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Abstract

Understanding how a diversity of plants in agroecosystems affects the adaptation of
pathogens in a key issue in agroecology. We analyze PDE systems describing the dynamics
of adaptation of two phenotypically structured populations, under the effects of mutation,
selection and migration in a two-patches environment, each patch being associated with a
different phenotypic optimum. We consider two types of growth functions that depend on
the n−dimensional phenotypic trait: either local and linear or nonlocal nonlinear. In both
cases, we obtain existence and uniqueness results as well as a characterization of the large-
time behaviour of the solution (persistence or extinction) based on the sign of a principal
eigenvalue. We show that migration between the two environments decreases the chances
of persistence, with in some cases a ‘lethal migration threshold’ above which persistence is
not possible. Comparison with stochastic individual-based simulations shows that the PDE
approach accurately captures this threshold. Our results illustrate the importance of cultivar
mixtures for disease prevention and control.

Keywords: Mutation, selection, migration, heterogeneous environment, persistence, extinc-
tion.

MSC 2010: 35B30, 35B40, 35K40, 35Q92, 92D25.

1 Introduction

Phenotypic differences between populations generally appear as a consequence of differential
selection regimes [19]. For instance, in the absence of migration, the adaptation of a population
to local habitat conditions leads to a particular phenotypic distribution. In asexual populations,
a standard way to describe the gene – environment interaction is to use Fisher’s geometrical
model (FGM) [16, 24]. In this approach, each individual in the population is characterized by
a multivariate phenotype at a set of n traits, i.e., a vector x ∈ Rn. This vector x determines

∗The project leading to this publication has received funding from Excellence Initiative of Aix-Marseille Uni-
versity - A*MIDEX, a French “Investissements d’Avenir” programme, and from the ANR project RESISTE (ANR-
18-CE45-0019).
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the fitness r(x) (the reproductive success of the individual) through its quadratic distance with
respect to an optimum O ∈ Rn associated with the considered environment:

r(x) = rmax −
∥x −O∥2

2
,

with rmax > 0 the fitness of the optimal phenotype. Throughout the paper, ∥ ⋅ ∥ denotes the
Euclidean norm in Rn.

PDE models. Under the assumption of the FGM, recent models of asexual adaptation based
on partial differential equations (PDE) [1, 2, 13] typically describe the dynamics of the phenotype
distribution q of a population in a single environment, with equations of the form:

∀t > 0, ∀x ∈ Rn, ∂tq(t,x) =
µ2

2
∆q(t,x) + [r(x) − r(t)] q(t,x),

where the Laplace operator describes the mutation effects on the phenotype (see [13, Appendix]
for the derivation of this term in this framework), and the term [r(x) − r(t)] q(t,x) describes
the effects of selection [25], with r(t) = ∫Rn r(x) q(t,x)dx the mean fitness in the population at
time t. Extensions to temporally changing environments (with an optimum O(t)) have also been
proposed [21]. In all those cases, it was possible to describe the full dynamics of adaptation, by
deriving explicit expressions for r(t).

Here, we consider a spatially heterogeneous environment, made of two habitats, each of
them corresponding to a different phenotype optimum, O1 and O2. The main issue that we
are going to deal with is to determine the respective effect of the migration between the two
habitats and of the phenotypic distance between the two habitats on the faith (persistence or
extinction) of the total population. This type of model has already been considered in [18],
in a particular regime of parameters such that the effect of the mutation is low, while the
mutation rate is large enough, and in dimension n = 1. The authors have used a specific method
based on constrained Hamilton-Jacobi equations (e.g., [4, 10, 12, 15, 20] for more details on this
method), to find an accurate analytic approximation of the equilibrium phenotype distribution
and the population size in each habitat. They found that, when the two environments are
symmetric (same mutation parameters, same selection pressure, same competition intensity and
same migration rates), there exists an explicit threshold for the migration rate, which depends
on the phenotypic distance between the two habitats. When the migration rate is above this
threshold, the two subpopulations are well-mixed so that the total equilibrium population is
monomorphic or ’generalist’. On the contrary, when the migration is below the threshold, the
two subpopulations stay different, causing dimorphism in the phenotype density for the global
population: the equilibrium population is made of two ’specialists’. They also obtained some
results in the general case, without the symmetry assumption.

As we focus here on persistence/extinction issues, instead of dealing with the phenotype
distribution q(t,x), we are interested in the phenotype density u(t,x), i.e., u(t,x) = q(t,x)N(t),
with N(t) the population size at time t. We therefore deal with systems of the form:

∀ t ≥ 0, ∀x ∈ Rn,

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

∂tu1(t,x) =
µ2

2
∆u1(t,x) + f1(t,x, u1) + δ [u2(t,x) − u1(t,x)],

∂tu2(t,x) =
µ2

2
∆u2(t,x) + f2(t,x, u2) + δ [u1(t,x) − u2(t,x)],

(1)
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with ui the phenotype density in the habitat i ∈ {1,2}, δ > 0 the migration rate, and µ > 0

a mutational parameter. Note that the migration and mutation parameters are assumed to
be identical in the two habitats. This is a simplifying assumption which leads to symmetry
properties of the solutions that are important for our analysis.

We may assume two different types of growth functions fi. We first state that, in both cases,
the fitness of a phenotype x in the habitat i is given by:

ri(x) = rmax −
∥x −Oi∥

2

2
, (2)

Notice in particular that the fitnesses ri are unbounded in the phenotypic space Rn and, since
they are involved in the definition of the growth functions fi for both types listed below, the
system (1) of unknowns (u1, u2) then has unbounded coefficients.

1. The first type (Malthusian):

fi(t,x, ui) = ri(x)ui(t,x), (3)

corresponds to the standard assumption of Malthusian population growth:

∀ t ≥ 0,

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

N ′
1(t) = r1(t)N1(t) + δ [N2(t) −N1(t)],

N ′
2(t) = r2(t)N2(t) + δ [N1(t) −N2(t)],

(4)

with Ni(t) the population size in habitat i at time t:

Ni(t) = ∫
Rn
ui(t,x)dx, (5)

and ri(t) the mean fitness of the individuals located in habitat i at time t:

ri(t) =
1

Ni(t)
∫
Rn
ri(x)ui(t,x)dx. (6)

Note that, with fi of the type (3), the system (1) is a local cooperative system since
the right-hand side of the equation of each component is nondecreasing with respect to
the other component, and since the right-hand side only depends on the densities for the
phenotype x. As a consequence, the maximum principle holds for (1) in this first type,
that is, if u = (u1, u2) and v = (v1, v2) are two classical solutions of (1) which are locally
bounded in time and are such that u(0, ⋅) ≤ v(0, ⋅) in Rn (in the sense of componentwise
inequalities), then u(t, ⋅) ≤ v(t, ⋅) in Rn for all t > 0.

2. The second type (density-dependent):

fi(t,x, ui) = (ri(x) − ∫
Rn
ui(t,y)dy) ui(t,x), (7)

corresponds to the standard assumption of logistic population growth:

∀ t ≥ 0,

⎧⎪⎪
⎨
⎪⎪⎩

N ′
1(t) = r1(t)N1(t) −N1(t)

2 + δ [N2(t) −N1(t)],

N ′
2(t) = r2(t)N2(t) −N2(t)

2 + δ [N1(t) −N2(t)],
(8)

with Ni(t) and ri(t) as in (5)-(6). Note that, with fi of the type (7), the system (1) is a
nonlocal cooperative system, the nonlocality in the form of an internal competition. As a
consequence, the maximum principle does not hold for (1) in this second type.
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In this work, we will mainly focus our attention on the effects of the migration parameter δ
and of the habitat difference defined by:

mD ∶=
∥O1 −O2∥

2

2
> 0. (9)

Stochastic model. Before stating our main results, and in order to underline the interest of
the PDE approach, we compare its accuracy with a standard Wright-Fisher individual-based
stochastic model (IBM), with mutation, selection and migration.

In this IBM, each individual is characterized by a phenotype x ∈ Rn, and a corresponding
fitness ri(x), depending on the position (i.e., the habitat i = 1 or i = 2) of the individual. The
populations in the two habitats are initially clonal (with all of the phenotypes set at (O1+O2)/2),
and of size Ni(0) = N

0. Then, at each time step (the model is discrete in time), the reproduction-
selection step is simulated by drawing a Poisson number of offspring, for each individual, with
rate exp(ri(x)) (Darwinian fitness, the discrete-time counterpart of ri(x)). Then, the mutation
step is simulated by randomly drawing, for each individual, a Poisson number of mutations,
with rate U > 0. Each single mutation has a random phenotypic effect dx ∈ Rn drawn into a
multivariate Gaussian distribution: dx ∼ N(0, λIn), where λ > 0 is the mutational variance at
each trait, and In is the identity matrix of size n × n. Multiple mutations in a single individual
have additive effects on phenotype. Lastly, the migration step consists in sending individuals
from the first habitat into the second (resp. from the second into the first): the numbers of
migrants are drawn in a Poisson law with parameter δN1(t) (resp. δN2(t)), and the migrants
are randomly sampled in the populations.

Numerical comparison between the PDE and stochastic models. We simulated the
IBM until a time t = 300, and compared the result with the numerical solution of the PDE
model (1) with µ2 = λU (see [13, Appendix] for a justification of this parameter choice), and
with the first type of growth function (Malthusian), as the IBM does not take density-dependence
into account. The solution of the PDE was computed using the method of lines coupled with the
Runge-Kutta ODE solver Matlab® ode45. The results are presented in Fig. 1. We observe a very
good agreement between the results obtained with the IBM and the PDE, with in both cases
a strong dependence of the persistence/extinction behaviour with respect to the parameters δ
and mD.

