
HAL Id: hal-02612461
https://hal.science/hal-02612461v1

Submitted on 19 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Taming The Shape Shifter: Detecting
Anti-fingerprinting Browsers

Babak Amin Azad, Oleksii Starov, Pierre Laperdrix, Nick Nikiforakis

To cite this version:
Babak Amin Azad, Oleksii Starov, Pierre Laperdrix, Nick Nikiforakis. Taming The Shape Shifter:
Detecting Anti-fingerprinting Browsers. DIMVA 2020 - 17th Conference on Detection of Intrusions
and Malware & Vulnerability Assessment, Jun 2020, Lisboa / Virtual, Portugal. �hal-02612461�

https://hal.science/hal-02612461v1
https://hal.archives-ouvertes.fr


Short Paper - Taming The Shape Shifter:
Detecting Anti-fingerprinting Browsers

Babak Amin Azad1, Oleksii Starov2, Pierre Laperdrix3, and Nick Nikiforakis1

1 Stony Brook University
2 Palo Alto Networks

3 CNRS / Univ. Lille / Inria

Abstract. When it comes to leaked credentials and credit card information, we
observe the development and use of anti-fingerprinting browsers by malicious
actors. These tools are carefully designed to evade detection, often by mimick-
ing the browsing environment of the victim whose credentials were stolen. Even
though these tools are popular in the underground markets, they have not re-
ceived enough attention by researchers. In this paper, we report on the first evalu-
ation of four underground, commercial, and research anti-fingerprinting browsers
and highlight their high success rate in bypassing browser fingerprinting. Despite
their success against well-known fingerprinting methods and libraries, we show
that even slightest variation in the simulated fingerprint compared to the real ones
can give away the presence of anti-fingerprinting tools. As a result, we provide
techniques and fingerprint-based signatures that can be used to detect the current
generation of anti-fingerprinting browsers.

1 Introduction
Major database hacks and personal information leaks have been the common cyber
news headline for the past couple of years. Haveibeenpwned4, the website that hosts
the records of publicly known credential leaks, currently hosts 428 instances of creden-
tial leakage from different websites, including some highly popular (e.g. Linkedin and
Dropbox). The number of accounts affected by these leaked credentials adds up to over
773 million accounts.

In a similar fashion, the online shopping industry has been the prime target of at-
tackers. In 2019, over 180,000 websites were successfully attacked by Magecart hack-
ers [11]. By implanting malicious JavaScript code on hacked websites, attackers behind
these operations steal credit card and payment information of clients upon checkout.
According to statistics from the security industry [11], these attacks have so far affected
more than 2 million users.

The stolen credentials and credit card information typically end up being sold in
bulk in the underground markets [30]. Verification and monetization of the stolen infor-
mation at scale requires specific tools. Automation is also a vital part of these malicious
operations as the size of the data that needs to be verified and then abused becomes in-
creasingly larger. As a result, malicious actors have built automation tools to speed up
this process. The existing anti-bot and fraud detection tools and services heavily rely on

4 https://haveibeenpwned.com/



2 B. Amin Azad et al.

browser fingerprinting [13]. In order to bypass these mechanisms, malicious actors use
specialized browsers that enable them to easily switch fingerprints or simulate a target
browsing environment and evade detection. We assembled our list of anti-fingerprinting
browsers by searching the underground markets for the tools that malicious actors use,
as well as commercial and research projects that promise to defend against tracking.
Success stories (e.g., reaching over 90% success rate in carding attempts) and tutorials
on configuring and efficiently using these browsers are widely available on different
carding forums [1, 2, 9, 10]. Malicious actors use these forums to trade the stolen credit
card information and share their latest tips on successful cashout strategies.

Tools such as AntiDetect [22] and Fraudfox [21] are commonly incorporated to
mask the browser fingerprints of attackers and evade detection from tools that look for
known good (i.e. belonging to a specific benign user) or known bad (i.e. belonging to
a previously seen attacker) fingerprints. These browsers not only enable attackers to
switch browser fingerprints, they also give them the ability to mimic a victim’s environ-
ment, such as, setting their timezone and screen resolution to match the victim when
visiting websites to make fraudulent purchases or access the hacked accounts.

