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Isolating the singularities of the plane projection of a generic space curve

George Krait1, Sylvain Lazard1, Guillaume Moroz1, and Marc Pouget1

Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy

Abstract

Isolating the singularities of a plane curve is the first step towards computing its topology. For this, numerical methods

are efficient but not certified in general. We are interested in developing certified numerical algorithms for isolating

the singularities. In order to do so, we restrict our attention to the special case of plane curves that are projections

of smooth curves in higher dimensions. This type of curves appears naturally in robotics applications and scientific

visualization. In this setting, we show that the singularities can be encoded by a regular square system whose solutions

can be isolated with certified numerical methods. Our analysis is conditioned by assumptions that we prove to be

generic using transversality theory, we also provide a semi-algorithm to check their validity.

Keywords: Transversality, Generic Singularities, Certified Numerical Algorithms, Interval Analysis, Singular Curve

Topology

1. Introduction

The problem of computing the topology of a real plane curve consists in computing a piecewise-linear graph that

can be deformed continuously toward that curve. Such a problem is critical for drawing plane curves with the correct

topology. A natural approach to compute the topology of a singular curve is first to isolate its singular points, second to

compute the topology in a neighbourhood of those points and third to compute the topology of the smooth remaining

part of that curve. One of the main challenges for this goal is to isolate the singular points efficiently and correctly.

The aim of this paper is to do so with certified numerical methods and we show that this could be achieved for the

specific class of plane curves that are projections of C∞ smooth curves in higher dimension.

By certified algorithm, we refer to algorithms that always output mathematically correct results in a given model

of computation; for instance, randomized Las-Vegas algorithms are (usually) certified, but randomized Monte-Carlo

algorithms are not; numerical methods that may miss solutions or output spurious solutions are not certified. We

consider in this paper the RAM model of computation. Recall that the singular points of a plane curve, defined by

the equation f(x, y) = 0, are the solutions of the system defined by f(x, y) = ∂f
∂x (x, y) = ∂f

∂y (x, y) = 0; it should

be stressed that this system is over-determined, i.e., it has more equations than variables, which prevents us to use

certified numerical methods such as interval Newton methods [MKC09a]. To the best of our knowledge, no efficient

and certified algorithm is known for isolating the singularities of any plane curve.
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Main contributions. In this paper, we present a square and regular system that encodes the singularities of the plane

projection of a C∞ smooth curve in Rn, which may not be algebraic (Theorems 36 & 51). This system can thus be

solved with state-of-the-art certified numerical methods based on interval arithmetic or certified homotopy tracking.

However it encodes the singularities of the plane projection only if some assumptions are satisfied (defined in Section

2.2). Our second main result is the proof that those assumptions are satisfied generically using transversality theory

(Section 3). Finally, we present Semi-algorithm 3 that checks whether a given curve satisfies our assumptions, i.e. an

algorithm that stops if and only if the assumptions are satisfied. The combination of these results provides a method

that is both efficient and certified for computing the singularities of the plane projection of a generic curve.

We also address the case of curves that are the silhouettes of smooth surfaces in Rn (Definition 26). Such curves

naturally appear in parametric systems since they partition the parametric space with respect to the number of solutions

of the system. For such curves, all our results directly hold except their genericity for which we were only able to

prove some partial results (Section 3.3). Our contribution is a generalization of [IMP16b] that only considers the

3-dimensional case and is in the same spirit as the work of Delanoue et al. [DL14].

State of the art. The problem of isolating the singularities of a plane curve is a special case of the problem of isolating

the solutions of a zero-dimensional system in R2. We give below a concise state of the art of certified methods for

these two problems, organized in two main classes.

Symbolic methods. Symbolic methods are widely used for solving in a certified way zero-dimensional systems.

Classical such methods are based on Gröbner bases, resultant theory and univariate representations (see e.g., [CLO92,

BPR06]). In this context, methods dedicated to the bivariate case have also been designed (see [Hon96, GVK96,

BLM+16, vdHL18] and references therein). The drawback of such methods is, however, that they are not efficient

compared to numerical methods and that they do not handle non-algebraic curves.

Certified numerical methods. When a zero-dimensional system is regular (Definition 50), its solutions can be

isolated in a certified way using interval-arithmetic subdivision methods [Neu91, MKC09b] or homotopy approaches

with certified path tracking (see [BL13] and references therein). However, these methods do not directly work for

isolating the singularities of plane curves because the system f(x, y) = ∂f
∂x (x, y) = ∂f

∂y (x, y) = 0 that encodes the

singularities of the curve f(x, y) = 0 is neither square nor regular. To the best of our knowledge only two contributions

present certified numerical approaches for isolating the singularities of plane curves: Delanoue and Lagrange [DL14]

consider the apparent contour of a smooth mapping from R2 to R2 and Imbach et al. [IMP16b] handle plane projections

of smooth curves in R3.

The rest of the paper is organized as follows: In Section 2, we introduce notation and the assumptions we consider

in our approach. In Section 3, we prove the genericity of our assumptions, with a focus on the case of silhouette curves

in Section 3.3. In Section 4, we introduce the Ball system that characterizes the singularities of the plane projection and

we prove that it is regular at its solutions. Finally, in Section 5, we provide a semi-algorithm to check the assumptions

introduced in Section 2.
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2. Notation and Assumptions

2.1. Preliminaries

For a positive integer n, a closed (resp. an open) n-box is the Cartesian product of n closed (resp. open) interval.

Assume that n > 3 and let B be an open n-box and B be the topological closure of B with respect to the usual

topology in Rn. Let C∞(Rn,Rn−1) denote the set of smooth functions (i.e., differentiable infinitely many times)

from Rn to Rn−1. Consider the function P = (P1, . . . , Pn−1) ∈ C∞(Rn,Rn−1). We will denote by C (resp. C)

the solution set of the system {P1(x) = · · · = Pn−1(x) = 0}, with x = (x1, . . . , xn) ∈ B (resp. with x ∈ B).

Also, consider the projection πC (resp. πC) from C (resp. C) to the (x1, x2)-plane. Unless otherwise stated, the plane

projection of a point x ∈ Rn is (x1, x2). If C is a smooth curve (see the definition below), define Lc (resp. L′c)

to be the set of points q in C (resp. C) such that the tangent line, denoted by TqC, (resp. TqC) is orthogonal to the

(x1, x2)-plane. We also define the set Ln (resp. L′n) to be the set of points q in C (resp. C) such that the cardinality of

the pre-image of πC(q) under πC (resp. πC) is at least two. We will see later that, under some generic assumption, Lc

(resp. Ln) is equal to the set of points in C that project to a cusp (resp. node) which justifies the subscript c (resp. n).

Regular and singular points [Dem00, Definition 2.2.2]. Let m > 1 be an integer, V be a subset of Rm and p ∈ V .

We call p a regular (or smooth) point of V if V is a sub-manifold at p, that is, there exist a neighbourhood W of p in

Rm, an integer k > 0 and k smooth functions ϕ1, . . . , ϕk defined over W , such that V ∩W is the set of solutions

of {ϕ1(x) = · · · = ϕk(x) = 0} in W and the rank of the matrix


∂ϕ1

∂x1
. . . ∂ϕ1

∂xm
...

...
...

∂ϕk
∂x1

. . . ∂ϕk
∂xm

, evaluated at q, is k. We call

this matrix the Jacobian matrix of the system {ϕ1(x) = · · · = ϕk(x) = 0} and we denote it by J(ϕ1,...,ϕk). If q is

not a regular point of V , we call it a singular point. If all points in V are regular, then V is called regular or smooth.

Otherwise, V is called singular.

For ϕ = (ϕ1, . . . , ϕk) ∈ C∞(Rn,Rk), we denote by Tqϕ its derivative (also known as the tangent map) at the

point q. Note that the Jacobian matrix Jϕ = J(ϕ1,...,ϕk) is the expression of the derivative in the canonical bases of

Rn and Rk.

Definition 1. Let f be a real smooth function at a ∈ R. The order of f at a is the integer orda(f(x)) = min{k ∈ N |
∂kf
∂xk

(a) 6= 0} if it exists, otherwise orda(f(x)) =∞. For the case a = 0, we write for simplicity ord(f) = orda(f).

Multiplicity in zero-dimensional systems.

