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Abstract: Ptychographic imaging has gained popularity for its high
resolving power and sensitivity as well as for its ability to map simultane-
ously the sample’s complex-valued refractive index and the illumination.
Yet, despite significant progress that allows for reliable practical implemen-
tation, some of the technique’s fundamentals remain poorly understood,
and oftentimes successful data acquisition is either overly conservative or
relies more on experimenters experience than on rational data acquisition
strategies. Here, we propose a theoretical framework of ptychography,
which is based on Gabor’s notion of decomposition into elementary signals
and the concept of frames. We demonstrate how this framework can
straightforwardly be used to derive sampling requirements or to provide
arguments on how to optimize the ptychographic scan. More generally,
our theoretical framework can serve as a bridge between the experimental
technique and the rich and well established mathematical disciplines of
wavelets decomposition and spectrogram analysis.

© 2015 Optical Society of America

OCIS codes: (110.3010) Image reconstruction techniques; (110.7440) X-ray imaging;
(100.0100) Image processing; (100.5070) Phase retrieval; (100.7410) Wavelets.
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1. Introduction

Ptychography is a coherent diffractive imaging technique capable of providing highly detailed
images of a sample’s complex-valued transmittance. To this task, a collection of coherent
diffraction patterns is generated by scanning across the sample with a spatially confined il-
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lumination and sufficient overlap of adjacent illumination footprints. These overlapping illu-
minations introduce redundancy in the data which is exploited in to simultaneously provide
information on specimen and illumination.

The technique was proposed in the late 1960s for application in electron microscopy [1]
but could be demonstrated experimentally only decades later [2–4] using Wigner distribution
function (WDF) deconvolution [5] as reconstruction technique. Whereas this approach allows
for a useful theoretical interpretation of ptychography, Nyquist sampling both in reciprocal and
in real space rendered the experiments rather impractical.

The interest in ptychography was reinvigorated by incorporating efficient phase retrieval
algorithms, which iterate between real and reciprocal space through Fourier transforms and
are based on distance-minimizing projections onto two constraint sets [6–10]: firstly ensuring
consistency of the image with measured data and secondly ensuring self-consistency of the
reconstructed images in the multiply illuminated areas. Additionally, minimization of a cost
function [11–13], such as the negative log-likelihood, can be used.

These methods allow for significantly less restrictive sampling, rendering the technique prac-
tically useful. Yet despite some efforts [14–16], the connection between these iterative algo-
rithms and Wigner distribution deconvolution is not fully understood. In particular, common
sampling practices [17] do not take full advantage of the redundancy in the data and are often-
times rather heuristic. Only recently, an ad hoc approach showed that the sampling of ptycho-
graphic data is independent of the illumination spot size on the specimen plane [18, 19].

Ptychography’s combination of measuring in reciprocal space as a function of real-space
translation, and similarly the combination with reversed roles in Fourier ptychography [20],
lends itself to be described in phase space. Examples can be found ranging from early represen-
tations in terms of Wigner distribution functions [3–5] over more recent investigations into sam-
pling requirements [18, 19] or illumination design [21] to full statistical descriptions [16, 22],
among others. Here we introduce to ptychographic imaging Gabor’s notion that any digital
signal can be expanded into a discrete set of elementary signals in phase space [23]. This
interpretation is conveniently expressed in the context of frames [24–26]. We show that the
inversion formulas, that yield from the set of diffraction patterns both sample and illumination,
are consistent with those used in the difference map algorithm [10, 27] and use this theoretical
framework for a better understanding of sampling requirements [18, 19] and the influence of
the illumination on the optimal scanning pattern. Finally, we indicate how this description can
be used to investigate the role of the spatial-frequency spectrum of the illumination [18,19,21]
or partial-coherence effects [22].

