that w? and w?j defined by (89) and (90) satisfy

∇ ·
(
a?∇(w? + φ?jhj) + (a? − ā?)h

)
= 0,(93)

∇ ·
(
a?∇(w?j + φ?i hi∂j ū) + ∂j ū(a? − ā?)h

)
= 0.(94)

This allows us to rewrite the r. h. s. of (91) as

(95)

ˆ
h · (a− ā)∇δu (93)

= −
ˆ
∇(w? + φ?jhj) · a∇δu

(92)
=

ˆ
∇(w? + φ?jhj) · δa∇u,
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and, similarly,

(96)
−
ˆ
∂iūh · (a− ā)∇δφi

(94)
=

ˆ
∇(w?i + φ?jhj∂iū) · a∇δφi

(51)
= −

ˆ
∇(w?i + φ?jhj∂iū) · δa(ei +∇φi).

Inserting (95) and (96) into (91), using Leibniz’ rule, and reordering the terms
yields

(97)

δH =

ˆ
hj(ej +∇φ?j ) · δa(∇u− ∂iū(ei +∇φi))

+

ˆ
(∇w? + φ?j∇hj) · δa∇u

−
ˆ (
∇w?i + φ?j∇(hj∂iū)

)
· δa(ei +∇φi).

Comparing (88) with (14) yields by uniqueness (and Leibniz’ rule)

∇w + φi∇∂iū = ∇u− ∂iū(ei +∇φi).

Inserting this information into the first right-hand term of (97) yields the desired
identity (87).

We finally argue that w? and w?j satisfy (93) and (94), respectively. We consider
the l. h. s. of (93), in which we replace the first term by means of (89), and then
use (15) (for σ?j ):

∇ ·
(
a?∇(w? + φ?jhj) + (a? − ā?)h

)
(89)
= ∇ ·

(
σ?j∇hj + hja

?∇φ?j + (a? − ā?)h
)

(15)
= ∇ ·

(
hj(a

?(ej +∇φ?j )− ā?ej −∇ · σ?j )
) (4)

= 0.

Similarly, we obtain (94) by replacing w? by w?j and h by ∂j ūh in the above ma-
nipulations.

Step 2: We establish the following estimate

(98)

〈(H − 〈H〉)2r〉 1
r .

( ˆ
h4
j 〈|ej +∇φ?j |4r〉

1
r

ˆ
〈|(φ, σ)|8r〉 1

2r |∇2ū|4
) 1

2

+
(ˆ
〈|(φ?, σ?)|8r〉 1

2r |∇h|4
ˆ
|f |4

) 1
2

+

ˆ
〈|(φ?, σ?)|8r〉 1

4r |∇(∂iūh)|2〈|ei +∇φi|4r〉
1
2r .

Indeed, by an application of the spectral gap (32) into which we insert (87), and
making use of Jensen’s inequality, we obtain

〈(H − 〈H〉)2r〉 1
r .

ˆ 〈∣∣ ∂H
∂a(x)

∣∣2r〉 1
r

dx

.
ˆ 〈
|hj(ej +∇φ?j )⊗ (∇w + φi∇∂iū)|2r

〉 1
r

+

ˆ 〈
|(∇w? + φ?j∇hj)⊗∇u|2r

〉 1
r

+

ˆ 〈
|(∇w?i + φ?j∇(hj∂iū))⊗ (ei +∇φi)|2r

〉 1
r .
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Let us focus on the first above right-hand term. By the Cauchy-Schwarz inequality
in probability and in space, this yieldsˆ

〈|hj(ej +∇φ?j )⊗ (∇w + φi∇∂iū)|2r〉 1
r

≤
( ˆ
〈|hj(ej +∇φ?j )|4r〉

1
r

) 1
2
( ˆ
〈|∇w + φi∇∂iū|4r〉

1
r

) 1
2

.

By similar manipulations and the stationarity of ∇φi, we get

(99)

〈(H − 〈H〉)2r〉 1
r .

( ˆ
〈|hj(ej +∇φ?j )|4r〉

1
r

) 1
2
( ˆ
〈|∇w + φi∇∂iū|4r〉

1
r

) 1
2

+
(ˆ
〈|∇w? + φ?j∇hj |4r〉

1
r

) 1
2
(ˆ
〈|∇u|4r〉 1

r

) 1
2

+

ˆ
〈|∇w?i + φ?j∇(hj∂iū)|4r〉 1

2r 〈|ei +∇φi|4r〉
1
2r .

We now invoke the annealed estimate (103) from Proposition 7.1(ii) below with
r′  4r, r  8r, and p 4 on ∇·(a∇u+f) = 0, obtaining, since f is deterministic,ˆ

〈|∇u|4r〉 1
r .
ˆ
〈|f |8r〉 1

2r =

ˆ
|f |4.

Similarly, based on (88), (89), and (90), we have thatˆ
〈|∇w|4r〉 1

r .
ˆ
〈|(φ, σ)|8r〉 1

2r |∇2ū|4,
ˆ
〈|∇w?|4r〉 1

r .
ˆ
〈|(φ?, σ?)|8r〉 1

2r |∇h|4,
ˆ
〈|∇w?i |4r〉

1
2r .

ˆ
〈|(φ?, σ?)|8r〉 1

4r |∇(∂iūh)|2.

Inserting these four estimates into (99) (and using Jensen’s inequality in probability)
entails (98).

Step 3: Conclusion. By the corrector estimates (41) and (43), and Leibniz’ rule
followed by the Cauchy-Schwarz inequality in the last term, (98) turns into

(100)
〈|H − 〈H〉|2r〉 1

r

.
( ˆ
|h|4
ˆ ∣∣µd(| · |)∇2ū

∣∣4) 1
2

+
(ˆ ∣∣µd(| · |)∇h∣∣4 ˆ |(f,∇ū)|4

) 1
2

.

As for (86), we haveˆ
|∇ū|4 .

ˆ
|f |4 and

ˆ ∣∣µd(| · |)∇2ū
∣∣4 . ˆ ∣∣µd(| · |)∇f ∣∣4.

Inserting these estimates into (100) yields (82). �

7. Our tool: Annealed CZ estimates

7.1. General statement, and proof of the perturbative CZ estimates. The
main contribution of this paper is a novel proof of the following result from [13, Th.
6.1]:

Proposition 7.1. Let the random fields ∇u and f be square-integrable and related
by

∇ · (a∇u+ f) = 0.(101)

Then:
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(i) For any ensemble 〈·〉 of elliptic coefficient fields a satisfying (1), there holdsˆ
〈|∇u|r〉 2

r .d,λ

ˆ
〈|f |r〉 2

r , provided |r − 2| �d,λ 1.(102)

(ii) For any ensemble 〈·〉 as in Section 3.2, there holdsˆ
〈|∇u|r

′
〉
p
r′ .γ,p,r′,r

ˆ
〈|f |r〉

p
r for all 1 ≤ r′ < r ≤ ∞ and 1 < p <∞.(103)

Remark . Note that the ensemble occurs in the inner part of the norms in Propo-
sition 7.1. In other words, the estimates are not about stochastic moments of the
constant in a quenched CZ estimate, i.e. in norms Lr〈·〉(L

p
Rd), but rather about

vector-valued CZ estimates, i.e. in norms LpRd(Lr〈·〉) (in the terminology of [33],
where the vector is represented by the values with respect to the ensemble). In
particular, even in the case when a is a deterministic constant coefficient, estimate
(102) is not trivial and requires refined tools (which however are well-established,
see the proof of Proposition 7.1(i) below).

Proposition 7.1(i) holds under very general assumptions and rests only on the per-
turbative Meyers’ approach to lift the above-mentioned corresponding statement
for constant coefficients. On the contrary, Proposition 7.1(ii) requires homogeniza-
tion techniques. Namely, we follow the basic idea of lifting the constant-coefficient
regularity theory for the Helmholtz projection (see Section 7.2 for a discussion).

Proposition 7.1(ii) holds at the price of a loss of stochastic integrability. This loss is
unavoidable for p or r far from 2. This is not only due to the randomness of the local
regularity of a, but more importantly, it is also a consequence of the randomness
on large scales. To explain this, we fix |p − 2| �d,λ 1 and consider the simpler
framework of Rd replaced by the lattice Zd (see [18]). The random coefficient field
a now lives on the edges of the lattice Zd and takes two values according to i. i. d.
Bernoulli variables. Then, it is easily seen that any given configuration on a domain
of finite size may be found with positive probability. Choosing a configuration with
an arbitrarily large constant C in the CZ estimate4, that isˆ

|∇u|p ≥ C
ˆ
|f |p

for some suitable f , we may build a random r. h. s. f such thatˆ
〈|∇u|p〉 ≥ C but

ˆ
〈|f |p〉 = 1,

so that (103) cannot hold for r′ = r = p.

Argument for Proposition 7.1(i). The main ingredient is the following: If a = Id,
then Proposition 7.1(i) is satisfied (here, we denote by Id the identity matrix).
A perturbation argument à la Meyers yields the desired result for general elliptic
coefficient field a (see e.g. [34] and a more recent presentation in [37, Chap. 2, Th.
2.6.2, p. 122] for the proof of the Meyers estimate).

4Even for d = 2, such a configuration may be obtained by using the singularities induced
by coefficients piecewise constant on sectors. In such a case (see [30]), there exist a-harmonic
functions u such that ∇u ∈ L2(Rd) but ∇u /∈ Lp(Rd) for p �λ 1. These counterexamples are
available for the continuum framework and their large-scale behavior transmits to the discrete
setting by interpreting it as a discretization of the continuum one. The latter argument is in the
spirit of [15, Prop. 22].
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By [33, Th. 1.1.], if a = Id, then (102) holds for all r ∈ (1,∞) since the space Lr〈·〉
is UMD by [27, Prop. 4.2.15, p. 291]. In this special case, we denote by Cr the best
constant in (ˆ

〈|∇u|r〉 2
r

) 1
2 ≤ Cr

(ˆ
〈|f |r〉 2

r

) 1
2

.

We now rewrite (101) as

∇u = ∇∆−1∇ · (Id− a)∇u−∇∆−1∇ · f.(104)

By (1), we have in the sense of operator norm on Rd

|Id− a| ≤
√

1− λ.

Indeed, for all ξ ∈ Rd, there holds

|(Id− a)ξ|2 = ξ2 + |aξ|2 − 2ξ · aξ
(1)
≤ ξ2 − ξ · aξ

(1)
≤ (1− λ)|ξ|2.

Therefore, the operator ∇∆−1∇ · (Id − a) appearing in (104) is a contraction in
L2
RdLr〈·〉 provided

Cr
√

1− λ < 1.(105)

By the energy estimate we already know that C2 = 1. Fix an exponent r̄ ∈ (2,∞);
by complex interpolation between spaces L2

RdLr〈·〉, we obtain that for 1/r = (1 −
θ)/2 + θ/r̄ there holds:

Cr ≤ C1−θ
2 Cθr̄ = Cθr̄ , so that lim sup

r↓2
Cr ≤ 1.

Thus, if |r−2| �d,λ 1, then (105) is satisfied, so that the operator ∇∆−1∇·(Id−a)
appearing in (104) is indeed a contraction on L2

RdLr〈·〉. This shows that the operator
∇(∇ · a∇)−1∇· is bounded in L2

RdLr〈·〉, which amounts to (102). �

7.2. Strategy for proving the non-perturbative CZ estimates: massive
equation and correctors. The proof of Proposition 7.1 (ii) follows the philosophy
of [6] in the sense that we appeal to homogenization to deduce the boundedness
of the a-Helmholtz projection from that of the ā-Helmholtz projection. Smallness
of the homogenization error necessarily requires some amount of regularity of the
r. h. s. f , see for instance Corollary 5.1. Since for the operator norm, we have to
consider arbitrary f , this suggests to decompose f into a fairly smooth or large-scale
part f< (we use the language of low-pass) and an oscillatory small scale part f>
(high-pass); the corresponding ∇u> then requires an independent argument. The
latter argument is based on locality, meaning that ∇u>(x) depends on f only in a
(large) ball around x.

