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Abstract 

  

Transactive Response DNA-Binding Protein-43 (TDP-43) is an RNA/DNA binding protein that 

forms phosphorylated and ubiquitinated aggregates in the cytoplasm of motor neurons in 

Amyotrophic Lateral Sclerosis (ALS), which is a hallmark of this disease. ALS is a 

neurodegenerative condition affecting the upper and lower motor neurons. Even though the 

aggregative property of TDP-43 is considered a cornerstone of ALS, there has been major 

controversy regarding the functional link between TDP-43 aggregates and cell death. In this 

review, we attempt to reconcile the current literature surrounding this debate by discussing the 

results and limitations of the published data relating TDP-43 aggregates to cytotoxicity, as well 

as therapeutic perspectives of TDP-43 aggregate clearance. We point out key data suggesting 

that the formation of TDP-43 aggregates and the capacity to self-template and propagate among 

cells as a “prion-like” protein, another pathological property of TDP-43 aggregates, are a 

significant cause of motor neuronal death. We discuss the disparities among the various studies, 

particularly with respect to the type of models and the different forms of TDP-43 utilized to 

evaluate cellular toxicity. We also examine how these disparities can interfere with the 

interpretation of the results pertaining to a direct toxic effect of TDP-43 aggregates. 

Furthermore, we present perspectives for improving models in order to better uncover the toxic 

role of aggregated TDP-43. Finally, we review the recent studies on the enhancement of the 

cellular clearance mechanisms of autophagy, the ubiquitin proteasome system, and endocytosis 

in an attempt to counteract TDP-43 aggregation-induced toxicity. Altogether, the data available 

so far encourage us to suggest that the cytoplasmic aggregation of TDP-43 is key for the 

neurodegeneration observed in motor neurons in ALS patients. The corresponding findings 

provide novel avenues toward early therapeutic interventions and clinical outcomes for ALS 

management. 
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Abbreviations: ALS = Amyotrophic Lateral Sclerosis; CMA = chaperone-mediated 

autophagy; CTF = C-terminal fragment; ELP = endosomal-lysosomal pathway; fALS = familial 

ALS; FTLD = Frontotemporal Lobar Dementia; GFP = green fluorescent protein; GOF = gain 

of function; hnRNP = heterogeneous nuclear ribonucleoprotein; IB = immunoblot; IF = 

immunofluorescence; iPSC = induced pluripotent stem cell; LLPS = liquid-liquid phase 

separation; LOF = loss of function; NES = nuclear export sequence; NLS = nuclear localization 



 

sequence; PABPN1 = poly-A binding protein 1; PrP = prion protein; PTM = post-translational 

modification; RRM = RNA recognition motif; sALS = sporadic ALS; SUMO = small ubiquitin-

related modifier; TDP-43 = Transactive Response DNA-Binding Protein 43; UPS = ubiquitin 

proteasome system; wtTDP-43 = wild-type TDP-43 

 

 1. Introduction 

       

Transactive Response DNA Binding Protein 43 (TDP-43, 43 kDa) is a ubiquitous protein 

encoded by the TARDBP gene that is highly conserved throughout different species (e.g., C. 

elegans, Drosophila melanogaster, mammals, etc.). TDP-43 is essential for the development of 

the central nervous system (CNS) from the earliest stages of embryonic life to adulthood (Huang 

et al., 2010; Sephton et al., 2010) and preferentially binds RNA UG motifs (Tollervey et al., 

2011; Xiao et al., 2011). TDP-43 belongs to the heterogeneous nuclear ribonucleoprotein 

(hnRNP) families and is implicated in multiple steps of transcriptional and post-transcriptional 

regulation (Nakielny and Dreyfuss, 1997; Krecic and Swanson, 1999; Dreyfuss et al., 2002; 

Prasanth et al., 2005; Martinez-Contreras et al., 2007; He and Smith, 2009; Busch and Hertel, 

2012). Under physiological conditions, the majority of TDP-43 is nuclear, while a small 

proportion is continuously shuttled between the nucleus and cytoplasm. In the nucleus, the 

functions of TDP-43 include the repression of gene expression, pre-mRNA splicing, and 

autoregulation of its own mRNA (Ayala et al., 2011a; Ayala et al., 2011b). TDP-43 also 

regulates miRNA biogenesis through its interaction with the Drosha-containing protein complex 

(Kawahara and Mieda-Sato, 2012). In the cytoplasm under stress conditions, TDP-43 controls 

mRNA stability, translation, and nucleocytoplasmic transport by forming cytoplasmic 

ribonucleoprotein complexes, termed stress granules (Zhao et al., 2018). 

An ever-increasing number of research groups report the presence of TDP-43-enriched 

cytoplasmic aggregates in diverse neuropathological conditions. Since the 1990s, it has been 

shown that the presence of ubiquitin-positive and tau-negative cytoplasmic aggregates is a 

common pathological feature in the motor neurons of patients suffering from Amyotrophic 

Lateral Sclerosis (ALS) and in the frontal and temporal lobes in patients with Frontotemporal 

Lobar Degeneration (FTLD) (Okamoto et al., 1990; Kwong et al., 2007). Pathological TDP-43 

has been found to be depleted from the nucleus and sequestered in insoluble, cytoplasmic 

aggregates in post-mortem neural tissue, suggesting that the nucleo-cytoplasmic relocation is 

involved in pathogenic aggregation (Arai et al., 2006; Neumann et al., 2006; Winton et al., 



 

2008). Full-length and fragmented TDP-43 are the major components of these aggregates in the 

brains and motor neurons of ALS patients. Currently, TDP-43 aggregates are considered the 

histopathological hallmark of ALS. 

However, it has remained very debatable as to whether this aggregation, indeed, causes 

the motor neuronal degeneration. In this review, we explore the main findings that put the 

spotlight on the cytotoxicity of TDP-43 aggregation. Moreover, we discuss the structural 

properties of TDP-43 that underlie its propensity to aggregate and suggest novel therapeutic 

interventions that could decrease TDP-43 aggregation and mitigate the debilitating 

neurodegeneration of ALS. 

  

2. Aggregated TDP-43 is a Hallmark for ALS - Patient Case Studies 

       

Aggregates of wild-type TDP-43 (wtTDP-43) are present in both sporadic (sALS) and 

familial (fALS) cases of ALS (Duan et al., 2010). ALS is characterized by the progressive loss 

of the upper motor neurons in the brain and of the lower motor neurons in the brainstem and 

spinal cord (Robberecht and Philips, 2013). The disease presents a very poor prognosis, and 

patients usually die within two to five years after the onset of symptoms, primarily due to 

respiratory failure. An estimated 30 genes have now been identified to be involved in ALS (Chia 

et al., 2018). Importantly, around 60% (19) of these genes are described as also involving TDP-

43 aggregation in postmortem analyses of patient samples, cell culture, and animal models of 

ALS (Table 1) and are extensively reviewed elsewhere (Scotter et al., 2015; Chia et al., 2018; 

Takeda, 2018). Of equal importance, TDP-43 aggregation was demonstrated not to occur for 

only four of these genes, while there is no study to date indicating either the absence or the 

presence of these aggregates for the other seven genes. Mutated TDP-43 accounts for 3% of 

familial and 1.5% of sporadic cases of ALS (Lagier-Tourenne and Cleveland, 2009), meaning 

that around 95% of patients presenting TDP-43-positive aggregates do not carry any mutation in 

this pathogenic protein (Smethurst et al., 2015). These aggregates consist of aberrantly 

phosphorylated and ubiquitinated full-length TDP-43, as well as 35 and 25-kDa C-terminal 

fragments of the protein (Arai et al., 2006; Neumann et al., 2006; Mackenzie et al., 2007).  

 It has been suggested that the presence of ubiquitinated, phosphorylated, aggregated 

TDP-43 observed in degenerated neurons could trigger almost all of the pathogenic alterations 

observed in ALS patients. In fact, studies suggest that the severity of motor neuron degeneration 

may be proportional to aggregated TDP-43 levels (Brettschneider et al., 2013; Brettschneider et 



 

al., 2014). Stages of sequential phospho-TDP-43 spreading have been described in certain ALS 

cases, and this spreading pattern follows axonal projections throughout different regions in the 

CNS (Brettschneider et al., 2013). Similarly, clinical data has pushed neurologists to propose 

that motor neuron degeneration in ALS begins at a focal point and subsequently spreads 

throughout the CNS, correlating with disease progression and the severity of motor symptoms 

(Ravits et al., 2007; Ravits and La Spada, 2009). 

  

3. TDP-43 Structure  

  

TDP-43 belongs to the family of hnRNPs that play important roles in RNA regulation. 

While the complete 3D structure of TDP-43 remains unresolved, the separate domains of this 

414 amino acid-long protein have been structurally characterized. These include the N-terminal 

domain, two RNA recognition motifs (RRM1 and RRM2), and the C-terminal domain (Fig. 1) 

(Sun and Chakrabartty, 2017). Additionally, the protein harbors a nuclear localization sequence 

(NLS) and a nuclear export sequence (NES) (Blokhuis et al., 2013). The N-terminal domain 

(residues 1-78) contains a ubiquitin-like fold with six β-sheets and one α-helix (Mompean et al., 

2016). It is involved in regulating the TDP-43 self-interaction. Recently, multiple studies have 

suggested that functional TDP-43 is most likely a homodimer and that the first ten residues of 

the N-terminus seem to mediate this homodimerization (Wang et al., 2013b; Zhang et al., 2013; 

Sun et al., 2014).  