Definition 2 ([CLO05, Definition 4.2.1]). For integers m > n > 1, let G = (g1(x), . . . , gm(x)) be a polynomial

function from Rn to Rm and q be a solution of the system {G = 0}. Let R[x] be the ring of polynomials with n

variables and define R[x]q = {h1

h2
| h1, h2 ∈ R[x], h2(q) 6= 0} the localization of R[x] at q. Define the intersection

multiplicity of q in the system {G = 0} (or equivalently the multiplicity of the system {G = 0} at q) to be the dimension

of the real vector space R[x]q
IG

, where IG is the ideal generated by the set { g11 , . . . ,
gm
1 } in R[x]q.
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The previous definition is classical for the algebraic case. However, in our paper, we are interested in curves

defined as the zero locus of smooth functions. For this goal, we consider a more general definition for a system

S = {f1(x) = · · · = fm(x) = 0} with fi ∈ C∞(Rn,R). Let a be a solution of S and k be a non-negative integer, we

define the dual space of rank k, denoted by Dk
a [S], to be the vector space of all linear combinations c of differential

functionals ∂k1+···+kn

∂x
k1
1 ...∂xknn

with k1 + · · ·+ kn 6 k such that:

(a) D0
a[S] = span({ ∂0

∂x0
1...∂x

0
n
}),

(b) c applied to fi, evaluated at a is zero for all integers 1 6 i 6 m, and

(c) for all i ∈ {1, . . . , n}, the anti-differentiation transformation φj applied to c is inDk−1
a [S]. The anti-differentiation

transformation φj is the linear operator mapping the order h differential functional ∂h

∂x
h1
1 ...∂x

hj
j ...∂xhnn

to the or-

der (h − 1) differential functional ∂h−1

∂x
h1
1 ...∂x

hj−1

j ...∂xhnn
if hj > 0 or to the order 0 differential functional ∂0

x0
j

otherwise, where h =
n∑
i=1

hi.

Definition 3 ([DLZ11, Definition 1]). Let F ∈ C∞(Rn,Rk) such that F−1(0) is a finite set and let a ∈ Rn be a

solution of the system S = {F = 0}. Consider the ascending chain of dual spaces D0
a[F ] ⊆ D1

a[F ] ⊆ . . . Dh
a [F ] ⊆

. . . . If there exists an integer α such that Dα
a [F ] = Dα+1

a [F ], then the dimension of the vector space Dα
a [F ] is called

the multiplicity of a in the system S. If such an α does not exist, the multiplicity is, by convention, infinite.

For polynomial systems, the two definitions are equivalent [DLZ11, Theorem 2] and in addition the following

proposition shows that algebraic tools can be used in the smooth case.

Proposition 4 ([DLZ11, Corollary 3]). For an integer k > n, let F = (f1, . . . , fk) ∈ C∞(Rn,Rk) and let a ∈ Rn

be a solution of the system {F = 0}. Suppose that the multiplicity of a in {F = 0} is m < ∞ , then the intersection

multiplicity at a of the polynomial system {G = (g1, . . . , gk) = 0} is alsom, where gi is equal to the Taylor expansion

of fi at a up to degree at least m.

Singularities of plane curves, nodes and ordinary cusps.

Definition 5 ([AGZV12, §17.1]). For i ∈ {1, 2}, let Ci be a plane curve defined in a neighborhood Ui ⊂ R2 of pi

by the 0-set of a smooth function fi. The pairs (p1, C1) and (p2, C2) are equivalent, and thus define the same plane

curve singularity, if there exists a diffeomorphism ϕ from U1 to U2 such that f1 = f2 ◦ ϕ and ϕ(p1) = p2.

In particular, a singularity is of type Ak if the curve is locally defined at the origin by the 0-set of the function

x2 − yk+1. As important special cases, A1 is called a node singularity and A2 is called an ordinary cusp singularity,

see Figure 1.

Remark 6. It is worthy to notice that a curve C is an ordinary cusp at a point p if C can be locally parametrized with

(z2, z3) and p corresponds to the value z = 0. This remark is helpful to characterize ordinary cusps in Section 4.

4



p p

Figure 1: Left: At an A1 singularity, two branches of the curve intersect transversally. Right: At an A2k+1 singularity with k > 1,

the tangent lines of the two branches at the intersection point coincide.

2.2. Assumptions

Recall that we denote by JP be the Jacobian matrix of the function P in C∞(Rn,Rn−1). Consider the following

assumptions:

A1 For all q ∈ C, rank(JP (q)) = n− 1. In particular, C is a smooth curve.1

A2 The set L′c is discrete and does not intersect the boundary of B.

A3 For all points p = (α, β) ∈ πC(C), the pre-image of p under πC consists of at most two points in B counted

with multiplicities in the system {P (x) = 0 ∈ Rn−1, x1 − α = x2 − β = 0}.

A4 The set L′n is discrete and does not intersect the boundary of B.

A5 The singular points of πC(C) are only ordinary cusps or nodes (see Definition 5).

Remark 7. Regarding AssumptionA2, we will see in Lemma 18 that we can even assume that L′c is empty in the case

of a generic curve. However, we are interested in curves where L′c is discrete since the latter case appears in the more

specific case of generic silhouette curves (see Section 3.3).

Lemma 8. Let P = (P1 . . . , Pn−1) ∈ C∞(Rn,Rn−1) satisfy Assumption A1. Let q be in C such that the multiplicity

of the system S = {P (x) = 0 ∈ Rn−1, x1 − α = x2 − β = 0} at q is finite, where (α, β) = πC(q) ∈ R2. Then,

q ∈ L′c if and only if the multiplicity of the system S at q is at least two.

Proof. Without loss of generality assume that q = 0 ∈ Rn.

Sufficiency: Assume that q ∈ L′c. Let v = (v1, . . . , vn) be a non-trivial vector of the tangent line of C at q. Thus,

JP (q) · vT = 0. By the definition of L′c we have v1 = v2 = 0. Define the differential operator c =
n∑
i=3

vi
∂
∂xi

. Notice

that c ·Pj =
n∑
i=3

vi
∂Pj
∂xi

(q) = 0 for all integers 1 6 j 6 n− 1 (see [DLZ11, 2.1] for the definition of c ·Pj). Moreover,

by the definition of c and since v1 = v2 = 0, we have c · (x1) = c · (x2) = 0. Hence, c ∈ D1
q [S] \ D0

q [S]. Thus,

dim(D1
q) > 1. Hence, the multiplicity of S at q is at least two.

Necessity: Assume that the multiplicity of S at q is at least two, then D0
q [S] ( D1

q [S]. This implies that there

exists a non-trivial differential operator c =
n∑
i=1

ci
∂
∂xi
∈ D1

q [S] \D0
q [S] such that:

1Note that the converse is not true as the vertical (double) line defined by x21 = x2 = 0 in R3 is smooth but the rank of its Jacobian is never

full.
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(a) We have that c · Pj = 0 for all integers 1 6 j 6 n− 1 which implies that if we write vi = ci, with 1 6 i 6 n,

the non-trivial vector v is in the tangent space of C at q.

(b) We have that c · (x1) = c · (x2) = 0, equivalently, c1 = c2 = 0. Thus, v1 = v2 = 0.

The tangent line to the curve at q is thus orthogonal to the (x1, x2)-plane. Thus, q ∈ L′c.

3. Genericity of the assumptions

The key to prove the genericity of our assumptions is Thom’s Transversality Theorem. We thus first recall, in

Section 3.1, the basics of transversality theory using the notation of Demazure’s book [Dem00]. We then prove, in

Section 3.2, that all assumptions of Section 2 are satisfied for a generic curve. Finally, in Section 3.3, we consider

the special case where the curve is the silhouette of a surface and prove that Assumptions A1, A2, A4 are generically

satisfied in this case.

3.1. Preliminaries

We work with the set of smooth functions C∞(Rn,Rn−1) with the weak (or compact-open) topology [Dem00,

§3.9.2], that is convergence is understood as uniform on compact subsets and for any derivative. A subset ofC∞(Rn,Rn−1)

is called residual if it contains the intersection of a countable family of dense open subsets. The space C∞(Rn,Rn−1)

is a Baire space [Dem00, Proposition 3.9.3], that is, every residual subset of C∞(Rn,Rn−1) is dense. A property is

generic in C∞(Rn,Rn−1) if it is satisfied by a residual subset.

Definition 9 ([Dem00, §3.8.3]). Let E ' Rn and F be two finite-dimensional real vector spaces and let r > 0 be

an integer. Let P r(E,F ) be the vector space of polynomial functions of degree at most r from E to F . For an open

subset U of E (with respect to the usual topology on E), let Jr(U,F ) = U ×P r(E,F ) be the space of jets of order r

of functions from U to F . Notice that Jr(U,F ) can be identified with an open subset of RN for some positive integer

N . Let f : U → F be a smooth function, the jet of order r of f is the function

jrf : U ⊂ Rn → Jr(U,F ) ⊆ RN

x 7→
(
x, f(x),

∂f

∂x1
(x), . . . ,

∂f

∂xn
(x),

∂2f

∂x1∂x2
(x), . . . ,

∂rf

∂xrn
(x)

)
.