Even though these tools are popular among attackers, they have not received the
attention they deserve from the research community. In this paper, we study the tech-
niques that these tools incorporate to remain undetected and quantify their effective-
ness against state-of-the-art, in browser fingerprinting. After analyzing the fingerprint-
able surface of these tools, we show that we were able to devise fingerprinting-based
signatures for all of them which can be used to uniquely identify them. Our findings
can be used by the existing anti-fraud systems to precisely identify the usage of anti-
fingerprinting browsers.

2 Background

In a typical case of online fraud, multiple entities are involved. Usually, one party is
responsible for stealing credentials, which are then sold in bulk to another party to be
monetized [28]. The timeliness of these events is crucial. As the stolen information
gets stale, it is more likely for the compromised websites or individual victims to have
been informed about their information being stolen and invalidate their credentials. In
the mean time, to prevent issues with stolen credentials, merchants who process pay-
ment information started to incorporate browser fingerprinting to detect fraudulent and
automated browsing activities.

Companies providing fraud detection services commonly use browser-fingerprinting
to track users [4, 5, 7, 27]. By collecting information from users’ web browsers, these
services build browsing profiles of normal users. This information is then used to filter
out fraudulent requests.

State-of-the-art browser fingerprinting identifies users by leveraging features such
as HTTP headers and available JavaScript APIs [16,24]. The act of fingerprinting tran-
scends the actual browser, enabling the identification of the operating system and the
underlying hardware [15]. This is typically achieved based on the characteristics of ren-
dered images within an HTML canvas element [14,25]. Other researchers have focused
on other parts of the browsing environment to build more robust fingerprints by ex-
tracting the list of available fonts and browser extensions [18, 29]. Fingerprintjs2 [32],



Short Paper - Taming The Shape Shifter: Detecting Anti-fingerprinting Browsers 3

a well-known browser fingerprinting library, compiles the previously mentioned fin-
gerprinting methods in a JavaScript module that can be integrated with any website to
collect browser fingerprints of its visitors. Lastly, behavioral features of the user like
the use of clicks or touch can be collected to separate interactive user activity from that
of an automated client.

3 Anti-fingerprinting browsers
To battle fingerprinting, anti-fingerprinting browsers capable of modifying the content
of their fingerprint were created. We categorize the browser fingerprint modification
schemes into three groups. Each group has its own benefits and drawbacks as we discuss
below:

– JavaScript Injection: In this method, JavaScript is injected into all webpages
loaded by the browser. This way, JavaScript properties and methods are overwrit-
ten to send different information to servers. For example, when a script wants to
access navigator.userAgent or render a canvas image, it will find the newly
injected version instead of the default one. The strength of this approach is the
ease of deployment and maintainability. However, prior work has shown that these
spoofing extensions may not offer the best protection against fingerprinting as they
often present incomplete coverage of JavaScript objects and can create impossible
configurations [26].

– Native Spoofing: Native spoofing modifies the source code of the browser to re-
turn modified values. For some attributes, changing the sent value is as simple as
rewriting a string but for other methods like canvas fingerprinting, successful mod-
ifications require a deeper understanding of a browser’s codebase to find the right
methods and modify them appropriately. The strength of this solution is that it can
be hard to detect as an inspection of the Document Object Model (DOM) is not
sufficient to detect traces of spoofing. However, the downside is that the cost of
maintenance can be high, requiring a complete rebuild of the browser after each
update.

– Recreating Complete Environments: This method consists of utilizing a virtual-
ized browsing environment with a desired configuration on top of the host system.
The advantage of this method is that the fingerprint presented to servers is genuine
as the components truly run on the system. For the same reason, no impossible
configurations can result from such an approach. On the downside, this approach
requires more system resources compared to a simple browser extension or a mod-
ified browser.

In this section, we analyze research, commercial, and underground tools against fin-
gerprinting, in order to understand whether masking the true fingerprint of a device can
help bypass current fingerprinting techniques. Next, we list the tools that are included
in this study along with the anti-fingerprinting mechanism they use.