The RRMs (RRM1: residues 106-176; RRM2: residues 191-262) regulate the 

interactions with RNA (Buratti and Baralle, 2001) and single-stranded DNA, presenting high 

affinity for UG-rich and TG-rich sequences, respectively (Kuo et al., 2009; Lukavsky et al., 

2013). Due to its affinity for UG-rich motifs, TDP-43 plays a significant role in the regulation of 

RNA, including mRNA splicing and transport (Buratti and Baralle, 2001). We recently 

identified the first ALS-related mutation in the RRM2 domain at residue 259 (N259S). Our 

structural analyses revealed a close proximity of residue 259 to a uracil base in UG-rich RNA 

motifs, suggesting not only an important role of RRM2 in RNA regulation but also a role in 

ALS pathogenesis (Maurel et al., 2018b). 

The C-terminal domain (residues 277-414) controls the protein-protein interactions and 

the solubility of TDP-43 (Ayala et al., 2008). This domain is low in complexity and is 

particularly rich in glycine, glutamine (Q), asparagine (N), and polar residues, while poor in 

aliphatic and charged residues (Fig. 1). The C-terminus is a dynamic and flexible region that is 



 

capable of adopting transient secondary structures, ranging from α-helices to β-sheets. As a 

result, the C-terminal sequence resembles that of prion proteins. Prions are aggregation-prone 

conformers of certain proteins, namely prion protein (PrP), primarily consisting of β-sheets. 

These proteins are capable of self-templating and transmitting themselves among cells and 

organisms, usually causing neurodegenerative diseases, such as Creutzfeldt-Jakob disease 

(Collinge and Clarke, 2007; King et al., 2012). Hence, the prion-like properties of the C-

terminus of TDP-43 could provide the protein with pathogenic potential.  

The C-terminus also attributes TDP-43 with a liquid-liquid phase separation property 

(LLPS), which involves its oligomerization into functional stress granules. These are transient 

complexes, or “membrane-less organelles”, that contain mRNA and other RNA-binding 

proteins. Forming these granules allows TDP-43 to halt the translation of its mRNA targets and 

to protect them from degradation during cellular stress (Sun and Chakrabartty, 2017; Li et al., 

2018a; Li et al., 2018b). Interestingly, a recent study showed that the physiological 

oligomerization is regulated by the N-terminus that helps maintain the physical separation 

between the C-terminal domains of each monomer (Afroz et al., 2017). It has been found that 

certain ALS-related TDP-43 mutants demonstrate altered LLPS properties and stress granule 

dynamics in comparison to the wild-type form, which could promote pathological TDP-43 

aggregation (Conicella et al., 2016; Li et al., 2018a; Li et al., 2018b). In fact, approximately 60 

mutations in the different TDP-43 domains have already been described (Supplementary Table 

1), and almost all the ALS-related mutations occur on the C-terminal domain. Therefore, it is 

this domain that is the most suspect in TDP-43 aggregation. 

 

4.  Intrinsic Characteristics of Pathological TDP-43 and Factors Influencing 

its Propensity to Aggregate 

  

Given the intrinsic characteristics of the structure of TDP-43, researchers have wondered 

how this ultimately leads to the accumulation of the pathogenic, aggregated form in ALS 

patients. Here, we summarize and attempt to reconcile the current disputed literature 

surrounding the involvement of the aggregation of pathogenic TDP-43 in neurodegeneration. 

Factors that influence its aggregation include its post-translational modifications, cytoplasmic 

accumulation, CTF, mutant, and wild-type forms. 

  

 



 

4.1 Post-Translational Modifications (PTMs) 

  

TDP-43 is a target for several PTMs, which can change its structure, localization, overall 

functions, and its aggregative propensity (Kametani et al., 2016; Buratti, 2018). As previously 

mentioned, TDP-43-positive aggregates found in ALS brains are well recognized to be 

ubiquitinated and phosphorylated (Neumann et al., 2006). 

Analyses of aggregated TDP-43 from ALS patients reveal ubiquitination of the Lys79 

residue (Kametani et al., 2016). Several different lysine residues have also been described as 

potential ubiquitination sites (Seyfried et al., 2010; Wagner et al., 2011; Dammer et al., 2012). 

Ubiquitin is a small signal protein that is used by the ubiquitin-proteasome system (UPS) to 

designate proteins for degradation. However, the UPS regulatory factor ubiquilin-2, when 

overexpressed or mutated, has been seen to promote TDP-43 mislocalization, aggregation, and 

neurodegeneration in vitro and in vivo (Kim et al., 2009; Hanson et al., 2010; Ceballos-Diaz et 

al., 2015; Picher-Martel et al., 2015; Osaka et al., 2016). Therefore, ubiquitinated TDP-43 

aggregates in ALS brain could signify a species that is not correctly degraded by the UPS. As a 

result, TDP-43 becomes prone to aggregation and nuclear depletion. Even though, these studies 

rather demonstrate a toxic role for aberrant ubiquilin-2, the changes that occur for TDP-43 

should have their own toxic outcomes; the depletion from the nucleus would prevent TDP-43 

from carrying out its critical nuclear functions, and its cytoplasmic aggregation would also 

inhibit cytoplasmic function and provoke abnormal interactions.  

As for phosphorylation, Ser409 and Ser410 are well-documented targets, as seen in ALS 

patients (Hasegawa et al., 2008; Neumann et al., 2009). Other phosphorylated residues of 

pathological TDP-43 have also been described, including Ser379, 403, 404, 409, and 410 

(Hasegawa et al., 2008; Inukai et al., 2008; Gu et al., 2018). In fact, in vitro results suggest that 

all serine and threonine residues in the C-terminal domain are phosphorylatable (Kametani et 

al., 2009). Phosphorylation may either increase the propensity of TDP-43 to aggregate or to be 

hydrolyzed into C-terminal fragments (Goh et al., 2018). For example, by the action of a 

hyperactive, C-terminally truncated form of the kinase CK1ɛ, the tendency of TDP-43 to 

aggregate increased, paralleled by a decreased cell viability in vitro (Nonaka et al., 2016). Yet, 

studies such as this cannot unequivocally attribute the toxicity to TDP-43 aggregation, since the 

decreased viability could be due to other actions of the aberrant CK1ɛ. 

On the other hand, aberrant TDP-43 phosphorylation could represent a cellular defense 

mechanism. For instance, expression of a TDP-43 construct bearing hyperphosphorylation-



 

mimetic mutations in Neuro2A cells restored neurite extension and cell viability to control 

levels, followed by a decrease in the number of cells with cytoplasmic aggregates (Li et al., 

2011). Given these data and the numerous studies also showing that neurite extension is 

inhibited by pathogenic TDP-43 (Wachter et al., 2015; Tian et al., 2017; Baskaran et al., 2018), 

the phosphorylation of TDP-43 could reflect a pathological role of its aggregation in decreased 

neurite integrity. 

One example of a less studied PTM of TDP-43 is cysteine oxidation. It is well known 

that oxidative stress causes physiological TDP-43 to re-localize to the cytoplasm and coalesce to 

form stress granules (Ayala et al., 2011a; Cohen et al., 2012; Feiler et al., 2015; Liu et al., 

2015). However, this process can promote aggregation if prolonged. This is probably due to 

aberrant disulfide bridges formed by Cys residues 173, 175, 198, and 244, turning the 

physiological complexes into cytotoxic aggregates. Other studies have shown that N-terminal 

Cys39 and Cys50 form disulfide bridges that reinforce the dimerization of the N-terminal 

domain in vitro, which is thought to prevent the protein from aggregating (Jiang et al., 2017). 

Mutating these residues to serine residues appears to strongly reduce TDP-43 oligomerization in 

response to oxidation in motor neuron-like cells (Bozzo et al., 2016). Moreover, splicing activity 

was diminished in the same type of mutant (Jiang et al., 2017). These results indicate that the 

tertiary structure of TDP-43 is particularly sensitive to the oxidation state of Cys39 and Cys50. 

Therefore, their oxidation seems to promote the initial oligomerization steps of the aggregating 

process. In turn, the fundamental splicing function of TDP-43 could be diminished, reflecting a 

loss of function, which would be detrimental to the cell. 

Another less commonly studied PTM is acetylation that can occur on Lys145 and 

Lys192. It has been shown that TDP-43 acetylation in the region K145-149 within the RRM1 

domain is associated with a loss in RNA-binding ability and with increased TDP-43 aggregation 

in the spinal cord of ALS patients (Cohen et al., 2015). Similar to cysteine oxidation, acetylation 

appears to promote aggregation and diminish TDP-43 functionality. 