Let W be a sub-manifold of Jr(U,F ). We say that jrf is transverse to W if for all a ∈ U either jrf(a) 6∈ W or

every vector of RN can be written as a sum of a vector of Tjrf(a)W and a vector in the image of the function Tajrf ,

where Tjrf(a)W is the tangent space of W at jrf(a) and Tajrf is the derivative function of jrf at a.

Theorem 10 (Thom’s Transversality Theorem [Dem00, Theorem 3.9.4]). Let E and F be two finite-dimensional

vector spaces with U an open set in E. Let r > 0 be an integer and W be a sub-manifold of Jr(U,F ). Then, the set

of functions f ∈ C∞(U,F ) such that jrf is transverse to W is a dense residual subset of C∞(U,F ).

Proposition 11 ([Dem00, Corollary 3.7.3]). Let U be an open subset of Rn, N > 1 be an integer and W be a sub-

manifold of the vector space RN of pure co-dimension m. Assume that the smooth function g : U → RN is transverse

to W , then g−1(W ) is a (possibly empty) sub-manifold of dimension n−m.
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The idea of our proofs of genericity of our assumptions is to express each of them as a system of equations in

the jet space. When this system defines a manifold, Thom’s theorem applies directly to pull back the manifold from

the jet space to the ambient space of the curve and obtain the subset where the assumption is satisfied together with

its dimension according to Proposition 11. A difficulty occurs when the system does not define a manifold. The

following corollary overcomes this difficulty in the special case where the system is defined by analytic functions,

in other words the system defines an analytic variety. Such a variety does not need to be a manifold but, using the

Whitney stratification theorem [Whi65], the variety is written as a union of manifolds on which Thom’s theorem is

then applied.

Corollary 12. Let E and F be two finite-dimensional vector spaces with E of dimension n and U an open set in E.

Let r > 0 be an integer and W be an analytic variety of Jr(U,F ) with co-dimension larger than n, then for a generic

P ∈ C∞(U,F ), the pre-image of W under jrP is empty.

Proof. Let W =
m⋃
i=1

Wi be a Whitney stratification of W , where the Wi’s are sub-manifolds. Since codim(W ) > n,

we have that codim(Wi) > n for any integer 1 6 i 6 m. Let Γi = {P ∈ C∞(U,F ) | jrP is transverse to Wi} and

Γ =
m⋂
i=1

Γi. By Theorem 10, Γi is residual and so is Γ. Moreover, by Proposition 11, for P ∈ Γi the pre-image of Wi

under jrP is empty. Hence, (jrP )−1(W ) =
m⋃
i=1

(jrP )−1(Wi) = ∅.

We will also need a refined version of Thom’s theorem in a multijet setting, that is for several points in the

source space simultaneously. We give the formal definitions of the multijet space and function but we do not restate

Theorem 10, Proposition 11 and Corollary 12 that also hold for multijets.

Definition 13 ([Dem00, §3.9.6]). Let U be an open subset of Rn and k > 1 be an integer. We denote ∆(k)(U) the

subset of Uk consisting of sequences (a1, . . . , ak) of pairwise distinct points of U . For an integer r > 0 and a finite

dimensional space F , the k-multijet space of order r, Jr(k)(U,F ), is the subset of Jr(U,F )k = (U × P r(E,F ))k

consisting of the k-tuples ((a1, p1), . . . , (ak, pk)), with (a1, . . . , ak) ∈ ∆(k)(U). Let f : U → F be a smooth function,

the k-multijet of order r of f is the function

jr(k)f : ∆(k)(U)→ Jr(k)(U,F )

(a1, . . . , ak) 7→ (jrf(a1), . . . , jrf(ak)).

Finally, we gather several technical tools from algebra and analysis.

Proposition 14 ([BV88, Proposition 1.A.1.1]). Let M(m,n) be the vector space of real matrices of size m× n and r

be a positive integer such that r < min{n,m}. The determinantal variety, Mr, is the set of matrices in M(m,n) that

have rank less than r + 1. Then, the following statements hold:

(a) Mr is an irreducible variety in M(m,n).

(b) Mr is of dimension r(n+m− r).

(c) The singular locus of Mr is Mr−1.
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Lemma 15 ([Bôc64, §XIV.61 Theorem 1]). Let n > 2 be an integer, {xij}16j,i6n be a set of n2 variables and

C[xij ]16j,i6n be the ring of complex polynomials with the variables {xij}. Then, the determinant of the matrix

(xij)16i,j6n is an irreducible polynomial in C[xij ]16j,i6n.

Theorem 16 ([Whi43, Theorem 1 & 2]). Let f be an even (resp. odd) smooth function, then there exists a smooth

function g such that f(x) = g(x2) (resp. f(x) = x · g(x2)).

3.2. Genericity of the assumptions for a curve in Rn

We are going to prove that each assumption in Section 2 is generic. Hence, the combination of these assumptions

is also generic since a countable intersection of residual subsets in C∞(Rn,Rn−1) is residual.

Lemma 17. Assumption A1 is generic.

Proof. Consider the jet of order 1 of the function P ∈ C∞(Rn,Rn−1):

j1P : Rn → J1(Rn,Rn−1) = Rn × Rn−1 × R(n−1)×n

x 7→ (x, P (x), JP (x)) = (x, y, z).

We represent the jet space by the variables x ∈ Rn, y ∈ Rn−1 and z ∈ R(n−1)×n. With abuse of notation, we can

see the variable z as a (n − 1) × n-matrix. Define the variety W = {(x, y, z) ∈ Rn × Rn−1 × R(n−1)×n | y =

0, rank(z) 6 n − 2}. The variety W is a product of a determinantal variety in R(n−1)×n of dimension n2 − n − 2

(by Proposition 14) and a linear space of dimension n in Rn × Rn−1. Thus, W is a variety of co-dimension n+ 1 in

Rn × Rn−1 × R(n−1)×n. Hence, by Corollary 12, there exists a residual subset Γ1 ⊂ C∞(Rn,Rn−1), such that for

P ∈ Γ1 the pre-image of W under j1P is empty. Consequently, for a generic P ∈ C∞(Rn,Rn−1) and any q ∈ C, we

have that q /∈ (j1P )−1(W ) = ∅, thus rank(JP (q)) = n− 1, which is Assumption A1.

Lemma 18. Assumption A2 is generic. Moreover, generically, the set L′c is empty.

Proof. We consider the jet of order 1 of the function P ∈ C∞(Rn,Rn−1) as is the proof of Lemma 17 with the same

notation. Define the matrix T1(z) (resp. T2(z)) to be the sub-matrix of z obtained by removing the first (resp. second)

column. Consider the variety W ⊂ J1(Rn,Rn−1) defined by {y = 0 ∈ Rn−1,det(T1(z)) = det(T2(z)) = 0}.

Notice that L′c is included in the pre-image of W under j1P since L′c is the set of points of the curve C that are

both x1 and x2-critical. By Lemma 15, we have that both det(T1(z)) and det(T2(z)) are irreducible polynomials.

By [CLO92, §9.4 Prop 10], a proper sub-variety of an irreducible variety is of lower dimension, we deduce that the

common zero locus of det(T1(z)) and det(T2(z)) is of co-dimension at least two. We deduce that codim(W ) > n.

By Corollary 12, there exists a residual subset Γ2 ⊂ C∞(Rn,Rn−1), such that for P ∈ Γ2 ∩ Γ1, the pre-image of W

under j1P is empty and hence L′c is empty, which implies Assumption A2.

Lemma 19. Assumption A3 is generic.

8



Proof. Let us consider the 3-multijet of order 0:

j0
(3)P : ∆(3)(Rn)→ J0

(3)(R
n,Rn−1) = (Rn × Rn−1)3

(x, x′, x′′) 7→ ((x, P (x)), (x′, P (x′)), (x′′, P (x′′))) = ((x, y), (x′, y′), (x′′, y′′))

where every element in the jet space J0
(3)(R

n,Rn−1) is of the form ((x, y), (x′, y′), (x′′, y′′)),where x = (x1, . . . , xn),

x′, x′′ ∈ Rn and y, y′, y′′ ∈ Rn−1. Consider the linear sub-manifold W = {x1 = x′1 = x′′1 , x2 = x′2 = x′′2 , y =

y′ = y′′ = 0}, the co-dimension of W is thus 3n+ 1 which is larger than the dimension of the source space ∆(3)(Rn)

which is 3n. Thus, by Corollary 12, there exists a residual subset Γ3 ⊂ C∞(Rn,Rn−1), such that for P ∈ Γ3, the

pre-image of W by j0
(3) is empty, which translates to the fact that there are no pairwise distinct points q, q′, q′′ in C

such that πC(q) = πC(q′) = πC(q′′). This is also equivalent to say that the system S = {P (x) = 0 ∈ Rn−1, x1−α =

x2 − β = 0} has at most two distinct solutions (without counting multiplicities) for any (α, β) ∈ R2.