AntiDetect and Fraudfox [JavaScript Injection]. AntiDetect is one of the first
tools that surfaced online against browser fingerprinting, gaining visibility from a 2015
article [3]. AntiDetect uses JavaScript injection and relies on a browser extension to
change the exhibited browser fingerprint. To improve usability, users are presented with



4 B. Amin Azad et al.

an interface where they can choose a profile from a pool of existing browser fingerprint
profiles. Fraudfox appeared at approximately the same time as AntiDetect and works
in a similar fashion by providing an interface to users for selecting the fingerprint they
want to expose [21]. Fraudfox offers the option to modify several attributes separately
and also targets advanced techniques, such as, font fingerprinting. It uses a custom Win-
dows XP virtual machine and a tool named OSfuscate to change the TCP/IP fingerprint
of the system in order to confuse nmap-like tools that can identify OSes based on the
structure of network packets.

Mimic [Native Spoofing]. Mimic is a modified Chrome browser that uses native
spoofing to modify its fingerprint [8]. Users can generate various profiles and activate
the desired fingerprinting protection. One particularly interesting feature of Mimic is
that it gives users the option to either block, or introduce noise into some fingerprinting-
related APIs. In contrast to the previously mentioned underground tools, Mimic takes
a different approach and advertises itself as a generic solution against browser finger-
printing that can be used for marketing, journalism, cyber investigation, and even web
scraping activities.

Blink [Recreating Complete Environments] Blink is a moving-target-style de-
fense against browser fingerprinting. Proposed by Laperdrix et al. [23], this tool as-
sembles a set of components at runtime into a virtual machine. Upon each execution,
the virtual machine’s environment is modified with new configurations (e.g., timezone,
available fonts, etc.) in order to generate an organic browser fingerprint. This guarantees
that the exhibited fingerprint is coherent compared to the other tools where the artificial
combination of browser properties can easily result in impossible configurations.

A full comparison of the tools along with the exact fingerprinting techniques that each
of them counters, can be found in Table 1. The main tactic that these tools incorporate
against detection is frequent rotation of valid fingerprints. That is, the common elements
in browser fingerprints as mentioned both in the literature and popular opensource fin-
gerprinting libraries such as Fingerprintjs2, are configurable.

These values are faked through a large list of valid fingerprints that is either shipped
with these browsers or can be easily generated through their interface. For instance,
AntiDetect comes with over 4,000 profiles and Fraudfox includes profiles with 90 user-
agents and 5 browsers and 6 operating systems. Moreover, users can choose to add noise
to certain APIs such as audio context and the canvas API. This variety makes it hard
to derive features from the common fingerprinting libraries to uniquely identify these
browsers. Interestingly, Fraudfox has been tested against popular browser fingerprinting
tools and the successful rotation of fingerprints and removal of tracking information
(e.g., Evercookies [6]) has been verified in the underground carding forums [10].

All of the studied anti-fingerprinting browsers, except Blink, which is discussed
separately in Section 4, modify or add noise to the existing browser properties. We will
discuss in more detail how this type of modification will inherently introduce incon-
sistencies and demonstrate concrete examples of these inconsistencies and use them to
build signatures that uniquely identify these browsers in Section 4.



Short Paper - Taming The Shape Shifter: Detecting Anti-fingerprinting Browsers 5

Table 1: Overview of the studied tools with the fingerprinting techniques they counter
Tool AntiDetect Fraudfox Mimic Blink

Type Injection Injection Native Recreation
Tested version 7.1 1.5.1 1.4.8 1.0

Number of profiles
or components

>4,000

600 fonts, 90
user-agents, 85

plugins, 5 browsers
and 6 OS

1,000
2,762 fonts, 39

plugins, 6 browsers
and 4 OS

Browser used Firefox 41-48 Firefox 41 Chrome 61
Latest versions of

Chrome and
Firefox

Network -

Proxy through
SocksCap64 +

Obfuscation of OS
Network packet

through OSfuscate

Built-in proxy
management

(HTTP, Socks5)