Lastly, SUMOylation by small ubiquitin-related modifier (SUMO), a ubiquitin-like 

protein, is a covalent and reversible PTM. SUMOylation of TDP-43 aggregates was elucidated 

following CTF overexpression in mouse primary neurons (Seyfried et al., 2010). Although the 

direct SUMOylation of TDP-43 has not yet been demonstrated, we have described a putative 

site for TDP-43 SUMOylation at K136 (Dangoumau et al., 2013). However, the role of TDP-43 

SUMOylation in its propensity to aggregate or in its toxicity has not yet been explored. 

  



 

4.2 TDP-43-ΔNLS: Investigating Cytoplasmic Mislocalization and Accumulation  

  

As mentioned in the introduction, the pathogenic TDP-43 aggregates detected in ALS 

patients’ motor neurons are usually located in the cytoplasm, partly reflecting a defect in TDP-

43 nucleo-cytoplasmic trafficking (Neumann et al., 2006; Winton et al., 2008). To specifically 

analyze the effects of cytoplasmic accumulation, it is common to genetically alter the nuclear 

localization sequence (NLS) of TDP-43, which restricts the exogenous protein to the cytoplasm 

(Winton et al., 2008; Urushitani et al., 2010). Many of the studies using this overexpressed 

construct in vitro and in vivo report an overall low number of aggregate-positive cells, compared 

to the high cytotoxic toll (Table 2). For instance, one study demonstrated progressive motor 

dysfunction caused by cortical atrophy and neuromuscular denervation in mice overexpressing 

TDP-43-ΔNLS in the brain and spinal cord, while only a small population of motor neurons 

displayed TDP-43 aggregation (Walker et al., 2015a). Furthermore, another group found that the 

accumulated TDP-43-ΔNLS rarely aggregated in the cytoplasm of murine primary neurons but 

was cytotoxic to most cells, partly by increasing the activation of caspase-3, a protease involved 

in apoptosis (Sasaguri et al., 2016). As a result, these authors argue that TDP-43 aggregation is 

not essential to the cytotoxicity of the pathological protein that is accumulated in the cytoplasm 

(Barmada et al., 2010; Igaz et al., 2011; Walker et al., 2015a; Sasaguri et al., 2016) 

Nonetheless, other studies still suggest a certain level of cytotoxicity attributed to 

aggregated TDP-43. For example, Winton and others (2008) revealed in QBI-293 cells 

overexpressing TDP-43-ΔNLS the sequestration of endogenous TDP-43 from the nucleus to the 

cytoplasm. In addition, the presence of ubiquitinated, insoluble, endogenous TDP-43 intensified 

with time, as well as the apparition of 25-kDa CTFs. In agreement with this, Zhang and others 

(2013) demonstrated that overexpressed TDP-43-ΔNLS aggregated in primary neurons and 

sequestered co-overexpressed wtTDP-43 from the nucleus. These effects were paralleled by 

decreased neurite outgrowth. Remarkably, inhibiting the ability to aggregate by deleting 

residues 1 - 10 of TDP-43-ΔNLS abolished the sequestration/mislocalization of wtTDP-43, and 

neurite outgrowth was almost completely unaltered.  

Taken together, these results regarding TDP-43-ΔNLS overexpression show that the 

cytoplasmic accumulation of TDP-43, whether diffuse or aggregated, is highly toxic to cells and 

can provoke ALS motor phenotypes in mice. Even though several publications claim that the 

aggregation is not crucial to TDP-43 cytotoxicity, this argument is biased due to the 

overexpressed, therefore necessarily accumulated, cytoplasmic construct. This is not reflective 



 

of ALS pathogenesis. However, the studies that do analyze the effect of the cytoplasmic 

aggregation of TDP-43-ΔNLS show the increased nuclear depletion, insolubility, and co-

aggregation of wtTDP-43 over time, which is indeed part of the TDP-43 pathology found in 

ALS patients. Therefore, the cytoplasmic aggregation of TDP-43 seems to become cytotoxic by 

preventing either nascent TDP-43 from entering the nucleus or shuttled TDP-43 from returning 

to the nucleus to perform its normal functions.  

  

4.3 C-Terminal Fragments (CTFs) of TDP-43 

  

 Apart from full-length TDP-43, abnormal 35- and 25-kDa CTFs of TDP-43 are also 

found in the aggregates of ALS patients (Neumann et al., 2006). Overexpressed 25 kDa CTF is 

able to drive the most cytoplasmic aggregation out of all the forms of TDP-43. Foci of 

fluorescently tagged CTFs form in at least 50% of several transfected mammalian cell types 

(Table 2). Likewise, the CTFs decrease cell viability in roughly twice the number of cells 

overexpressing wtTDP-43, suggesting a highly toxic character for the CTFs (Zhang et al., 2009; 

Fallini et al., 2012; Chou et al., 2015; Chang et al., 2016). Moreover, the majority of the 

overexpressed CTF tends to be recovered in the detergent-insoluble fraction of lysates 

(Yamashita et al., 2014; Chang et al., 2016). In fact, one study demonstrated that fusing an NLS 

to overexpressed CTF in Neuro2A cells, thereby forcing it into the nucleus, dramatically 

decreased the rate of cell death while still revealing aggregated CTF species by immunoblot 

(Kitamura et al., 2016). This suggests that specifically the CTF aggregation in the cytoplasm is 

toxic to the cell. Altogether, these data show that a high proportion of transfected cells display 

aggregated, detergent-insoluble CTFs that is always accompanied by a decrease in viability.  

Also, it is important to recognize that there exists a variety of “25-kDa” C-terminal 

fragments, whose lengths are shown in Table 2. Remarkably, the different fragments appear to 

possess different aggregative and toxic properties. For instance, CTF
162-414

 contains all of 

RRM2, the C-terminal end of RRM1, and has a theoretical molecular weight of 27 kDa. This 

fragment generated many cells with foci, while GFP-wtTDP-43 virtually showed no foci in SH-

SY5Y cells. Yet, the cytotoxicity of GFP-CTF was unexpectedly lower than that of GFP-

wtTDP-43 (Yamashita et al., 2014). CTF
220-414

 has a theoretical mass of 20 kDa and includes the 

last 40 residues of RRM2. This fragment generated aggregates in only 11.2% of transfected 

Neuro2A cells and demonstrated 15% cellular mortality of similar proportion (Kitamura et al., 

2016). 



 

Given the variable levels of cytotoxicity and aggregation of the different CTFs, further 

studies taking into account the structural differences among the fragments could yield valuable 

insight into the mechanistic basis of the toxicity of TDP-43 aggregation. For example, by 

overexpressing several constructs in yeast, Johnson and others (2008) observed that CTF
237-414

, 

starting from the last 20 residues of RRM2, formed cytoplasmic aggregates without becoming 

cytotoxic. However, the CTF
188-414

, containing the full RRM2, both aggregated and caused 

cytotoxicity. This implies a toxic gain of function for RRM2 in cytoplasmic TDP-43 

aggregation. 

 

4.4 Mutant Full-Length TDP-43 

  

Interestingly, differentiated motor neurons from human induced pluripotent stem cells 

(iPSCs) that are derived from fALS patients carrying mutant TDP-43 have revealed a role for 

TDP-43 aggregation in neurodegeneration (Table 2). Multiple studies have shown an increased 

mislocalization of mutant TDP-43 forms, including TDP-43
G298S

 (Sun et al., 2018) and TDP-

43
Q343R

 (Egawa et al., 2012), in the cytoplasm and subsequent aggregation, compared to motor 

neurons from control patients with exclusively nuclear wtTDP-43. Even though in a certain 

study differentiated motor neurons from a patient with TDP-43
M337V

 did not show evident signs 

of aggregate formation in the cytosol, its insolubility augmented with time, compared to control 

motor neurons (Seminary et al., 2018). Moreover, ALS-derived motor neurons exhibit a 

hindered survival against oxidative stress (Egawa et al., 2012; Seminary et al., 2018) and 

inhibited protein degradation (Sun et al., 2018).  

Nonetheless, recently one group did not find increased cytoplasmic localization for TDP-

43
A382T

 in motor neurons from one ALS patient, at least during the time of their experiments 

(Bossolasco et al., 2018). However, they did not present data regarding the solubility of TDP-43 

or cell viability. Also, the overall nuclear localization could be attributed to the specific mutant 

(A382T) used in the study, which was not used in those previously mentioned.  

Moreover, in yeast several overexpressed mutants cause cytoplasmic aggregation in 

significantly more cells than wtTDP-43. For example, TDP-43
Q331K

 was seen to produce 

cytoplasmic aggregates in roughly 27% of transformed yeast cells, compared to 4% in those 

overexpressing wtTDP-43. Spotted growth assays showed that the mutant was approximately 

twice as cytotoxic as wild-type form (Johnson et al., 2009; Armakola et al., 2011). It was also 

found in transfected mouse primary neurons and HEK293 cells that the majority of TDP-43
A315T

 



 

was recovered in the detergent-insoluble fraction of the lysate, while the majority of wtTDP-43 

was detergent-soluble. These cells also exhibited a lower survival rate while expressing the 

mutant, compared to wild-type (Guo et al., 2011).  