2. Mathematical representation

2.1. Ptychography

A central assumption in ptychography is that the interaction of the sample with the illuminating
wave is multiplicative:

ψ(r;R) = O(r)P(r−R), (1)

where ψ(r;R) represents the exit wave past the sample or past a “slice” of the sample [28], O(r)
describes the sample, and P(r) is the illumination function, also called probe. The coordinate
R is the translation coordinate of the illumination scanned across the sample. Further, it is
assumed that the measured intensities in the diffraction patterns comply for each illumination
spot with the square magnitude of the exit wave propagated to the detector plane. While the
results here presented can easily be applied also to ptychography in the Fresnel regime [29], for
simplicity we assume that the Fraunhofer far field is detected, in which case the propagation
between sample and detector corresponds to a simple Fourier transform, whose scaling we will
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omit:

I(q;R) = |Ψ(q;R)|2 =

∣∣∣∣∣∣
+∞∫
−∞

O(r)P(r−R)exp(−iq · r)dr

∣∣∣∣∣∣
2

. (2)

This four-dimensional function of the reciprocal-space coordinate q and the illumination
shift distance R preserves both spatial and spatial-frequency information of the specimen. The
task of ptychography is to retrieve from this measurable quantity the object function O(r) and
the illumination function P(r).

In order to derive an analytical theory for ptychography, we note that P(r−R) plays in Eq. (2)
the role of window function by limiting the portion of the object function which is expanded
onto the Fourier basis. This allows local fluctuations of frequency across the sample to be
explored rather than infinite wave trains emanating from the entire sample at once. Accordingly,
we consider the object function in Eq. (2) as expanded onto a windowed-Fourier basis (Fig. 1)—
akin to the confined elementary signals decomposition proposed by Gabor [23] and later worked
out in the context of frames [24, 25] and wavelets [26, 30].

While its linearly dependent family of functions and the resulting redundancy render the
windowed-Fourier transform more complex to analyze than the “common” sequence of ex-
panding onto the Fourier basis only after having windowed the signal, the relevant theory is
well established [26, 30] and offers new insights.

Fig. 1. Windowed discrete Fourier transform basis with frequencies fx and fy from -2 to 2.
A Gaussian window function with sigma equals to 0.25× image size was used to “window”
the Fourier basis.

2.2. Windowed Fourier transform and Heisenberg boxes

Let us now define for P a window function, which is shifted by R and modulated by a frequency
q:

PR,q(r)≡ P∗(r−R)exp(iq · r), (3)

where the symbol ∗ indicates the complex conjugate. Then, Eq. (2) can be expressed as

I(q;R) = |Ψ(q;R)|2 =

∣∣∣∣∣∣
+∞∫
−∞

O(r)P∗R,q(r)dr

∣∣∣∣∣∣
2

, (4)

which can be interpreted as the squared magnitude of a 2D windowed-Fourier transform [31,32]
of O(r) with a complex window function PR,q(r).

The measurable quantity |Ψ(q;R)|2 is referred to as spectrogram [30]. It represents the en-
ergy density of O(r) in a joint real-reciprocal space neighborhood of the positions (R,q). This
neighorhood is specified by boxes that one can think of as Heisenberg boxes. The size of such
a box equals the variance of PR,q(r) in real and reciprocal space, σq and σr, respectively, and is
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independent of its position in the four-dimensional phase space. This allows phase space to be
conveniently discretized [30]. Figure 2(a) illustrates a 2D sub-space of the spectrogram phase
space. For ptychography, σr and σq measure the spread of the PR,q(r) over the size D of the
confined illumination at the sample position and over its spread 2π/D in the diffracted waves,
respectively.

We further note that, after some algebra, the spectrogram can be written as [5, 16, 33]:

|Ψ(q;R)|2 =
+∞∫∫
−∞

WO(r′,q′)WP(r′−R,q−q′)dr′dq′, (5)

where WO(r,q) and WP(r,q) are the WDFs of the object and probe, respectively.
Since the spectrogram represents the far-field intensity distribution I(q;R), Eq. (5) shows that

the intensities can be interpreted as a weighted average in space and frequency of the Wigner
distribution of the object with the Wigner distribution of the illumination as weighting kernel.