Built-in support for
Tor

User Agent Ë Ë Ë Ë
Language Ë Ë Ë

Screen Ë Ë Ë
Navigator Ë Ë Ë Ë
Timezone Ë Ë Ë Ë

Date Ë
Fonts Ë Ë Ë

Plugins Ë Ë Ë Ë
Media devices Ë

Canvas
Noise (letters in

strings)
Noise (fonts and

colors)
Noise (fonts and

colors)
Noise (change of

OS)

WebGL Blocked Blocked
Only vendor and

renderer
Noise (change of

OS)

WebRTC Ë
Block or fake IP

address
Geolocation Ë Ë
Hardware

Concurrency
Ë

4 Detecting the anti-fingerprinting tools

To extract unique characteristics that can be used to uniquely identify each browser,
we analyzed each tool using the techniques described by Nikiforakis et al. [26] and
Acar et al. [12]. We investigate built-in JavaScript objects, such as, navigator and
screen with and without anti-fingerprinting mechanisms, looking for inconsistencies.
According to Vastel et al., existing bot detection schemes already use similar techniques
to detect the presence of impossible fingerprints [34]. To the best of our knowledge, we
are the first to report on the fingerprintability of dedicated anti-fingerprinting tools.

• AntiDetect Since AntiDetect relies on a browser extension, a single line of JavaScript
is sufficient to detect injected values. Notably, objects created through JavaScript are
easily identifiable as they only contain a toString function. In Listing 1 (top), we
can clearly see the getGamepads function written by the developers to modify the
returned value as if it was a native one.



6 B. Amin Azad et al.

navigator.getGamepads.toString.toString()
//Returns "function () { return "function getGamepads() { [

native code] }";}"
//
//Standard Firefox returns
//"function toString() {
// [native code]
//}"

CanvasRenderingContext2D.prototype.__lookupSetter__("strokeStyle
").toString()

//Returns
//"function (){
//"use strict";
//this.strokeStyle=settings.strokeStyle}"
//
//Standard Firefox returns
//"function set strokeStyle() {
// [native code]
//}"

canvas = document.createElement("canvas");
canvasContext = canvas.getContext("2d");
canvasContext.fillStyle = "#ff6600";
canvasContext.fillStyle.toString();
//Returns the color set by the user: "#71cda0"
//Standard Firefox returns the color from the script: "#ff6600"

Listing 1: Detecting JavaScript injection performed by AntiDetect (top)
and Fraudfox (bottom)

Like other tools relying on JavaScript injection, inconsistencies in fingerprints are
possible and frequent. One example is when AntiDetect launches a Chrome profile
where one can observe the presence of both webkit and moz prefixed properties which
is impossible as these belong to two different rendering engines. Another example is
a mismatch between two attributes where the user-agent reports a 64-bit OS and the
navigator.platform indicates a 32-bit one.
• Fraudfox presents the same shortcomings as AntiDetect as it also relies on the same
spoofing method. However, one needs to look elsewhere to find traces of JavaScript
injection. As shown in Listing 1 (bottom), the developers directly poison the prototype
of specific objects. One can also easily find the parameters that are set in the tool’s
interface like the exact filling color of the canvas API. This could, in fact, act as a long-
time identifier if the user always reuses the same profile without regularly updating
the canvas color. Finally, Fraudfox has its own set of inconsistencies. For example,
Chrome profiles present moz-prefixed properties but no webkit ones. Mac profiles show
.dll extension for plugins instead of .plugin.
• Mimic is harder to detect compared to the two previous solutions because it does
not rely on JavaScript injection. However, the browser is still identifiable through some



Short Paper - Taming The Shape Shifter: Detecting Anti-fingerprinting Browsers 7

unique inconsistencies that come from its database of fingerprints. When spoofing the
WebGL Renderer, Mimic always add the ANGLE string in front of every value. How-
ever, this string can only be found on Windows as Chrome uses the ANGLE backend on
this operating system to translate OpenGL API calls to DirectX. On Linux, plugins with
the .so extension are visible creating an inconsistency if a Windows or a Mac profile is
selected. Finally, Mimic presents an incorrect priority in the HTTP language header.
The second language should present a priority of 0.9 (“en-US,en;en;q=0.9”) but Mimic
returns one of 0.8 (“en-US,en;en;q=0.8”). Changing the priority is easily fixable in the
profile database but it shows that the smallest detail can render a tool identifiable.
Focus on canvas poisoning. Each tool also has its own canvas poisoning technique,
which as we demonstrate is identifiable. Figure 2 illustrates them.