These findings regarding ALS-related mutant TDP-43 indicate that pathological TDP-43 

has a tendency to, over time, transition from the nucleus to the cytoplasm and become more and 

more detergent-insoluble, ultimately forming aggregates. This has negative implications on 

cellular proteolysis, defense mechanisms against oxidative stress, and overall cell survival.  

 

  

4.5 Wild-Type (WT) Full Length TDP-43 

  

Because at least 95% of ALS cases include patients who possess the wild-type form of 

TDP-43 in post-mortem brain samples (Xu and Yang, 2014), wtTDP-43 is a very relevant 

species for the analysis of the neurotoxicity of TDP-43 aggregates. In bacteria and yeast, the 

overexpression of the protein readily reveals its incorporation into cytoplasmic aggregates in 

many cells. In parallel, there is an acute drop in growth rate, morphological changes, vacuolar 

fragmentation, and cell death in yeast. (Johnson et al., 2009; Armakola et al., 2011; Prasad et 

al., 2016; Liu et al., 2017; Park et al., 2017; Leibiger et al., 2018). Regarding in vivo models, 

wtTDP-43 overexpression causes animals to experience motor dysfunction leading to death, 

resembling ALS pathology in humans (Table 2).  

However, overexpressing wtTDP-43 in mammalian models has illustrated very rare 

aggregation, a primarily nuclear localization, and a disproportionately high cytotoxicity, 

downplaying the toxic role of aggregates (Zhang et al., 2009; Watanabe et al., 2013; Yamashita 

et al., 2014; Kitamura et al., 2016; Baskaran et al., 2018). Furthermore, Barmada and others 

(2010) reported cytoplasmic aggregation in a minority of transfected rat primary cortical 

neurons that did not show significant neurotoxicity. Another group found neither aggregation 

nor toxicity in the same cell type (Guo et al., 2011) (Table 2). These data have enticed 

researchers to doubt the hypothesis that aggregated wtTDP-43 is a toxic species in ALS. 

Nevertheless, the results of Capitini and others (2014) bring wtTDP-43 aggregation back 

into the spotlight. Instead of generating aggregated protein from overexpression, the authors 

directly transfected SH-SY5Y cells with purified wtTDP-43 aggregates from E. coli. This 

method permits a more direct observation of aggregated TDP-43 alone. Indeed, the cells 

revealed the presence of the purified aggregated TDP-43 in the cytosol without altered nuclear 



 

levels of endogenous murine TDP-43. Capitini and others observed a striking drop in viability 

compared to cells transfected with control inclusion bodies from E. coli. The decreased viability 

was linked to heightened levels of reactive oxygen species and caspase-3 activation. 

Interestingly, the endogenous TDP-43 was not sequestered from the nucleus into the 

cytoplasmic aggregates. So, the cellular toxicity seemed to be tightly linked to the aggregated 

TDP-43 in the cytoplasm. 

Taken together, these data illustrate that overexpressed wtTDP-43 is capable of inducing 

cellular toxicity and ALS-like features. But, unlike the mutant, CTF, and ΔNLS forms of TDP-

43, the wild-type form mostly remains nuclear and rarely aggregates. Even though it still 

generates cellular toxicity and ALS-like symptoms in transgenic animals, the overall 

localization of the overexpressed protein does not represent the pathological hallmark of ALS. 

However, directly transfecting cells with pre-aggregated wtTDP-43 (Capitini et al., 2014; 

Cascella et al., 2016; Cascella et al., 2017) does show direct, toxic effects, including increased 

oxidative stress and caspase-3 activation. Thus, the cytoplasmic aggregation of wtTDP-43, when 

it occurs, seems intrinsically toxic to cells by gaining deleterious functions. 

 

4.6. Aggregated TDP-43: Gain and Loss of Function 

 

The results presented throughout section 4 have suggested certain toxic characteristics to 

wild-type, mutant, and CTFs of TDP-43. It has been hypothesized that the cytotoxicity 

originates from a combination of gain and loss-of-function (GOF and LOF, respectively) 

mechanisms (Sun and Chakrabartty, 2017). A handful of studies have displayed a comparable 

association between TDP-43 aggregation and a number of ALS-related, deregulated pathways in 

motor neurons that could result from either GOF or LOF. For example, TDP-43 dysfunction is 

known to be associated with disturbances in energy metabolism, protein transport, mitochondrial 

dysfunction, aggravated oxidative stress, glutamatergic excitotoxicity, calcium dysregulation, 

and impaired axonal outgrowth. These pathological mechanisms involved in TDP-43 pathology 

are reviewed comprehensively elsewhere (Scotter et al., 2015; Shenouda et al., 2018).  

More specifically, a gain of function could be acquired by sequestering off-target 

proteins and mRNA in the environment. For instance, the RNA-binding proteins RBM14, 

NonO, and PSF having roles in pre-mRNA splicing and transcriptional repression were found 

enriched in the insoluble fraction of overexpressed TDP-43 (Dammer et al., 2012). One study 

also showed an indirect GOF by reporting the mislocalization of the nuclear transport factor 

THOC2 in the cytosol of HEK293T cells transfected with a CTF of TDP-43. As a result, mRNA 



 

aberrantly accumulated in the nucleus (Woerner et al., 2016). Aggregated TDP-43 in the cytosol 

has also been seen to sequester its own nuclear counterpart (Cascella et al., 2016). This nuclear 

depletion would then disallow TDP-43 to carry out its functions in the nucleus, thereby causing 

a simultaneous LOF. These findings show that aggregated TDP-43 is not an inert product of 

other pathological mechanisms. Rather, it represents a pathological species of TDP-43 that 

breaks down cellular homeostasis through a combination of loss and gain-of-function. 

 

 

5. In vitro and in vivo Models: Limitations and Insights for Improvement 

  

As seen in the preceding section and Table 2, various in vitro and in vivo models have 

been established to investigate the possible neurotoxicity of TDP-43 aggregation. Instead of 

yielding consistent data that would definitively characterize the relationship between TDP-43 

aggregates and the neuronal death observed in ALS, the data vary considerably from one model 

to the next that only partially respond to the question at hand. Therefore, better models and 

approaches are required. In order to undertake this challenge, we must understand the 

advantages and limitations that each current model presents. 

  

5.1. The Yeast Model 

  

  The yeast model has been one of the most important tools for the study of the functions 

of mammalian proteins, especially in the case of diseases (Botstein et al., 1997). Even though 

some consider it an in vivo model since it is a unicellular organism (Johnson et al., 2008), the 

budding yeast Saccharomyces cerevisiae is perceived by most as an in vitro model when used 

for the study of TDP-43 pathology. 

As previously mentioned, most studies using yeast support the hypothesis that TDP-43 

aggregation is cytotoxic by showing that the exogenous expression of different forms of TDP-43 

leads to the formation of cytoplasmic aggregates and a parallel decrease in cell viability. The 

majority of investigations are based on overexpression, because this leads to cytoplasmic 

aggregation, whereas decreasing the expression reveals physiological, nuclear localization. 

However, the overexpression is inherently toxic, which clouds the relationship between TDP-43 

aggregation and yeast viability. Moreover, yeast do not possess a TDP-43 homolog, and the 

intracellular environment of a yeast cell does not represent that of the neuron. Thus, the 



 

introduction of a completely foreign protein in a non-neuronal environment adds an important 

confounding factor to the understanding of the pathology of TDP-43 aggregation in human 

motor neurons. Nevertheless, this organism has been useful in genetic screens for the prediction 

of potential modifiers of TDP-43-mediated toxicity (Armakola et al., 2011). 

 

5.2 Mammalian Neuronal Models 

  

In order to shorten the gap between the different intracellular environments of the human 

motor neuron and the yeast cell, a range of mammalian neuronal cell types has been utilized to 

overexpress the different forms of TDP-43 (Table 2). Section 4 illustrated that despite the 

relative consistency that yeast show regarding cytoplasmic aggregation and cellular demise, the 

results vary considerably not only among different neuronal models but also among different 

research groups that have employed the same model (Table 2). These discrepancies encompass 

a large part of the long-lasting debate regarding the neurotoxicity of TDP-43 aggregates, and 

understanding the corresponding limitations could help put an end to the debate. 

Firstly, as previously mentioned, the overexpression that usually occurs in these models 

is inherently toxic and makes it challenging to attribute the cellular effects to TDP-43 itself. But, 

endogenous levels of pathological protein can be generated with human iPS cells derived from 

ALS patients and differentiated into motor neurons (Egawa et al., 2012; Bossolasco et al., 2018; 

Seminary et al., 2018; Sun et al., 2018). Not only does this approach omit the bias from 

overexpression conditions but an advantage of these cultures is the ability to observe the 

possible, initial pathological events that take place in TDP-43 aggregation, because one can 

follow the fate of the protein from the beginning of motor neuronal differentiation and 

expression.  