Using Γ1,Γ2 as defined in the proofs of Lemmas 17 & 18 and Γ3 defined above, we define Γ4 = Γ1 ∩ Γ2 ∩ Γ3

which is thus a residual set and let P be in Γ4. Since P is in Γ3, the system S has at most two distinct solutions. In

addition, since P is in Γ2 ∩ Γ1, one has that L′c is empty and finally together with Lemma 8, since P is in Γ1, this

implies that these solutions have multiplicity exactly 1 is S. For P in the residual set Γ4, the number of solutions

counted with multiplicities of S is thus at most 2, which is Assumption A3.

Lemma 20. Assumption A4 is generic.

Proof. Let us consider the 2-multijet of order 0 of P :

j0
(2)P : ∆(2)(Rn)→ J0

(2)(R
n,Rn−1) = (Rn × Rn−1)2

(x, x′) 7→ ((x, P (x)), (x′, P (x′))) = ((x, y), (x′, y′))

where every element in the jet space J0
(2)(R

n,Rn−1) is of the form ((x, y), (x′, y′)),where x = (x1, . . . , xn), x′ ∈ Rn

and y, y′ ∈ Rn−1. Consider the linear sub-manifold W = {x1 = x′1, x2 = x′2, y = y′ = 0} of the jet space

J0
(2)(R

n,Rn−1). Notice that, (j0
(2)P )−1(W ) contains the set L̂′n = {(q1, q2) ∈ ∆(2)(Rn)∩C×C | πC(q1) = πC(q2)}

and L′n is the image of L̂′n by the projection (q1, q2)→ q1. We have dim(∆(2)(Rn)) = 2n and, since W is linear, its

co-dimension is easily computed codim(W ) = 2(2n − 1) − (2 + 2(n − 1)) = 2n. Proposition 11 thus yields that

generically (j0
(2)P )−1(W ) is a sub-manifold of dimension zero that is a discrete set in Rn, and so is L′n.

Now, we prove that, generically, L′n does not intersect the boundary of B. The boundary ∂B of the box B is

included in the union of the supporting hyperplanes Hi of its 2n faces of dimension n − 1, that is ∂B = ∪i=2n

i=1 Hi.

Define the linear sub-manifold Wi = {((x, y), (x′, y′)) ∈ W |x ∈ Hi or x′ ∈ Hi}, notice that this adds one equation

to W and thus increases the co-dimension of W by one, thus codim(Wi) = 2n + 1. By Corollary 12, we have that

generically, the pre-image of Wi under j0
(2)P is empty, which translates to the fact that there is no point of L′n on

∂B ∩Hi. This is also true for any i and thus, generically, L′n does not intersect the boundary of B.

For the genericity of AssumptionA5, we first study the singularity types that occur on the plane curve πC(C) under

Assumptions A1, A2, A3 and A4.
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Lemma 21. Under Assumptions A1, A2, A3 and A4, let q ∈ C and p = πC(q). If q 6∈ Lc ∪ Ln, then p is a smooth

point of the plane curve πC(C).

Proof. Since q 6∈ Lc, the plane projection of TqC is a line, or equivalently, the derivative TqπC of πC at q is injective.

Thus, πC is an immersion at q ([Dem00, Definition 2.9.3]). Hence, for a small enough neighbourhood U0 of q in Rn,

we have that πC restricted to V = U0 ∩ C is embedding (see [Dem00, Proposition 2.9.6]). We are going to prove that,

assuming that U0 is small enough, the curve πC(C) has exactly one branch around πC(q) which implies that πC(C) is

smooth at πC(q) since C is smooth at q by Assumption A1.

To prove this claim, assume that there exists an open subset U ′0 in Rn such that the set V ′ = U ′0 ∩ C and V are

disjoint, but πC(q) is in the closure of πC(V ′). Let qk be a sequence of points in V ′ such that πC(qk) converges

to πC(q). Since B is compact, there exists a convergent sub-sequence of qk that has a limit q′ in B. Notice that

πC(q′) = πC(q) by the continuity of πC. Hence, q, q′ are both in L′n. However, since q 6∈ Ln, we must have that

q′ 6∈ B. Hence, q′ is in the boundary of B which contradicts Assumption A4. Hence, the curve πC(C) has exactly one

smooth branch around πC(q) which concludes the proof.

Lemma 22. Under Assumptions A1, A2, A3 and A4, if q ∈ Ln, then πC(q) is a singular point of the plane curve

πC(C). More precisely, either πC(q) is of type A−2k+1 with k > 0, or there exists a non-null smooth function g

defined in a neighbourhood of 0 ∈ R with ord(g) =∞ such that (πC(C), πC(q)) is equivalent to the curve defined by

x2 − g(y2) = 0 at the origin.

Proof. Let p = πC(q) such that π−1
C (p) = {q, q′} and denote C the plane curve πC(C). Without loss of generality, one

can assume that p = (0, 0). By Assumptions A2 and A4, there exists a neighbourhood N ⊆ C of p such that π−1
C (N)

is a union of two smooth (Assumption A1) open subsets of C such that q is on one branch and q′ on the other, and

πC restricted to π−1
C (N) \ {p, q′} is an embedding. The projection of these two smooth branches are thus two smooth

curves in the plane. Let these two smooth plane branches be defined by the zero sets of the smooth functions f1 and

f2 in C∞(R2,R). Let u (resp. u′) be a non-zero tangent vector of C at q (resp. q′) and v (resp. v′) be its projection in

R2. We distinguish two cases:

(a) The vectors v and v′ are independent in R2. Thus, v and v′ give rise to a local coordinate system (x, y) in a

neighbourhood of p in R2. The vector v being tangent to the zero set of f1, one has ∂f1
∂x (p) = 0 and ∂f1

∂y (p) 6= 0.

By the implicit function theorem [Dem00, Corollary 2.7.3.], we deduce that there exists a real smooth function

h1 such that y = x2 · h1(x) is a local parametrization of the zero set of f1. Similarly, there exists a smooth

function h2 such that x = y2 · h2(y) is a local parametrization of the zero set of f2. Thus (x, y) ∈ N iff

f(x, y) = f1(x, y)f2(x, y) = 0 iff (y−x2 ·h1(x))(x− y2 ·h2(y)) = 0, equivalently, [y−x−x2 ·h1(x) + y2 ·

h2(y)]2− [y+x−x2 ·h1(x)−y2 ·h2(y)]2 = 0. The change of coordinates X = y−x+x2 ·h1(x)+y2 ·h2(y)

and Y = y + x+ x2 · h1(x)− y2 · h2(y) is a diffeomorphism since indeed det(Jx,y(X,Y ))p 6= 0). Then, the

local equation of the curve C at p is of the form X2 − Y 2 with these new coordinates, which means that p is a

A−1 or node singularity.

10



(b) The vectors v and v′ are co-linear. Then, choose v′′ ∈ TpR2 linearly independent from v, the vectors v, v′′

give rise to a coordinate system (x, y) at p. In this coordinate system, we thus have ∂f1
∂x (p) = ∂f2

∂x (p) = 0,
∂f1
∂y (p) 6= 0 and ∂f2

∂y (p) 6= 0. By the implicit function theorem, there exist smooth functions h1 and h2 such

that locally f(x, y) = 0 if and only if (y − x2 · h1(x))(y − x2 · h2(x)) = 0. The last equality is equivalent to

(2y− x2(h1(x) + h2(x)))2 − x4(h1(x)− h2(x))2 = 0. AssumptionA4 ensures that the projections of the two

branches have only one common point, such that h1(x)− h2(x) does not vanish identically. We recognize two

cases:

(i) ord(h1(x)−h2(x)) = k 6∞, then h1(x)−h2(x) = xk ·u with u(p) 6= 0 and without loss of generality,

assume that u(p) > 0. The change of coordinates X = 2y − x2(h1(x) + h2(x)) and Y = x · u
1

2+k is a

diffeomorphism (notice that indeed u
1

2+k is a smooth function around p). Then, the local equation of the

curveC at p is of the formX2−Y (2k+3)+1 with these new coordinates, which means that p is a singularity

of type A−2k+3.

(ii) ord(h1(x) − h2(x)) = ∞. Since the function x4(h1(x) − h2(x))2 is even, by Theorem 16, there exists

a smooth function g such that x4(h1(x) − h2(x))2 = g(x2). Thus, taking the diffeomorphism X =

2y − x2(h1(x) + h2(x)) and Y = x, we get the second case of the claim.