Fig. 2. Representation of ptychography phase space. Two Heisenberg boxes and their
spread in the real and reciprocal space are located at (qn,Rn) and (qm,Rm). The pro-
jection of these boxes onto the real space represents the |PR,q(r)| (in solid and dashed
blue lines), here illustrated by Gaussian functions, and onto the reciprocal space represents
|F{PR,q(r)}| (in solid and dashed green lines).

2.3. Reconstruction formulas

In order to obtain the object function O(r) and the illumination function P(r) we identify the
diffracted wavefield, Eqs. (2) and (4), as an expansion of the object signal onto a sort of “ele-
mentary” 2D signals [23, 31, 32, 34]. Therefore, from windowed-Fourier transform theory, we
can directly write the inversion formula for the object as [23, 30–32, 35–37]:

O(r) =

+∞∫∫
−∞

Ψ(q;R)P∗(r−R)exp(iq · r)dqdR

2π

+∞∫
−∞

|P(r−R)|2dR
, (6a)
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which can be interpreted as the expansion of the object O(r) in terms of a continuum of shifted
and modulated window functions PR,q(r), Eq. (3). Along similar lines, we can derive the re-
construction formula for the probe (cf. Appendix):

P(r) =

+∞∫∫
−∞

Ψ(q;R)O∗(r+R)exp [iq · (r+R)]dqdR

2π

+∞∫
−∞

|O(r+R)|2 dR
. (6b)

Changing the order of the integrals in Eqs. (6) and using the inverse Fourier transform of
Eq. (1), the object and probe formula can be re-written:

O(r) =

+∞∫
−∞

ψ(r;R)P∗(r−R)dR

+∞∫
−∞

|P(r−R)|2dR
, (7a)

P(r) =

+∞∫
−∞

ψ(r+R;R)O∗(r+R)dR

+∞∫
−∞

|O(r+R)|2 dR
, (7b)

which are the continuous analogues of the discrete update formulas of the DM algorithm [27],
where they have been derived as to minimize a distance between experimental data and Eq. 1.

3. Sampling requirements

3.1. Elementary functions

To use the inversion formulas of Eqs. (6), it is sufficient to determine the spectrum of Ψ(q,R)
at points of a 4D periodic lattice in phase space [23–26, 30, 35–37]. We define the real-space
spacing in the direction i ∈ {x,y} as Ri = αiDi and, equivalently in reciprocal-space spacing,
Qi = βiqi, where Diqi = 2π and αiβi ≤ 1 [26, 35–37], as illustrated in Fig. 3. We note that
1/αiβi = 2π/QiRi has been defined as “one-dimensional sampling ratio” in the recent ad hoc
approach estimating ptychographic sampling requirements [18].

With the sampling

akx,ky,nx,ny = Ψ(kxQx,kyQy,nxRx,nyRy), (8)

where kx, ky, nx, and ny all take integer values, the object function O(r) can be reconstructed
by considering the sampling values as the coefficients of Gabor’s signal expansion with the
synthesis window being the same, or approximately the same, as the illumination, P(r) [35,36].
Thus, Eq. (6a) can be discretized [31, 32]:

O(x,y) ∝ ∑
kx

∑
ky

∑
nx

∑
ny

akx,ky,nx,nyP∗(x−nxRx,y−nyRy)exp
[

i
(

kxQxx
Nx

+
kyQyy

Ny

)]
, (9)

where Ni is the number of samples in the each direction i and where we omitted the denominator
for clarity. Since Heisenberg boxes of the elementary functions PR,q(r) (Eq. (3)) cover the entire
4D phase space, the windowed Fourier transform is complete.
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Fig. 3. The coverage of the ptychography phase space. The boxes are illustrated by blue
boxes of size Di in real space and size qi in reciprocal space. Critical sampling with αi =
βi = 1 is illustrated in the top-right corner. “Oversampling,” i.e., αiβi < 1, is illustrated in
the bottom-left corner where there is overlap of the windows in both real and reciprocal
space.