Secondly, the various results in neuronal models could also be due to the fact that studies 

usually focus on isolated cultures of neurons, which is not representative of the CNS where 

neurons interact with glial cells. In fact, there is accumulating evidence arguing that ALS can be 

a cell non-autonomous disease, in which the given affected cell type inflicts its pathology onto 

other types that would otherwise be unaffected. Moreover, TDP-43 aggregation has also been 

demonstrated in astrocytes, microglia, oligodendrocytes, and muscle fibers (Ilieva et al., 2009; 

Yan et al., 2014; Wachter et al., 2015). Therefore, the co-culturing of neurons with the other cell 

types mentioned above has gained more importance in the determination of the toxic effects of 

TDP-43 aggregation. However, its involvement in cell non-autonomy is currently debatable 



 

(Haidet-Phillips et al., 2013; Serio et al., 2013; Wachter et al., 2015; Ditsworth et al., 2017). 

Nonetheless, reproducing the neuron-glial network through co-culture could be a way to render 

the results of TDP-43 aggregation and toxicity more relevant to ALS in patients. 

5.3 In vivo Models 

  

In general, in vivo studies rely on the overexpression of TDP-43 in neurons and display 

symptoms reminiscent of ALS, notably muscle denervation, decreased motor performance, and 

loss of body mass. Upon inspection of the affected tissues, intense neurodegeneration is 

apparent, while the exogenous TDP-43 is seen to be partly delocalized in the cytoplasm in the 

form of punctate aggregates. Multiple studies also show that subsequently silencing this TDP-43 

overexpression results in clearance of TDP-43 aggregates, improved motor function, and 

increased longevity in comparison to the unsilenced group (Walker et al., 2015a; Walker et al., 

2015b). In vivo models such as these primarily suggest that high amounts of TDP-43 are toxic in 

vivo, but it remains very difficult to unravel the link between TDP-43 aggregation and 

neurodegeneration. This is due to several limitations. 

First, as previously discussed, the potent toxicity of overexpression might accelerate 

pathogenesis and overload the animal with high amounts of TDP-43, causing it to die 

prematurely from mechanisms that could be unrelated to TDP-43 aggregation and ALS, such as 

intestinal occlusion (Wegorzewska et al., 2009; Joyce et al., 2011; Herdewyn et al., 2014). 

Although, one recent study managed to create a mouse model with a more gradual manifestation 

of ALS symptoms, as seen in human patients, by expressing TDP-43 at endogenous levels, in 

which mice experienced both a pre-symptomatic (three months) and symptomatic phase (nine 

months) (Gordon et al., 2019). Remarkably, analyses of the brain and spinal cord demonstrated 

the gradual increase of the detergent-insoluble fraction of TDP-43 in tissue extracts between 

both disease phases. Yet, immunohistochemical analyses revealed the absence of visible 

aggregates in the duration of the study. This observation compels us to reconsider the implied 

assumptions that most studies make when evaluating TDP-43 aggregation, which is that the 

aggregates are detergent-insoluble species with respect to immunoblots and visible as 

fluorescent foci with respect to immunohistochemical/fluorescence techniques.  

If an aggregate of TDP-43 is defined as a detergent-insoluble species, then the findings 

of Gordon and others (2019) demonstrate the importance of comparing the insolubility of TDP-

43 in detergent to its formation of foci viewed under the microscope, which is not consistently 

described in the literature. Since Gordon and others did not detect any visible aggregation, the 



 

insoluble TDP-43 must have had the appearance of a diffuse species, assuming that the 

insolubility was not affected by the method of protein extraction. Therefore, studies that do not 

compare quantitatively the detergent-insolubility with the visible aggregation could be 

underestimating the number of aggregate-positive, degenerating cells. Thus, the association 

between aggregate formation and cellular toxicity could be tighter than certain studies 

recommend.  

Second, the common approach of knocking out TDP-43 following its expression (Ke et 

al., 2015; Walker et al., 2015a; Walker et al., 2015b; Spiller et al., 2016) does not necessarily 

specifically target the inherent cytotoxicity of its aggregation due to the possibility of off-target 

effects. In vivo models should target TDP-43 aggregation more specifically. For example, a 

transgenic mouse model overexpressing wtTDP-43 showed severe pathology, including TDP-43 

aggregates, with a very mitigated lifespan. However, transgenic mice that also underwent a 

complete knockout for ataxin-2, an RNA-binding protein that forms stress granules with TDP-

43, exhibited an extremely reduced pathology and survived much longer than TDP-43 

transgenic mice with normal ataxin-2 expression (Becker et al., 2017). Furthermore, while 

showing no change in TDP-43 protein levels, mice with the ataxin-2 co-knockout revealed 

fewer signs of TDP-43-positive stress granules and aggregates when analyzed at the same time 

point as transgenic mice carrying one or two copies of ataxin-2. This model suggests that TDP-

43 aggregation, possibly originating from irregular stress granular dynamics, is neurotoxic due 

to a gain of toxic function that depends on the presence of ataxin-2. Notwithstanding, ataxin-2-

negative mice still showed eventual motor impairment, which is probably due to the inherent 

toxicity of the knockout condition. Therefore, the in vivo models that rely solely on transgenics 

often yield results that cannot be thoroughly interpreted. 

Finally, another reason behind the lack of interpretive power of current in vivo models is 

the inability of the experimenter to follow the evolution of TDP-43 in real time. This poses a 

major limitation, since aggregation is not a two-step reaction but a sequence of events, including 

misfolding, oligomerization, and eventual formation of large aggregates. In vivo models, such as 

Drosophila melanogaster, mice, and rats only offer snapshots of what occurs during the time 

course of TDP-43 pathology. Recently, however, a zebrafish model has been developed that 

permits the observation of fluorescently tagged TDP-43 in real time in individual, degenerating 

motor neurons (Svahn et al., 2018). Given that UV light can be used to induce 

neurodegeneration in individual motor neurons of zebrafish through the activation of caspases 

(Soustelle et al., 2008), the authors reported that zebrafish transgenic for wtTDP-43 

demonstrated cytoplasmic mislocalization of the protein in UV-injured motor neurons. 



 

Furthermore, a population of the TDP-43 pool became fragmented and localized in the axons, 

which became deformed. However, the lack of immunoblot analyses prevents the understanding 

of TDP-43 solubility and oligomerization in this study. Nonetheless, this transparent model 

permitting the observation of pathological TDP-43 in real time could reveal substantial 

information regarding the dynamics and effects of its aggregation. 

 

6. The Prion-Like Characteristics of Aggregated TDP-43 

  

In cell culture, TDP-43 displays similar characteristics to those of prion protein (Ayers 

and Cashman, 2018; Brauer et al., 2018; Nonaka and Hasegawa, 2018). A considerable number 

of studies suggest that ALS is a “prion-like” disease as a consequence of its hallmark, the TDP-

43-containing aggregates. The C-terminal region is capable of forming stable β-sheets, 

structures with a tendency to form amyloid-like fibrils, initiating the seeding mechanism similar 

to prions (Guo et al., 2011; Jiang et al., 2013; Sun and Chakrabartty, 2017). 

Full-length and cleaved cytoplasmic, phosphorylated, ubiquitinated TDP-43 isolated 

from ALS brain extracts activate and seed cytoplasmic aggregation in the otherwise mainly 

nuclear, soluble, recombinant wtTDP-43 in neuronal and glial cultures (Nonaka et al., 2013; 

Smethurst et al., 2016; Ishii et al., 2017). In these cases, the recombinant TDP-43 is recovered 

in the detergent-insoluble fraction and reveals phosphorylation and ubiquitination, reproducing 

the hallmark phenotype recognized in the brain of ALS patients. Remarkably, this seeding effect 

is specific for TDP-43, because it has been shown that TDP-43 is not seeded by superoxide 

dismutase-1 (SOD-1) fibrils (Furukawa et al., 2011) or ɑ-synuclein fibers (Nonaka et al., 2013). 

The seeding effect is paralleled by a decrease in cellular proliferation, indicating a tie between 

TDP-43 aggregation and cellular demise. 

Furthermore, TDP-43 from transfected cells can propagate to naive, neighboring cells 

(Ding et al., 2015; Smethurst et al., 2016; Ishii et al., 2017; Zeineddine et al., 2017). Further 

evidence of TDP-43 spreading comes from the higher levels of free and exosomal TDP-43 

identified in the cerebrospinal fluid (CSF) of ALS patients compared to control groups (Kasai et 

al., 2009; Sproviero et al., 2018). TDP-43 aggregates were also discovered in serum leukocytes 

from ALS patients (Foulds et al., 2008; Corrado et al., 2009; Foulds et al., 2009; De Marco et 

al., 2011; Verstraete et al., 2012; Alquezar et al., 2016; De Marco et al., 2017). Although 

pathological TDP-43 has the property to penetrate nearby cells, it remains unclear as to how this 

phenomenon occurs. Some theories have been proposed concerning the involvement of 



 

exosomes, tunneling nanotubes, endocytosis, and even passive diffusion (Smethurst et al., 

2015). 