The next definition and lemma are technical tools for proving the genericity of Assumption A5.

Definition 23. Consider P = (P1, . . . , Pn−1) ∈ C∞(Rn,Rn−1) satisfying Assumption A1 and recall that we denote

by JP (q) the Jacobian matrix of P at the point q. We define the (n − 1) × (n − 2) sub-matrix MP (q) obtained by

removing the first two columns of JP (q) and the (n − 1) × 2 sub-matrix NP (q) formed by the first two columns of

JP (q). Let q1, q2 ∈ C, we define the square matrix of size 2n−2,M(q1, q2) =

NP (q1) 0 MP (q1)

NP (q2) MP (q2) 0

.

Lemma 24. Using the same assumption and notation as in Definition 23, let q1 and q2 be distinct points of C with

πC(q1) = πC(q2), then M(q1, q2) is invertible if and only if none of q1 or q2 is in Lc and the plane projections of the

tangent lines of C at q1 and q2 do not coincide.

Proof. We prove the converse statement using

det(M(q1, q2)) = 0 ⇐⇒ There exist α ∈ R2 and β, γ ∈ Rn−2 such that the vector

x = (α, β, γ) is not trivial and that M(q1, q2) · xT = 0.

⇐⇒ (α, β) and (α, γ) are in the tangent lines Tq1C and Tq2C respectively

and at least one of them is not trivial.
The last statement can be split in two cases:

• α is not trivial which is equivalent to say that the plane projections of Tq1C and Tq2C are both generated by α

and coincide.
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• α = (0, 0) which is equivalent to β or γ is not trivial, which is equivalent to Tq2C or Tq1C projects to a point in

the plane, which is equivalent to q1 or q2 is in Lc.

Corollary 25. Assumption A5 is generic.

Proof. Let B be an open n-box. Recall that generically L′c (and hence Lc) is empty (Lemma 18). Hence, it is enough

to prove that for a generic P ∈ C∞(Rn,Rn−1), the singular points of πC(C) are only nodes (recall that by Lemma

21, under the generic assumptions A1, A2,A3 and A4, the points in C \ (Lc ∪ Ln) project to smooth points).

Let Γ0 be the set of P ∈ C∞(Rn,Rn−1) such that P satisfies Assumptions A1, A2, A3 and A4. The previous

lemmas of this section show that Γ0 is residual in C∞(Rn,Rn−1). Let us consider the 2-multijet of order 1 of P :

j1
(2)P : ∆(2)(Rn)→ J1

(2)(R
n,Rn−1) ⊆ (Rn × Rn−1 × R(n−1)×n)2

(x, x′) 7→ ((x, P (x), JP (x)), (x′, P (x′), JP (x′))) = ((x, y, z), (x′, y′, z′))

Let s, s′ (resp. r, r′) be the sub-matrices of z, z′ respectively obtained by removing the first two columns (resp.

obtained by the first two columns). Define the matrix M =

 r 0 s

r′ s′ 0

 and the variety

W = {((x, y, z), (x′, y′, z′)) ∈ (Rn × Rn−1 × R(n−1)×n)2 | y = y′ = 0, x1 = x′1, x2 = x′2,det(M) = 0}.

The variety W is a product of a determinantal variety and a linear space, thus its co-dimension is codim(W ) >

2n + 1 > 2n = dim(∆(2)(Rn)). Hence, by Corollary 12, there exists a residual subset Γ′0 in C∞(Rn,Rn−1) such

that for all P ∈ Γ′0, the pre-image of W under j1
(2)P is empty.

Let then P be in the residual set Γ0 ∩ Γ′0. By Lemma 24 and since Lc is empty, we deduce that for distinct

q1, q2 ∈ C with πC(q1) = πC(q2), the plane projections of the lines Tq1C and Tq2C intersect transversely if and only

if j1
(2)((q1, q2)) 6∈ W . Finally, by Lemma 22 (Step (a) of the proof), we deduce that πC(q1) = πC(q2) is a node in

πC(C).

3.3. Genericity of the assumptions for the silhouette of a surface in Rn

In this section, we focus on the special case of silhouette curves of surfaces in Rn. For an open n-box B and P̃

in C∞(Rn,Rn−2) such that S = P̃−1(0) is a smooth 2-sub-manifold in Rn, the silhouette of P̃ is the set of points

q of this surface S such that the projection (with respect to a fixed direction) of the tangent plane TqS to R2 is not

surjective. We prove that Assumptions A1, A2 & A4 are satisfied for a generic silhouette, and we only conjecture

that AssumptionsA3 &A5 also hold generically. We start by formalizing algebraically the definition of the silhouette

curve.

Definition 26. For an integer n > 3, let P̃ = (P1, . . . , Pn−2) ∈ C∞(Rn,Rn−2). Define the smooth function

Pn−1 = det

((
∂Pi
∂xj

)
16i6n−2

36j6n

)
and P = (P1, . . . , Pn−1). We define the curve C (and C) as in Section 2 and call it

the silhouette of P̃ .
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Proposition 27. For a generic P̃ ∈ C∞(Rn,Rn−2), the function P satisfies Assumption A1.

Proof. Consider the jet of order 1 of P̃ :

j1P̃ : Rn → J1(Rn,Rn−2) = Rn × Rn−2 × R(n−2)×n ' Rn
2−2 = RN

x 7→ (x, P̃ (x), JP̃ (x)) = (x, y, z).

We represent the jet space by the vectors x ∈ Rn, y ∈ Rn−2 and the ((n − 2) × n)-matrix z ∈ R(n−2)×n. Let T (z)

denote the sub-matrix obtained by removing the first two columns of z. Define the variety W = {y = 0,det(T (z)) =

0} = {y = 0, rank(T (z)) 6 n− 3} in RN . According to Proposition 14, W = Reg(W )∪Sing(W ) where Reg(W )

(resp. Sing(W )) is the set of smooth (resp. singular) points in W and

Reg(W ) = {(x, y, z) ∈ RN | y = 0, rank(T (z)) = n− 3}

Sing(W ) = {(x, y, z) ∈ RN | y = 0, rank(T (z)) < n− 3}.

In addition, Proposition 14 yields that Reg(W ) is a manifold of co-dimension n − 1 and Sing(W ) is a variety of

co-dimension n+ 2. Since the co-dimension of Sing(W ) is larger than that of the source space, Corollary 12 implies

that, generically, (j1P̃ )−1(Sing(W )) = ∅. One thus have (j1P̃ )−1(W ) = (j1P̃ )−1(Reg(W )).

Consider the function

ϕ : Rn × Rn−2 × R(n−2)×n → Rn−2 × R

χ = (x, y, z) 7→ (y,det(T (z))),

such that ϕ−1(0) = W . Its Jacobian matrix is Jϕ =

0(n−2)×n I(n−2)×(n−2) 0(n−2)×(n−2)n

01×(n) 01×(n−2) v(z)

, where 0k1×k2

(resp. Ik1×k2 ) is the zero (resp. identity) matrix of size k1 × k2 and the vector v(z) is the adjugate matrix of T (z)

written as the concatenation of its lines: v(z) = (Adjij(T (z)))16i6n−2
36j6n

∈ R(n−2)2 . Let χ = (x, y, z) ∈ Reg(W ),

then rank(T (z)) = n − 3, thus there exists a pair (i, j) such that Adjij(T (z)) 6= 0. Hence, the vector v(z) is

non-trivial and Jϕ(χ) has full rank n− 1. The function ϕ is thus a submersion on Reg(W ).

Theorem 10 yields that, generically, j1P̃ is transverse to the manifold Reg(W ). Together with the fact that

ϕ is a submersion on Reg(W ), [GG73, Lemma II.4.3 (p.52)] implies that P = ϕ ◦ j1P̃ is a submersion on

(j1P̃ )−1(Reg(W )) = (j1P̃ )−1(W ) = (j1P̃ )−1(ϕ−1(0)) = (ϕ ◦ j1P̃ )−1(0) = P−1(0) = C. In other words,

JP has full rank n− 1 on C, which is Assumption A1.

Proposition 28. For a generic P̃ ∈ C∞(Rn,Rn−2), the function P satisfies Assumption A2.

Proof. First we prove that, generically, L′c is discrete. For any P̃ ∈ C∞(Rn,Rn−2) consider j2P̃ : Rn → J2(Rn,Rn−2) ⊂

Rn×Rn−2×R(n−2)×n×Rn2(n−2) = RN . Assume that every element in RN is represented as (x, y, z, h),where x ∈

Rn, y ∈ Rn−2, z ∈ R(n−2)×n and h ∈ Rn2(n−2). With abuse of notation we can consider z as a ((n−2)×n)-matrix.