Aim of this paper. Our main goal is to set on a firm mathematical basis the behaviour
observed in Fig. 1, based on the sign of the principal eigenvalue of a system of linear elliptic
equations, and to study the dependence of this eigenvalue with respect to the model parameters.
The main results are presented in the next section, and discussed in Section 3.

2 Main results

Without loss of generality, we assume that the optima O1 and O2 are located along the
x1-axis and are symmetric with respect to the origin, i.e., there exists β > 0 such that:

O1 = (−β,0, . . . ,0), and O2 = (β,0, . . . ,0). (10)
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(a) (b)

Figure 1 – Persistence vs extinction: effect of the migration rate δ and the habitat
difference mD. Total population size N1 +N2, given (a) by simulation of the stochastic model
(average result over 50 replicate simulations) (b) by numerically solving (1) with f1, f2 given
by (3). The parameters are U = 1/6, λ = 1/300, n = 2, rmax = 1/18 and µ2 = λU , and the results
are computed at t = 300. Initially, each habitat i ∈ {1,2} has N0 = 104 individuals, all of them
with the phenotype (O1 +O2)/2.

We also assume that the two densities u1 and u2 are initially symmetric with respect to the
hyperplane {x = (x1, . . . , xn) ∈ Rn, x1 = 0}:

∀x ∈ Rn, u01(x) = u
0
2(ι(x)) =∶ u

0
(x), u0

(x) ∶= (u01(x), u
0
2(x)) = (u0(x), u0(ι(x))), (SH)

with:
∀x = (x1, . . . , xn) ∈ Rn, ι(x) = (−x1, x2, . . . , xn). (11)

The Cauchy problem. We first show that the Cauchy problem associated with (1) admits a
unique solution, under some assumptions on the initial condition u0 given in (SH):

(H1) u0 ∈ C2,α(Rn) for some α ∈ (0,1);

(H2) N0
∶= N(0) = ∫

Rn
u0(x)dx > 0 and N0 < +∞;

(H3) there exists a nonincreasing function g ∶ R+ → R (with R+ = [0,+∞)) such that:

(i) 0 ≤ u0(x) ≤ g(∥x −O1∥) (and therefore 0 ≤ u0(ι(x)) ≤ g(∥x −O2∥)) for all x ∈ Rn;

(ii) the function r ↦ rn+1g(r) belongs to L1(R+) and converges to 0 as r → +∞.

Hereafter, unless otherwise specified, we always make the assumptions (SH) and (H1)-(H3).
Our first main result provides the existence and uniqueness of the density of phenotypes, for

both types (3) and (7) of growth functions f1, f2.

Theorem 2.1. Assume that f1, f2 are either both of the first type (3) or both of the second
type (7), and that u0 = (u0, u0 ○ ι) satisfies (SH) and (H1)-(H3). Then, there exists a unique
solution u = (u1, u2) ∈ C1,2(R+ × Rn) of (1), such that u ∈ L∞((0, T ) × Rn) for all T > 0,
ui(t,x) → 0 as ∥x∥ → +∞ locally uniformly in t ∈ R+, ui > 0 in (0,+∞)×Rn, the population sizes
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Ni ∶ R+ → (0,+∞) are of class C1, the mean fitnesses ri ∶ R+ → R are continuous, u is symmetric
in the sense that:

u1(t,x) = u2(t, ι(x)), for all t ≥ 0 and x = (x1, . . . , xn) ∈ Rn, (12)

with ι defined in (11), and:

N1(t) = N2(t) =∶ N(t) and r1(t) = r2(t) =∶ r(t), for all t ≥ 0. (13)

Moreover, the population sizes N1 = N2 satisfy (4) if f1, f2 are of the first type (3), whereas
N1 = N2 satisfy (8) if f1, f2 are of the second type (7). In both cases, the functions ui satisfy the
nonlocal parabolic equation:

∂tui(t,x) =
µ2

2
∆ui(t,x) + fi(t,x, ui) + δ[ui(t, ι(x)) − ui(t,x)], (14)

for all t ≥ 0 and x ∈ Rn.

Remark 2.2. The existence and uniqueness result of Theorem 2.1 in the first type (3) can
easily be extended to the non-symmetric case, i.e., without assumption (SH) (but with initial
conditions u0 = (u01, u

0
2) such that both functions u01 and u02 still satisfy the assumptions (H1)-

(H3)). In that case, the population sizes N1 and N2 still satisfy (4) but the Ni and ri do not
satisfy (13) in general and the subsequent analysis then becomes more involved. In the second
type (7), the existence and uniqueness is established only for symmetric solutions satisfying (12),
since the proof, which is based on a change of functions amounting to a system with the first
type (3), uses as a key ingredient the equality of the corresponding population sizes.

Persistence vs extinction. Before going further on, we give a precise meaning to the notions
of persistence and extinction. By extinction, we mean that the total population size 2N(t) =

N1(t)+N2(t) converges to 0 as t→ +∞. By persistence, we mean that the population does not get
extinct at large times. To analyze the effect of the parameter values on the persistence/extinction
behaviour of the system (1), we consider an eigenvalue problem (see [8] for several other examples
of persistence/extinction results via eigenvalue problems in bounded domains).

For any R > 0, we denote by A the self-adjoint differential operator:

A ∶= −
µ2

2
∆ − (

r1(x) − δ δ

δ r2(x) − δ
) , (15)

acting here on functions in [W 2,n
loc (B(0,R))∩C0(B(0,R))]2, with B(0,R) the open Euclidean ball

of Rn of center 0 and radius R > 0, and C0(B(0,R)) the space of continuous functions in B(0,R)

which vanish on ∂B(0,R). It follows from [23, Theorem 1.1] that there exists a unique principal
eigenvalue λδ,R ≥ −rmax and a unique (up to multiplication by a positive constant) pair of positive
(in B(0,R)) eigenfunctions (ϕδ,R1 , ϕδ,R2 ) ∈ [W 2,n

loc (B(0,R)) ∩C0(B(0,R))]2, satisfying:

A(ϕδ,R1 , ϕδ,R2 ) = λδ,R (ϕδ,R1 , ϕδ,R2 ) in B(0,R).

Moreover, the functions ϕδ,Ri are of class C∞
0 (B(0,R)) = C∞(B(0,R))∩C0(B(0,R)) by standard

elliptic estimates, and the eigenvalue λδ,R is characterized by the following minmax formula:

λδ,R = sup
(ψ1,ψ2)∈E

inf
x∈B(0,R), i∈{1,2}

(A(ψ1, ψ2))i(x)

ψi(x)
,
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with:

E = {(ψ1, ψ2) ∈ [C2
(B(0,R)) ∩C(B(0,R))]

2, ψi(x) > 0 for all x ∈ B(0,R) and i ∈ {1,2}}.

This formula readily implies that the map R ↦ λδ,R is nonincreasing. Since λδ,R ≥ −rmax, the
quantity λδ,R admits a finite limit as R → +∞:

λδ ∶= lim
R→+∞

λδ,R ≥ −rmax. (16)

The eigenfunctions ϕδ,R1 and ϕδ,R2 also satisfy a symmetry property.

Lemma 2.3. (Symmetry property of the eigenfunctions) For every R > 0 and δ > 0, the eigen-
function (ϕδ,R1 , ϕδ,R2 ) satisfies ϕδ,R1 (x) = ϕδ,R2 (ι(x)) for all x ∈ B(0,R), with ι defined in (11).

Proof. Set ϕ̃1(x) = ϕ
δ,R
2 (ι(x)) and ϕ̃2(x) = ϕ

δ,R
1 (ι(x)) for x ∈ B(0,R). Then, from the symmetry

assumption (10), one has A(ϕ̃1, ϕ̃2) = λ
δ,R (ϕ̃1, ϕ̃2). By uniqueness (up to multiplication) of the

pair of principal eigenfunctions, there exists K > 0 such that (ϕ̃1, ϕ̃2) =K (ϕδ,R1 , ϕδ,R2 ). At x = 0,
we get that ϕδ,R2 (0) = ϕ̃1(0) = Kϕδ,R1 (0) and ϕδ,R1 (0) = ϕ̃2(0) = Kϕδ,R2 (0). Therefore K = 1 and
the result is proved.

Thus, we may (and we have to) take the same normalization condition for ϕδ,R1 and ϕδ,R2 . In
the proofs, we either assume that ∥ϕδ,Ri ∥L1(B(0,R)) = 1 for both i ∈ {1,2}, or ϕδ,Ri (0) = 1 for both
i ∈ {1,2}.

The large time behaviour of the population size is closely related to the sign of the quantity λδ

defined in (16). We treat separately the first and second types (3) and (7).

Theorem 2.4 (Malthusian growth: blow up vs extinction). Assume that f1, f2 are of the first
type (3), let δ > 0 and λδ be given by (16). Let u be the solution of (1) given by Theorem 2.1,
with initial condition u0 = (u0, u0 ○ ι), and let N(t) = N1(t) = N2(t) be its population size in each
habitat.

(i) If λδ < 0, then N(t) → +∞ as t→ +∞ (blow up of the population).

(ii) If λδ = 0 and if u0 is compactly supported, then:

lim sup
t→+∞

N(t) < +∞ (boundedness of the population).