Given a length scale, such a decomposition into a smooth part and a local part is
provided by the semi-group, which here we substitute by the resolvent 1

τ −∇ · a∇,
which is called the massive version of the elliptic operator. The notation is moti-
vated by the interpretation of 1

τ − ∇ · a∇ as the generator of a diffusion coupled
to desorption at exponential rate 1

τ , and the language comes from quantum field
theory where this term is well-known to provide an infra-red cut-off beyond length
scales

√
τ . More precisely, we consider u> := ( 1

τ − ∇ · a∇)−1∇ · f , which up to
exponentially small tails has the desired locality properties on scale

√
τ (as can be

guessed from the form of the fundamental solution of 1
τ −4).

As mentioned, we shall apply homogenization to u< := u−u>. We depart from the
general strategy in [6] by using a whole-space argument (as opposed to arguing on
dyadically increasing balls typical for a Campanato iteration). Since we will appeal
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to the divergence-form representation of the residuum in the error of the two-scale
expansion, cf. (14), this whole-space argument would require the correctors (φ, σ) to
be stationary, which would impose the restriction d > 2. (This easier argument will
be carried out in [29].) Here, we avoid this restriction by equivalently characterizing
the low-pass part as the solution of the massive equation u< = ( 1

τ −∇·a∇)−1 1
τ u, so

that when comparing u< to its homogenized counterpart ū := ( 1
τ −∇ · āτ∇)−1 1

τ u,
the analogue of (14) will involve the massive correctors (and the corresponding
homogenized coefficient āτ defined by (116) below), see Section 7.2.2. The massive
correctors are trivially stationary and satisfy estimates analogous to the standard
correctors, see Lemma 7.2.

A “collateral damage” of carrying out the homogenization on the level of u< = ( 1
τ −

∇·a∇)−1 1
τ u (instead of u< = (−∇·a∇)−1 1

τ u>), leading to ū = ( 1
τ −∇· āτ∇)−1 1

τ u

is the following: We need to split also ū into ū> := (−∇ · āτ∇)−1 1
τ u> coming from

the local part, and the remainder ū< := ū− ū>, which again is expected to be small
by homogenization, cf. (153) and (154).

In view of this crucial role of the massive operator, it is convenient to unfold our
task (103) by establishing the boundedness of the massive a-Helmholtz projection
∇( 1

τ − ∇ · a∇)−1∇·, and to include the zero-order term on the l. h. s. into the
estimate, as well as to allow for a non-divergence form r. h. s., cf. (106). This comes
with the notational disadvantage that we need to monitor two cut-off parameters
T ≥ τ . We recover the massless CZ estimate (103) as the limit of its massive
counterpart (125) (along with (126)).

7.2.1. The massive equation. We consider a massive version of (101)

1

T
u−∇ · a∇u =

1

T
g +∇ · f(106)

for a parameter T ≥ 1, which we think of as being large. As mentioned above,
our strategy is to derive annealed estimates for (106) (see Proposition 7.3). As
explained above, we split u as follows:

u = u> + u<,(107)

where, for some τ ≤ T , u> is the high-pass part defined by

(108)
1

τ
u> −∇ · a∇u> =

1

T
g +∇ · f,

and where the low-pass part u< satisfies

1

τ
u< −∇ · a∇u< =

(1

τ
− 1

T

)
u.(109)

We approximate the low-pass part u< by the solution of the homogenized equation

1

τ
ū−∇ · āτ∇ū =

(1

τ
− 1

T

)
u(110)

for āτ defined by (116) below. However, as mentioned above, on the homogenized
level of ū, it turns out that we need to split once more into the high-pass and the
low-pass parts:

(111) ū = ū> + ū<,

where ū> is the high-pass part defined by

(112)
1

T
ū> −∇ · āτ∇ū> =

(1

τ
− 1

T

)
u>,
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and where the low-pass part ū< satisfies

(113)
1

T
ū< −∇ · āτ∇ū< =

(1

τ
− 1

T

)
(u< − ū).

7.2.2. The massive correctors. Expressing the homogenization error when passing
from (109) to (110) requires the use of the massive extended correctors (φτ , στ , ψτ )
(see [22, (48), (50) & (51)] and also [23]). These objects are stationary solutions to
the upcoming equations: Generalizing (5) and (8), the massive correctors φτ,i are
defined through

1

τ
φτ,i −∇ · a(∇φτ,i + ei) = 0,(114)

and the massive flux correctors στ,i = {στ,ijk}j,k=1,··· ,d are skew symmetric tensor
fields given by

(115)
(1

τ
−∆

)
στ,ijk = ∂jqτ,ik − ∂kqτ,ij ,

where

(116) qτ,ij := ej · a(ei +∇φτ,i) and āτei := 〈qτ,i〉.

The vector field ψτ,i, which has no analogue in the case of τ =∞, is defined through(1

τ
−∆

)
ψτ,i = qτ,i − āτei −∇φτ,i.(117)

The merit of ψτ,i is that the massive extended correctors (φτ , στ , ψτ ) together
satisfy the following generalization of (7):

a(ei +∇φτ,i) = qτ,i = āτei +∇ · στ,i +
1

τ
ψτ,i.(118)

Note that each of the equations (114), (115) and (117) has a unique solution in the
class of bounded fields, which is thus stationary (see e.g. [23, Lem. 2.7]).

The massive correctors enjoy properties similar to their massless counterparts (see
Proposition 4.1):

Lemma 7.2. Let T ≥ 1. Under the assumptions of Section 3.2, for any r ∈ [1,∞),
there holds: 〈∣∣(∇φT ,∇σT , ∇ψT√

T

)∣∣2r〉 1
r

.γ,r 1,(119) 〈∣∣(φT , σT , ψT√
T

)∣∣2r〉 1
r

.γ,r µ
2
d(
√
T ),(120)

where µd is defined by (44).

We postpone the proof of Lemma 7.2 until Section 7.5.

Argument for (118). By the uniqueness result [23, Lem. 2.7], it is enough to check
(118) after applying the operator

(
1
τ −∆

)
to it, that is, in form of(1

τ
−∆

)
qτ,i =

1

τ
āτei +∇ ·

(1

τ
−∆

)
στ,i +

1

τ

(1

τ
−∆

)
ψτ,i.

We first eliminate ψτ via its definition (117), leading to

−∆qτ = ∇ ·
(1

τ
−∆

)
στ −

1

τ
∇φτ .
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We then eliminate στ by inserting ∇·
(

1
τ −∆

)
σ = ∇∇· qτ −∆qτ , which is obtained

by applying ∂k to equation (115), to the effect of

0 = ∇∇ · qτ −
1

τ
∇φτ .

This is nothing else than the operator −∇ applied to equation (114), appealing to
definition (116). �

7.2.3. Splitting. As announced, the massive extended correctors allow us to char-
acterize the error in the massive two-scale expansion

w := u< − (1 + φτ,i∂i)ū(121)

via

(122) 1

τ
w −∇ · a∇w = ∇ ·

(
(φτ,ia− στ,i)∇∂iū+

1

τ
∂iūψτ,i

)
− 1

τ
φτ,i∂iū.

This induces the following splitting (u,∇u) = (v>, h>) + (v<, h<) into high-pass
and low-pass parts via

v> := u> + ū>,

v< := w + ū< + φτ,i∂iū,

h> := ∇u> + ∂iū>(ei +∇φτ,i),
h< := ∇w + ∂iū<(ei +∇φτ,i) + φτ,i∇∂iū,

(123)

cf. (107), (111), and (121), which will be used in Parts 1 and 2 of the proof of
Proposition 7.1.

Argument for (122). Equation (122) is derived by taking the difference between
(109) and (110), and by appealing to the intertwining relation (which generalizes
(11))

∇ · a∇(1 + φτ,i∂i)ū = ∇ · āτ∇ū+∇ ·
(
(φτ,ia− στ,i)∇∂iū+

1

τ
∂iūψτ,i

)
.

This intertwining relation itself follows via ∇(1 + φτ,i∂i)ū = ∂iū(ei + ∇φτ,i) +
φτ,i∇∂iū from multiplying (118) by ∂iū and using the identity (15) in form of
∇ · (∂iū∇ · στ,i) = −∇ · (στ,i∇∂iū), which relies on the skew symmetry of στ,i.

7.2.4. Result for the massive equation. For further discussion, we denote the norm
appearing in (103) by

(124) ‖h‖p,r :=
(ˆ 〈

|h|r
〉 p
r

) 1
p

.

As announced, we generalize Proposition 7.1(ii) to:

Proposition 7.3. Fix the exponents p ∈ (1,∞) and 1 ≤ r′ < r < ∞. Let
Cp,r′,r(T ) ≥ 1 denote the smallest constant such that for all square-integrable ran-
dom fields u, g, and f related through the massive equation (106), we have∥∥( u√

T
,∇u

)∥∥
p,r′
≤ Cp,r′,r(T )

∥∥( g√
T
, f
)∥∥
p,r
.(125)

Under the assumptions of Section 3.2, this constant satisfies

(126) Cp,r′,r(T ) .γ,p,r′,r 1 for all T ≥ 1.

The proof of Proposition 7.3 is done in Section 7.4 and relies on only two ingredients:
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• the homogenized (constant-coefficient) operator 1
T −∇· āτ∇ satisfies (125),

with a constant C̄p,r′,r independent of T , and even for r′ = r (see Section
7.2.6);

• the massive correctors are strictly sublinear in
√
T (see Lemma 7.2).

Philosophically speaking, we substitute any regularity theory for the operator 1
T −

∇·a∇ by regularity theory for the operator 1
T −∇· āτ∇. This substitution relies on

functional analysis, mostly interpolation. Literally, the only large-scale regularity
theory ingredient for the massive operator 1

T − ∇ · a∇ is the whole-space energy
estimate (see Section 7.3). This approach quite different from the one based on
quenched CZ estimates (briefly described in Section 7.6).

7.2.5. Strategy for dealing with the loss in the stochastic integrability. The strat-
egy is to start from the standard annealed CZ estimates for the solution ū of the
constant-coefficient equation (110) (cf. Section 7.2.6) and to buckle on the level
of the optimal constant Cp,r′,r(T ) in (125) by applying CZ estimates also to the
equation (122) for w. The main challenge in this strategy is the loss in stochastic
integrability coming from the need to feed in the estimates on the massive correctors
(120). To overcome this challenge, we use a real interpolation argument. The loss
in stochastic integrability of the low-pass part u< is compensated by its smallness
when τ is large and by the gain in stochastic integrability of the high-pass part (see
Parts 1 and 2 of the proof of Proposition 7.3).

To carry out this real interpolation argument, we need an independent estimate of
the high-pass part u>. It is provided in Section 7.3 by Lemma 7.5, which is based
on the locality of u>. The estimate (130) therein is highly suboptimal in its scaling
in
√
T (which plays the role of

√
τ); this however is balanced by the smallness of

u< in our real interpolation argument. Finally, by complex interpolation starting
from the pivotal energy estimate (129), we iteratively enlarge the zone in which
we have Cp,r′,r(T ) . 1, reaching any admissible 3-tuple of exponents (p, r′, r) in a
finite number of steps (see Parts 3 and 4 of the proof of Proposition 7.3).

7.2.6. The constant-coefficient estimates. We only need one result for the constant-
coefficient equation, namely:

Lemma 7.4. Assume that ā is a constant coefficient satisfying (20). Then, for
any p, r ∈ (1,∞), the solution ū to the massive equation

1

T
ū−∇ · ā∇ū =

1

T
g +∇ · f(127)

satisfies ∥∥( ū√
T
,∇ū

)∥∥
p,r
.d,λ,p,r

∥∥( g√
T
, f
)∥∥
p,r
.(128)

The proof is based on a version of the Mikhlin theorem, which involves Fourier
multipliers [33, Th. 1.1]. By scaling, we may assume T = 1. The functional space
Lr〈·〉 is a UMD space (see [27, Def. 4.2.1, p. 281] for a definition). Moreover, the
Fourier multiplier m corresponding to the solution operator M : (g, f) 7→ (ū,∇ū)
of (127) has the block structure

m(k) =
1

1 + k · āk

(
1 ik?

ik −k ⊗ k

)
,
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where k? is the vector k transposed. Obviously, the symbolm belongs to Cd+1(Rd\{0}),
and satisfies

sup
k∈Rd\{0}

d+1∑
j=0

|k|j |∇jm(k)| .d,λ 1.

Therefore, by [33, Th. 1.1], the operator M extends from Lp(Rd) to Lp(Rd,Lr〈·〉).
This establishes (128).