Let T (z) denote the matrix obtained by removing the first two columns of z. The Jacobian matrix JP is a function of
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the derivatives (∂Pi∂xj
, ∂2Pl
∂xk∂xs

) 16i,l6n−2
16j,k,s6n

, it can thus be seen in the jet space as a function of z and h, JP (z, h). Define

the matrix T1(z, h) (resp. T2(z, h)) to be the sub-matrix of JP (z, h) obtained by removing the first (resp. second)

column. Define the variety W = {(x, y, z, h) | y = 0 ∈ Rn−2,det(T (z)) = det(T1(z, h)) = det(T2(z, h)) = 0}, so

that L′c is included in the pre-image of W under j2P̃ . Let W1 = {(x, y, z, h) | y = 0 ∈ Rn−2,det(T (z)) = 0}, we

already showed in the proof of Proposition 27 that W1 is an irreducible variety of co-dimension n − 1. In addition,

det(T1(z, h)) does not identically vanish on W1, thus W is a proper sub-variety of the irreducible variety W1 and

[CLO92, §9.4 Prop 10] implies that codim(W ) > codim(W1) = n− 1.

Now, writeW = Reg(W )∪Sing(W ), whereReg(W ) (resp. Sing(W)) is the set of smooth (resp. singular) points

in W. Recall that codim(Sing(W )) > n since Sing(W ) is a proper closed sub-variety of W [BCR98, Proposition

3.3.14]. By Corollary 12, there exists a residual set Γ′ ⊂ C∞(Rn,Rn−2) such that if P̃ ∈ Γ′, then the pre-image of

Sing(W ) under j2P̃ is empty. Define Γ = {P̃ ∈ C∞(Rn,Rn−2) | j2P̃ is transverse to Reg(W )}∩Γ′. Notice that if

P̃ ∈ Γ, then L′c is included in the pre-image of Reg(W ) under j2P̃ . Hence, since codim(Reg(W )) = codim(W ) >

n, we have by Proposition 11 that L′c is a sub-manifold of dimension, at most, zero. Thus, L′c is discrete for all P̃ ∈ Γ.

Using Theorem 10 we deduce that Γ is residual.

The proof that L′c does not intersect the boundary of B can be done analogously as in the proof of Lemma 20.

Proposition 29. For a generic P̃ ∈ C∞(Rn,Rn−2), the function P satisfies Assumption A4.

Proof. Consider the 2-multijet j1
(2)P̃ : ∆(2)(Rn) → J1

(2)(R
n,Rn−2) = (Rn × Rn−2 × R(n−2)×n)2 of the function

P̃ ∈ C∞(Rn,Rn−2), where (Rn×R(n−2)×n×R(n−2)×n)2 is described by the coordinates x, x′ ∈ Rn, y, y′ ∈ Rn−2

and z, z′ ∈ R(n−2)×n. With abuse of notation we can consider z and z′ as ((n − 2) × n)- matrices. Let T (z) (resp.

T (z′)) denote the matrix obtained by removing the first two columns of z (resp. z′). Define the variety W to be

the solution set of the system {y = y′ = 0, x1 − x′1 = x2 − x′2 = det(T (z)) = det(T (z′)) = 0}. Denote by

Reg(W ) the regular part of W . By Proposition 14 (a) we deduce that W is of co-dimension 2n. Using the same

argument in the proof of Proposition 27, we deduce that there exists a residual set Γ ⊂ C∞(Rn,Rn−2) such that if

P̃ ∈ Γ, then the image of ∆2(Rn) under j1
(2)P̃ is contained in Reg(W ). Moreover, by Proposition 11, we have that

MP = (j1
(2)P̃ )−1(Reg(W )) = (j1

(2)P̃ )−1(W ) is a sub-manifold of dimension zero in ∆2(Rn). Notice that L′n is the

image of MP under the projection (x, x′) → x. Since MP is of dimension zero, then so is L′n. Thus we have just

proven that, if P̃ ∈ Γ, then L′n is a sub-manifold of dimension zero. Hence, L′n is discrete.

The proof that L′n does not intersect the boundary of B can be done analogously as in the proof of Lemma 20.

Assumption A3 can be rephrased by the three following assumptions:

A3(a) There are no pairwise distinct q, q′, q′′ ∈ C such that πC(q) = πC(q′) = πC(q′′).

A3(b) L′c ∩ L′n = ∅.

A3(c) For q ∈ L′c, the multiplicity of the system {P (x) = 0 ∈ Rn−1, (x1, x2) = πC(q)} at q is exactly two.

Using this rephrasing, we next show that AssumptionsA3(a) &A3(b) generically hold and we leave AssumptionA3(c)

as a conjecture.
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Proposition 30. For a generic function P̃ ∈ C∞(Rn,Rn−2), Assumption A3(a) holds.

Proof. Consider the 3-multijet j1
(3)P̃ : ∆(3)(Rn) → J1

(3)(R
n,Rn−2) = (Rn × Rn−2 × R(n−2)×n)3. Assume that

every element in (Rn × Rn−2 × R(n−2)n)3 is of the form ((x, y, z), (x′, y′, z′), (x′′, y′′, z′′)), where x, x′, x′′ ∈ Rn,

y, y′, y′′ ∈ Rn−2 and z, z′, z′′ ∈ R(n−2)×n. With abuse of notation we can consider z, z′ and z′′ as ((n − 2) ×

n)-matrices. Let T (z), T (z′), T (z′′) denote the matrices obtained by removing the first two columns of z, z′, z′′

respectively. Consider the variety W defined by the equations: {x1 = x′1 = x′′1 , x2 = x′2 = x′′2 , y = y′ = y′′ = 0 ∈

Rn−2,det(T (z)) = det(T (z′)) = det(T (z′′)) = 0}.

Notice that dim(∆(3)(Rn)) = 3n < 3n+ 1 = codim(W ). Hence, by Corollary 12, we have that, generically, the

pre-image ofW under j1
(3)P̃ is empty. Hence, there are no pairwise different q, q′, q′′ ∈ C such that πC(q) = πC(q′) =

πC(q′′).

Proposition 31. For a generic function P̃ ∈ C∞(Rn,Rn−2), Assumption A3(b) holds.

Proof. Consider the 2-multijet j2
(2)P̃ : ∆(2)(Rn) → J2

(2)(R
n,Rn−2) = (Rn × Rn−2 × R(n−2)×n × Rn2(n−2))2 of

the function P̃ ∈ C∞(Rn,Rn−2), where (Rn ×R(n−2)×n ×R(n−2)×n ×Rn2(n−2))2 is described by the coordinates

x, x′ ∈ Rn, y, y′ ∈ Rn−2, z, z′ ∈ R(n−2)×n and h, h′ ∈ Rn2(n−2). With abuse of notation we can consider z

and z′ as ((n − 2) × n)- matrices. Let T (z) (resp. T (z′)) denote the matrix obtained by removing the first two

columns of z (resp. z′). Define the matrices T1(z, h), T2(z, h) as in the proof of Lemma 28 and the variety W to

be the solution set of the system {y = y′ = 0 ∈ Rn−2, x1 − x′1 = x2 − x′2 = det(T (z)) = det(T (z′) = 0,

det(T1(z, h)) = det(T2(z, h)) = 0}.

Define varieties W ′ = {(x, y, z, h) | y = y′ = 0, det(T (z)) = det(T (z′)) = 0, x1 = x′1, x2 = x′2} and

W ′′ = {(x, y, z, h) | y = y′ = 0,det(T1(z, h)) = det(T2(z, h)) = 0}. Notice that W = W ′ ∩W ′′. Moreover,

we can find a smooth silhouette curve C that is not an orthogonal line to (x1, x2)-plane and that contains two distinct

points q, q′, with πC(q) = πC(q′) such that the projection of TqC (resp. Tq′C) onto R2 is injective. Notice that

j2
(2)P̃ (q, q′) ∈ W ′ \W ′′. Hence, W ′ 6⊆ W ′′. Moreover, since W ′ is the Cartesian product of determinant varieties

(which are irreducible by Proposition 14(a)) with linear spaces, we have that W ′ is also irreducible [BCR98, Theorem

2.8.3 (iii)]. In other words, W = W ′ ∩W ′′ is a proper sub-variety of the irreducible variety W ′. Hence, dim(W ) =

dim(W ′ ∩W ′′) < dim(W ′), equivalently, codim(W ) > codim(W ′) = 2n. Hence, by Corollary 12 we have that,

generically, the pre-image of W under j2
(2)P̃ is empty. Since, by Proposition 27, Assumption A1 (which is necessary

to guarantee that L′c is well-defined) is also generic, we imply that, generically, there is no distinct pair q, q′ ∈ C such

that πC(q) = πC(q′) and q ∈ L′c, equivalently, L′c ∩ L′n = ∅ which proves the proposition.