In fact, a discrete windowed Fourier transform representation given by the set of functions
PR,q(r) is complete and stable if PR,q(r) is a frame of L2(R), which is true only if [24–26,30,38]

(αiDi)(βiqi)≤ 2π, (10)

which seconds the finding that dense sampling in real space can compensate for poor sampling
in reciprocal space and vice versa [19].

Analogue to previously reported results [18, 19], at critical sampling, i.e., αiβi = 1, the lo-
calization properties of each window in the 4D lattice are poor, and one can expect a poor
numerical stability of the signal expansion [17, 39]. This condition can be exemplified by three
situations: (i) the lateral shifts are of the same size as the illumination size D without any over-
lap of illumination spots and, consequently, no redundancy in the data; (ii) the lateral shifts of
the illumination keep the overlap of the spots in the real space, but the reciprocal space is highly
undersampled; (iii) the opposite of situation (ii) in which reciprocal space is oversampled, but
without overlap of the illumination spots in the real space.

When αiβi < 1, the shifts of the illumination spots are reduced by the factor αi giving rise
to overlap. βi < 1/αi defines the “oversampling” in reciprocal space. Thus, the localization of
each window in the 4D lattice is good, and better numerical stability is obtained at the cost
of redundancy and non-unique Gabor coefficients in Eq. (8) [39]. However, the value of such
coefficients can be determined from ptychographic phase retrieval [6–9, 12, 27]. Formally, the
functions PR,q(r) form a frame and are not linearly independent.

3.2. Role of the spatial-frequency spectrum of the illumination

Whereas according to the theory discussed thus far, αiβi > 1 would preclude existence of the
signal expansion because the functions PR,q(r) would not completely fill the 4D phase space
and would not form a frame. However, Edo et al. have discussed just such a case, in which
the reconstruction of ptychographic data did not break down even though Eq. (10) did not
hold [18]. In this case the illumination was highly structured which changes the bandwidth
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Fig. 4. Illustration of the role of the overlap for 1D signal (a) The square magnitude of the
window p(x). (b) “Scanning” the window function. (c) The sum of the square magnitude
contributions of the window ∑ |p(x− xn)|2 and the windowed real and imaginary parts of
the signal.

of the signal and thus affects the bandwidth of the diffracted wavefield, Eq. (2). In fact, the
reconstruction of a ptychographic dataset can be affected by the spatial-frequency content of
the illumination [21].

According to Carson’s rule, the bandwidth of the frequency-modulated signal is given by
BFM = 2(∆ f + fm), where ∆ f is the maximum deviation from the carrier frequency and fm is
the highest frequency component in the modulating signal [40]. Consequently the sampling of
ptychographic data acquired with highly structured illumination may change, and the modula-
tion caused by the illumination needs to be taken into account for the sampling. However, an
exhaustive discussion of modulation by structured illumination in ptychography [21] is beyond
the scope of the present work.

3.3. Role of the overlap

Finally, we demonstrate the role of the overlap in ptychography by means of a simple 1D
example. Let us define a signal φ(x) = exp(−ixq) and the window function as p(x) = cos(x),
if |x| ≤ π/2 and 0 elsewhere. Its square magnitude, p2(x), is shown in Fig. 4(a). We then scan
the signal by translating the window function by xn = nπ/2 with n ∈ {−1,0,1} (Fig. 4(b))
and sum all square magnitude contributions of the window p2(x)+ p2(x+π/2)+ p2(x−π/2)
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as well as the windowed real and imaginary parts of the signal (Fig. 4(c)). We observe that
within the interval [−π/2,π/2], we recover the original signal. This is an example of tight
frames [25, 30]. Tight frames have the advantage that the synthesis windows are the same as
the analysis window in the windowed-Fourier transform context. Applied to ptychography, the
consequence is that the overlap would be ideal when the square magnitude (i.e., energy) of the
illumination functions is such that:

∑
n1

∑
n2

|P∗(x−n1Rx,y−n2Ry)|2 = const. (11)

We note that the algorithms can still work well if Eq. (11) holds only approximately, which
is the case for the so-called snug frames [26]. Consequently, the energy of the illumination
functions, Eq. (3), should be distributed as uniformly as possible over the scanned area in
ptychography while ensuring sufficient sampling.