7.3. Suboptimal CZ estimates for the massive equation. As mentioned above,
we need a robust but suboptimal estimate of Cp,r′,r(T ):

Lemma 7.5. Let T ≥ 1. Under the assumptions of Section 3.2, the operator norm
denoted by Cp,r′,r(T ) in (125) satisfies

C2,2,2(T ) .d,λ 1,(129)

Cp,r′,r(T ) .γ,p,r′,r
√
T
d

provided p ∈ (1,∞) and 1 ≤ r′ < r <∞.(130)

Lemma 7.5 relies on the locality on scale
√
T of solutions to the massive equation,

and on the regularity on scale 1 of the coefficient field (see Lemma A.2). These two
properties allow for estimates between different spatial Lp-norms, where locality
provides the large-scale cut-off, and regularity the small-scale cut-off. In particular,
we will jump between the L2

Rd -norm, on which scale we have energy estimates, and
the L∞Rd -norm, where we may handle the Lr〈·〉-norm.

Proof. Throughout the proof, the square-integrable random fields u, g, and f are
related by (106). By a duality argument and Jensen’s inequality, we may restrict
to the case of 2 ≤ r′ < r. As mentioned above, the local regularity of a allows us
to use CZ estimates on scales ≤ 1. We capitalize on this in form of Lemma A.2(i),
via a family of norms that treat scales ≤ 1 separately, namely

‖h‖p,r,q :=

(ˆ 〈(
−
ˆ

B1(x)

|h|q
) r
q
〉 p
r

dx

) 1
p

,(131)

where we think of the exponent q ∈ (1,∞) of the innermost spatial norm as being
close to 1 (of course, the precise value 1 of the radius in (131) is not important).
In Step 1, we will derive the crucial property of these norms, namely that they
decrease with increasing spatial exponent p, see (132). As mentioned above, the
massive term provides an approximate locality on scale

√
T , which in Step 2 we

capture through the energy estimate with exponential weight on that scale, see
(137). In Step 3, we use local regularity to express this weighted energy estimate
on the level of the norms (131). In Step 4, we derive the statement of this lemma
on the scale of the norms (131), see (144). In Step 5, finally, we use once more local
regularity to return to the original norms (124).

Step 1: Nestedness properties of the norms. We claim the following properties of
the norms (131):

‖h‖p̄,r,q . ‖h‖p,r,q provided p ≤ p̄,(132)

‖h‖p,r′ ≤ ‖h‖p,r and ‖h‖p,r′,q ≤ ‖h‖p,r,q provided r′ ≤ r,(133)
‖h‖p,r,q ≤ ‖h‖p,r provided q ≤ min{p, r}.(134)



THE ANNEALED CALDERÓN-ZYGMUND ESTIMATE IN HOMOGENIZATION 35

We start with the argument for (132). The core is the following discrete `p̄ − `p
estimate, where we introduce the abbreviation h̄R(y) := 〈(−́

BR(y)
|h|q)

r
q 〉 1

r :( ∑
z∈Zd

|h̄1(x+ z)|p̄
) 1
p̄ ≤

( ∑
z∈Zd

|h̄1(x+ z)|p
) 1
p .

Using that 0 ≤ h̄1(y) . h̄2(y′) for |y′ − y| < 1 and thus |h̄1(y)|p . −́
B1(y)

|h̄2|p, the
above inequality may be upgraded to( ∑

z∈Zd
|h̄1(x+ z)|p̄

) 1
p̄ .

(ˆ
|h̄2|p

) 1
p

.

Taking the Lp̄-norm in x ∈ [0, 1)d of this estimate, we obtain(ˆ
|h̄1|p̄

) 1
p̄

.
(ˆ
|h̄2|p

) 1
p

.(135)

Using now the elementary geometric fact that there exist N . 1 shift vectors
z1, · · · , zN ∈ Rd such that B2(x) ⊂

⋃N
n=1 B1(x − zn) and therefore (−́

B2(x)
|h|q)

1
q

≤
∑N
n=1(−́

B1(x−zn)
|h|q)

1
q , we obtain by the triangle inequality and the shift invari-

ance of the norm (
´
〈|h|r〉

p̄
r )

1
p̄ that(ˆ 〈(

−
ˆ

B2(x)

|h|q
) r
q
〉 p
r

dx

) 1
p

≤ N‖h‖p,r,q . ‖h‖p,r,q.(136)

By definitions of h̄1 and of h̄2, the latter in conjunction with (136), (135) turns into
(132).

Inequalities (133) are obvious from Jensen’s inequality in probability.

We finally turn to (134), which is a consequence of Jensen’s inequality: Rewriting
definition (131) in form of

‖h‖p,r,q =
(ˆ 〈(

−
ˆ

B1

|h(x+ z)|qdz
) r
q
〉 p
r dx

) 1
p

=
∥∥∥∥∥−ˆ

B1

|h(·+ z)|qdz
∥∥

L
r
q
〈·〉

∥∥∥ 1
q

L
p
q

Rd

,

we learn from the convexity and translation invariance of the involved norms (here
we use q ≤ min{p, r}) that

‖h‖p,r,q ≤
(
−
ˆ

B1

∥∥‖|h(·+ z)|q‖
L
r
q
〈·〉

∥∥
L
p
q

Rd

dz
) 1
q (124)

= ‖h‖p,r.

Step 2: The pivotal estimate (129). In fact, in the next step, we need its local
version

(137)
∥∥ωT ( u√

T
,∇u

)∥∥
2,2
.d,λ

∥∥ωT ( g√
T
, f
)∥∥

2,2
,

where the weight is of exponential form

(138) ωT (x) := exp(− |x|
C
√
T

)

for a constant C = C(d, λ) fixed below.

Starting with (129), we test (106) with u, use the uniform λ-ellipticity of a and the
Cauchy-Schwarz inequality, which gives

(139)
ˆ ∣∣( u√

T
,∇u

)∣∣2 . ˆ ∣∣( g√
T
, f
)∣∣2.
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We now take the expectation, which we exchange with the spatial integral, yielding
(129) in the form of ∥∥( u√

T
,∇u

)∥∥
2,2
.
∥∥( g√

T
, f
)∥∥

2,2
.(140)

We now upgrade (140) to (137): Multiplying (106) with a cut-off function ω we
obtain by Leibniz’ rule

1

T
ωu−∇ · a∇(ωu) =

1

T
ωg −∇ω · (a∇u+ f) +∇ · (ωf − au∇ω).

Appealing to (140) yields∥∥ω( u√
T
,∇u

)∥∥
2,2
.
∥∥ω( g√

T
, f
)∥∥

2,2
+
√
T‖∇ω · (a∇u+ f)‖2,2 + ‖u∇ω‖2,2.

Specifying ω to be of the form of (138), for which |∇ωT | ≤ 1
C
√
T
ωT , this entails∥∥ωT ( u√

T
,∇u

)∥∥
2,2

.
1 + C

C
‖ωT f‖2,2 +

1√
T
‖ωT g‖2,2 +

1

C
√
T
‖ωTu‖2,2 +

1

C
‖ωT∇u‖2,2.

For C �d,λ 1, the two last r. h. s. terms may be absorbed, giving rise to (137).

Step 3: Pivotal estimate on the scale of norms (131). We claim that, for any s′ > 2
and q ∈ (1, 2], there exists a constant C �d,λ,s′,q 1 such that, defining ωT by (138),
there holds

(141)
∥∥ωT ( u√

T
,∇u

)∥∥
2,2,q
.γ,s′,q

∥∥ωT ( g√
T
, f
)∥∥

2,s′,q
.

The argument relies on complex interpolation. We choose a q′ ∈ (1, q) and then
define θ ∈ (0, 1) and s ∈ (s′,∞) through

1

q
=
θ

2
+

1− θ
q′

and
1

s′
=
θ

2
+

1− θ
s

.

We make use of the estimate (198) of Lemma A.2(ii) (replacing (r, q)  (s, q′)),
which we copy here:

(142)
∥∥( u√

T
,∇u

)∥∥
2,2,q′

.
∥∥( u√

T
,∇u

)∥∥
2,s,q′

.

Appealing to (55), we may identify the norms ‖ · ‖2,2 and ‖ · ‖2,2,2 so that (137)
reads

(143)
∥∥ωT ( u√

T
,∇u

)∥∥
2,2,2
.
∥∥ωT ( g√

T
, f
)∥∥

2,2,2
,

By complex interpolation between (142) and (143) (using the Stein-Weiss theorem
[9, Th. 5.4.1 p. 115]), we get∥∥ωθT ( u√

T
,∇u

)∥∥
2,2,q
.γ,s′,q

∥∥ωθT ( g√
T
, f
)∥∥

2,s′,q
.

Since ωθT (x) = exp(− θ|x|
C
√
T

) by (138), we obtain (141) by adapting the definition
of C.
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Step 4: Suboptimal estimates on the scale of norms (131). We now are given p ∈
(1,∞), 2 < r′ < r, and q ≤ min{p, 2} ∈ (1, 2], and establish

(144)
∥∥( u√

T
,∇u

)∥∥
p,r′,q

.γ,p,r′,r,q
√
T
d∥∥( g√

T
, f
)∥∥
p,r,q

.

The two ingredients for (144) are the following norm relations, to be established
below:

sup
x

〈(
−
ˆ

B1(x)

|h|q
) 2
q
〉 1

2

=: ‖h‖∞,2,q . ‖h‖2,2,q and(145)  ‖ωTh‖2,r,q .
√
T

max{0,d( 1
2−

1
p )}
‖ω4Th‖p,r,q,

‖ωT
4
h‖p,r′,q .

√
T
d
p ‖ωTh‖∞,r′,q.

(146)

The merit of passing to the spatial exponent p =∞ is that by duality,

‖h‖∞,r′,q = sup

〈|F |
2r′
r′−2 〉≤1

‖Fh‖∞,2,q.(147)

Estimate (145) is immediate from (132). In the case of p ≥ 2, the first estimate in
(146) follows from appealing to the relation ωT = ω2

4T , cf. (138), which allows to use

the Hölder inequality, so that it reduces to the obvious ‖ω4T ‖ 2p
p−2 ,∞,∞

.
√
T
d( 1

2−
1
p )

(recall T ≥ 1). In the case of p ≤ 2, we appeal to (132) and the obvious ωT
≤ ω4T . For the second estimate in (146), we start from ωT/4 = ω2

T , use the Hölder

inequality, and ‖ωT ‖p,∞,∞ .
√
T
d
p .

Turning now to (144), we define the exponent s′ > 2 by

(148)
1

s′
:=

1

2
− 1

r′
+

1

r
=
r′ − 2

2r′
+

1

r
.

We specify the constant C in (138) to be the one of Step 3 belonging to q and s′.
Let F be an auxiliary random variable. Since it does not depend on space, (106)
is preserved by multiplication with F . Hence by (141) followed by the Hölder
inequality in probability (based on the definition (148) of s′) we obtain∥∥ωTF ( u

T
,∇u

)∥∥
2,2,q
. ‖ωTF

( g√
T
, f
)
‖2,s′,q ≤

∥∥ωT ( g√
T
, f
)∥∥

2,r,q
〈|F |

2r′
r′−2 〉

r′−2
2r′ .

In combination with (145), this yields∥∥ωTF ( u√
T
,∇u

)∥∥
∞,2,q .

∥∥ωT ( g√
T
, f
)∥∥

2,r,q
〈|F |

2r′
r′−2 〉

r′−2
2r′ ,

so that by (147) ∥∥ωT ( u√
T
,∇u

)∥∥
∞,r′,q .

∥∥ωT ( g√
T
, f
)∥∥

2,r,q
,

which by (146) implies, using max{0, d( 1
2 −

1
p )}+ d

p ≤ d,

‖ωT
4

( u√
T
,∇u

)
‖p,r′,q .

√
T
d
‖ω4T

( g√
T
, f
)
‖p,r,q.