Furthermore, there exist bounded positive stationary solutions of (1) with finite population
sizes.

(iii) If λδ > 0 and if u0 is compactly supported, then N(t) → 0 as t → +∞ (extinction of the
population).

Theorem 2.5 (Logistic growth: persistence vs extinction). Assume that f1, f2 are of the second
type (7), let δ > 0 and λδ given by (16). Let u be the solution of (1) given by Theorem 2.1, with
initial condition u0 = (u0, u0 ○ ι), and let N(t) = N1(t) = N2(t) be its population size in each
habitat.
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(i) If λδ < 0, then:

0 < lim inf
t→+∞

N(t) ≤ lim sup
t→+∞

N(t) < +∞ (persistence of the population), (17)

for some initial conditions u0.

(ii) If λδ ≥ 0 and if u0 is compactly supported, then N(t) → 0 as t → +∞ (extinction of the
population).

As a consequence of Theorems 2.4-2.5, the faith of the population is determined by the sign
of λδ, i.e., by the linear stability of the steady state u = (0,0), whether the growth functions fi be
of the first or second type. The main differences between the Malthusian case and the logistic case
arise when this steady state (0,0) is unstable (λδ < 0). Although persistence occurs with both
types of growth functions, the population size remains bounded with type 2 growth functions,
due to the nonlocal competition term. We conjecture that it converges to −λδ, as t → +∞.
Interestingly, the threshold case λδ = 0 leads to very different behaviours, depending on the
type of growth functions: in the absence of competition (Malthusian growth), persistence is still
possible in this case, although it is not in the logistic case. Biologically, however, the particular
case λδ = 0 is presumably not relevant.

Remark 2.6. In part (i) of Theorem 2.5 with λδ < 0, the initial conditions u0 = (u0, u0 ○ ι) such
that (17) holds are those which are trapped between two multiples of the principal eigenfunctions
associated to the operator A given by (15) but acting this time on [W 2,n

loc (R
n) ∩ C0(Rn)]2,

where C0(Rn) is the space of continuous functions in Rn converging to 0 at infinity. Such
eigenfunctions are introduced in Lemma 4.1 below.

In the following results, we now use the above persistence/extinction criteria to study the
effect of the parameters, especially the habitat difference mD given by (9) and the migration
rate δ, on the faith of the population.

Proposition 2.7. The map δ ↦ λδ is continuous, increasing and concave in (0,+∞). Moreover,

lim
δ→0+

λδ = −rmax +
µn

2
=∶ λ0, and lim

δ→+∞
λδ =

mD

4
− rmax +

µn

2
=∶ λ∞.

Two corollaries of Theorems 2.4-2.5 and Proposition 2.7 follow immediately with straightfor-
ward proof.

Corollary 2.8. Assume that λ0 < 0, i.e., rmax > µn/2. Let δ > 0, let u be the solution of (1)
given by Theorem 2.1, with initial condition u0 = (u0, u0 ○ ι), and let N(t) = N1(t) = N2(t) be its
population size in each habitat.

(i) If λ∞ ≤ 0, i.e., if mD ≤ 4 (rmax − µn/2), then limt→+∞N(t) = +∞ for the first type (3),
whereas (17) is satisfied for some initial conditions u0 for the second type (7).

(ii) If λ∞ > 0, i.e., if mD > 4 (rmax − µn/2), then there exists δcrit > 0, independent of u0 =

(u0, u0 ○ ι), such that:

(ii-a) if δ < δcrit, then limt→+∞N(t) = +∞ for the first type (3), whereas (17) is satisfied for
some initial conditions u0 for the second type (7);

8



(ii-b) if δ = δcrit and if u0 is compactly supported, then lim supt→+∞N(t) < +∞ for the first
type (3) and N(t) → 0 as t→ +∞ for the second type (7);

(ii-c) if δ > δcrit and if u0 is compactly supported, then limt→+∞N(t) = 0 for both types (3)
and (7).

Corollary 2.9. Assume that λ0 ≥ 0, i.e., rmax ≤ µn/2. Let δ > 0, let u be the solution of (1)
given by Theorem 2.1, with initial condition u0 = (u0, u0 ○ ι) and u0 compactly supported, and let
N(t) = N1(t) = N2(t) be its population size in each habitat. Then N(t) → 0 as t → +∞, for both
types (3) and (7).

An interpretation of Corollary 2.8 is that, when the maximal fitness rmax is large enough,
namely rmax > µn/2, and the environmental stress mD is low, namely mD ≤ 4 (rmax − µn/2),
the population can adapt to the global environment, whichever migration rate δ. However,
when the stress is high, namely mD > 4(rmax − µn/2), the population can only survive if the
migration rate is low (δ ≤ δcrit). These results are coherent with the numerical simulations of
Figure 1. Corollary 2.9 says that, on the other hand, when the maximal fitness is small enough,
namely rmax ≤ µn/2, the population, if initially compactly supported, can never adapt to the
global environment, whichever migration rate δ and environmental stress mD.

The last result is related to a unification result at each time t > 0 in the limit of infinite
migration rates δ.

Theorem 2.10. Let uδ = (uδ,1, uδ,2) be the solution of (1) given by Theorem 2.1 and Remark 2.2,
for growth functions f1, f2 of the first type (3), with a fixed initial condition u0 = (u01, u

0
2) inde-

pendent of δ and such that both functions u01 and u02 satisfy the assumptions (H1)-(H3). Then:

lim
δ→+∞

∥uδ,1(t, ⋅) − uδ,2(t, ⋅)∥L∞(Rn) = 0, locally uniformly in t ∈ (0,+∞).

In other words, a strong migration rate δ unifies the two populations into one global popula-
tion, since the exchanges between them are very large. The population then goes to be generalist
at every time t > 0, even if it is not initially.

3 Discussion

On the biological interpretation of the main results. Proposition 2.7 together with Theorems 2.4-
2.5 show that the more the two environments are connected by migration (i.e., when δ is in-
creased), the lower are the chances of persistence. In the absence of migration, when the two
habitats are not connected (δ = 0), it was already known that persistence occurs if rmax > µn/2

[13, 17], i.e., λ0 < 0, whereas rmax < µn/2 leads to extinction (for both types of growth func-
tions). In the case δ = 0, at large times, the mean fitness r(t) converges to rmax − µn/2. Thus,
−µn/2 corresponds to the mutation load : the amount of maladaptation due to mutations. More
precisely, if the mutation load exceeds the fitness of the optimal phenotype rmax, the population
is doomed to extinction. This corresponds to lethal mutagenesis [3].

When δ becomes positive, some individuals migrate between the two environments. Gene-
rally these individuals are better adapted to their environment of origin. Thus, as shown by
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Proposition 2.7, increasing the migration rate increases the global maladaptation. Ultimately,
when δ → +∞, the condition for persistence becomes λ∞ = −rmax+mD/4+µn/2 < 0: in this case,
as shown by Theorem 2.10, the two phenotypic populations merge into a single one, centered at
the origin, in-between the two optima. We observe that in addition to the mutation load −µn/2,
a migration load −mD/4 appears. It is proportional to the habitat difference mD.

If λ0 < 0 and λ∞ = −rmax +mD/4 + µn/2 > 0, populations are doomed to extinction for large
migration rates, but survive for small migration rates. Corollary 2.8 shows that there exists a
migration threshold such that persistence is possible if the migration rate is below this threshold,
but not if the migration rate is above this threshold. Thus, increasing the migration rate may
imply a ’lethal migration effect’, comparable to lethal mutagenesis.

Implications in agroecology. One of the fundamental principles in agroecology is to promote
diversified agroecosystems rather than uniform cultures [9, 11]. Some empirical study already
illustrated the higher resilience of such diversified agroecosystems [7] to plant diseases. In our
case, the two environments can be interpreted as two different types of host plants (different
species, or different genetic variants) and the populations of phenotypes u1, u2 describe the
density of a pathogen over these two types of host plants. With this interpretation, our study
advocates for more diversified cultures, with strong migration of the pathogens between the host
plants: it should reduce the chances of persistence of the pathogen over the agroecosystem. This
is consistent, therefore, with the above-mentioned principle of plant diversification. However, we
point out that this conclusion may not be valid for three environments or more: as discussed in
[14], the presence of a third environment associated with a phenotype optimum between the two
others may lead to higher chances of persistence of the pathogen, compared to two environments,
due to a ’springboard’ effect. By now, and up to our knowledge, there is no rigorous mathematical
proof of this result.

On the derivation of quantitative estimates. The methods used in our paper do not allow for a
computation of the dispersal load: when δ = 0, as discussed above, the mean growth rate r(t)
converges to rmax − µn/2. With positive values of δ, it should converge to some value rmax −

µn/2 + Loadmigr(δ), with Loadmigr(δ) ∈ (−mD/4,0), the migration load. The determination of
Loadmigr(δ) would help disentangling the respective effect of mutation and migration on the
persistence of a population. Additionally, Theorem 2.10 shows that when the migration rate is
increased the two population merge into a single one, which may be qualified as ’generalist’. This
is consistent with the results that have been obtained by [18] in the case n = 1 with methods
based on constrained Hamilton-Jacobi equations. This means that the mean phenotype in each
environment converges to x = 0. With smaller migration rates, the two populations should behave
as ’specialists’, with mean phenotypes that converges to O1 and O2 respectively as δ → 0. In
a forthcoming work, using the methods in [13] based on the analysis of moment generating
functions associated with the distribution of fitness, we will aim to derive quantitative estimates
for the migration load, the lethal migration threshold δcrit and the respective distributions of
phenotypes in the two environments.
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4 Proofs

This section is devoted to the proofs of the results stated in Section 2. Section 4.1 is devoted
to the proof of Theorem 2.1 on the well-posedness of the Cauchy problem (1). Section 4.2 is
concerned with the proof of Theorems 2.4-2.5 on the large time behaviour of the population
size, and Section 4.3 with the dependence of the faith of the population with respect to the
parameters.