(a) Standard Chrome (b) AntiDetect

(c) Fraudfox (d) Zoom on the top left part of the ‘q’ of the
Mimic’s rendering

Fig. 2: Renderings of the same canvas test

AntiDetect changes the letters of a given string and their position. Fraudfox modi-
fies the colors set by a script. This is directly configurable in the interface of the tool.
Moreover, since the tool runs on Windows XP, the OS does not have any fonts that
support emojis (presence of a green square at the end of the strings). Mimic is different
from the other two as the modification is almost invisible for the user. Mimic introduces
a small amount of noise but an in-depth analysis reveals that the transparency of some
pixels were changed (on the zoomed-in image, the top half of the orange rectangle is
more transparent than the bottom half).

Overall, our findings demonstrate that a combination of several tests is sufficient to
precisely identify all evaluated anti-fingerprinting tools. The quirks discovered can be
corrected but our results confirm that it is difficult to design an anti-fingerprinting tool
that is not detectable. For both JavaScript injection and native spoofing, the smallest
oversight can make the user stand out, be marked as malicious and invalidate the offered
protection.

Blink and the recreation of complete environments

In this section, we showed how the operators of anti-fraud systems can fingerprint anti-
fingerprinting tools, based on the latter’s inability of perfectly mimicking a non-native
browsing environment. Blink, the research prototype by Laperdrix et al. [23] that we
introduced in Section 3, sets itself apart from the rest by the fact that it does not attempt
to mimick a foreign environment. Instead, Blink assembles a real environment with



8 B. Amin Azad et al.

different components and launches that environment in a virtual machine. As such,
none of the techniques presented in this section can be used to detect Blink since there
is no mimicking involved and therefore no inconsistencies to be discovered.

Despite Blink’s attractiveness for defeating fingerprinting-based, unwanted online
tracking (since users can keep changing their fingerprints and therefore break the link-
ing of browser sessions), we argue that Blink’s utility is limited for attackers. This is
because, an attacker who tries to match the fingerprinting of a victim user, must uti-
lize Blink to recreate the entire browsing environment of their victim. This requires
not just the installation of the appropriate software, but even the purchase of the ap-
propriate hardware (e.g. to match the number of threads in the victim’s CPU and how
the victim’s graphics card renders complex 3D scenes). All of this is clearly possible
for highly targeted attacks but also highly unlikely for the monetization of credentials,
since the investment in assembling the right environment can exceed the profit from the
stolen credentials.

5 Related Work
Prior work can be split into the study of underground markets, browser fingerprinting,
and bot-based fraud detection.

Singh et al. studied the underground ecosystem of credit card fraud [28]. They de-
scribe the different methods that attackers use to steal credit card information. These
methods range from POS malware to exploitation of a vulnerability. Given the difficulty
and risk associated with monetizing stolen credentials, attackers often resort to selling
these illicitly obtained credentials to other attackers specializing in monetization. The
authors then go over the existing channels to monetize the cards (e.g. by delivering
high-end goods purchased with stolen credentials to unsuspecting users who believe
they are working for a shipping company and will then re-ship the goods to another
destination [19]). Other works focused on trafficking of fraudulent twitter accounts in
the underground markets [31]. Fallmann et al. discussed their finding on probing these
markets [17] and Thomas et al. assessed the effect of data breaches on the activities of
underground markets [30].

In the realm of browser fingerprinting, researchers keep identifying features that
can be extracted from browsers and make browser fingerprints more robust [14, 15,
18, 25, 29, 33]. As fingerprinting-based fraud detection tools incorporate these features
into their techniques, the tools used by attackers must also account for them (such as
accounting for canvas-based fingerprinting, as described in Section 4).