Since by the definition (131) and the properties of ωT we have

‖ωT (· − z)h‖p,r,q ∼
( ˆ (

ωT (x− z)
〈(
−
ˆ

B1(x)

|h|q
) r
q
〉 1
r

)p
dx
) 1
p

,

the desired (144) follows from taking the Lp-norm in the shift z.
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Step 5: Conclusion. Let p ∈ (1,∞). By duality and Jensen’s inequality, it suffices
to establish (130) for 2 ≤ r′ < r < ∞. We set q := min{p, r} and select an
r′ < s < r. Appealing to Lemma A.2(i) we have

‖( u√
T
,∇u)‖p,r′ . ‖(

u√
T
,∇u)‖p,s,q + ‖( g√

T
, f)‖p,s.

Estimating the first and the second r. h. s. term by (144) (with r′ replaced by s)
and by (133), respectively, we obtain

‖( u√
T
,∇u)‖p,r′ .

√
T
d
‖( g√

T
, f)‖p,r,q + ‖( g√

T
, f)‖p,r.

By definition of q, we may use (134) on the first r. h. s. term and so obtain (130),
recalling that T ≥ 1. �

7.4. Proof of the non-perturbative CZ estimates. This section contains the
proofs of Propositions 7.3 and 7.1(ii).

Proof of Proposition 7.3. As announced in Section 7.2.5, the proof is divided into
four parts.

Part 1: Splitting of (u,∇u). This part is at the core of our argument. Let 1 ≤ τ ≤
T . We recall the splitting (u,∇u) = (v>, h>) + (v<, h<) from (123). Then, for
exponents p, r ∈ (1,∞),

1 ≤ s′′′′ < s′′′ < s′′ < s′ < r, and 1 ≤ r′′ < r′ < r,(149)

we claim that the following estimates hold:∥∥( v>√
T
, h>

)∥∥
p,r′′
. Cp,r′,r(τ)

∥∥( g√
T
, f
)∥∥
p,r
,(150) ∥∥( v<√

T
, h<

)∥∥
p,s′′′′

. Cp,s′′′,s′′(τ)
√
τ
− 1

2Cp,s′,r(T )
∥∥( g√

T
, f
)∥∥
p,r
.(151)

We note that if all the stochastic exponents in (150) and (151) were equal to r,
then we could deduce from (150) and (151) that∥∥( u√

T
,∇u

)∥∥
p,r
.
(
Cp,r,r(τ) + Cp,r,r(τ)

√
τ
− 1

2Cp,r,r(T )
)∥∥( g√

T
, f
)∥∥
p,r
,

which amounts to

Cp,r,r(T ) . Cp,r,r(τ) + Cp,r,r(τ)
√
τ
− 1

2Cp,r,r(T ).(152)

Thus, if we would know that Cp,r,r(τ) .
√
τ

1
2 θ for some θ < 1, then we would

obtain from the above estimate that Cp,r,r(T ) is uniformly bounded in T ≥ 1.
(This motivates assumption (162) of Part 2.) However, the stochastic exponents
have to be strictly ordered as in (149). Therefore, in Part 2, we resort to real
interpolation to increase the stochastic exponent of ∇u, and we buckle with an
estimate similar to (152).

Part 1, Step 1: Argument for (150). We first estimate the high-pass part (v>, h>).
The right-hand sides of (112) and (113) may be expressed in a more convenient
form thanks to (108), (121), and (122), namely

1

T
ū> −∇ · āτ∇ū> =

(
1− τ

T

)(
∇ · (a∇u> + f) +

1

T
g
)
,(153)

1

T
ū< −∇ · āτ∇ū< =

(
1− τ

T

)
∇ ·
(
a∇w + (φτ,ia− στ,i)∇∂iū+

1

τ
∂iūψτ,i

)
.(154)
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By equation (108) (recall that τ ≤ T ), we obtain

(155)
∥∥( u>√

τ
,∇u>

)∥∥
p,r′

(125)
≤ Cp,r′,r(τ)‖(

√
τg

T
, f)‖p,r ≤ Cp,r′,r(τ)

∥∥( g√
T
, f
)∥∥
p,r
,

which by (133) implies

(156)
∥∥( u>√

T
,∇u>

)∥∥
p,r′′
. Cp,r′,r(τ)

∥∥( g√
T
, f
)∥∥
p,r
.

By estimate (119) on the massive correctors and recalling (153), we have

(157)

∥∥( ū>√
T
, ∂iū>(ei +∇φτ,i)

)∥∥
p,r′′

(119)
.
∥∥( ū>√

T
,∇ū>

)∥∥
p,r′

(128)
.
∥∥( g√

T
, f,∇u>

)∥∥
p,r′

(155)
. Cp,r′,r(τ)

∥∥( g√
T
, f
)∥∥
p,r
.

In view of (123), estimates (156) and (157) combine to (150).

Part 1, Step 2: Argument for (151). We now turn to the low-pass contribution
(v<, h<). We start with its first constituent w (cf. (123)). Appealing to equation
(122) and the correctors estimate (120), we obtain (recall that τ ≤ T )

(158)

∥∥( w√
T
,∇w

)∥∥
p,s′′′

≤ ‖( w√
τ
,∇w)‖p,s′′′

(125)
. Cp,s′′′,s′′(τ)

∥∥∥(∣∣( ψτ√
τ
, φτ )

∣∣∇ū√
τ
, |(φτ , στ )|∇2ū

)∥∥∥
p,s′′

(120)
. Cp,s′′′,s′′(τ)µd(

√
τ)
∥∥(∇ū√

τ
,∇2ū

)∥∥
p,s′

.

Turning to the second constituent ū< of (v<, h<), we obtain once more by (119):

‖∂iū<(ei +∇φτ,i)‖p,s′′′′ . ‖∇ū<‖p,s′′′ .

Therefore, recalling equation (154) and the correctors estimate (120), we thus have∥∥( ū<√
T
, ∂iū<(ei +∇φτ,i)

)∥∥
p,s′′′′

(128)
.
∥∥∥(∇w, |ψτ |√

τ

∇ū√
τ
, |(φτ , στ )|∇2ū

)∥∥∥
p,s′′′

(120)
. ‖∇w‖p,s′′′ + µd(

√
τ)
∥∥(∇ū√

τ
,∇2ū

)∥∥
p,s′′

(158)
. Cp,s′′′,s′′(τ)µd(

√
τ)
∥∥(∇ū√

τ
,∇2ū

)∥∥
p,s′

.

(159)

Last, the third constituent of (v<, h<) is estimated by appealing to the correctors
estimate (120):

(160)
∥∥(φτ,i∂iū√

T
, φτ,i∇∂iū

)∥∥
p,s′′′′

τ≤T
. µd(

√
τ)
∥∥(∇ū√

τ
,∇2ū

)∥∥
p,s′

.

By definition (123) of (v<, h<), gathering (158), (159), and (160) yields∥∥( v<√
T
, h<

)∥∥
p,s′′′′

. Cp,s′′′,s′′(τ)µd(
√
τ)
∥∥(∇ū√

τ
,∇2ū

)∥∥
p,s′

. Cp,s′′′,s′′(τ)
µd(
√
τ)√
τ
‖∇u‖p,s′ ,
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where we used the annealed estimate (128) for the massive equation with constant
coefficients (110) in its differentiated form:

1

τ
∂iū−∇ · āτ∇∂iū =

(1

τ
− 1

T

)
∂iu.

Finally, using (125) and recalling (44) establishes (151).

Part 2: Real interpolation, from sub-optimal to optimal estimates. Let p, r, s′′′′,
s′′′, s′′, s′, r′′, r′ be as in Part 1 (i.e. satisfying (149)). Assume that there exists
θ ∈ (0, 1) such that

1

s′
>

1

s
:= θ

1

s′′′′
+ (1− θ) 1

r′′
.(161)

(See Figure 2.) Suppose that we sub-optimally control the massive CZ constants
both for high (r′, r) and low (s′′′, s′′) stochastic integrability, in the sense of

Cp,r′,r(τ) + Cp,s′′′,s′′(τ) ≤ Λ
√
τ

1
2 θ for all τ ≥ 1(162)

for some fixed constant Λ ≥ 1. We claim the following control of the CZ constant:

Cp,s′,r(T ) . Λ
1

1−θ for all T ≥ 1.(163)

•
1

•
1

•
1

•
s′′′′

•
s′′′

•
s′′

•
s′

•
r

•
r′′

•
r′

•
r

•
s

•
s′

•
r

Figure 2. Exponents p, r, s, s′′′′, s′′′, s′′, s′, r′′, r′.

The form of the result arises from a real interpolation argument. We make use
of the K-method [9, Chap. 3, p. 38], which relies on the one-parameter family of
splittings of (u,∇u) studied in the Part 1 into a part (v>, h>) with good stochastic
integrability (slightly worse than r′) and a part (v<, h<) with a bad one (slightly
worse than s′′′). Here the length scale

√
τ plays the role of the parameter.

Part 2, Step 1: Argument for (163). We now fix T ≥ 1. By the K-method, in view
of (161), we have

(164)

∥∥( u√
T
,∇u

)∥∥
p,s′

. sup
µ>0

inf
v> + v< = u
h> + h< = ∇u

{
µ−θ

∥∥( v>√
T
, h>

)∥∥
p,r′′

+ µ1−θ∥∥( v<√
T
, h<

)∥∥
p,s′′′′

}
,

(indeed, by [9, Th. 5.1.2 & Th. 5.2.1] the above r. h. s. corresponds to a norm on the
functional space LpRd(Ls,∞〈·〉 ), and the Lorentz space Ls,∞〈·〉 is included in Ls

′

〈·〉). Next,
we will show in Part 2, Step 2 that for any µ > 0 and T ≥ 1 there is a splitting
(u,∇u) = (v>, h>) + (v<, h<) such that

(165) µ−θ
∥∥( v>√

T
, h>

)∥∥
p,r′′

+ µ1−θ∥∥( v<√
T
, h<

)∥∥
p,s′′′′

. ΛCθp,s′,r(T )
∥∥( g√

T
, f
)∥∥
p,r
.

Then, inserting (165) into (164) entails

Cp,s′,r(T ) . ΛCθp,s′,r(T ),

and since Cp,s′,r(T ) is finite by Lemma 7.5, we obtain (163).
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Part 2, Step 2: Argument for (165). For given µ > 0, we define τ by

µ =

√
τ

1
2

Cp,s′,r(T )
.

Thus we have to estimate

(166)

µ−θ
∥∥( v>√

T
, h>

)∥∥
p,r′′

+ µ1−θ∥∥( v<√
T
, h<

)∥∥
p,s′′′′

= Cθp,s′,r(T )
(√

τ
− 1

2 θ
∥∥( v>√

T
, h>

)∥∥
p,r′′

+

√
τ

1
2 (1−θ)

Cp,s′,r(T )

∥∥( v<√
T
, h<

)∥∥
p,s′′′′

)
,

and distinguish the three cases: either τ ≤ 1, 1 ≤ τ ≤ T , or T ≤ τ .

If τ ≤ 1, we set (v>, h>) = (0, 0) and (v<, h<) = (u,∇u) so that by equation (106)∥∥( v<√
T
, h<

)∥∥
p,s′′′′

(133)
≤
∥∥( u√

T
,∇u

)∥∥
p,s′

(125)
. Cp,s′,r(T )

∥∥( g√
T
, f
)∥∥
p,r
.

Inserting this estimate into (166) establishes (165) since τ ≤ 1 ≤ Λ.

In the generic case 1 ≤ τ ≤ T , we define (v>, h>) and (v<, h<) by (123). Therefore,
(150) and (151) combined with our assumption (162) yield

∥∥( v>√
T
, h>

)∥∥
p,r′′
. Λ
√
τ

1
2 θ
∥∥( g√

T
, f
)∥∥
p,r
,∥∥( v<√

T
, h<

)∥∥
p,s′′′′

. Λ
√
τ

1
2 (θ−1)

Cp,s′,r(T )
∥∥( g√

T
, f
)∥∥
p,r
.

Inserting this into (166) entails (165).

Finally, if τ ≥ T we set (v>, h>) = (u,∇u) and (v<, h<) = (0, 0) to the effect of∥∥( v>√
T
, h>

)∥∥
p,r′′
≤ ‖
( u√

T
,∇u

)
‖p,r′ . Cp,r′,r(T )‖

( g√
T
, f
)
‖p,r.

Then, invoking (162) (with τ replaced by T ) and recalling that T ≤ τ , we obtain∥∥( v>√
T
, h>

)∥∥
p,r′′
. Λ
√
T

1
2 θ‖
( g√

T
, f
)
‖p,r ≤ Λ

√
τ

1
2 θ‖
( g√

T
, f
)
‖p,r.