However, observations made postmortem suggest that aggregated TDP-43 does not 

spread to neighboring cells in the brain, because aggregation was not found throughout the 

somata of degenerated neurons. Rather, the aggregates were seen to be dispersed along the 

axons, affecting the downstream oligodendrocytes and neurons (Brettschneider et al., 2013). As 

TDP-43 is actively transported in motor neuron axons (Fallini et al., 2012), it could be received 

by oligodendrocytes through zones of axonal contact. In support of this hypothesis, ALS is 

known to spread throughout the neuraxis in both upper and lower motor neurons, similar to 

prion diseases (Beekes and McBride, 2007; Ravits et al., 2007; Brettschneider et al., 2013). 

Taken together, these investigations suggest that insoluble, aggregated TDP-43 presents 

prion-like properties that seem to contribute to ALS pathogenesis. Although in vivo experiments 

in this regard have not yet been published, in vitro studies demonstrate that the aberrant 

structure of TDP-43 forms fibrils that inhibit the proper function of otherwise normal TDP-43 

proteins. Further studies are required to clarify the role of TDP-43 aggregation in the cell-to-cell 

spreading of ALS. 

  

7. Clearance Mechanisms of Aggregated TDP-43 and Therapeutic 

Perspectives 

  

If a protein, such as TDP-43, becomes abnormal by misfolding, the cell possesses 

several clearance mechanisms to dispose of it. Of the multiple pathways that exist in the cell, the 

most studied pathways regarding TDP-43 clearance have been autophagy, the ubiquitin 

proteasome system, and the endosomal-lysosomal pathway. A plethora of efforts has been made 

to manipulate these pathways to clear the cell of the misfolded, aggregated TDP-43 in ALS 

models. It has been found that the stimulation of these degradation pathways in cells 

overexpressing TDP-43 results in the decrease of aggregated TDP-43 and improved cell 

viability, as we will discuss below.                 

 7.1 Autophagy 

  

Autophagy is responsible for the clearance of dysfunctional organelles and large protein 

aggregates (Rubinsztein, 2006). TDP-43 regulates autophagy by increasing Atg7 mRNA 

stability (Bose et al., 2011), whose translated product assists in autophagosome formation (Fig. 



 

2). Interestingly, several mutations in genes involved in autophagy have been identified to be 

involved in ALS pathogenesis, notably FIG4, OPTN, VCP, C9orf72, SQSTM1, UBQLN2, and 

TBK1. All cases, except mutated FIG4, include the detection of TDP-43 aggregates in post-

mortem samples (Table 1) (Maurel et al., 2018a). Moreover, one study demonstrated the 

accumulation of poly-ubiquitinated and aggregated endogenous TDP-43 (Filimonenko et al., 

2007), and another showed the accumulation of 25-kDa CTFs upon autophagy inhibition (Wang 

et al., 2010). Indeed, transfecting murine Neuro2A and NSC-34 cells with pre-formed TDP-43 

aggregates results in there degradation by way of autophagy (Cascella et al., 2017). These 

findings strongly suggests that autophagy deregulation could be involved in pathological TDP-

43 aggregation and that enhancing autophagy could counteract this pathology. With the goal of 

exploiting autophagy in a therapeutic manner, several chemical activators of autophagy have 

been tested in vitro and in vivo. 

Trehalose, a non-reducing disaccharide found in the hemolymph of invertebrates (Sarkar 

et al., 2007), has been observed to stimulate autophagy and the selective clearance of 

overexpressed CTF in HEK293 cells, while wtTDP-43 is cleared to a lesser extent (Wang et al., 

2010; Scotter et al., 2014). The mechanism of trehalose remains poorly understood, but it seems 

to activate transcription factors that regulate lysosome and autophagosome biogenesis, as well as 

lysosome-autophagosome fusion (Wang et al., 2018) (Fig. 2). Nonetheless, since autophagy 

preferentially attacks aggregated species, such as the highly aggregation-prone CTFs of TDP-43, 

this can explain the significant efficiency of CTF clearance as opposed to wtTDP-43. However, 

no tests on cell viability were conducted in the corresponding studies. 

In addition, a handful of research groups have shown that inhibitors of the mammalian 

target of Rapamycin (mTOR), a central kinase complex that negatively regulates 

autophagosome formation (Zarogoulidis et al., 2014), induce autophagy with therapeutic 

potential against TDP-43 accumulation and aggregation, as is the case for rapamycin, berberine, 

tamoxifen, and the antipsychotic drug fluphenazine (FPZ) (Fig. 2). Essentially, these inhibitors 

induce the clearance of TDP-43 aggregates formed by overexpression, followed by 

improvement in neuronal survival and motor symptoms in vitro and in vivo, respectively 

(Caccamo et al., 2009; Barmada et al., 2010; Wang et al., 2012; Wang et al., 2013a; Barmada et 

al., 2014; Cheng et al., 2015; Chang et al., 2016; Li et al., 2016). 

Still, some reports challenge these current findings regarding the therapeutic ability of 

certain autophagy stimulants. For example, Scotter and others (2014) reported on the ability to 

induce TDP-43 aggregate formation by inhibiting the UPS but not autophagy. After testing the 

effect of rapamycin, they observed no effect on wtTDP-43, mutant, or CTF clearance in 



 

HEK293 cells. Moreover, Liu and others (2017) reported only a modest effect on the clearance 

of similar forms of TDP-43 and found no reduction in toxicity in yeast. Finally, Leibiger and 

others (2018) surprisingly reported that yeast displayed a detrimental effect of autophagy 

stimulation by rapamycin in the presence of overexpressed wtTDP-43. To sum up, it remains 

debatable whether autophagy would be a promising therapeutic tool against TDP-43 pathology.  

 7.2 The Ubiquitin Proteasome System 

  

Unlike autophagy, the ubiquitin proteasome system (UPS) targets mostly soluble, 

misfolded proteins in the nucleus and cytoplasm (Rubinsztein, 2006). This pathway essentially 

consists of the covalent tagging of proteins with ubiquitin (Fig. 2), targeting them for 

proteasome degradation (Rubinsztein, 2006; Maurel et al., 2018a). Similar to autophagy, the 

involvement of UPS-associated genes in ALS has been documented, such as SOD-1, FUS, VCP, 

UBQLN2, and CCNF (Maurel et al., 2018a). TDP-43 aggregation has been recorded in post-

mortem samples of ALS patients involving these mutated genes, except CCNF for which the 

data is absent (Table 1). The specific inhibition of the UPS resulted in heightened levels of 

ubiquitinated TDP-43 aggregates (Wang et al., 2010; Scotter et al., 2014; Walker et al., 2015b). 

Furthermore, Tashiro and others (2012) found that the conditional knockout of the proteasome 

subunit Rpt3 in mouse motor neurons led to the development of TDP-43-positive aggregates 

accompanied by motor decline. On the contrary, the conditional Atg7 (autophagy factor) 

knockout in the same study only produced ubiquitin and p62-positive aggregates without any 

TDP-43 pathology. Upon transfection of purified TDP-43 aggregates in Neuro2A and NSC-34 

cells, it was found that the fraction of aggregates in equilibrium with the monomeric form of 

TDP-43 was primarily degraded by the UPS (Cascella et al., 2017). Therefore, utilizing the UPS 

in a therapeutic sense is also an intriguing possibility.  

DNAJB1, an Hsp40 chaperone, provides a potential avenue to boost the UPS. It 

accelerates the ATPase activity of Hsp70 chaperones that act on misfolded proteins destined for 

the UPS (Rauch and Gestwicki, 2014; Maurel et al., 2018a). DNAJB1 improved the viability of 

primary neurons transfected with WT and A315T TDP-43 (Park et al., 2017). Given that the 

UPS targets species that appear before the large aggregates, DNAJB1 might promote the UPS-

directed degradation of smaller, early-stage aggregates. 

Moreover, poly-A binding protein (PABPN1), a direct binding partner of TDP-43 in 

mammalian neural tissue, reduced pre-formed TDP-43 aggregates and cell death in a yeast 

model overexpressing mutant and CTF TDP-43, as well as in primary neurons. Remarkably, 



 

PABPN1 did not target functional, endogenous TDP-43 for degradation, as it preserved its 

solubility and nuclear localization while targeting pathological TDP-43 for degradation (Fig. 2). 

Inhibition of the UPS, but not autophagy, undermined the function of PABPN1, strongly 

suggesting that its function in degradation is associated with the UPS. However, it remains to be 

studied how PABPN1 directs TDP-43 toward the UPS (Fig. 2) (Chou et al., 2015). 

Lastly, Tamaki and others (2018) engineered an intrabody expressing only the VL and 

VH domains of the complementarity determining region of their previously conceived antibody 

(Shodai et al., 2012) that specifically bound to cytoplasmic, aggregated TDP-43. The VH 

domain naturally possessed a PEST sequence that served as a target for the proteasome, and the 

C-terminus contained an artificial, chaperone-mediated autophagy signal sequence (Heymsfield 

et al.) for autophagy-directed degradation. The VH-VL-CMA intrabody (Fig. 2) prevented the 

increase in the number and size of cytoplasmic aggregates of overexpressed TDP-43 compared 

to the untreated control in HEK293 cells and following in utero electroporation in the cerebral 

cortex of murine fetuses. In Neuro2A cells, the authors observed an increase in cell viability and 

a decrease in cell death, compared to controls without intrabody. This intrabody suggests that 

exploiting both the UPS and autophagy could be a valuable therapeutic method. 