Conjecture 32. For a generic function P̃ ∈ C∞(Rn,Rn−2), Assumption A3(c) holds.

Conjecture 33. For a generic function P̃ ∈ C∞(Rn,Rn−2), Assumption A5 holds.
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4. Modelling System

Our goal in this section is to encode the singularities of πC(C) by a square and regular (see Definition 50) system so

that it is solvable with certified numerical methods. In Section 4.1, we first define this system Ball(P ). In Section 4.2,

we then locally parametrize the curve around the points in Lc to simplify the computation of Ball(P ) and its Jacobian.

In Section 4.3, we determine the necessary and sufficient conditions for this system to be regular.

4.1. Encoding the singular points of the plane projection

Definition 34. Let y, r be two variables in Rn−2 and t be a variable in R. For a smooth function f : B ⊂ Rn → R,

we define the functions:

S · f(x1, x2, y, r, t) =

 1
2
[f(x1, x2, y + r

√
t) + f(x1, x2, y − r

√
t)], for t > 0

f(x1, x2, y), for t = 0

and

D · f(x1, x2, y, r, t) =


1

2
√
t
[f(x1, x2, y + r

√
t)− f(x1, x2, y − r

√
t)], for t > 0

∇f(x1, x2, y) · (0, 0, r) =
n∑
3

∂f
∂xi

ri, for t = 0.

Lemma 35. If f is a smooth function defined onB ⊆ Rn, then both S ·f andD ·f are smooth functions on the subset

BBall = {(x1, x2, y, r, t) ∈ R× R× Rn−2 × Rn−2 × R | t > 0, (x1, x2, y ± r
√
t) ∈ B, ‖r‖2 = 1}

of R2n−1, where ‖r‖ denotes the Euclidean norm of r.

Proof. On the subset BBall with t > 0, both S · f(x1, x2, y, r, t) and D · f(x1, x2, y, r, t) are the compositions of

smooth functions, hence they are smooth functions.

For a point X = (x1, x2, y, r, t) in BBall with t = 0, we will prove that S · f (resp. D · f ) is a Cs function for an

arbitrarily s which implies that S · f (resp. D · f ) is smooth. First define the function

S0 · f(x1, x2, y, r, t) =

 1
2 [f(x1, x2, y + rt) + f(x1, x2, y − rt)], for t > 0

f(x1, x2, y), for t = 0.

Since S0 · f(x1, x2, y, r, t) is an even smooth function with respect to t, the partial derivatives of S0 · f with respect

to t of odd orders, evaluated at X , are zero. For an integer s > 0, by the parametrized Taylor formula without

remainder [Dem00, Proposition 4.2.2], there exist smooth functions ai(x1, x2, y, r), with integers 0 6 i < s such that

S0 · f(x1, x2, y, r, t) =
s−1∑
i=0

ai(x1, x2, y, r)t
2i + t2s ·φ(x1, x2, y, t), where φ(x1, x2, y, t) is a smooth function. Notice

that S · f(x1, x2, y, r, t) =
s−1∑
i=0

ai(x1, x2, y, r)t
i + ts · φ(x1, x2, y,

√
t), so that a partial derivative exists up to order s

at t = 0. Thus, S ·f(x1, x2, y, r, t) is a Cs−1 function. This holds for any arbitrarily large s, hence S ·f(x1, x2, y, r, t)

is a C∞ function.

Now, we prove that D · f is continuous at X = (x1, x2, y, r, 0). Let Xi be a sequence that converges to X . To

prove that D · f(Xi) converges to D · f(X), it is enough to show that for a sequence ti that converges to 0, then we
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have that D · f(x1, x2, y, r, tn) converges to D · f(X). We can assume that ti 6= 0 for all i, so that

lim
ti→0

D · f(x1, x2, y, r, ti) = lim
ti→0

1

2
√
ti

[f(x1, x2, y + r
√
ti)− f(x1, x2, y − r

√
ti)]

= lim
ti→0

1

2
√
ti

[f(x1, x2, y + r
√
ti)− (f(x1, x2, y)− f(x1, x2, y))− f(x1, x2, y − r

√
ti)]

= lim
ti→0

1

2
√
ti

[f(x1, x2, y + r
√
ti)− f(x1, x2, y)]

+ lim
ti→0

1

2
√
ti

[f(x1, x2, y)− f(x1, x2, y − r
√
ti)]

=
1

2
∇f · (0, 0, r)− 1

2
∇f · (0, 0,−r)

= ∇f · (0, 0, r).

We now prove that D · f is smooth at X . Similarly to the proof of the case of S · f , since the function 1
2 [f(x1, x2, y+

rt) − f(x1, x2, y − rt)] is odd with respect to t, there exist smooth functions bi(x1, x2, y, r), for 1 6 i < s and

ψ(x1, x2, y, r, t) such that 1
2 [f(x1, x2, y+rt)−f(x1, x2, y−rt)] =

s−1∑
i=0

bi(x1, x2, y, r)t
2i+1 + t2s+1 ·ψ(x1, x2, y, t).

Notice that D · f(x1, x2, y, r, t) =
s−1∑
i=0

bi(x1, x2, y, r)t
i + ts · ψ(x1, x2, y,

√
t), so that a partial derivative exists up

to order s at t = 0. Thus, D · f(x1, x2, y, r, t) is a Cs−1 function. This holds for any arbitrarily large s, hence

D · f(x1, x2, y, r, t) is a C∞ function.

Theorem 36. Consider P = (P1, . . . , Pn−1) ∈ C∞(Rn,Rn−1) that satisfies AssumptionsA1,A2,A3 andA4. Then,

X = (x1, x2, y, r, t) ∈ R× R× Rn−2 × Rn−2 × R is a solution of the Ball system

Ball(P ) =


S · P1(X) = · · · = S · Pn−1(X) = 0

D · P1(X) = · · · = D · Pn−1(X) = 0

‖r‖2 − 1 = 0

(4.1)

if and only if (x1, x2) is a singular point of πC(C) (see Definition 34 for the notation S · Pi and D · Pi).

We postpone the proof of Theorem 36 to the end of Section 4.2. As a first step, we study a mapping from the

solutions of the ball system to pairs of points on the curve C.

Definition 37. Let P ∈ C∞(Rn,Rn−1). Define L̂n to be the set of pairs (q1, q2) with q1, q2 ∈ C, q1 6= q2 and

πC(q1) = πC(q2), also define L̂c to be the set of pairs (q1, q1) with q1 ∈ Lc, and let L̂ = L̂n ∪ L̂c.

Lemma 38. Consider P = (P1, . . . , Pn−1) ∈ C∞(Rn,Rn−1) and letX = (x1, x2, y, r, t) ∈ R×R×Rn−2×Rn−2×

R, with ‖r‖ = 1. Assume that P satisfies Assumption A1. Then X is a solution of Ball(P ) if and only if for the points

q1 = (x1, x2, y+ r
√
t) and q2 = (x1, x2, y− r

√
t), the pair (q1, q2) is in L̂n, or in L̂c with (0, 0, r) ∈ R×R×Rn−2

in Tq1C.

Proof. Note that, by Assumption A1, the tangent space to the curve at any of its points is well defined and is a line.

First, assume that X is a solution of Ball(P ). We consider two cases:
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(a) If t > 0, then since r 6= 0 ∈ Rn−2 we have that q1 6= q2. Moreover, since S · Pi(X) = D · Pi(X) = 0 for all

i ∈ {1, . . . , n− 1}, we deduce that Pi(q1) = Pi(q2) = 0, thus q1, q2 ∈ C. Moreover, since πC(q1) = πC(q2) =

(x1, x2) we have q1, q2 ∈ Ln. Thus, (q1, q2) ∈ L̂n.

(b) If t = 0, then q1 = q2. First, Pi(q1) = S·Pi(X) = 0, for all indices i ∈ {1, . . . , n−1}, hence q1 ∈ C. Moreover,

we have 0 = D ·Pi(X) = ∇Pi(q1) · (0, 0, r), for all i ∈ {1, . . . , n− 1}, equivalently, JP (q1) · (0, 0, r)T = 0 ∈

Rn−1, i.e., we have (0, 0, r) ∈ Tq1C. Thus, q1 ∈ Lc and hence, (q1, q1) ∈ L̂c.

Now, let us prove the other direction:

(a) If (q1, q2) ∈ L̂n, then q1 6= q2 and t 6= 0. Also, since q1, q2 ∈ C, we can write that S · Pi(X) = 1
2 (Pi(q1) +

Pi(q2)) = 0, and D · Pi(X) = 1
2
√
t
(Pi(q1)− Pi(q2)) = 0, for all i ∈ {1, . . . , n− 1}. Thus, X is a solution of

Ball(P ).