Inserting this into (166) and yields (165) also in this case.

Part 3: Complex interpolation, from optimal estimates to suboptimal ones for higher
integrability . We consider two triplets of exponents (p, r′, r) and (q, s′, s) ∈ (1,∞)×
[2,∞)2 that satisfy

s′ ≤ r′, s ≤ r, and
1

r′
− 1

r
>

1

s′
− 1

s
> 0.(167)

For any θ ∈ (0, 1] such that

θ > max
{

1− s

r
, 1− s′

r′
, 1− q

p
,

1
p −

1
q

1− 1
q

}
(168)

we claim that

Cp,r′,r(τ) . C1−θ
q,s′,s(τ)

√
τ
dθ for all τ ≥ 1.(169)

Note that the r. h. s. of (168) is strictly less than 1 so that such a θ always exists.

Here comes the argument: We first note that thanks to the constraint (168) on θ,
the identities

1

r
= (1− θ)1

s
+ θ

1

r̃
,

1

r′
= (1− θ) 1

s′
+ θ

1

r̃′
,

1

p
= (1− θ)1

q
+ θ

1

p̃
(170)
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define a triple of exponents (p̃, r̃′, r̃) ∈ (1,∞) × [2,∞)2. Indeed, in case of r̃,
we rewrite the implicit (170) as the explicit 1

r̃ = 1
θ ( 1
r − (1 − θ) 1

s ), and note that
this expression is positive thanks to the first constraint on θ in (168), rewritten as
1−θ < s

r . We also have 1
θ ( 1
r−(1−θ) 1

s ) ≤ 1
2 , or equivalently,

1
s−

1
r ≥ θ(

1
s−

1
2 ) because

of our assumption 2 ≤ s ≤ r, see (167). The case of r̃′ is treated analogously.
Finally, in the case of p̃, the lower bound 1

p̃ = 1
θ ( 1
p − (1 − θ) 1

q ) > 0 follows as for
the two others. The upper bound 1

θ ( 1
p − (1 − θ) 1

q ) < 1, which is equivalent to
1
p −

1
q < θ(1− 1

q ), follows from the last of the four constraints in (168).

Note that by the third item of (167) we have r̃′ < r̃, so that by Lemma 7.5 there
holds Cp̃,r̃′,r̃(τ) .

√
τ
d. On the other hand, by complex interpolation, there holds

Cp,r′,r(τ) ≤ C1−θ
q,s′,s(τ) Cθp̄,r̃′,r̃(τ). This yields (169).

• •• • •0 1
1
q

1
p

1
p̃

θ 1− θ

• •• • •0
1
2

1
r̃′

1
r′

1
s′

1− θ θ

• •• • •0
1
2

1
r̃

1
r

1
s

1− θ θ

Figure 3. Exponents p, p̃, q, r, r′, r̃, r̃′, s, s′ in the case p ≤ q.

Part 4: Conclusion, i.e. proof of (126). Let us start by rewriting (168) in terms of
θ  θ

2d in the more iterable (but equivalent) form of

(1− θ
2d ) 2

s <
2
r , (1− θ

2d ) 2
s′ <

2
r′ , (1− θ

2d ) 2
q <

2
p ,

and (1− θ
2d )(2− 2

q ) < 2− 2
p .

(171)

In a first step, we apply Part 3 with (q, s′, s) = (2, 2, 2), feeding in the pivotal
estimate (129), so that (169) assumes the form

Cp,r′,r(τ) .
√
τ

1
2 θ for all τ ≥ 1.(172)

In view of (171), such a θ < 1 exists provided the triplet (p, r′, r) ∈ (1,∞)× [2,∞)2

of exponents is sufficiently to (2, 2, 2) in the sense of

2−
(
1− 1

2d

)
= 1 +

1

2d
>

2

p
> 1− 1

2d
and 1 ≥ 2

r′
>

2

r
> 1− 1

2d
,(173)

We take this as input (162) yielding by (163) the output

Cp,r′,r(τ) . 1 for all τ ≥ 1(174)

in the same range (173) of exponents.

In the second step, we feed (174) with (p, r′, r) playing the role of (q, s′, s) into
(169). In view of (171), this yields (172) and ultimately (174) in the extended
range of

2−
(
1− 1

2d

)2
>

2

p
>
(
1− 1

2d

)2 and 1 ≥ 2

r′
>

2

r
>
(
1− 1

2d

)2
.
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Obviously, we may reach any arbitrary triplet (p, r′, r) of exponents in (1,∞) ×
[2,∞)2 with r′ < r by a finite number of such steps. By a duality argument and
Jensen’s inequality we finally obtain (126) for any triplet (p, r′, r) of exponents in
(1,∞)3 with 1 ≤ r′ < r. �

Proof of Proposition 7.1(ii). Given f , we consider the sequence of solutions uT to
(106) for g = 0. By Proposition 7.3, such functions have their gradients uniformly
bounded in LpRd

(
Lr
′

〈·〉
)
. Therefore, as T ↑ ∞, there exists ∇u∞ ∈ LpRd

(
Lr
′

〈·〉
)
such

that, for a subsequence, there holds

∇uT ⇀ ∇u∞ in LpRd(Lr
′

〈·〉).

By lower semi-continuity of the norm of LpRd
(
Lr
′

〈·〉
)
, ∇u∞ inherits (103) from the

estimates (125) and (126) satisfied by ∇uT . Moreover, by the energy estimate, cf.
(139), there holds

1

T

ˆ
u2
T +

ˆ
|∇uT |2 .

ˆ
|f |2,

which implies

1

T
uT → 0 in L2(Rd).

As a consequence, the limit ∇u∞ of the sequence ∇uT is a weak solution to (101)
(since ∇u∞ is square-integrable, it is the only solution). �

7.5. Proof of the stochastic estimates of the massive correctors. The proof
of Lemma 7.2 follows the same scheme as the proof of Proposition 4.1, with minor
modifications due to the presence of the massive term. We introduce the abbrevi-
ation

Λr :=
〈(
−
ˆ

B1

∣∣( φT√
T
,∇φT

)∣∣2)r〉 1
r

for r ∈ [1,∞).(175)

In Step 1, we momentarily fix some deterministic function g and vector field f
and we derive a representation formula for the Malliavin derivatives of the random
variables F and F ? defined by

(176) F :=

ˆ (
− 1

T
gφT,j + f · ∇φT,j

)
and F ? :=

ˆ
f · (qT,j − 〈qT,j〉).

(We henceforth omit the index j.) Using the spectral gap (32), we establish in
Step 2 that these satisfy the following estimate:

〈|(F, F ?)|2r〉 1
r . Λr

ˆ ∣∣( g√
T
, f
)∣∣2 provided r � 1.(177)

In Step 3, we argue that, if the stationary vector fields u, f , and g are related
through (106), then there exists θ = θ(d, λ) > 0 such that, for all R > 0, the
following annealed Caccioppoli estimate holds

(178)
〈(
−
ˆ

BR

∣∣( u√
T
,∇u

)∣∣2)r〉 . 〈∣∣( g√
T
, f
)∣∣2r〉+

〈∣∣∣−ˆ
BθR

( u√
T
,∇u

)∣∣∣2r〉.
Then, in Step 4, we buckle on Step 2 and Step 3 (where φT plays the role of u) to
obtain

Λr . 1,(179)
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which yields that ∇φT satisfies (119) by local regularity. In Step 5, we argue that
(177) and (179) imply 〈∣∣∣ˆ

B1

(
φT , σT ,

ψT√
T

)∣∣∣2r〉 1
r

. µ2
d(
√
T ),(180) 〈∣∣∣ ˆ

B1

(
∇σT ,

∇ψT√
T

)∣∣∣2r〉 1
r

. 1.(181)

In Step 6, we show that also ∇σT and ∇ψT satisfy (119). Last, in Step 7, we argue
that (180) and (119) imply (120).

Step 1: Representation formulas of the Malliavin derivatives. The starting point is
provided by the following representation formulas of the Malliavin derivatives:

∂F

∂a
= ∇v ⊗ (e+∇φT ),(182)

∂F ?

∂a
= (f +∇v?)⊗ (e+∇φT ),(183)

where v and v? are defined through
1

T
v −∇ · a?∇v =

1

T
g +∇ · f,(184)

1

T
v? −∇ · a?∇v? = ∇ · a?f.

Here comes the argument for (182) ((183) is justified exactly the same way). Given
a smooth and compactly supported infinitesimal variation δa of a, we have for the
generated infinitesimal variation of F

δF
(176)
=

ˆ (
− 1

T
gδφT + f · ∇δφT

) (184)
= −

ˆ
1

T
vδφT +∇v · a∇δφT .

Now, differentiating the definition (114) of φT entails

1

T
δφT −∇ · a∇δφT = ∇ · δa(e+∇φT ),(185)

which we test against v, obtaining (182) in form of

δF =

ˆ
∇v · δa(e+∇φT ).

Step 2: Proof of (177). We now derive (177) from (182) and (183), focusing on
F , since the argument for F ? is similar. Since φT is stationary, so that ∇φT and
∇·a(e+∇φT ) have vanishing expectations and thus also 1

T φT by (114), the random
variable F is of vanishing expectation. Therefore, by the spectral gap (32), invoking
a duality argument, the Hölder inequality, the stationarity of ∇φT , and Jensen’s
inequality, we obtain:

(186)

〈F 2r〉 1
r . sup

〈G2r? 〉≤1

〈ˆ (
−
ˆ

B1(x)

|(G∇v)⊗ (e+∇φT )|
)2

dx
〉

≤ sup
〈G2r? 〉≤1

ˆ 〈(
−
ˆ

B1(x)

|G∇v|2
)r?〉 1

r?
〈(
−
ˆ

B1(x)

|e+∇φT |2
)r〉 1

r

dx

(175)
≤ (Λr + 1) sup

〈G2r? 〉≤1

ˆ 〈(
−
ˆ

B1(x)

|G∇v|2
)r?〉 1

r?

dx

(55)
≤ (Λr + 1) sup

〈G2r? 〉≤1

ˆ
〈|G∇v|2r

?

〉 1
r? dx.
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Using annealed CZ estimates on (184) or rather on 1
TGv − ∇ · a

?∇Gv = 1
TGg +

∇ ·Gf (the perturbative proof of which, based on (128), is similar to the proof of
Proposition 7.1(i) relying on Lemma 7.4), provided r? − 1� 1, we have

ˆ
〈|G∇v|2r

?

〉 1
r? .

ˆ 〈∣∣G( g√
T
, f
)∣∣2r?〉 1

r?

= 〈G2r?〉 1
r?

ˆ ∣∣( g√
T
, f
)∣∣2.

Inserting this into (186) yields (177).

Step 3: Proof of (178). Let R′ ≤ R (to be fixed later). We denote by uR′ the
mollification of u on scale R′ by averaging on balls of radius R′ (see (59)). By the
Caccioppoli estimate (see Lemma A.1), for all constants c, we have

−
ˆ

BR

∣∣(u− c√
T
,∇u

)∣∣2 . −ˆ
B2R

∣∣(g − c√
T
, f,

u− c
R

)∣∣2.
Choosing c = −́

B2R
uR′ and invoking (60) (replacing R R/2), we obtain

−
ˆ

BR

∣∣( u√
T
,∇u

)∣∣2 . −ˆ
B4R

∣∣( g√
T
, f,

uR′√
T
,∇uR′

)∣∣2 +
(R′
R

)2−ˆ
B4R

|∇u|2,

of which we take the r-th moments:〈(
−
ˆ

BR

∣∣( u√
T
,∇u

)∣∣2)r〉
.
〈(
−
ˆ

B4R

∣∣( g√
T
, f,

uR′√
T
,∇uR′

)∣∣2)r〉+
(R′
R

)2r〈(−ˆ
B4R

|∇u|2
)r〉

.

By the triangle inequality and using the stationarity of ∇u, which implies the
estimate 〈(−́

B4R
|∇u|2)r〉 . 〈(−́

BR
|∇u|2)r〉, cf. (62), and choosing R′ = θR with

θ � 1, we may absorb the second r. h. s. term into the l. h. s. :〈(
−
ˆ

BR

∣∣( u√
T
,∇u

)∣∣2)r〉 . 〈(−ˆ
B4R

∣∣( g√
T
, f,

uθR√
T
,∇uθR

)∣∣2)r〉.
Finally, by Jensen’s inequality and the stationarity of u, f , and g, we get (178).