4.1 The Cauchy problem (1)

Proof of Theorem 2.1. We begin by assuming that f1, f2 are of the first type (3). As we will see
later in the proof, the results in the case where f1, f2 are the second type (7) are then straightfor-
ward thanks to a change of functions. Note that the proof of the existence and uniqueness of the
solution of the Cauchy problem (1) for the first type (3) actually does not require the symmetry
property (SH) (but the proof still uses the same sign, smoothness and decay assumptions of each
component u0i of the initial condition u0 = (u01, u

0
2), and the positivity of the initial population

size in each habitat).
So, let us first assume that f1, f2 are of the first type (3). Thanks to the assumptions (H1)-

(H3) and owing to the definition (2) of the fitnesses ri, it follows from [6, Theorem 3] that, for
any T > 0, the Cauchy problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tv1(t,x) =
µ2

2
∆v1(t,x) + [r1(x) − rmax] v1(t,x) + δ[v2(t,x) − v1(t,x)], t ≥ 0, x ∈ Rn,

∂tv2(t,x) =
µ2

2
∆v2(t,x) + [r2(x) − rmax] v2(t,x) + δ[v1(t,x) − v2(t,x)], t ≥ 0, x ∈ Rn,

v(0,x) = u0(x) = (u01(x), u
0
2(x)), x ∈ Rn,

admits a solution v = (v1, v2) ∈ [C1,2([0, T ] ×Rn) ∩L∞((0, T ) ×Rn)]2, such that v(t,x) → (0,0)

as ∥x∥ → +∞ uniformly in t ∈ [0, T ]. Thus, the function u ∶ (t,x) ↦ ermaxt v(t,x), defined
in [0, T ] ×Rn, is a bounded classical solution of (1) satisfying the same properties as v. More-
over, this solution is nonnegative (componentwise) from the comparison principle [26, Lemma 1]
applied to this linear cooperative system. This maximum principle also yields the uniqueness of
this solution u. Since the initial population density in each habitat is not identically equal to 0

by assumption (H2), the nonnegativity of each component ui and the strong parabolic maximum
principle applied to each linear operator ∂t − (µ2/2)∆ − ri(x) + δ (for i ∈ {1,2}) yield the posi-
tivity of each component ui in (0, T ] ×Rn. As T > 0 can be chosen arbitrarily, these existence,
uniqueness and positivity results extend to t ∈ (0,+∞), with local boundedness in t.

Still for the first type (3), in order to show that the population sizes and mean fitnesses Ni(t)

and ri(t) defined by (5)-(6) are real valued, continuous and satisfy (4), we first establish some
bounds and, to do so, we construct a super-solution for u = (u1, u2). Let us set, for all t > 0

and x ∈ Rn:

h(t,x) ∶= (
h1(t,x)

h2(t,x)
) ∶= e(rmax−δ)t [Kt ∗ u

0
1] (x)(

cosh(δt)

sinh(δt)
) + e(rmax−δ)t [Kt ∗ u

0
2] (x)(

sinh(δt)

cosh(δt)
) , (18)

with:

∀ t > 0, ∀x ∈ Rn, Kt(x) =
e−∥x∥

2/(2µ2t)

(2πµ2t)n/2
,
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and h(0,x) = u0(x) = u(0,x). The function h is of class [C∞((0,+∞)×Rn)∩C([0,+∞)×Rn)]2,
it is locally bounded in time, it converges to (0,0) as ∥x∥ → +∞ locally uniformly in t ∈ R+, and
it satisfies:

∂th(t,x) =
µ2

2
∆h(t,x) + (

rmax − δ δ

δ rmax − δ
)h(t,x),

for all t > 0 and x ∈ Rn. Let ψ(t,x) ∶= u(t,x)−h(t,x). We see that ψ(0,x) = (0,0) for all x ∈ Rn,
and:

∂tψ(t,x) −
µ2

2
∆ψ(t,x) − (

rmax − δ δ

δ rmax − δ
)ψ(t,x) = (

m1(x)u1(t,x)

m2(x)u2(t,x)
) ≤ (

0

0
) , (19)

for all t > 0 and x ∈ Rn, with:

mi(x) ∶= ri(x) − rmax = −
∥x −Oi∥

2

2
≤ 0. (20)

Again, the comparison principle [26, Lemma 1] implies that ψ ≤ 0 (componentwise) in R+ ×Rn,
hence:

0 ≤ u(t,x) ≤ h(t,x) for all (t,x) ∈ R+ ×Rn. (21)

The strong parabolic maximum principle actually implies that the second inequality, as is the
first one, is strict in (0,+∞)×Rn, as follows from (19) together with the positivity of u1 and u2.
Moreover, for i ∈ {1,2} and t > 0,

∫
Rn

[Kt ∗ u
0
i ] (x)dx = ∫

Rn
u0i (x)dx =∶ N0

i < +∞.

Thus, ∫Rn hi(t,x)dx ≤ (N0
1 + N

0
2 ) e

rmaxt for all t > 0, and, from (21) and the positivity of ui
in (0,+∞) ×Rn, there holds:

0 < Ni(t) = ∫
Rn
ui(t,x)dx ≤ (N0

1 +N
0
2 ) e

rmaxt, (22)

for all t > 0, as well as for t = 0 trivially.
Consider now any time t ≥ 0 and let us prove that ri(t) defined in (6) is finite, for i ∈ {1,2}.

First, the hypotheses (H2)-(H3) imply that ri(0) is finite. Assume then that t > 0. From (20)-(21)
and the positivity of ui, we have:

rmaxNi(t) ≥ ∫
Rn
ri(x)ui(t,x)dx ≥ rmaxNi(t) + ∫

Rn
mi(x)hi(t,x)dx. (23)

Thus, to show that ri(t) is finite, we only have to show that the last term in the right-hand side
of the above equation is finite. First, we note that:

0 ≤ hi(t, ⋅) ≤ e
rmaxtKt ∗ (u01 + u

0
2) in Rn. (24)
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Then, still using the assumption (H3), we have:

0 ≤∫
Rn
−mi(x) [Kt ∗ u

0
i ](x)dx,

≤
1

2(2πµ2t)n/2
∫
Rn
∫
Rn

∥x −Oi∥
2 e−∥x−y∥

2/(2µ2t)g(∥y −Oi∥)dydx,

=
1

2πn/2
∫
Rn
∫
Rn

∥x −Oi∥
2 e−∥z∥

2

g(∥x − µ
√

2tz −Oi∥)dzdx,

≤
1

2πn/2
∫
Rn
∫
∥z∥≤∥x−Oi∥/(2µ

√
2t)

∥x −Oi∥
2 e−∥z∥

2

g (
∥x −Oi∥

2
) dzdx

+
1

2πn/2
∫
Rn
∫
∥z∥>∥x−Oi∥/(2µ

√
2t)

∥x −Oi∥
2 e−∥z∥

2

g(0)dzdx,

≤
1

2πn/2
[πn/2∫

Rn
∥x −Oi∥

2 g (
∥x −Oi∥

2
) dx + g(0)∫

Rn
ζt(∥x −Oi∥)∥x −Oi∥

2 dx] ,

where:
ζt(r) ∶= ∫

∥z∥≥r/(2µ
√
2t)
e−∥z∥

2

dz = O(e−r), as r → +∞. (25)

The assumption (H3) thus implies that:

0 ≤ ∫
Rn
−mi(x)[Kt ∗ u

0
i ](x)dx < +∞, (26)

for every t > 0. Let us now check that −∫Rnmi(x)[Kt ∗ u
0
j ](x)dx < +∞ for i ≠ j ∈ {1,2}:

∫
Rn
−mi(x)[Kt ∗ u

0
j ](x)dx

≤
1

2(2πµ2t)n/2
∫
Rn
∫
Rn

∥x −Oi∥
2 e−∥x−y∥

2/(2µ2t)g(∥y −Oj∥)dydx,

=
1

2πn/2
∫
Rn
∫
Rn

∥x −Oi∥
2 e−∥z∥

2

g(∥x − µ
√

2tz −Oj∥)dzdx,

≤
1

2πn/2
∫
Rn
∫
∥z∥≤∥x−Oj∥/(2µ

√
2t)

∥x −Oi∥
2 e−∥z∥

2

g (
∥x −Oj∥

2
) dzdx

+
1

2πn/2
∫
Rn
∫
∥z∥>∥x−Oj∥/(2µ

√
2t)

∥x −Oi∥
2 e−∥z∥

2

g(0)dzdx,

≤
1

2πn/2
[πn/2∫

Rn
(2∥x −Oj∥

2
+ 8β2) g (

∥x −Oj∥

2
) dx

+g(0)∫
Rn
ζt(∥x −Oj∥) (2∥x −Oj∥

2
+ 8β2)dx] ,

where we recall that β is defined in (10). Thus, (H3) implies that:

0 ≤ ∫
Rn
−mi(x)[Kt ∗ u

0
j ](x)dx < +∞. (27)

Adding (26) and (27), and using (24), we obtain that:

0 ≤ ∫
Rn
−mi(x)hi(t,x)dx < +∞,

and, together with (23), we infer that −∞ < ri(t) ≤ rmax for i ∈ {1,2} and t > 0 (and also for t = 0

as already emphasized).
Finally, since the quantities ζt(r) given in (25) are nondecreasing with respect to t > 0, the

same arguments as above together with Lebesgue’s dominated convergence theorem yield the
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continuity of the maps t↦ Ni(t), t↦ ∫Rnmi(x)ui(t,x)dx and t↦ ri(t), in R+ (up to t = 0), for
i ∈ {1,2}. Now, for any i ≠ j ∈ {1,2}, 0 < ε < t and R > 0, integrating (1) over (ε, t) ×B(0,R)

yields:

∫
B(0,R)

ui(t,x)dx − ∫
B(0,R)

ui(ε,x)dx =
µ2

2
∫

t

ε
∫
∂B(0,R)

ν ⋅ ∇ui(s,x)dσ(x)ds

+∫

t

ε
∫
B(0,R)

ri(x)ui(s,x)dxds

+δ∫
t

ε
∫
B(0,R)

(uj(s,x) − ui(s,x))dxds,

where ν and dσ(x) denote the outward normal and surface measure on ∂B(0,R). From (1), (21)
and (24), together with (H3) and standard parabolic estimates, it follows that ∥x∥n+1ui(s,x) → 0

and ∥x∥n−1∥∇ui(s,x)∥ → 0 as ∥x∥ → +∞, uniformly for s ∈ [ε, t]. Therefore, by passing to the
limit R → +∞ in the above displayed equality, one gets that:

Ni(t) −Ni(ε) = ∫
t

ε
ri(s)Ni(s)ds + δ∫

t

ε
(Nj(s) −Ni(s))ds,

where we also used Lebesgue’s dominated convergence theorem, formula (20) and the continuity
of the map s ↦ ∫Rnmi(x)ui(s,x)dx in R+. Using the continuity of Ni, Nj and ri in R+, the
passage to the limit ε→ 0+ yields:

Ni(t) −Ni(0) = ∫
t

0
ri(s)Ni(s)ds + δ∫

t

0
(Nj(s) −Ni(s))ds.

Hence, each function Ni is of class C1(R+) and the pair (N1,N2) satisfies (4).
We now show the symmetry property of the solutions of (1), still for the first type (3).

With (u1, u2) given as above and satisfying (SH), it follows that the pair of functions (U1, U2)

defined by:

∀ t ∈ R+, ∀x ∈ Rn, (U1(t,x), U2(t,x)) = (u2(t, ι(x)), u1(t, ι(x))),

with ι as in (11), is a C1,2([0,+∞) × Rn)2 solution of the Cauchy problem (1). Furthermore,
each component Ui is positive in (0,+∞) × Rn, bounded in (0, T ) × Rn for every T > 0, and
converges to 0 as ∥x∥ → +∞ locally uniformly in t ∈ R+. By uniqueness of such solutions and
by (SH), one gets that U1(t,x) = u1(t,x) and U2(t,x) = u2(t,x) for all (t,x) ∈ R+ × Rn, and
so u1(t,x) = u2(t, ι(x)). The equation (14) then readily follows from this equality. Moreover the
population sizes at time t ≥ 0 satisfy:

N1(t) = ∫
Rn
u1(t,x)dx = ∫

Rn
u2(t,x)dx = N2(t),

and the mean fitnesses are also such that r1(t) = r2(t) for all t ≥ 0.
In order to complete the proof of Theorem 2.1, we now derive an equivalence between the

problem (1) in the symmetric case with f1, f2 of the first type (3), and the problem (1) with f1, f2
of the second type (7), still in the symmetric case. Firstly, assume that f1, f2 are of the first
type (3), and let ui, Ni and ri be defined by the first part of the present proof, for i ∈ {1,2}.
From (SH) and the previous paragraph, we know that r1(t) = r2(t) =∶ r(t) and N1(t) = N2(t) =∶

N(t) > 0, with N ′(t) = r(t)N(t), for all t ≥ 0. Let Ñ(t) be the solution of the ODE:

Ñ ′
(t) = r(t) Ñ(t) − Ñ(t)2,

14



with Ñ(0) = N(0) > 0. Since r is continuous in R+, the function Ñ is well defined, positive, and
of class C1 in R+. Define, for i ∈ {1,2}, the functions:

∀ t ∈ R+, ∀x ∈ Rn, ũi(t,x) =
Ñ(t)

N(t)
ui(t,x),

where the functions ui are recalled to satisfy (1) with f1, f2 of the first type (3). The pair (ũ1, ũ2)
is of class C1,2(R+×Rn)2, it is locally bounded in time, it converges to (0,0) as ∥x∥ → +∞ locally
uniformly in t ∈ R+, and it has the same initial condition as the pair (u1, u2). Moreover, for
all t ≥ 0 and x ∈ Rn, we have:

Ñ(t)

N(t)
∂tui(t,x) =

µ2

2
∆ũi(t,x) + ri(x)ũi(t,x) + δ [ũj(t,x) − ũi(t,x)],

1

and:

∂tũi(t,x) =
Ñ(t)

N(t)
∂tui(t,x) + (

Ñ ′(t)N(t) − Ñ(t)N ′(t)

N2(t)
)ui(t,x),

=
Ñ(t)

N(t)
∂tui(t,x) −

Ñ(t)2

N(t)
ui(t,x) =

Ñ(t)

N(t)
∂tui(t,x) − Ñ(t)ũi(t,x).

The functions ũi thus satisfy (with i, j ∈ {1,2} and i ≠ j):

∂tũi(t,x) =
µ2

2
∆ũi(t,x) + [ri(x) − Ñ(t)] ũi(t,x) + δ[ũj(t,x) − ũi(t,x)],

for all t ≥ 0 and x ∈ Rn, and, as:

∫
Rn
ũi(t,x)dx = Ñ(t),

for all t ≥ 0 and i ∈ {1,2}, the functions ũi then solve (1), with f1, f2 of the second type (7).
These solutions ũi are also symmetric, in the sense that ũ1(t,x) = ũ2(t, ι(x)) for all t ≥ 0 and
x ∈ Rn, and they are positive in (0,+∞) ×Rn. Notice finally that:

r̃(t) ∶=
1

Ñ(t)
∫
Rn
ri(x) ũi(t,x)dx = r(t),

for all t ≥ 0 and i ∈ {1,2}.
Conversely, assume that (ũ1, ũ2) is a symmetric C1,2(R+ × Rn)2 locally bounded in time

solution of (1) and converging to (0,0) as ∥x∥ → +∞ locally uniformly in t ∈ R+, with f1, f2 of
the second type (7) and with a continuous associated population size Ñ(t) in each habitat, such
that Ñ(0) > 0. Since the system satisfied by (ũ11, ũ2) can also be viewed as a linear cooperative
system (with additional diagonal term −Ñi(t) ũi(t, x)), the weak and strong comparison principle
applied with respect to the trivial solution (0,0) imply that the functions ũi are then positive
in (0,+∞)×Rn. Therefore, the population size Ñ(t) is positive and fi(t,x, ũi) ≤ ri(x) ũi(t,x) for
all t ≥ 0 and x ∈ Rn. As a consequence, the pair (ũ1, ũ2) is then a subsolution of the cooperative
system (1) with growth functions of the first type (3). Since the maximum principle holds for
the latter system, one infers that the functions ũi satisfy similar bounds as (21) and (24) above
for the solutions ui in the first type (3). By arguing as above, it follows that the mean fitness

1. We use in the last term the fact that the proportionality factor between ũi and ui is the same for i ∈ {1,2}.

15



t↦ r̃(t) = Ñ(t)−1 ∫Rn ri(x) ũi(t,x)dx is continuous in R+ and independent of i ∈ {1,2}, and that
population size Ñ is of class C1(R+) and satisfies (8) (due to the additional term −Ñ(t) ũi(t,x) in
the right-hand side of the equation satisfied by ũi). Finally, by inverting all the calculations of the
previous paragraph and by defining N(t) as the solution of N ′(t) = r̃(t)N(t) with N(0) = Ñ(0),
one gets that the pair (u1, u2) defined by:

∀ t ∈ R+, ∀x ∈ Rn, ui(t,x) =
N(t)

Ñ(t)
ũi(t,x),

is a symmetric solution of (1) satisfying the conditions of Theorem 2.1 with growth functions
f1, f2 of the first type (3). The uniqueness result for the solutions in the first type (3) then leads
to the uniqueness of the symmetric solutions of (1) for growth functions of the second type (7).
The proof of Theorem 2.1 is thereby complete.

4.2 Large time behaviour

This section is devoted to the proof of Theorems 2.4-2.5. Before that, we state an auxiliary
lemma on the existence of positive eigenfunctions of the operator A defined in (15).

Lemma 4.1. There exists a pair of symmetric positive eigenfunctions (ϕδ1, ϕ
δ
2) ∈ [C∞

0 (Rn) ∩
L1(Rn)]2 such that A(ϕδ1, ϕ

δ
2) = λδ(ϕδ1, ϕ

δ
2) in Rn, with A defined by (15) and λδ by (16).

Furthermore, this pair (ϕδ1, ϕ
δ
2) is unique up to multiplication by a positive constant.