One of the challenges in the study of JavaScript files and fingerprinting scripts is
instrumenting the various API calls and monitoring them. VisibleV8 is a Chromium
based browser that is easy to maintain over time and provides the ability to monitor
JavaScript API calls [20]. The authors used their customized browser to analyze the
prevalence of scripts that query for bot and browser automation artifacts on popular
Alexa websites.

6 Conclusion
In this paper, we showed that anti-fingerprinting tools are capable of bypassing the pro-
tection of state-of-the-art fingerprinting techniques by masking the components that



Short Paper - Taming The Shape Shifter: Detecting Anti-fingerprinting Browsers 9

are queried by fingerprinting libraries. We analyzed their masking techniques (i.e.,
JavaScript injection, native spoofing, and the recreation of complete environments) and
described the process of identifying fingerprinting-based inconsistencies which can be
used to identify them and block them. Our analysis showed that all tools that attempt to
mimick non-native environments are unique fingerprintable and therefore can be iden-
tified by anti-fraud systems, through the use of our proposed fingerprinting vectors.
Finally, we discussed the difficulty of fingerprinting tools that are based on the recre-
ation of browsing environments and the reasons why these tools are highly unlikely to
be used in generic, non-targeted attacks.

Acknowledgements: We thank the anonymous reviewers for their helpful feedback.
This work was partially supported by a gift from Amazon and the National Science
Foundation (NSF) under grants CNS-1813974, CNS-1617902, and CMMI-1842020.

References
1. AntiDetect tool, only way to cashout from stolen credit cards (2015), https://www.

ehacking.net/2015/03/antidetect-tool-only-way-to-cashout.
html

2. Fraudfox makes it easier for thieves to empty bank accounts (2015), https://www.
pcworld.com/article/2872372/this-tool-may-make-it-easier-
for-thieves-to-empty-bank-accounts.html

3. Post by Brian Krebs on AntiDetect (2015), https://krebsonsecurity.com/tag/
antidetect/

4. DataDome: Protect your website from bot traffic (2017), https://datadome.co/
5. Distil Networks: Bot Mitigation & API Security (2017), https : / / www .

distilnetworks.com/
6. Evercookie (2017), https://github.com/samyk/evercookie
7. ShieldSquare: Bot Mitigation & Protection (2017), https://www.shieldsquare.

com/
8. Multilogin – The Most Advanced Browser Fingerprinting Protection Ever Created -

Enter Mimic (2018), https://multiloginapp.com/advanced-browser-
fingerprinting-protection-ever-created-enter-mimic/

9. AntiDetect 7 and FraudFox VM, best carder protection (2019), https://imgur.com/
a/ycxFTtz and https://bazaar.blockstamp.market/listings/view/
QmX9VGTz2HziSqL7kjNSGjPe8UHDrdyyxZwXyQbBgTbWcN-antidetect-7-
fraudfox-vm-full-version-of-both-applications-best

10. Fraudfox tool in and underground carding forum (2019), https://imgur.com/
a/6xmYPgN and https://www.verifiedcarder.ws/threads/fraudfox-
tool-cracked.21485/

11. Magecart Skimmers Spotted on 2M Websites (2019), https://www.darkreading.
com/endpoint/magecart-skimmers-spotted-on-2m-websites/d/d-
id/1336011

12. Acar, G., Juarez, M., Nikiforakis, N., Diaz, C., Gürses, S., Piessens, F., Preneel, B.: FPDe-
tective: dusting the web for fingerprinters. In: Proceedings of the 2013 ACM SIGSAC Con-
ference on Computer & Communications Security (2013)

13. AminAzad, B., Starov, O., Laperdrix, P., Nikiforakis, N.: Web Runer 2049: Evaluating Third-
Party Anti-bot Services. In: DIMVA (2020)