Step 4: Proof of (179) and (119) for ∇φT . By the same reasoning based on the
stationarity of (φT ,∇φT ) as the one leading to (57), we get

Λr . R
d(1− 1

r )
〈(
−
ˆ

B2R

∣∣( φT√
T
,∇φT

)∣∣2)r〉 1
r

for R� 1.

Inserting (178), where we replace (u, g, f) (φT , 0, ae), into this estimate yields

Λr . R
d(1− 1

r )
(〈∣∣∣−ˆ

BθR

( φT√
T
,∇φT

)∣∣∣2r〉 1
r

+ 1
)
.(187)

On the other hand, setting g :=
√
T1BR and f := 1BRej for j ∈ {1, · · · , d}, we

obtain from (177) that 〈∣∣∣−ˆ
BR

( φT√
T
,∇φT

)∣∣∣2r〉 1
r

. ΛrR
−d.

Inserting this (for R θR) into (187) yields

Λr . R
− dr Λr +Rd(1− 1

r ) for R� 1.

Hence, we may absorb the first r. h. s. term and obtain (179). By Hölder regular-
ity of the coefficient field, namely by Lemma A.3 (in which we replace the fields
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(u, f) and the exponents (q, α) by (φT , a · e) and (2, α/2), respectively), the Hölder
inequality, and Lemma 3.1, estimate (179) may be upgraded to

〈|∇φT |2r〉
1
r

(211)
.
〈

(1 + ‖a‖
C
α
2 (B1)

)
2r
α ( d2 +1)

(
1 +−
ˆ

B1

∣∣( φT√
T
,∇φT

)∣∣2)r〉 1
r

≤
〈
(1 + ‖a‖

C
α
2 (B1)

)
4r
α ( d2 +1)

〉 α

4r( d
2

+1)

〈(
1 +−
ˆ

B1

∣∣( φT√
T
,∇φT

)∣∣2)2r〉 1
2r

(33),(179)
. 1.

Step 5: Proof of (180) and (181). Fixing i, j, k, l ∈ {1, · · · , d}, we introduce the
auxiliary functions( 1

T
−∆

)
ū = 1B1

and
( 1

T
−∆

)
v̄ = −∇ · (1B1

el),

so that by the symmetry of 1
T −∆ and the definitions (115) and (117) of σT and

ψT , we obtain the representationsˆ
B1

φT =

ˆ ( 1

T
gφT − f · ∇φT

)
for (g, f) := (ū,−∇ū),

ˆ
B1

σT,ijk =

ˆ
f · (qT,i − 〈qT,i〉) for f := ∂kūej − ∂j ūek,

ˆ
B1

ψT,ij =

ˆ
f · (qT,i − 〈qT,i〉 − ∇φT,i) for f := ūej ,

ˆ
B1

∂lσT,ijk =

ˆ
f · (qT,i − 〈qT,i〉) for f := ∂kv̄ej − ∂j v̄ek,

ˆ
B1

∂lψT,ij =

ˆ
f · (qT,i − 〈qT,i〉 − ∇φT,i) for f := v̄ej .

Hence (180) and (181) follow from (177) and (179) via the standard estimatesˆ ∣∣( ū√
T
,∇ū

)∣∣2 . µ2
d(
√
T ) and

ˆ ∣∣( v̄√
T
,∇v̄

)∣∣2 . 1.

Step 6: Proof of (119) for ∇σT and ∇ψT . The argument, similar to Part 2, Step 2
of the proof of Proposition 4.1, is the same for σT and ψT ; therefore we only show
(119) for ∇σT .

By local CZ estimate (210) (replacing (p, q)  (2r, 2)) for the constant-coefficient
operator 1

T −∆ applied to the equation (115), there holds

−
ˆ

BR

∣∣( σT√
T
,∇σT

)∣∣2r . −ˆ
B2R

|qT |2r +
(
−
ˆ

B2R

∣∣( σT√
T
,∇σT

)∣∣2)r.
By ergodicity and stationarity of σT and qT , when R ↑ ∞, each of these spatial
averages converges almost surely to the associated expectation (this is a consequence
of the Birkhoff theorem). Hence

(188)
〈∣∣( σT√

T
,∇σT

)∣∣2r〉 . 〈|qT |2r〉+
〈∣∣( σT√

T
,∇σT

)∣∣2〉r.
Moreover, since the constant-coefficient operator 1

T − ∆ obviously satisfies the
weighted energy estimate (137) (for a weight ωT defined by (138) for C �d 1),
there holds ˆ

ωT
〈∣∣( σT√

T
,∇σT

)∣∣2〉 . ˆ ωT
〈
|qT |2

〉
,
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from which we deduce〈∣∣( σT√
T
,∇σT

)∣∣2〉 . 〈|qT |2〉 (116),(119)
. 1.

Inserting this estimate into (188) finally yields the desired estimate (119) for ∇σT .

Step 7: Proof of (120). We finally pass from (180) to (120) with help of (119).
Since the proof is similar for φT , σT and ψT , we only treat φT . Appealing to a
Sobolev embedding in form of

|φT (0)|2r . −
ˆ

B1

|∇φT |2r +
∣∣∣−ˆ

B1

φT

∣∣∣2r,
which holds provided 2r > d, and to the stationarity of ∇φT , we obtain the desired
estimate:

〈φ2r
T 〉

1
r . 〈|∇φT |2r〉

1
r +

〈∣∣∣−ˆ
B1

φT

∣∣∣2r〉 1
r

(119),(180)
. µ2

d(
√
T ).

�

7.6. Alternative approach via quenched CZ estimates. We describe here
another approach in order to obtain annealed CZ estimates; we restrict our expla-
nation to a special case of Proposition 7.1(ii), namely specifying r′  p in (103):ˆ

〈|∇u|p〉 .γ,p,r
ˆ
〈|f |r〉

p
r provided 1 < p < r <∞.(189)

This strategy, which is close to [13, Prop. 6.4] and inspired by periodic homoge-
nization (see the recent monograph [40, Th. 4.3.1, p. 83]), is quite different from
the one of previous section. However, it involves two important concepts:

• the minimal radius r?, above which homogenization kicks in,
• the quenched CZ estimates (i.e. deterministic or pathwise estimates).

The very difference between the strategy exposed here and [13, Prop. 6.4] is that
we do not need the full strength of the Lipschitz regularity theory to get quenched
estimates; on the contrary, we only rely on the weaker result Proposition 2.1.

The first idea is to build a random stationary field of minimal radii r? above which
homogenization kicks in the sense of Proposition 2.1 (see [20, Th. 1]):

Lemma 7.6 (Minimal radius r?). For every δ > 0, there exists a random stationary
field r? ≥ 1 such that:

(i) For all R ≥ r?(x), we have

1

R

(
−
ˆ

BR(x)

|(φ, φ?, σ, σ?)−−
ˆ

BR(x)

(φ, φ?, σ, σ?)|2
) 1

2 ≤ δ.

(ii) For all p <∞ there holds
〈rp?〉 .γ,p,δ 1.

(iii) The function x 7→ r?(x) is (almost surely) 1
2 -Lipschitz.

In establishing (ii), the control of moments of (φ, σ) provided by Proposition 4.1
plays a crucial role.

Next, appealing to a CZ decomposition [40, Th. 4.3.1, p. 83], a global quenched Lp

estimate (see also [13, Prop. 6.4]) may be obtained:
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Lemma 7.7 (Quenched CZ estimates). For every p ∈ (1,∞), there exists a con-
stant δ = δ(d, λ, p) > 0 such that, for the associated r? defined in Lemma 5.2, we
have:

If ∇u and f are square-integrable random vector fields related by

∇ · (a∇u+ f) = 0,

then the following quenched estimates hold:ˆ (
−
ˆ

Br?(x)(x)

|∇u|2
)p

dx .γ,p,δ

ˆ (
−
ˆ

Br?(x)(x)

|f |2
)p

dx.(190)

Finally, Proposition 7.1(ii) is obtained in two steps:

• first, the quenched estimate (190) is upgraded to an annealed estimate
thanks to the control on the minimal radius r? (at the price of a loss in
stochastic integrability),

• then, an interpolation argument between the previous estimate and (102)
establishes (189).
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Appendix A. Standard regularity theory

A.1. Caccioppoli estimate. For the convenience of the reader, we reproduce the
proof of the classical Caccioppoli estimate (see for instance [16, Th. 4.4, p. 63] for
the massless operator):

Lemma A.1. Let T ∈ [1,+∞], and R > 0. Assume that the coefficient field a
satisfies (1). If u solves

1

T
u−∇ · a∇u =

1

T
g +∇ · f in BR,(191)

then, for any constant c, there holds

(192) −
ˆ

BR/2

∣∣(u− c√
T
,∇u

)∣∣2 . −ˆ
BR

∣∣(g − c√
T
, f,

u− c
R

)∣∣2.
Proof. We select a smooth function η supported in BR with values in [0, 1] such that
η = 1 in BR/2 and |∇η| . R−1. Note that (191) is invariant under the substitution
(u, g) (u+ c, g + c). Hence, w. l. o. g. we show only (192) for c = 0. Testing
(191) with η2u, we get by Leibniz’ rule in form of ∇(η2u) = η2∇u+ 2ηu∇η that

1

T
−
ˆ

BR

η2u2 +−
ˆ

BR

η2∇u · a∇u

= −2−
ˆ

BR

ηu∇η · a∇u+
1

T
−
ˆ

BR

η2ug −−
ˆ

BR

η2f · ∇u− 2−
ˆ

BR

ηuf · ∇η.

Using the uniform ellipticity (1) of a for the l. h. s. and the Cauchy-Schwarz in-
equality for the r. h. s. (recalling that η ≤ 1 and |∇η| . R−1), we obtain

−
ˆ

BR

∣∣( ηu√
T
, η∇u

)∣∣2
.
(
−
ˆ

BR

( u
R

)2) 1
2
(
−
ˆ

BR

|η∇u|2
) 1

2

+
(
−
ˆ

BR

( g√
T

)2) 1
2
(
−
ˆ

BR

( ηu√
T

)2) 1
2

+
(
−
ˆ

BR

|f |2
) 1

2
(
−
ˆ

BR

|η∇u|2
) 1

2

+
(
−
ˆ

BR

|f |2
) 1

2
(
−
ˆ

BR

( u
R

)2) 1
2

.

By the Young inequality, we may absorb the r. h. s. integrals −́
BR
|η∇u|2 and

−́
BR

(
ηu√
T

)2 into the l. h. s., obtaining (192) for c = 0 (since η = 1 in BR/2). �



THE ANNEALED CALDERÓN-ZYGMUND ESTIMATE IN HOMOGENIZATION 51

A.2. A Sobolev estimate.

Proof of (36). The basis for (36) is a Sobolev embedding in the form of

sup
B1(x)

ζ2 .
( ˆ

B2(x)

∑
n=0

|∇nζ|2
) 1

2
(ˆ

B2(x)

ζ2
) 1

2

,(193)

which by Cauchy-Schwarz, an identity of the type of (55), and Plancherel leads to
ˆ

sup
B1(x)

ζ2dx .
(ˆ

(1 + |k|)2d|Fζ|2dk
) 1

2
( ˆ
|Fζ|2dk

) 1
2

.(194)

Under additional conditions on the support of the Fourier transform in form of
supp(Fζ) ⊂ {1 ≤ R|k| < 2}, this yieldsˆ

sup
B1(x)

ζ2dx . R2α

ˆ
(1 + |k|)d+2α|Fζ|2dk

and if supp(Fζ) ⊂ {|k| < 1}, thenˆ
sup

B1(x)

ζ2dx .
ˆ

(1 + |k|)d+2α|Fζ|2dk.

Hence (36) follows from decomposing ζ in Fourier space accordingly (i.e. with
R = 2−n, n = 0, 1, · · · ) and using the triangle inequality on the l. h. s. norm in
(194). The sum over n converges since α > 0.