  

7.3 The Endosomal-Lysosomal Pathway 

  

Finally, the endosomal-lysosomal pathway (van der Zee et al.) also takes part in TDP-43 

clearance. This pathway comprises the formation and trafficking of vesicles, such as endosomes 

and phagosomes, by ESCRT protein complexes that fuse with the lysosome to degrade cargo 

(Fig. 2) (Hu et al., 2015).  It is unclear as to which TDP-43 species this pathway targets and 

whether it coordinates with autophagy. Two different studies suggest that the ELP assumes a 

more significant role in TDP-43 elimination than autophagy (Liu et al., 2017; Leibiger et al., 

2018). In fact, Leibiger and others (2018) found that deleting ELP-related genes significantly 

aggravated cellular toxicity induced by TDP-43 expression. Therefore, it is important to 

consider the ELP as an outlet for TDP-43 degradation. 

Rab5 is a regulatory GTPase that associates with early endosomes and plays a role in 

endosome membrane fusion reactions (Fig. 2) (Woodman, 2000). One study showed that 

aggregated TDP-43 co-localized with Rab5 in the cortex of five ALS patients and in HEK293 

cells overexpressing TDP-43. In the same study, Rab5 overexpression following endogenous-

level expression of either WT, mutant, or CTF TDP-43 abolished aggregation through activation 



 

of ELP-mediated clearance while increasing cell viability in HEK293 cells. The overexpression 

of Rab5 also improved locomotor function in Drosophila expressing WT or mutant TDP-43 in 

motor neurons (Liu et al., 2017). Therefore, Rab5 is an attractive therapeutic target for the ELP-

mediated clearance of pathological TDP-43. 

 

8. The Verdict: Innocent or Toxic? 

  

     In the present review, we have scrutinized the current research dedicated to deciphering 

the role that TDP-43 aggregation plays in the neurodegeneration of ALS. We have found a large 

amount of evidence supporting the hypothesis that TDP-43 aggregation is a key factor behind 

the motor neuronal death in this disease. TDP-43 aggregation leads to a combination of loss and 

gain of functions that bring about toxic consequences, including but not limited to decreased 

neurite outgrowth, hindered survival against oxidative stress and stress granule dynamics, 

nucleo-cytoplasmic transport, pre-mRNA splicing, mitochondrial dysfunction, and 

glutamatergic excito-toxicity. Important insights into the central role of TDP-43 aggregates in 

ALS pathology stem from observational studies performed in ALS patients, as almost all cases 

of sporadic ALS present cytoplasmic aggregates of TDP-43 in degenerated motor neurons. In 

addition, diverse studies show a convergence of the key proteins involved in ALS pathogenesis, 

including TDP-43, SOD-1, and FUS. These proteins interact indirectly in such a way to induce 

the others to aggregate (Ling et al., 2010; Kabashi et al., 2011; Kryndushkin et al., 2011; 

Pokrishevsky et al., 2016; Lin et al., 2017). This further implies that neuronal death observed in 

ALS is connected to TDP-43 proteinopathy. 

Notwithstanding, a significant number of in vitro and in vivo studies show an apparent 

low amount of aggregation while revealing a high level of neurotoxicity, downplaying the 

noxious nature of TDP-43 aggregates for certain researchers. At the same time, they could be 

overlooking the upstream aggregating species of TDP-43 that could be too small to be detected 

by the microscopy methods employed in such studies. These include misfolded and 

oligomerized forms that could have different toxicities depending on solubility. This oversight 

could be avoided by targeting mislocalized and misfolded TDP-43 in addition to the final 

aggregate, which has indeed already been demonstrated (Shodai et al., 2012). 

As TDP-43 seems to be a determinant for the neurodegeneration observed in ALS 

patients, the clearance of TDP-43 aggregates during the early stages of the disease could open 

new doorways to therapeutic interventions. The data showing that TDP-43 clearance and the 



 

resulting lowering of aggregation improves cell survival and motor symptoms in cellular and 

animal models of ALS reinforces this therapeutic strategy. Two ongoing clinical trials are 

evaluating this strategy, one using rapamycin and the other employing tamoxifen. 

  

Conclusion. This review supports the hypothesis that cytoplasmic TDP-43 aggregates play a 

central role in the neurodegeneration observed in ALS patients, which is sustained by numerous 

studies performed in cultured cells, animal models, and autopsies of patients. This consideration 

has strong implications for the development of therapeutic strategies. We encourage fellow 

researchers to reinforce the collective effort to uncover the mechanisms that lead to TDP-43 

aggregation to begin to make larger strides towards an effective treatment for ALS. 
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Figure 1. Schematic Diagram of the TDP-43 Regions and Domains. NLS: Nuclear 

Localisation Signal; NES: Nuclear Export Signal; RRM: RNA Recognition Motif; Q/N: 

Glutamine/Asparagine. 



 

 
 

  

Figure 2. Mechanisms of TDP-43 Degradation and Proposed Therapeutic Interventions. 

Autophagy (black sequence) - 1: Nuclear, dimeric TDP-43 aberrantly accumulates in the 

cytoplasm. Degradation can occur to produce C-terminal fragments. 2: All TDP-43 forms enter 

the aggregation pathway (multi-color arrows), in which the CTF is more active (thicker arrows), 

forming an oligomer and, finally, a poly-ubiquitinated aggregate. 3: Autophagy responds by 

engulfing the aggregate in an autophagosome, whose construction is essentially directed by 

Atg1 and Atg7 proteins. 4: The autophagosome fuses with the lysosome, creating the 

autolysosome in which the proteases degrade the aggregate, releasing peptides and free 

ubiquitin. In red: rapamycin, berberine, tamoxifen, fluphenazine, trehalose stimulate the 

corresponding autophagic processes. The CMA sequence of the intrabody bound to the 

aggregate directs it to autophagy. UPS (blue sequence) – Steps 1 and 2 are identical to those of 

autophagy. 3: The misfolded dimer and oligomer are now ubiquitinated and maintained by 

Hsp70 chaperones. 4: The ubiquitinated species are directed to the proteasome, where they are 

degraded. In red: DNAJB1 stimulates Hsp70 activity. PABPN1 protects nuclear TDP-43 from 

cytoplasmic sequestration and increases UPS flux by an unknown mechanism. The PEST 

sequence of the intrabody directs the aggregate to the UPS. ELP (violet sequence) – Events 1 

and 2 are the same as in autophagy and the UPS. 3: The endocytic vesicle forms an early 

endosome that is largely regulated by Rab5. 4: This leads to the late endosome that can harbor 



 

material destined for degradation. For the sake of simplicity, we consider every form of TDP-43 

to be a target for ELP. 5: The late endosome fuses with the lysosome, where the material is 

degraded. Autophagy and ELP have the ability to cooperate, because their pathways converge. 

Figure designed using image templates from Servier Medical Art 

https://smart.servier.com/image-set-download/. 
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ALS 
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prese

nce 

of 

TDP

-43 

aggr

egati

on. 

Mutation TDP 

inclusion 

Studies 

TARDBP yes Van Deerlin et al. (2008); Kabashi et al. (2008) 

SOD-1 yes Sumi et al. (2009); Okamoto et al. (2011); Sabatelli 

et al. (2015); Jeon et al. (2018) 

NEFH NR -- 

SETX yes Bennett et al. (2018) 

ALS2 NR -- 

DCTN1 yes (in Perry Syndrome); Wider et al. (2009) 

VABP NR -- 

ANG yes Kirby et al. (2013) 

CHMP2B no Holm et al. (2007) ; Ghazi-Noori et al. (2012) 

FUS no Vance et al. (2009) 

ELP3 NR -- 

FIG4 NR -- 



 

 

* 

Findi

ngs 

from 

cell 

or 

anim

al 

mode

ls of 

ALS; 

no 

studi

es 

perfo

rmed 

in 

post

mortem samples in these cases. 

 

Table 2: The Diverse Models to Explore the Association of TDP-43 Aggregation with Toxicity. 