The overlap, i.e., real-space sampling, has been long recognized as providing redundancy
of the data. Here we have shown how it assists reconstruction algorithms to recover the orig-
inal signal of the object function. In addition to advantages of a uniform distributing of the
overlap [41], Eq. (11) can provide arguments how the size and shape of the illumination at the
sample position can help optimizing the scan pattern and density.

4. Conclusion

We have presented an interpretation of ptychography based on the concept of windowed Fourier
transform frames, where the illumination function has the role of a window function. We de-
scribed a 4D phase space on the premise of the Gabor’s lattice and showed that a ptychographic
scan ought to fully cover this phase space, some oversampling ensured. From this, we derived
sampling requirements, which are in agreement with previous works based on that was ad hoc
approaches and artificial undersampling of ptychography data. The sampling requirements we
derived here are fully compatible with the iterative reconstruction approaches, such as the ex-
tended ptychographic iterative engine (ePIE) and the difference map (DM). At the same time,
our theoretical approach successfully links to the Wigner distribution function, which could
previously be exploited only in a rather restrictive theoretical framework.

We propose a criterion for optimizing the overlap and scan geometry. More generally, our
theoretical framework can provide guidelines for optimizing experimental parameters, includ-
ing the illumination size, overlap, scan pattern, sample-to-detector distance, and the detector
pixel size, while keeping the dose imparted to the sample acceptable. For instance, the empir-
ical experience that many short low signal-to-noise acquisitions tend to be more advantageous
than distributing the same dose on fewer low-noise acquisitions can now be easily rationalized.

Phase space descriptions of ptychography have been tremendously useful in the past. Here,
we have introduced a “natural” discretization in terms of elemental information. The formal
description in terms of frames is sufficiently general that intricacies, such as non-trivial illumi-
nation structures or partial coherence, can be taken into account in future studies. We expect
that this framework will facilitate the positioning of ptychography among other spectrogram
characterization techniques and that it will allow ptychographic sampling and measurement
strategies to benefit from well established theories [21, 25].

Appendix

Derivation of Eq. 6b

After the coordinate shift r→ r+R, the wavefield of Eq. (1) can be written as:
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ψ(r+R;R) = O(r+R)P(r). (12)

Applying the Fourier shift theorem and using Eq. (2), this yields:

O(r+R)P(r) = F−1{Ψ(q;R)exp(iq ·R)}. (13)

Now, we use the inverse Fourier transform definition, multiply both sides of Eq. (13) by O∗(r+
R) and integrate over R in order to obtain:

P(r)
+∞∫
−∞

|O(r+R)|2 dR =
1

2π

+∞∫∫
−∞

Ψ(q;R)O∗(r+R)exp [iq · (r+R)]dqdR, (14)

from which we can isolate the probe function after rearranging the terms similar to Eq. (6a).

Derivation of Eqs. 7a and 7b

Starting from 6a:

O(r) =
1

2π

+∞∫
−∞

|P(r−R)|2dR

∫ ∫
Ψ(q;R)exp [iq · r]dq︸ ︷︷ ︸

=2πψ(r;R)

P∗(r−R)dR, (15)

from which we can write Eq. (7a).
And starting from 6a:

P(r) =
1

2π

+∞∫
−∞

|O(r+R)|2 dR

∫ ∫
Ψ(q;R)exp [iq · (r+R)]dq︸ ︷︷ ︸

=2πψ(r+R;R)

O∗(r+R)dR, (16)

from which we can write Eq. (7b).
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