Here comes the proof of (193). Without loss of generality, we may assume that ζ
has a support in B2 (if not, we may just multiply it by a cut-off function and appeal
to the Leibniz’ rule). Then, using the Fourier transform5 and separating small and
large wavelengths according to a parameter R > 0, we obtain

sup
B1(x)

|ζ| ≤ 1

(2π)d

ˆ
|Fζ| = 1

(2π)d

( ˆ
|k|≤R

|Fζ|dk +

ˆ
|k|>R

|Fζ|dk
)

. R
d
2

( ˆ
|Fζ|2dk

) 1
2

+R−
d
2

( ˆ
(1 + |k|)2d|Fζ|2dk

) 1
2

. R
d
2

( ˆ
B2(x)

ζ2
) 1

2

+R−
d
2

(ˆ
B2(x)

(|∇dζ|2 + ζ2)
) 1

2

.

We now obtain (193) by optimizing in R. �

A.3. Small scale regularity results.

A.3.1. Hölder regularity of the Gaussian field.

Proof of (33). We first argue that it is enough to establish

〈(g(h)− g(0))2〉 . |h|2α.(195)

Indeed, since g is Gaussian, (195) yields 〈|g(h) − g(0)|r〉 1
r . |h|α, likewise, 〈g2(0)〉

= c(0) . 1 yields 〈|g(0)|r〉 1
r . 1. Hence, by stationarity, we obtain〈 ˆ

B2

ˆ
B2

( |g(x+ h)− g(x)|
|h|α′′

)r dh

|h|d
dx+

ˆ
B2

|g|r
〉
. 1

5see footnote 1 p. 15 for the normalization of the Fourier transform
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for all r ∈ [1,∞) and α′′ < α, which with help of a smooth cut-off function η for
B1 in B2 we rewrite as〈ˆ

Rd

ˆ
B2

( |(ηg)(x+ h)− (ηg)(x)|
|h|α′′

)r dh

|h|d
dx+

ˆ
Rd
|ηg|r

〉
. 1.

This amounts to an estimate of ηg in the Besov space Bα
′′

r,r(Rd) cf. [7, Th. 2.36,
p. 74], which embeds into a Hölder space Cα

′
(Rd) for any α′ < α′′ provided r is

sufficiently large (see [7, Prop. 2.71, p. 99] and [7, p. 99, Examples]). Therefore,
(195) implies (33).

Estimate (195) can be seen as follows:

〈(g(x)− g(0))2〉 = 2c(0)− c(x)− c(−x)

=
4

(2π)d

ˆ
sin2

(k · x
2

)
(Fc)dk

(30)

≤ 4

(2π)d

ˆ
min

{ |k|2|x|2
4

, 1
}
|k|−d−2αdk

=
4

(2π)d
|x|2α

ˆ
min{|k̂|2, 1}|k̂|−d−2αdk̂,

where the last integral converges because of α ∈ (0, 1). �

A.3.2. Small-scale annealed CZ estimates for ensembles of Hölder continuous coef-
ficients. We recall the norms (124) and (131) and state the following:

Lemma A.2. Let the ensemble 〈·〉 be defined as in Section 3.2 and T ≥ 1. Assume
that the square-integrable functions u, f , and g are related through

(196)
1

T
u−∇ · a∇u =

1

T
g +∇ · f.

(i) For q, p ∈ (1,∞) and 1 ≤ r′ < r <∞ we have

(197)
∥∥( u√

T
,∇u

)∥∥
p,r′
.γ,q,p,r′,r

∥∥( u√
T
,∇u

)∥∥
p,r,q

+
∥∥( g√

T
, f
)∥∥
p,r
.

(ii) For q ∈ (1, 2] and r > 2 we have

(198)
∥∥( u√

T
,∇u

)∥∥
2,2,q
.γ,q,r

∥∥( g√
T
, f
)∥∥

2,r,q
.

Proof. We split the proof of Lemma A.2 into two independent parts.

Part 1: Proof of (197). Let q, p, r′ be as in the statement, and choose r′′ ∈ (r′, r).
W. l. o. g. we may assume that q ≤ min{r′, p} (the other case q ≥ min{r′, p} can
be recovered from the former one by Jensen’s inequality).

The proof is divided into three steps. In Step 1, we define a (small) random radius
ρ? below which we may apply classical regularity theory. In Step 2, we define a
splitting of u by means of which we establish (197), admitting the estimate that for
any F = F (a) and y ∈ Rd

(199)
〈
|F |r

′〉 p
r′ .

ˆ 〈
1B ρ?(x)

2

(x)(y)|F |r
′′〉 p

r′′ dx,

which we derive in Step 3.
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Part 1, Step 1: Definition of the radius ρ?. Let δ ≤ 1 (to be fixed in Step 2). We
introduce the (local) radius below which a does not vary much:

(200) ρ?(x) := sup
{
ρ ≤ 1, sup

y,y′∈Bρ(x)

|a(y)− a(y′)| ≤ δ
}
.

Note that by (33) we have 0 < ρ?(x) ≤ 1 〈·〉-almost-surely; furthermore, ρ? is
stationary. We claim that ρ? is bounded by below in the sense of

(201) 〈ρ−s? 〉
1
s .γ,s,δ 1 for all s ∈ [1,∞).

By stationarity, we may assume that x = 0 (we omit this variable in the expressions
below), and estimate ρ? by the easier quantity

ρ̃? := min
{1

2

( δ

‖a‖
C
α
2 (B1)

) 2
α

, 1
}
.

Indeed we have ρ? ≥ ρ̃? because, if y, y′ ∈ Bρ̃? ⊂ B1 then

|a(y)− a(y′)| ≤ ‖a‖
C
α
2 (B1)

|y − y′|α2 ≤ ‖a‖
C
α
2 (B1)

(2ρ̃?)
α
2 ≤ δ.

Therefore (201) is a consequence of (33):

〈ρ−s? 〉
1
s ≤ 〈ρ̃−s? 〉

1
s .γ,s,δ

〈
‖a‖

2s
α

C
α
2 (B1)

〉 1
s

(33)
. γ,s,δ 1.

Part 1, Step 2: Splitting and argument for (197). We introduce

B?(x) := Bρ?(x)(x), g̃x := 1B1(x)g, f̃x := 1B1(x)f,

and ãx(y) :=

{
a(y) if y ∈ B?(x),

a(x) otherwise.

Accordingly, we freeze the variable x and define ũx as the solution to
1

T
ũx −∇ · ãx∇ũx =

1

T
g̃x +∇ · f̃x,

where the operator ∇ acts on the variable y. This combines with (196) to

(202)
1

T
(ũx − u)−∇ · a∇(ũx − u) = 0 in B?(x).

First, we estimate ũx. Since by definition (200) of ρ?, we have ‖ãx − a(x)‖L∞ ≤ δ,
by a perturbative argument à la Meyers as in the proof Proposition 7.1(i), there
holds for δ �d,λ,p,q,r′′ 1ˆ ∣∣( ũx√

T
,∇ũx

)∣∣q . ˆ
B1(x)

∣∣( g√
T
, f
)∣∣q,(203)

ˆ 〈∣∣( ũx√
T
,∇ũx

)∣∣r′′〉 p
r′′ .

ˆ
B1(x)

〈∣∣( g√
T
, f
)∣∣r′′〉 p

r′′ .(204)

Second, we estimate∇u−∇ũx. Using Lemma A.3, more precisely a rescaled version
of (212) for α α

2 , on (202), the triangle inequality and (203), there also holds

sup
1
2 B?(x)

∣∣∣(u− ũx√
T

,∇u−∇ũx
)∣∣∣

(212)
.
(
1 + ρ

α
2
? (x)‖a‖

C
α
2 (B?(x))

) 2
α ( dq+1)

(
−
ˆ

B?(x)

∣∣∣(u− ũx√
T

,∇u−∇ũx
)∣∣∣q) 1

q

(200),(203)
.

(
1 + ‖a‖

C
α
2 (B?(x))

) 2d
qα ρ
− dq
? (x)

(
−
ˆ

B1(x)

∣∣( g√
T
, f,

u√
T
,∇u

)∣∣q) 1
q

.
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Taking the Lr
′′

〈·〉-norm of this estimate and using the Hölder inequality followed by
(33) and (201) yields

(205)

〈
sup

1
2 B?(x)

∣∣∣(u− ũx√
T

,∇u−∇ũx
)∣∣∣r′′〉 1

r′′

.
〈(
−
ˆ

B1(x)

∣∣( g√
T
, f,

u√
T
,∇u

)∣∣q) rq 〉 1
r

.

Finally, momentarily fixing a y ∈ Rd, which we suppress in most of the notation,
by (199) (for F := (u(y)√

T
,∇u(y))) followed by the triangle inequality, there holds

〈∣∣( u√
T
,∇u

)∣∣r′〉 pr′ . ˆ 〈1 1
2 B?(x)

∣∣( ũx√
T
,∇ũx

)∣∣r′′〉 p
r′′ dx

+

ˆ 〈
1 1

2 B?(x)

∣∣(u− ũx√
T

,∇u−∇ũx
)∣∣r′′〉 p

r′′ dx.

Integrating this in the y variable (recall that ρ? ≤ 1), and using (204), (205), and
the definitions of the norms (124) and (131) yieldsˆ 〈∣∣( u√

T
,∇u

)∣∣r′〉 pr′ . ˆ ˆ 〈∣∣( ũx√
T
,∇ũx

)∣∣r′′〉 p
r′′ dx

+

ˆ ˆ 〈
1 1

2 B?(x)

∣∣(u− ũx√
T

,∇u−∇ũx
)∣∣r′′〉 p

r′′ dx

(204),(205)
.

ˆ ˆ
B1(x)

〈∣∣( g√
T
, f
)∣∣r′′〉 p

r′′ dx

+

ˆ 〈(
−
ˆ

B1(x)

∣∣( g√
T
, f,

u√
T
,∇u

)∣∣q) rq 〉 pr dx.

By definition of the norms (124), this assumes the form∥∥( u√
T
,∇u

)∥∥
p,r′

(55),(131)
.

∥∥( g√
T
, f
)∥∥
p,r′′

+
∥∥( g√

T
, f,

u√
T
,∇u

)∥∥
p,r,q

.

By the estimates (133) and (134) (recall that r′′ ≤ r and q ≤ min{p, r}), we have∥∥( g√
T
, f
)∥∥
p,r′′

+
∥∥( g√

T
, f
)∥∥
p,r,q
.
∥∥( g√

T
, f
)∥∥
p,r
.

This yields the desired estimate (197).

Part 1, Step 3: Argument for (199). By the Hölder inequality in space (based on
ρ? ≤ 1) followed by Jensen’s inequality, there holds

(206)

(ˆ 〈
1 1

2 B?(x)(y)|F |r
′′〉 p

r′′ dx
) 1
p

&
ˆ 〈

1 1
2 B?(x)(y)|F |r

′′〉 1
r′′ dx

≥
〈(ˆ

1 1
2 B?(x)(y)dx|F |

)r′′〉 1
r′′
.

Note that if x ∈ 1
3B?(y) then B 2

3ρ?(y)(x) ⊂ B?(y). Indeed, if z ∈ B 2
3ρ?(y)(x), then

we have by the triangle inequality |z− y| ≤ |z− x|+ |x− y| < ρ?(y). Therefore, by
definition (200) of ρ?, this implies that ρ?(x) ≥ 2

3ρ?(y) and in particular y ∈ 1
2B?(x).

As a consequence, there holdsˆ
1 1

2 B?(x)(y)dx ≥
ˆ

1
4 B?(y)

dx & ρ?(y)d.
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Inserting this estimate into (206), we get

(207) 〈ρ?(y)r
′′d|F |r

′′
〉 1
r′′ .

( ˆ 〈
1 1

2 B?(x)(y)|F |r
′′〉 p

r′′ dx
) 1
p

.

Finally, by the Hölder inequality we obtain

〈|F |r
′
〉 1
r′ = 〈(ρ?(y)d|F |)r

′
ρ?(y)−dr

′
〉 1
r′ ≤ 〈ρ?(y)r

′′d|F |r
′′
〉 1
r′′
〈
ρ?(y)−d

r′r′′
r′′−r′

〉 r′′−r′
r′′r′ ,

whence, by (201) (for s d r′r′′

r′′−r′ ),

〈|F |r
′
〉 1
r′ .

〈
ρ?(y)r

′′d|F |r
′′〉 1

r′′ .