Study Model Specific TDP-43 

form 

Cytoplasmic 

Aggregates 

Toxicity 

WT TDP-43 in vitro Models 

Park et al. (2017) 

Baskaran et al. (2018)  

rat primary cortical 

neurons 

*WT yes yes 

Barmada et al. (2010); 

Park et al. (2017) 

rat primary cortical 

neurons 

WT yes no 

Fallini et al. (2012) mouse primary 

motor neurons 

WT no yes 

Guo et al. (2011) mouse primary 

cortical neurons 

WT no no 

Yamashita et al. (2014) SH-SY5Y WT no yes 

Watanabe et al. (2013) 

  

Kitamura et al. (2016) 

Neuro2A WT (stabilized by 

fusion protein) 

 

WT 

no 

  

 

no 

yes 

  

 

yes 

Zhang et al. (2009) M17 

Neuroblastoma 

WT no yes 

C9orf72 yes Simon-Sanchez et al. (2012); Murray et al. (2011); 

Stewart et al. (2012) ; Al-Sarraj et al. (2011) 

SQSTM1 yes van der Zee et al. (2014) 

UBQLN2 yes Deng et al. (2011); Williams et al. (2012) 

VCP yes Neumann et al. (2007) 

OPTN yes Kamada et al. (2014) 

ATXN2 yes Elden et al. (2010) 

SPG11 no (in spastic paraplegia ); Denora et al. (2016) 

PFN1 yes Wu et al. (2012) 

GRN yes Mackenzie (2007) 

HNRPA1 yes Kim et al. (2013) 

HNRNPA2B1 yes Kim et al. (2013) 

CHCHD10 yes * Woo et al. (2017); Genin et al. (2018)  

MATR3 yes Johnson et al. (2014) 

TUBA4A no Smith et al. (2014) 

TBK1 yes Gijselinck et al. (2015) 

C21orf2 NR -- 

NEK1 NR -- 

CCNF yes * Williams et al. (2016) 



 

Johnson et al. (2009) 

Armakola et al. (2011) 

Prasad et al. (2016) 

Liu et al. (2017)  

Park et al. (2017) 

Leibiger et al. (2018) 

yeast WT yes yes 

Nonaka et al. (2016) yeast WT no no 

Nonaka et al. (2016) yeast WT + CK1δ1-317 

(kinase) 

yes yes 

  

WT TDP-43 in vivo Models 

Becker et al. (2017) mouse 

pan-neuronal 

expression 

WT yes yes 

Wang et al. (2013b) mouse FTLD-U 

brain 

mouse WT yes yes 

Choksi et al. (2014) Drosophila pan-

neural expression 

WT no yes 

Mutant TDP-43 in vitro Models 

Bossolasco et al. (2018) iPSC-derived 

motor neurons from 

ALS patient 

A382T no no 

Seminary et al. (2018) iPSC-derived 

motor neurons from 

ALS patient 

M337V no no 

Barmada et al. (2010) 

Park et al. (2017) 

rat primary cortical 

neurons 

A315T yes yes 

Baskaran et al. (2018) rat primary cortical 

neurons 

Q331K 

M337V 

yes 

yes 

yes 

yes 

Guo et al. (2011) mouse primary 

cortical neurons 

A315T yes yes 

Johnson et al. (2009) yeast Q331K yes yes 

Mutant TDP-43 in vivo Models 

Choksi et al. (2014) Drosophila Q331K yes yes 

Choksi et al. (2014) Drosophila M337V no yes 

ΔNLS/NES TDP-43 in vitro Models 

Sasaguri et al. (2016) mouse primary FL ΔNLS yes yes 



 

cortical neurons   

Zhang et al. (2013) mouse primary 

cortical neurons 

FL ΔNLS yes yes 

Winton et al. (2008) mouse 

hippocampal 

primary cortical 

neurons 

tsBN2 cells 

FL ΔNLS yes N/A 

Yamashita et al. (2014) SH-SY5Y FL ΔNLS no no 

Kitamura et al. (2016)  Neuro2A cells NLS -CTF no no 

Armakola et al. (2011) yeast FL ΔNLS yes yes 

ΔNLS/NES TDP-43 in vivo Models 

Walker et al. (2015a) 

  

  

mouse 

(expression in 

brain/spinal cord) 

FL ΔNLS yes yes 

Sasaguri et al. (2016) 

 

mouse (pan-

neuronal) 

FL ΔNLS yes yes 

Igaz et al. (2011) mouse (forebrain) FL ΔNLS yes yes 

Miguel et al. (2011) Drosophila 

 neurons 

  

retina 

  

FL ΔNLS 

FL ΔNES 

FL ΔNLS 

FL ΔNES 

  

no 

no 

no 

no 

  

yes 

yes 

yes 

yes 

CTF TDP-43 in vitro Models 

Fallini et al. (2012) mouse primary 

motor neurons 

CTF
208-414 

yes yes 

Chou et al. (2015)
 

mouse primary 

cortical neurons 

CTF
208-414 

yes yes 

  

Yamashita et al. (2014) SH-SY5Y CTF
162-414 

yes yes 

Kitamura et al. (2016) Neuro2A cells CTF
220-414

 

NLS-CTF
220-414

 

yes 

no 

yes 

no 

Zhang et al. (2009) M17 

Neuroblastoma 

CTF
220-414 

yes yes 

Liu et al. (2017) HEK293A CTF
220-414 

yes yes 

Chou et al. (2015) yeast CTF
208-414 

yes yes 



 

CTF TDP-43 in vivo Models 

Walker et al. (2015a)
 

mouse cortex, 

hippocampus 

CTF
208-414 

yes yes 

Other Forms of TDP-43 in vitro Models 

Zhang et al. (2013) mouse primary 

cortical neurons 

TDP  10-414 

ΔNLS 

  

no no 

WT = wild-type, FL = full length, ΔNLS = artificial defective NLS, ΔNES = artificial defective 

NES, CTF = 25 kDa C-terminal fragment. 

* If not specified, the species of TDP-43 is human. 
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Supplementary Table 1. Identified Mutations in the structure of TDP-43. 

Mutation Localisation Reference 

D23A N-terminal ALS Data Browser 

A66A N-terminal  Daoud et al. (2009) 

A90V N-terminal - NLS  Winton et al. (2008); Brouwers et al. (2010); 

Vanden Broeck et al. (2015)  
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S92L N-terminal - NLS ALS Data Browser 

P112H RRM1 Moreno et al. (2015) 

D169G RRM1  Kabashi et al. (2008) 

K263E RMM2 Kovacs et al. (2009) 

N259S RRM2 Maurel et al. (2018) 

N267S C-terminal Borroni et al. (2009); Corrado et al. (2009) 

G287S C-terminal Kabashi et al. (2008); Corrado et al. (2009) 

G290A C-terminal Van Deerlin et al. (2008) 

S292N C-terminal Xiong et al. (2010); Zou et al. (2012) 

G294A C-terminal Sreedharan et al. (2008) 

G294V C-terminal Corrado et al. (2009); Del Bo et al. (2009) 

G295C C-terminal van Blitterswijk et al. (2014) 

G295R C-terminal Corrado et al. (2009); Ticozzi et al. (2011) 

G295S 

  

C-terminal Benajiba et al. (2009); Corrado et al. (2009); 

Del Bo et al. (2009) 

G298S  C-terminal Van Deerlin et al. (2008) 

M311V C-terminal Lemmens et al. (2009) 

A315E C-terminal Fujita et al. (2011) 

A315T C-terminal Gitcho et al. (2008); Kabashi et al. (2008) 

A321G C-terminal Baumer et al. (2009) 

A321V C-terminal Kirby et al. (2010) 

Q331K C-terminal Sreedharan et al. (2008) 

S332N C-terminal Corrado et al. (2009) 
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G335D C-terminal Corrado et al. (2009) 

M337V C-terminal Rutherford et al. (2008); Sreedharan et al. 

(2008); Corrado et al. (2009) 

M339I C-terminal ALS Data Browser 

Q343R C-terminal Yokoseki et al. (2008) 

N345K C-terminal Rutherford et al. (2008) 

G348C C-terminal Kabashi et al. (2008); Kuhnlein et al. (2008); 

Daoud et al. (2009); Del Bo et al. (2009)  

G348V C-terminal Kirby et al. (2010); Zou et al. (2012) 

G348R C-terminal Ticozzi et al. (2011) 

N352S C-terminal Kuhnlein et al. (2008) 

N352T C-terminal Ticozzi et al. (2011) 

G357S C-terminal Iida et al. (2012) 

G357R C-terminal Chiang et al. (2012) 

G357D C-terminal ALS Data Browser 

M359V C-terminal Kabashi et al. (2008) 

R361S C-terminal Kabashi et al. (2008) 

R361T C-terminal Chiang et al. (2012) 

P363A C-terminal Daoud et al. (2009) 

G368S C-terminal Chio et al. (2010); De Marco et al. (2011)  

Y374X C-terminal Daoud et al. (2009) 

G376D C-terminal Conforti et al. (2011); Czell et al. (2013) 

N378D C-terminal Ticozzi et al. (2011); Tsai et al. (2011); Soong 
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et al. (2014) 

N378S C-terminal Huang et al. (2012) 

S379C C-terminal Corrado et al. (2009) 

S379P C-terminal Corrado et al. (2009) 

A382T C-terminal  Kabashi et al. (2008); Corrado et al. (2009); 

Del Bo et al. (2009) 

A382P C-terminal Daoud et al. (2009) 

I383V C-terminal Rutherford et al. (2008) 

G384R C-terminal Millecamps et al. (2010); Ticozzi et al. (2011) 

W385G C-terminal Millecamps et al. (2010) 

S387delinsTN

P 

C-terminal Solski et al. (2012) 

N390D C-terminal Kabashi et al. (2008) 

N390S C-terminal Kabashi et al. (2008) 

S393L  C-terminal Corrado et al. (2009); Origone et al. (2010) 

NLS: Nuclear Localization Signal; RRM: RNA Recognition Motif. ALS Data Browser available 

at alsdb.org. 
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