The proof of Lemma 4.1 is postponed after that of Theorem 2.4.

Proof of Theorem 2.4. Let u = (u1, u2) be the solution of (1) given by Theorem 2.1 with an
initial condition u0 = (u0, u0 ○ ι) satisfying (SH) and (H1)-(H3), for f1, f2 of the first type (3).
Recall that the symmetry of the problem implies that N1(t) = N2(t) =∶ N(t) for all t ≥ 0. For
R > 0, let (ϕδ,R1 , ϕδ,R2 ) ∈ C∞

0 (B(0,R))2 and λδ,R be the principal eigenfunctions and eigenvalue
of the operator A defined by (15). Finally, let λδ be given by (16). We consider the cases λδ < 0

and λδ ≥ 0 separately, with λδ given by (15).
First case: Assume that λδ < 0. From assumptions (H2)-(H3), we know that u0 ≥ 0 and u0 /≡ 0

in Rn and, from Theorem 2.1, ui(1, ⋅) > 0 in Rn for each i ∈ {1,2}. As lim
R→+∞

λδ,R = λδ < 0,

we can fix R > 0 such that λδ,R < 0. Let K > 0 be such that K e−λ
δ,R

(ϕδ,R1 , ϕδ,R2 ) ≤ u(1, ⋅)

in B(0,R). Set H(t,x) = (H1,H2)(t,x) ∶=K e−λ
δ,Rt(ϕδ,R1 (x), ϕδ,R2 (x)) for t ≥ 1 and x ∈ B(0,R).

In particular, H(1, ⋅) ≤ u(1, ⋅) in B(0,R). We have, for all t ≥ 1, and i ≠ j ∈ {1,2},

∂tH i =
µ2

2
∆H i+ri(x)H i+δ (Hj−H i) in B(0,R) and (H1,H2)(t, ⋅) = (0,0) on ∂B(0,R). (28)

As the pair (u1(t, ⋅), u2(t, ⋅)) satisfies the same equation in B(0,R) and is positive in Rn for
each t ≥ 1 and therefore on ∂B(0,R), the maximum principle applied to this cooperative system
implies that ui(t,x) ≥ H i(t,x) for all t ≥ 1, x ∈ B(0,R) and i ∈ {1,2}. Integrating over B(0,R)

the above inequality and using the positivity of ui, we get:

N(t) ≥K e−λ
δ,Rt

∥ϕδ,Ri ∥L1(B(0,R)), for all t ≥ 1 and i ∈ {1,2}.

Since λδ,R < 0, this implies that N(t) → +∞ as t→ +∞ and this shows part (i) of Theorem 2.4.
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Second case: Assume that λδ ≥ 0. Assume also that the initial condition u0 is compactly
supported. Then, there is K > 0 large enough, one has K (ϕδ1, ϕ

δ
2) ≥ u(0, ⋅) in Rn. Set H(t,x) =

(H1,H2)(t,x) ∶= K e−λ
δt(ϕδ1(x), ϕ

δ
2(x)) for t ≥ 0 and x ∈ Rn. As for (28), the function H

satisfies the same cooperative system (1) as u in R+ × Rn, but with a larger initial condition.
The comparison principle thus implies that, for i ∈ {1,2} and t ≥ 0:

0 ≤ ui(t,x) ≤H i(t,x) =K e−λ
δtϕδi (x), for all x ∈ Rn. (29)

As the functions ϕδi belong to L1(Rn), integrating (29) over Rn yields lim
t→+∞

N(t) = 0 if λδ > 0.

If λδ = 0, (29) implies that:
lim sup
t→+∞

N(t) < +∞.

Furthermore, in that case, for every C > 0, C (ϕδ1, ϕ
δ
2) is a pair of positive stationary solutions

of (1). That shows parts (ii) and (iii) of Theorem 2.4 and the proof of Theorem 2.4 is thereby
complete.

Proof of Lemma 4.1. For R > 0, the functions (ϕδ,R1 , ϕδ,R2 ) ∈ C∞
0 (B(0,R))2 satisfy:

µ2

2
∆ϕδ,Ri + (λδ,R − δ + ri)ϕ

δ,R
i + δ ϕδ,Rj = 0 in B(0,R),

with i ≠ j ∈ {1,2}. As the eigenvalues λδ,R are nonincreasing with respect to R and not smaller
than −rmax, we have −rmax ≤ λ

δ,R ≤ λδ,2 for all R ≥ 2. For every R′ ≥ 1, it then follows from the
Harnack inequality in [22, Theorem 2] (applied here with Ω = B(0,2R′)) that there is a positive
constant C(R′) such that:

max
x∈B(0,R′), i∈{1,2}

ϕδ,Ri (x) ≤ C(R′
) min

x∈B(0,R′), i∈{1,2}
ϕδ,Ri (x),

for all R ≥ 2R′. Without loss of generality, we assume the normalization condition ϕδ,Ri (0) = 1

(recall that ϕδ,R1 (0) = ϕδ,R2 (0) by the symmetry property of Lemma 2.3). Thus, we get:

0 < ϕδ,Ri (x) ≤ C(R′
), for all x ∈ B(0,R′), i ∈ {1,2}, and R ≥ 2R′

≥ 2.

Standard elliptic estimates then imply that, for every θ ∈ [0,1), and for every R′ ≥ 1, the
functions ϕδ,Ri are bounded in C2,θ(B(0,R′)), independently of R ∈ [2R′,+∞). Thus Sobolev’s
injections imply that, up to the extraction of a subsequence, ϕδ,Ri → ϕδi in C

2
loc(R

n) as R → +∞,
where the functions ϕδi satisfy A(ϕδ1, ϕ

δ
2) = λ

δ(ϕδ1, ϕ
δ
2), are nonnegative and such that ϕδi (0) = 1

for i ∈ {1,2}. From the (scalar) strong elliptic maximum principle, the functions ϕδi are positive
in Rn. Furthermore, they satisfy the same symmetry property as the functions ϕδ,Ri , and, again
from standard elliptic estimates, they are of class C∞(Rn).

To show that the eigenfunctions ϕδi are in L1(Rn) and converge to 0 at infinity, we use the
fact that the potentials ri are confining. In particular, we fix R′

0 ≥ 1 large enough such that, all
R ≥ 2R′

0, there holds λδ,R + ri(x) < −∥x∥2/4 for all x ∈ B(0,R) ∖B(0,R′
0) and i ∈ {1,2}, hence:

−
µ2

2
∆(ϕδ,R1 + ϕδ,R2 )(x) +

∥x∥2

4
(ϕδ,R1 + ϕδ,R2 )(x) < 0 in B(0,R) ∖B(0,R′

0).
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For any such R, since max∂B(0,R′0)
ϕδ,Ri ≤ C(R′

0) and ϕδ,R1 +ϕδ,R2 = 0 on ∂B(0,R), the maximum
principle implies that ϕδ,R1 +ϕδ,R2 ≤ w in B(0,R) ∖B(0,R′

0), where w denotes the solution of the
equation −(µ2/2)∆w(x)+ (∥x∥2/4)w(x) = 0 in B(0,R)∖B(0,R′

0) with the boundary conditions
w = 0 on ∂B(0,R) and w = 2C(R′

0) on ∂B(0,R′
0). Consequently,

ϕδ,R1 (x) + ϕδ,R2 (x) ≤ w(x) ≤ 2C(R′
0) e

(R′0
2
−∥x∥2)/

√
8µ2 , for all x ∈ B(0,R) ∖B(0,R′

0),

and for all R ≥ 2R′
0. Thus, the same inequality holds for the functions ϕδ1 +ϕ

δ
2 in Rn ∖B(0,R′

0).
This implies in particular that the eigenfunctions ϕδi belong to L1(Rn) and converge to 0 at
infinity.

Lastly, since for any λ ∈ R the weak maximum principle holds outside a large ball for the
system A(ϕ1, ϕ2) = λ(ϕ1, ϕ2) in the class of C2

0(Rn) functions (namely, there is ρ > 0 such that,
if ϕ1, ϕ2 ∈ C

2
0(Rn) satisfy A(ϕ1, ϕ2) ≤ λ(ϕ1, ϕ2) in Rn∖B(0, ρ) and (ϕ1, ϕ2) ≤ (0,0) on ∂B(0, ρ),

then (ϕ1, ϕ2) ≤ (0,0) in Rn∖B(0, ρ)) and since the strong maximum principle holds as well in any
connected open subset Ω ⊂ Rn (namely, if ϕ1, ϕ2 ∈ C

2(Ω) are such that A(ϕ1, ϕ2) ≤ λ(ϕ1, ϕ2)

and (ϕ1, ϕ2) ≤ (0,0) in Ω with ϕi(x0) = 0 for some i ∈ {1,2} and x0 ∈ Ω, then (ϕ1, ϕ2) ≡

(0,0) in Ω), it follows with similar arguments as in [5] that the pair of eigenfunctions (ϕδ1, ϕ
δ
2)

constructed above is unique, up to multiplication by a positive constant, in the class of C2
0(Rn)

eigenfunctions. Moreover, the eigenvalue λδ is the unique eigenvalue associated with a pair of
positive eigenfunctions. The proof of Lemma 4.1 is thereby complete.