14. Bursztein, E., Malyshev, A., Pietraszek, T., Thomas, K.: Picasso: Lightweight device class
fingerprinting for web clients. In: Proceedings of the 6th Workshop on Security and Privacy
in Smartphones and Mobile Devices (2016)

https://www.ehacking.net/2015/03/antidetect-tool-only-way-to-cashout.html
https://www.ehacking.net/2015/03/antidetect-tool-only-way-to-cashout.html
https://www.ehacking.net/2015/03/antidetect-tool-only-way-to-cashout.html
https://www.pcworld.com/article/2872372/this-tool-may-make-it-easier-for-thieves-to-empty-bank-accounts.html
https://www.pcworld.com/article/2872372/this-tool-may-make-it-easier-for-thieves-to-empty-bank-accounts.html
https://www.pcworld.com/article/2872372/this-tool-may-make-it-easier-for-thieves-to-empty-bank-accounts.html
https://krebsonsecurity.com/tag/antidetect/
https://krebsonsecurity.com/tag/antidetect/
https://datadome.co/
https://www.distilnetworks.com/
https://www.distilnetworks.com/
https://github.com/samyk/evercookie
https://www.shieldsquare.com/
https://www.shieldsquare.com/
https://multiloginapp.com/advanced-browser-fingerprinting-protection-ever-created-enter-mimic/
https://multiloginapp.com/advanced-browser-fingerprinting-protection-ever-created-enter-mimic/
https://imgur.com/a/ycxFTtz
https://imgur.com/a/ycxFTtz
https://bazaar.blockstamp.market/listings/view/QmX9VGTz2HziSqL7kjNSGjPe8UHDrdyyxZwXyQbBgTbWcN-antidetect-7-fraudfox-vm-full-version-of-both-applications-best
https://bazaar.blockstamp.market/listings/view/QmX9VGTz2HziSqL7kjNSGjPe8UHDrdyyxZwXyQbBgTbWcN-antidetect-7-fraudfox-vm-full-version-of-both-applications-best
https://bazaar.blockstamp.market/listings/view/QmX9VGTz2HziSqL7kjNSGjPe8UHDrdyyxZwXyQbBgTbWcN-antidetect-7-fraudfox-vm-full-version-of-both-applications-best
https://imgur.com/a/6xmYPgN
https://imgur.com/a/6xmYPgN
https://www.verifiedcarder.ws/threads/fraudfox-tool-cracked.21485/
https://www.verifiedcarder.ws/threads/fraudfox-tool-cracked.21485/
https://www.darkreading.com/endpoint/magecart-skimmers-spotted-on-2m-websites/d/d-id/1336011
https://www.darkreading.com/endpoint/magecart-skimmers-spotted-on-2m-websites/d/d-id/1336011
https://www.darkreading.com/endpoint/magecart-skimmers-spotted-on-2m-websites/d/d-id/1336011


10 B. Amin Azad et al.

15. Cao, Y., Li, S., Wijmans, E.: (Cross-)Browser Fingerprinting via OS and Hardware Level
Features. In: NDSS (2017)

16. Eckersley, P.: How unique is your web browser? In: Privacy Enhancing Technologies.
Springer (2010)

17. Fallmann, H., Wondracek, G., Platzer, C.: Covertly probing underground economy market-
places. In: DIMVA (2010)

18. Fifield, D., Egelman, S.: Fingerprinting web users through font metrics. In: Proceedings of
the 19th international conference on Financial Cryptography and Data Security (2015)

19. Hao, S., Borgolte, K., Nikiforakis, N., Stringhini, G., Egele, M., Eubanks, M., Krebs, B.,
Vigna, G.: Drops for Stuff: An Analysis of Reshipping Mule Scams. In: Proceedings of the
22nd ACM Conference on Computer and Communications Security (2015)

20. Jueckstock, J., Kapravelos, A.: VisibleV8: In-browser monitoring of JavaScript in the wild.
Proceedings of the ACM SIGCOMM Internet Measurement Conference, IMC (2019)

21. Kirk, J.: This tool may make it easier for thieves to empty bank accounts. https:
//www.csoonline.com/article/2871248/fraud-prevention/this-
tool-may-make-it-easier-for-thieves-to-empty-bank-accounts.
html