Inserting (207) into the above estimate, we obtain (199).

Part 2: Proof of (198). By duality, it is sufficient to establish for p ∈ [2,∞) and
r < 2 that ∥∥( u√

T
,∇u

)∥∥
2,r,p
.
∥∥( g√

T
, f
)∥∥

2,2,p
.(208)

In order to establish this, we appeal to Lemma A.3, more precisely (210) for q = 2,
with α replaced by some 0 < α′ < α (which we now fix), and with the origin
replaced by a general point x ∈ Rd:∥∥( u√

T
,∇u

)∥∥
Lp(B1(x))

. ‖a‖
1
α′ (

d
2−

d
p )

Cα′ (B2(x))

∥∥( u√
T
,∇u

)∥∥
L2(B2(x))

+
∥∥( g√

T
, f
)∥∥

Lp(B2(x))
.

We first take the Lr〈·〉-norm; by (33) in Lemma 3.1 (note that the shift by x is
irrelevant by stationarity) in conjunction with Hölder’s inequality (recall r < 2) for
the first r. h. s. term (and Jensen’s inequality on the second) we obtain∥∥∥∥( u√

T
,∇u

)∥∥
Lp(B1(x))

∥∥
Lr〈·〉

.
∥∥∥∥( u√

T
,∇u

)∥∥
L2(B2(x))

∥∥
L2
〈·〉

+
∥∥∥∥( g√

T
, f
)∥∥

Lp(B2(x))

∥∥
L2
〈·〉
.

We next take the L2(Rd)-norm (in x) of this: On the l. h. s. we use the definition
(131) and on both r. h. s. terms we use (136), to the effect of∥∥( u√

T
,∇u

)∥∥
2,r,p
.
∥∥( u√

T
,∇u

)∥∥
2,2,2

+
∥∥( g√

T
, f
)∥∥

2,2,p
.

It remains to appeal to the energy estimate (140), Hölder’s inequality in the inner
space variable, in conjunction with a version of (55) to obtain (208):∥∥( u√

T
,∇u

)∥∥
2,2,2

(55)
=
∥∥( u√

T
,∇u

)∥∥
2,2

(140)
.
∥∥( g√

T
, f
)∥∥

2,2

(55)
=
∥∥( g√

T
, f
)∥∥

2,2,2
.
∥∥( g√

T
, f
)∥∥

2,2,p
.

�

A.3.3. Local estimates for Hölder continuous coefficients. The interest of the local
CZ and Schauder estimates below is the explicit, polynomial dependence on the
Hölder norm of the coefficient field a. A secondary aspect is the uniformity in the
massive parameter T . The ingredients are classical; we give an argument for the
convenience of the reader.
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Lemma A.3. Let α ∈ (0, 1), and let a ∈ Cα(B1) satisfy (1). For T ≥ 1, we assume
that the functions u, g, and the vector field f satisfy the relation

1

T
u−∇ · a∇u =

1

T
g +∇ · f in B2.(209)

For 1 < q ≤ p <∞ we claim that

(210)

∥∥( u√
T
,∇u

)∥∥
Lp(B1)

.d,λ,α,p,q ‖a‖
1
α ( dq−

d
p )

Cα(B2)

∥∥( u√
T
,∇u

)∥∥
Lq(B2)

+
∥∥( g√

T
, f
)∥∥

Lp(B2)
,

and, provided g ≡ 0,

(211)

∥∥( u√
T
,∇u

)∥∥
Cα(B1)

.d,λ,α,q ‖a‖
1
α ( dq+1)

Cα(B2)

∥∥( u√
T
,∇u

)∥∥
Lq(B2)

+ ‖a‖
1
α−1

Cα(B2)‖f‖Cα(B2).

In case of g = 0 and f = 0, since T ≥ 1, (211) implies

(212)
∥∥( u√

T
,∇u

)∥∥
L∞(B1)

.d,λ,α,q ‖a‖
1
α ( dq+1)

Cα(B2)

∥∥( u√
T
,∇u

)∥∥
Lq(B2)

.

Proof. The strategy of the proof is the following: First, assuming the additional
condition [a]Cα(B2) ≤ 1, we prove in Step 1 and 2 that (210) and (211) hold. In
Step 3, we make use of a rescaling in order to apply the previous result and finally
get (210) and (211) in full generality.

Step 1: Proof of statement under an additional assumption. Provided

[a]Cα(B2) ≤ 1(213)

we claim ∥∥( u√
T
,∇u

)∥∥
Lp(B1)

.
∥∥( u√

T
,∇u

)∥∥
Lq(B2)

+
∥∥( g√

T
, f
)∥∥

Lp(B2)
,(214)

and, in case of g ≡ 0,∥∥( u√
T
,∇u

)∥∥
Cα(B1)

.
∥∥( u√

T
,∇u

)∥∥
Lq(B2)

+ ‖f‖Cα(B2).(215)

Here comes the argument: We split u = v + w with help of the Dirichlet problem
1

T
v −∇ · a∇v =

1

T
g +∇ · f in B2, v = 0 on ∂B2,(216)

so that in view of (209), w satisfies
1

T
w −∇ · a∇w = 0 in B2.(217)

By standard CZ and Schauder theory for (216) (see [16, Th. 7.2 p. 140], and [17,
Chap. 8 p. 177-218] or [16, Chap. 5 p. 75-96], respectively), which is not affected
by the presence of the massive term with T ≥ 1 (as for instance can be seen by
expressing the solution operator in terms of the semi-group and appealing to the
parabolic version of the theory), we have in case of g ≡ 0,

‖∇v‖Lp(B2) . ‖f‖Lp(B2) and ‖∇v‖Cα(B2) . ‖f‖Cα(B2).(218)

Note that thanks to our assumption (213), the implicit constant depends only on
d, λ, p, α. In the presence of g, we solve the auxiliary Dirichlet problem −4v′ = 1

T g

on B2, so that f ′ := −∇v′ satisfies ∇ · f ′ = 1
T g. By constant-coefficient CZ theory,

we have ‖∇f ′‖Lp(B2) . ‖ 1
T g‖Lp(B2). In conjunction with the Poincaré estimate for
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v, and the Poincaré-Wirtinger estimate for f ′ (which only matters up to a constant),
we may upgrade the first item in (218) to

‖( v√
T
,∇v)‖Lp(B2)

T≥1

≤ ‖(v,∇v)‖Lp(B2) . ‖∇v‖Lp(B2)

. ‖(f ′, f)‖Lp(B2) . ‖(
g

T
, f)‖Lp(B2)

T≥1

≤
∥∥( g√

T
, f
)∥∥

Lp(B2)
.

Since ‖∇v‖C0(B2) controls the Lipschitz constant of v, the second item in (218)
obviously upgrades to

‖( v√
T
,∇v)‖Cα(B2) . ‖f‖Cα(B2).

It remains to appeal to (219) in Step 2 to obtain (214) and (215) by the triangle
inequality.

Step 2: Inner regularity theory . Suppose that w satisfies (217). Then under the
assumption (213) we claim that for any p, q ∈ (1,∞)∥∥( w√

T
,∇w

)∥∥
Lp(B1)

.
∥∥( w√

T
,∇w

)∥∥
Cα(B1)

.
∥∥( w√

T
,∇w

)∥∥
Lq(B2)

.(219)

The first estimate is trivial. For the second estimate, the presence of the mas-
sive term in (217) requires a classical bootstrap argument that we outline for the
convenience of the user. We split w = w′ + (w − w′) once more according to

−∇ · a∇w′ = − 1

T
w in B2, w′ = 0 on ∂B2.(220)

We have by CZ theory that ‖∇w′‖Lq′ (B2) . ‖wT ‖Lq(B2), where the prime on an
exponent indicates the improvement coming from Sobolev’s embedding, that is,

q′ =
dq

d− q
(which we only use as long as q < d). For the second contribution w−w′, which by
(217) and (220) satisfies the homogeneous equation −∇ · a∇(w−w′) = 0 in B2, we
have by CZ-based inner regularity theory ‖∇(w−w′)‖Lq′ (B1) . ‖∇(w−w′)‖Lq(B2).
Appealing to the triangle inequality and Hölder’s inequality in form of ‖∇w′‖Lq(B2)

. ‖∇w′‖Lq′ (B2), both estimates add up to ‖∇w‖Lq′ (B1) . ‖wT ‖Lq(B2) + ‖∇w‖Lq(B2).
In combination with the Poincaré estimate ‖w‖Lq′ (B1) . ‖∇w‖Lq′ (B1) + ‖w‖Lq(B1),
and using T ≥ 1, this yields the iterable form∥∥( w√

T
,∇w

)∥∥
Lq′ (B1)

.
∥∥( w√

T
,∇w

)∥∥
Lq(B2)

.

We now consider an exponent p > d and set

α′ = 1− d

p

(which we use only for α′ ≤ α). In this situation, in the splitting introduced in
(220), we may pass from CZ-theory to Schauder theory to obtain ‖∇w′‖Cα′ (B2)

. ‖wT ‖Lp(B2) and ‖∇(w − w′)‖Cα′ (B1) . ‖∇(w − w′)‖Lq(B2). This combines to
‖∇w‖Cα′ (B1) . ‖wT ‖Lp(Br) + ‖∇w‖Lq(Br), and as above upgrades to∥∥( w√

T
,∇w

)∥∥
Cα′ (B1)

.
∥∥( w√

T
,∇w

)∥∥
Lq(B2)

.

In one final step of Schauder theory, applied to both contributions of the splitting
(220), we obtain ∥∥( w√

T
,∇w

)∥∥
Cα(B1)

.
∥∥( w√

T
,∇w

)∥∥
Cα′ (B2)

.
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An inspection of the above arguments shows that the pair of balls (B1,B2) may
be replaced by (Br,BR) with 1 ≤ r < R ≤ 2, at the expense of a constant that
depends on R− r. Hence a finite iteration indeed yields (219).

Step 3: Removing the additional assumption (211). For any radius 0 < R ≤ 1 and
point z ∈ Rd, the change of variables x = Rx̂ + z, alongside with T̂ = R−2T ≥ 1,
shows the statement of Step 1 generalizes to: Provided

Rα[a]Cα(B2R(z)) ≤ 1(221)

we have

(222)

∥∥( u√
T
,∇u

)∥∥
Lp(BR(z))

. R
d
p−

d
q

∥∥( u√
T
,∇u

)∥∥
Lq(B2R(z))

+ ‖( 1√
T
, f)‖Lp(B2R(z)),

and, in case of g ≡ 0,

(223)
∥∥( u√

T
,∇u

)∥∥
Cα(BR(z))

. R−α−
d
q

∥∥( u√
T
,∇u

)∥∥
Lq(B2R(z))

+ ‖f‖Cα(B2R(z)).

Selecting R ≤ 1
2 to be a small fraction of ‖a‖−

1
α

Cα(B2) . λ
1
α (recall (1)), we may cover

B1 by the union of N balls BR(zn), n = 1, · · · , N , with

R−1 ∼ ‖a‖
1
α

Cα(B2)(224)

in such a way that (221) is satisfied for every z = zn ∈ B1. Taking the `p-norm of
(222) (with z = zn) in n = 1, · · · , N , we obtain∥∥( u√

T
,∇u

)∥∥
Lp(B1)

. R
d
p−

d
q

∥∥( u√
T
,∇u

)∥∥
Lq(B2)

+
∥∥( g√

T
, f
)∥∥

Lp(B2)
,(225)

where on the first r. h. s. term we used that (recall p ≥ q)( N∑
n=1

‖f‖pLq(B2R(zn))

) 1
p ≤

( N∑
n=1

‖f‖qLq(B2R(zn))

) 1
q . ‖f‖Lq(B2).

Now (210) follows from inserting (224) into (225).

We now turn to the Schauder estimate (211). Using a telescoping sum we learn the
norm relation

‖u‖Cα(B1) . R
α−1 max

n=1,··· ,N
‖u‖Cα(BR(zn)).

Hence taking the maximum of (223) (with z = zn) in n = 1, · · · , N yields∥∥( u√
T
,∇u

)∥∥
Cα(B1)

. R−1− dq
∥∥( u√

T
,∇u

)∥∥
Lq(B2)

+Rα−1‖f‖Cα(B2).

Finally, (211) follows from inserting (224) into the above estimate. �
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