Proof of Theorem 2.5. Let u = (u1, u2) be the unique symmetric solution of (1) given by Theo-
rem 2.1, for f1, f2 of the second type (7). Let N(t) ∶= N1(t) = N2(t) be its population size
given by (5) and r(t) ∶= r1(t) = r2(t) be its mean fitness given by (6), at each time t ≥ 0. From
Theorem 2.1, the densities ui are positive in (0,+∞) × Rn, the function r is continuous in R+,
the function N is positive and of class C1 in R+, and N ′(t) = r(t)N(t) −N(t)2 for all t ∈ R+.

Let also ũ = (ũ1, ũ2) be the unique symmetric solution of (1) given by Theorem 2.1, for f1, f2
of the first type (3), with the same initial condition u0 as u. Let Ñ(t) ∶= Ñ1(t) = Ñ2(t) be
its population size and r̃(t) ∶= r̃1(t) = r̃2(t) be its mean fitness, at each time t ≥ 0. From
Theorem 2.1, the densities ũi are positive in (0,+∞) × Rn, the function r̃ is continuous in R+,
the function Ñ is positive and of class C1 in R+, and Ñ ′(t) = r̃(t)Ñ(t) for all t ∈ R+.

The correspondence between the symmetric solutions of (1) for both types (3) and (7), shown
in the last part of the proof of Theorem 2.1, implies that:

ũ(t,x) =
Ñ(t)

N(t)
u(t,x), for all t ≥ 0 and x ∈ Rn,

hence r̃(t) = r(t) for all t ≥ 0. Therefore, we have:

Ñ ′(t)

Ñ(t)
=
N ′(t)

N(t)
+N(t),

for all t ≥ 0. Integrating this equality and using Ñ(0) = N(0) yields:

N(t) =
Ñ(t)

1 + ∫
t

0
Ñ(s)ds

, for all t ≥ 0. (30)
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Let now (ϕδ1, ϕ
δ
2) be defined by Lemma 4.1 with the normalization ∥ϕδi ∥L1(Rn) = 1. Set:

H(t,x) = (H1(t,x),H2(t,x)) ∶= e
−λδt

(ϕδ1(x), ϕ
δ
2(x)),

for t ≥ 0 and x ∈ Rn. As in the proof of Theorem 2.4, the function H satisfies (1) with growth
functions fi of the first type (3). We then treat separately the cases λδ ≥ 0 and λδ < 0.

First case: Assume that λδ ≥ 0. Assume also in this case that u0 is compactly supported.
Then there is K > 0 such that ũ(0, ⋅) = u(0, ⋅) = u0 ≤ KH(0, ⋅) in Rn and the maximum
principle applied to the cooperative system (1) with growth functions of the first type (3) implies
that ũ(t, ⋅) ≤ KH(t, ⋅) in Rn for all t ≥ 0, hence Ñ(t) ≤ K e−λ

δt for all t ≥ 0. From (30) and the
positivity of N and Ñ , one immediately infers that N(t) → 0 as t→ +∞ if λδ > 0.

Consider now the sub-case λδ = 0. The previous observations imply that Ñ is bounded
in R+. Furthermore, on the one hand, if the integral ∫

+∞

0 Ñ(s)ds diverges, then formula (30)
and the boundedness of Ñ imply that N(t) → 0 as t → +∞. On the other hand, if the integral

∫
+∞

0 Ñ(s)ds converges, then the boundedness of the function Ñ ′ = r̃ Ñ in R+ (which itself follows
from the inequalities 0 ≤ ũ(t, ⋅) ≤ KH(t, ⋅) = K (ϕδ1, ϕ

δ
2) in Rn and the exponential decay at

infinity of the eigenfunctions ϕδi given the proof of Lemma 4.1) implies that Ñ(t) → 0 as t→ +∞,
and finally N(t) → 0 as t→ +∞ by (30).

Second case: Assume that λδ < 0. Assume also in this case that u0 is trapped between two
positive multiples of the eigenfunctions (ϕδ1, ϕ

δ
2), namely, there exist 0 <K1 ≤K2 such that:

K1 (ϕ
δ
1, ϕ

δ
2) ≤ u

0
≤K2 (ϕ

δ
1, ϕ

δ
2) in Rn.

Thus, K1H(0, ⋅) ≤ ũ(0, ⋅) = u0 ≤ K2H(0, ⋅) in Rn and the maximum principle applied to the
cooperative system (1) with growth functions of the first type (3) implies that:

K1H(t, ⋅) ≤ ũ(t, ⋅) ≤K2H(t, ⋅) in Rn, for all t ≥ 0.

In particular, K1 e
−λδt ≤ Ñ(t) ≤ K2 e

−λδt for all t ≥ 0. Together with (30) and the negativity
of λδ, one concludes that:

0 <
K1

K2
∣λδ ∣ ≤ lim inf

t→+∞
N(t) ≤ lim sup

t→+∞
N(t) ≤

K2

K1
∣λδ ∣ < +∞.

The proof of Theorem 2.5 is thereby complete.

4.3 Dependence with respect to the parameters

Proof of Proposition 2.7. We start with the concavity and the monotonicity in (0,+∞) of the
map δ ↦ λδ defined in (16). Using the confining properties of the fitnesses ri(x), it follows from
Lemma 4.1 and elementary arguments that, for any δ > 0,

λδ = min
ϕ∈H1(Rn)∖{0}

x↦∥x∥ϕ(x) ∈L2(Rn)

R(δ,ϕ), (31)

with,

R(δ,ϕ) =

µ2

2
∫
Rn

∥∇ϕ(x)∥2 dx − ∫
Rn
r1(x)ϕ(x)

2 dx + δ∫
Rn

(ϕ(x)2 − ϕ(x)ϕ(ι(x)))dx

∫
Rn
ϕ(x)2 dx

,
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and the minimum of the Rayleigh quotient R(δ, ⋅) in (31) is reached only by multiples of the
function ϕδ1 given in Lemma 4.1. For each ϕ ∈ H1(Rn) ∖ {0} such that x ↦ ∥x∥ϕ(x) ∈ L2(Rn),
the map δ ↦R(δ,ϕ) is affine in (0,+∞) and nondecreasing in (0,+∞) (from the Cauchy-Schwarz
inequality). Therefore, the map δ ↦ λδ is concave and nondecreasing in (0,+∞).

From this characterization, it also follows that the map δ ↦ λδ is not only nondecreasing but
also increasing in (0,+∞). Indeed, to do so, assume by way of contradiction that there are two
migration rates 0 < δ < δ′ such that λδ = λδ

′

. The function ϕδ
′

1 is a minimum of R(δ′, ϕ) among
the functions ϕ ∈ H1(Rn) ∖ {0} such that x ↦ ∥x∥ϕ(x) ∈ L2(Rn). Thus, the monotonicity
of R(⋅, ϕδ

′

1 ) in (0,+∞) yields:

λδ ≤ R(δ,ϕδ
′

1 ) ≤ R(δ′, ϕδ
′

1 ) = λδ
′

= λδ,

hence λδ = R(δ,ϕδ
′

1 ), that is, ϕδ
′

1 also minimizes R(δ,ϕ) among the same set of functions ϕ.
Therefore, there is a constant C > 0 such that ϕδ

′

1 ≡ C ϕδ1 in Rn, hence:

δ′ (ϕδ1 − ϕ
δ
1 ○ ι) ≡ δ (ϕ

δ
1 − ϕ

δ
1 ○ ι) in Rn,

from the equations satisfied by ϕδ1 and ϕδ
′

1 = C ϕδ1. As a consequence, ϕδ1 ≡ ϕ
δ
1 ○ ι in Rn, that is,

ϕδ1 ≡ ϕδ2 in Rn by Lemma 4.1. Finally, the system A(ϕδ1, ϕ
δ
2) = λ

δ(ϕδ1, ϕ
δ
2) yields r1ϕδ1 ≡ r2ϕ

δ
1

in Rn, which is clearly impossible since ϕδ1 > 0 in Rn and O1 ≠O2. Therefore, the map δ ↦ λδ is
increasing in (0,+∞).

Let us now investigate the limits of λδ as δ → 0 and δ → +∞. First of all, one knows from (16)
that λδ ≥ −rmax for all δ > 0 (this property can also be viewed as a consequence of (31) since
−r1(x) = −rmax+∥x−O1∥

2/2 ≥ −rmax for all x ∈ Rn). Furthermore, by choosing a symmetric test
function, such as ϕ0(x) = e

−∥x∥2 for instance, one has λδ ≤ R(δ,ϕ0), and the quantity R(δ,ϕ0)

is independent of δ, hence supδ>0 λ
δ < +∞. Therefore, there are two real numbers `0 < `∞

in [−rmax,+∞) such that λδ → `0 as δ → 0 and λδ → `∞ as δ → +∞.
By defining R(0, ϕ) as above by deleting the (nonnegative) third term of the numerator of

the Rayleigh quotient R(δ,ϕ), one has:

R(0, ϕ) ≤ R(δ,ϕ) ≤ R(0, ϕ) + 2δ,

for every function ϕ ∈ H1(Rn) ∖ {0} such that x ↦ ∥x∥ϕ(x) ∈ L2(Rn). Thus, as δ → 0, the
minimum λδ of R(δ,ϕ) over this set of functions ϕ converges to the minimum `0 of R(0, ϕ) over
the same set, and this last minimum `0 corresponds to the principal eigenvalue of the Schrödinger
operator,

−
µ2

2
∆ − r1(x) = −

µ2

2
∆ − rmax +

∥x −O1∥
2

2
,

acting on the same set of functions. Since the principal eigenvalue of the operator −∆ + ∥x∥2

is equal to n (with ground state, namely the principal eigenfunction, ϕGS(x) = e−∥x∥
2/2 up to

multiplicative constants), it easily follows by translation and scaling that `0 = −rmax+µn/2 =∶ λ
0,

with principal eigenfunction ϕ0(x) = e−∥x−O1∥
2/(2µ) up to multiplicative constants.