22. Krebs, B.: ‘AntiDetect’ Helps Thieves Hide Digital Fingerprints. https : / /
krebsonsecurity.com/2015/03/antidetect-helps-thieves-hide-
digital-fingerprints/

23. Laperdrix, P., Rudametkin, W., Baudry, B.: Mitigating browser fingerprint tracking: multi-
level reconfiguration and diversification. In: 10th International Symposium on Software En-
gineering for Adaptive and Self-Managing Systems (SEAMS 2015) (2015)

24. Laperdrix, P., Rudametkin, W., Baudry, B.: Beauty and the Beast: Diverting modern web
browsers to build unique browser fingerprints. In: 37th IEEE Symposium on Security and
Privacy (2016)

25. Mowery, K., Shacham, H.: Pixel Perfect: Fingerprinting Canvas in HTML5. In: Proceedings
of W2SP 2012 (2012)

26. Nikiforakis, N., Kapravelos, A., Joosen, W., Kruegel, C., Piessens, F., Vigna, G.: Cookieless
Monster: Exploring the Ecosystem of Web-Based Device Fingerprinting. In: Proceedings of
the 2013 IEEE Symposium on Security and Privacy (2013)

27. PerimeterX: Anti Bot Protection - Protect Against Bot Attacks. https://www.
perimeterx.com/

28. Singh, A.: The Underground Ecosystem Of Credit Card Fraud. Black Hat Asia (2015)
29. Starov, O., Nikiforakis, N.: XHOUND: Quantifying the Fingerprintability of Browser Ex-

tensions. In: 38th IEEE Symposium on Security and Privacy (2017)
30. Thomas, K., Li, F., Zand, A., Barrett, J., Ranieri, J., Invernizzi, L., Markov, Y., Comanescu,

O., Eranti, V., Moscicki, A., et al.: Data breaches, phishing, or malware? understanding the
risks of stolen credentials. In: Proceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security (2017)

31. Thomas, K., McCoy, D., Grier, C., Kolcz, A., Paxson, V.: Trafficking fraudulent accounts:
The role of the underground market in twitter spam and abuse. In: USENIX Security (2013)

32. Vasilyev, V.: FingerprintJS2: Modern & flexible browser fingerprinting library. https://
github.com/Valve/fingerprintjs2

33. Vastel, A., Laperdrix, P., Rudametkin, W., Rouvoy, R.: FP-STALKER: Tracking Browser
Fingerprint Evolutions. In: 39th IEEE Symposium on Security and Privacy (2018)

34. Vastel, A., Rudametkin, W., Rouvoy, R., Blanc, X.: FP-Crawlers: Studying the Resilience
of Browser Fingerprinting to Block Crawlers. In: Starov, O., Kapravelos, A., Nikiforakis, N.
(eds.) NDSS Workshop on Measurements, Attacks, and Defenses for the Web (2020)

https://www.csoonline.com/article/2871248/fraud-prevention/this-tool-may-make-it-easier-for-thieves-to-empty-bank-accounts.html
https://www.csoonline.com/article/2871248/fraud-prevention/this-tool-may-make-it-easier-for-thieves-to-empty-bank-accounts.html
https://www.csoonline.com/article/2871248/fraud-prevention/this-tool-may-make-it-easier-for-thieves-to-empty-bank-accounts.html
https://www.csoonline.com/article/2871248/fraud-prevention/this-tool-may-make-it-easier-for-thieves-to-empty-bank-accounts.html
https://krebsonsecurity.com/2015/03/antidetect-helps-thieves-hide-digital-fingerprints/
https://krebsonsecurity.com/2015/03/antidetect-helps-thieves-hide-digital-fingerprints/
https://krebsonsecurity.com/2015/03/antidetect-helps-thieves-hide-digital-fingerprints/
https://www.perimeterx.com/
https://www.perimeterx.com/
https://github.com/Valve/fingerprintjs2
https://github.com/Valve/fingerprintjs2

	Short Paper - Taming The Shape Shifter: Detecting Anti-fingerprinting Browsers