In order to identity the real number `∞ = limδ→+∞ λ
δ = limk→+∞ λ

k, we consider a sequence
of (positive) principal eigenfunctions (ϕk1, ϕ

k
2)k∈N = (ϕk1, ϕ

k
1 ○ ι)k∈N given by Lemma 4.1 (with

δ = k ∈ N), normalized by ∥ϕk1∥L2(Rn) = 1. For each k ∈ N, there holds λk = R(k,ϕk1), hence:

µ2

2
∫
Rn

∥∇ϕk1(x)∥
2 dx +∫

Rn

∥x −O1∥
2

2
ϕk1(x)

2 dx + k∫
Rn

(ϕk1(x)
2
− ϕk1(x)ϕ

k
1(ι(x)))dx = rmax + λ

k. (32)
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Notice that the right-hand side is bounded as k → +∞, while the left-hand side is the sum of three
nonnegative terms. Therefore, the sequence (ϕk1)k∈N is bounded in H1(Rn) and, up to extraction
of a subsequence, there exists a nonnegative function ϕ1 ∈H

1(Rn) such that ϕk1 → ϕ1 in L2
loc(R

n)

strongly, in H1
loc(R

n) weakly, and almost everywhere in Rn. Furthermore, since ∥x −O1∥ → +∞

as ∥x∥ → +∞, one has supk∈N ∥ϕk1∥L2(Rn∖B(0,R)) → 0 as R → +∞, hence ϕk1 → ϕ1 in L2(Rn)
as k → +∞, and ∥ϕ1∥L2(Rn) = 1. Fatou’s lemma also implies that the function x↦ ∥x−O1∥ϕ1(x)

belongs to L2(Rn), and so does the function x↦ ∥x∥ϕ1(x). Moreover,

∫
Rn

(ϕk1(x)
2
− ϕk1(x)ϕ

k
1(ι(x)))dx→ ∫

Rn
(ϕ1(x)

2
− ϕ1(x)ϕ1(ι(x)))dx, as k → +∞.

But since the left-hand side is O(1/k) as k → +∞ by (32), one gets that:

∫
Rn

(ϕ1(x)
2
− ϕ1(x)ϕ1(ι(x)))dx = 0.

Since both functions ϕ1 and ϕ1 ○ ι are nonnegative and with the same L2(Rn) norm (equal to 1),
the case of equality in the Cauchy-Schwarz inequality implies that:

ϕ1 = ϕ1 ○ ι,

almost everywhere in Rn. Since each C∞
0 (Rn) function ϕk1 + ϕ

k
2 = ϕ

k
1 + ϕ

k
1 ○ ι obeys:

−
µ2

2
∆(ϕk1 + ϕ

k
2) − r1ϕ

k
1 − r2ϕ

k
2 = λ

k
(ϕk1 + ϕ

k
2) in Rn,

and since ϕk1 → ϕ1 and ϕk2 = ϕ
k
1 ○ ι → ϕ1 ○ ι = ϕ1 in L2(Rn) strongly and in H1

loc(R
n) weakly, it

then follows from a passage to the limit in the weak sense and from standard elliptic regularity
theory that the function ϕ1 is a C∞(Rn) solution of:

−
µ2

2
∆ϕ1 −

r1 + r2
2

ϕ1 = `
∞ϕ1 in Rn.

Furthermore, since ∥ϕ1∥L2(Rn) = 1 and since ϕ1 is nonnegative, the elliptic strong maximum
principle implies that ϕ1 > 0 in Rn. The H1(Rn) function ϕ1 is then a ground state of the
Schrödinger operator −(µ2/2)∆−(r1+r2)/2 = −(µ

2/2)∆−rmax+mD/4+∥x∥2/2, with mD defined
in (9). As a consequence, `∞ is the principal eigenvalue of this operator and ϕ1 is its principal
eigenfunction. In other words, `∞ = −rmax+mD/4+µn/2 =∶ λ∞ and ϕ1(x) = (πµ)−n/4 e−∥x∥

2/(2µ).
The proof of Proposition 2.7 is thereby complete.

Proof of Theorem 2.10. Let uδ = (uδ,1, uδ,2) be the unique C1,2(R+ ×Rn)2 solution of (1) given
by Theorem 2.1 and Remark 2.2, for growth functions f1, f2 of the first type (3), with a fixed
initial condition u0 = (u01, u

0
2) independent of δ and such that both functions u01, u

0
2 satisfy

the assumptions (H1)-(H3). Let us fix two positive times 0 < T ′ ≤ T and let us show that
supt∈[T ′,T ] ∥uδ,1(t, ⋅) − uδ,2(t, ⋅)∥L∞(Rn) → 0 as δ → +∞.

From the first part of the proof of Theorem 2.1, especially from (21), (24)-(25) and similar
calculations as the ones between (24) and (25), it follows that there exists a constant K ≥ 0

(independent of δ > 0) such that, for all δ > 0,

∣x1uδ,2(t,x)∣ ≤ ∣x1h2(t,x)∣ ≤K, for all t ∈ [0, T ] and x = (x1, . . . , xn) ∈ Rn, (33)
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with h2 defined by (18) (notice that the function h2 actually depends on δ, but the upper
bound (24) is independent of δ > 0). For each δ > 0, one infers from (1)-(2) and (10) that the
function vδ ∶= uδ,1 − uδ,2 is a classical C1,2(R+ ×Rn) solution of:

∂tvδ(t,x) =
µ2

2
∆vδ(t,x) + r1(x) vδ(t,x) − 2δ vδ(t,x) − 2βx1uδ,2(t,x),

such that vδ is locally bounded in time and vδ(t, x) → 0 as ∥x∥ → +∞ locally uniformly in t ∈ R+.
The previous relation, together with (20) and (33), implies that:
⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

−2βK ≤ ∂tvδ(t,x) −
µ2

2
∆vδ(t,x) − (rmax +m1(x)) vδ(t,x) + 2δ vδ(t,x) ≤ 2βK, t ∈ [0, T ], x ∈ Rn,

∣vδ(0,x)∣ ≤ max(∥u01∥L∞(Rn
), ∥u

0
2∥L∞(Rn

)) =∶M, x ∈ Rn.

Since the potential m1(x) = −∥x −O1∥
2/2 is nonpositive, there exists a C1,2(R+ ×Rn) solu-

tion V ∶ R+ ×Rn → [0,M] of:

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∂tV (t,x) =
µ2

2
∆V (t,x) +m1(x)V (t,x), t ≥ 0, x ∈ Rn,

V (0,x) =M, x ∈ Rn.

Such a function V , which is independent of δ > 0, can be obtained as the nondecreasing local
limit as R → +∞ of C1,2(R+ × B(0,R)) solutions V R ∶ R+ × B(0,R) → [0,M] of the same
equation in R+ × B(0,R), with Dirichlet boundary conditions V R = 0 on R+ × ∂B(0,R) and
initial conditions of the type V R(0,x) = M φ(∥x∥/R) in B(0,R), where φ ∶ [0,1] → [0,1] is
a C∞([0,1]) nonincreasing function such that φ = 1 in [0,1/3] and φ = 0 in [2/3,1].

Consider now any δ > rmax/2 and let Vδ be the C1,2(R+ ×Rn) function defined in R+ ×Rn by:

Vδ(t,x) = vδ(t,x) e
(2δ−rmax)t −

2βK

2δ − rmax
(e(2δ−rmax)t − 1).

A straightforward calculation shows that:

∂tVδ(t,x) −
µ2

2
∆Vδ(t,x) −m1(x)Vδ(t,x) ≤m1(x)

2βK

2δ − rmax
(e(2δ−rmax)t − 1) ≤ 0,

for all (t, x) ∈ [0, T ] × Rn. Furthermore, Vδ(0,x) = vδ(0,x) ≤ M = V (0,x) for all x ∈ Rn,
and lim sup∥x∥→+∞ Vδ(t,x) ≤ 0 uniformly in t ∈ [0, T ]. It follows from the maximum principle
that Vδ(t,x) ≤ V (t, x) for all (t,x) ∈ [0, T ] ×Rn, hence:

vδ(t,x) ≤ e
(rmax−2δ)tV (t,x) +

2βK

2δ − rmax
(1 − e(rmax−2δ)t), for all (t,x) ∈ [0, T ] ×Rn.

Since the function V is bounded (by M), one gets that:

lim sup
δ→+∞

( sup
[T ′,T ]×Rn

vδ) ≤ 0,

recalling that 0 < T ′ ≤ T . The same argument applied to the functions −Vδ and −vδ implies that,
for all δ > rmax/2 and (t,x) ∈ [0, T ] ×Rn,

vδ(t,x) ≥ −e
(rmax−2δ)tV (t,x) −

2βK

2δ − rmax
(1 − e(rmax−2δ)t),

hence lim infδ→+∞ ( inf[T ′,T ]×Rn vδ) ≥ 0. As a conclusion, sup[T ′,T ]×Rn ∣vδ ∣ → 0 as δ → +∞ and the
proof of Theorem 2.10 is thereby complete.
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