(b) If (q1, q2) ∈ L̂c and (0, 0, r) ∈ R×R×Rn−2 is in Tq1C, one has q1 = q2 ∈ Lc ⊆ C, and t = 0. Moreover, for

all i ∈ {1, . . . , n − 1} we have S · Pi(X) = Pi(q1) = 0 and since (0, 0, r) ∈ Tq1C, we can equivalently write

D · Pi(X) = ∇Pi(q1) · (0, 0, r) = 0. Thus, X is a solution of Ball(P ).

Definition 39. Let SolBall(P ) be the solution set of Ball(P ). Define the function ΩP from SolBall(P ) to L̂ that sends

X = (x1, x2, y, r, t) ∈ R×R×Rn−2×Rn−2×R to the ordered pair q1 = (x1, x2, y+r
√
t) and q2 = (x1, x2, y−r

√
t).

Notice that the function ΩP is well-defined by Lemma 38.

Lemma 40. If P ∈ C∞(Rn,Rn−1) satisfies Assumption A1, then ΩP is surjective.

Proof. For any pair (q1, q2) ∈ L̂n we have that the pointX = ( 1
2 (q1+q2), ΠC(q1−q2)

‖q1−q2‖ ,
1
4 ‖q1 − q2‖2) ∈ Rn×Rn−1×R

is a solution of Ball(P ), where ΠC(q1−q2) is the vector in Rn−2 obtained by omitting the first two coordinates (which

are zeros) from q1 − q2. Note that ΩP (X) = (q1, q2). If the pair (q1, q1) is in Lch, we define r in the following way,

we take a unit vector v ∈ Tq1C (the first two coordinates of v are zeros since q1 ∈ Lc). We set r to be ΠC(v). Again

X = (q1, r, 0) ∈ Rn × Rn−2 × R is a solution of Ball(P ), with ΩP (X) = (q1, q1). Thus, ΩP is surjective.

Remark 41. Notice that if X = (x1, x2, y, r, t) is in SolBall(P ), then ΩP (X) ∈ L̂n (resp. ΩP (X) ∈ L̂c) if and only if

t 6= 0 (resp. t = 0).

Remark 42. Preserving the notation in Lemma 38, notice that if X = (x1, x2, y, r, t) is a solution of Ball(P ),

then X ′ = (x1, x2, y,−r, t) is another solution. Moreover, both solutions characterize the same unordered pair

ΩP (X) = ΩP (X ′) = (q1, q2). We call X and X ′ twin solutions. An alternative would have been to take r in a

projective space instead of the sphere to identify these twin solutions.

Example 43. Let n = 3 andB = {(x1, x2, x3) ∈ R3 | x1, x2, x3 ∈ [−2, 2]}. Define P1(x1, x2, x3) = x1−(x3−1)3,

P2(x1, x2, x3) = x2−(x3−1)2 and P = (P1, P2). The Jacobian matrix of P has full rank over C, thus AssumptionA1
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is satisfied. The set Ln is empty since πC is injective over C, hence Assumption A4 is satisfied. The only point

of C with a tangent line orthogonal to the (x1, x2)-plane is q1 = (0, 0, 1), thus Lc = {q1} and Assumption A2

is satisfied. By Lemma 46, the multiplicity of the system {P = 0, (x1, x2) = πC(q1)} at its unique solution q1 is

min{ord1((x3 − 1)3), ord1((x3 − 1)2)} = min{3, 2} = 2 (ord is defined in Definition 1). Moreover, for any point

q0 ∈ C different from q1, the multiplicity of the corresponding system at its unique solution q0 is one, thus P satisfies

Assumption A3. The system Ball(P ):

x1 − 3r2ty + 3r2t− y3 + 3y2 − 3y + 1 = 0

x2 − r2t− y2 + 2y − 1 = 0

−r3t− 3ry2 + 6ry − 3r = 0

−2ry + 2r = 0

r2 − 1 = 0

(4.2)

has two twin solutions X = (0, 0, 1, 1, 0) and X ′ = (0, 0, 1,−1, 0) in BBall(P ) ⊂ R2·3−1 = R5 such that ΩP (X) =

ΩP (X ′) = (q1, q1) ∈ L̂c.

Figure 2: The curve C (red) and its plane projection πC(C) (blue) of Example 43 displaying a cusp singularity.
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Example 44. LetB be defined as in Example 43. Define the functionsP1(x1, x2, x3) = x1−(x2
3−1), P2(x1, x2, x3) =

x2 − (x3
3 − x3) and P = (P1, P2). The Jacobian matrix of P has full rank over C, thus Assumption A1 is satisfied.

Moreover, the set Lc is empty and Ln = {q1, q2}, with q1 = (0, 0, 1), q2 = (0, 0,−1), i.e., Assumptions A2 and A4

are satisfied. The multiplicity of the system {P = 0 ∈ Rn−1, x1 = x2 = 0} at both q1, q2 is equal to one, thus

Assumption A3 is also satisfied. The system Ball(P ):

x1 − r2t− y2 + 1 = 0

x2 − r2ty − y3 + y = 0

−2ry = 0

−r3t− 3ry2 + r = 0

r2 − 1 = 0

(4.3)

has two twin solutions X = (0, 0, 0, 1, 1) and X ′ = (0, 0, 0,−1, 1) in R5 such that ΩP (X) = ΩP (X ′) = (q1, q2) ∈

L̂n.

Figure 3: The curve C (red) and its plane projection πC(C) (blue) of Example 44 displaying a node singularity.
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4.2. The characterization of C around the points in Lc

In this section, we are going to locally parametrize P around the points in Lc. This parametrization will ease the

computation of Ball(P ) and its Jacobian in Section 4.3.

Lemma 45. Let P ∈ C∞(Rn,Rn−1). Let q ∈ Lc such that Assumption A1 is satisfied in a neighbourhood of q in B.

Without loss of generality one can assume q = 0 ∈ Rn. Then there exist an invertible matrixM of size (n−1)×(n−1)

of smooth functions in a neighbourhood of q and smooth functions f1, f2, f3, . . . , fn−1 defined in a neighbourhood of

0 ∈ R, such that: 

x1 − f1(xn)

x2 − f2(xn)

x3 − f3(xn)

. . .

. . .

xn−1 − fn−1(xn)


= M ·



P1

P2

P3

. . .

. . .

Pn−1


, (4.4)

with min{ord(f1(xn)), ord(f2(xn))} > 1 (ord is defined in Definition 1).

Proof. Since rank(JP (q)) = n− 1 (Assumption A1), there exists k ∈ {1, . . . , n} such that det(Mk(q)) 6= 0, where

Mk is the minor of JP obtained by removing the k-th column. Notice that k 6∈ {1, 2}, since q ∈ Lc implies that

det(M1(q)) = det(M2(q)) = 0. Without loss of generality, we assume that k = n. Using the implicit function

theorem [Corollary 2.7.3][Dem00], there exist smooth functions f1, . . . , fn−1 of one variable such that we have that

Pj(f1(xn), . . . , fn−1(xn), xn) = 0, j ∈ {1, . . . n− 1}. (4.5)

Define the function ϕ that maps xi to zi = xi − fi(xn), for all i ∈ {1, . . . , n − 1} and xn to zn = xn. We

can see that ϕ is a diffeomorphism and z = (z1, . . . , zn) is a local coordinate system around q. Hence, we can

define the function Gj(z) = Pj ◦ ϕ−1(z) = Pj(x) for all integers 1 6 j 6 n − 1. Using Hadamard‘s Lemma

[Dem00, Proposition 4.2.3] for the first n−1 variables of z, we can writeGj(z)−Gj(0, . . . , 0, zn) =
n−1∑
i=1

zi ·hji(z) for

some smooth functions hji. Note that ϕ−1(z) = (z1 + f1(zn), . . . , zn−1 + fn−1(zn), zn). Hence, Gj(0, . . . , 0, zn) =

Pj◦ϕ−1(0, . . . , 0, zn) = Pj(f1(zn), . . . , fn−1(zn), zn) = Pj(f1(xn), . . . , fn−1(xn), xn). The latter function is equal

to zero by (4.5). Thus, Pj(x) = Gj(z) =
n−1∑
i=1

zi · hji(z) =
n−1∑
i=1

(xi − fi(xn)) ·Hji(x), with Hji(x) = hji ◦ ϕ(x).

Defining M0 =
(
Hji

)
16j,i6n−1

we get:


P1

. . .

. . .

Pn−1

 = M0 ·


x1 − f1(xn)

. . .

. . .

xn−1 − fn−1(xn)

 .

Notice that M0 evaluated at q is the invertible matrix Mn(q). Hence, by continuity of the determinant function, there
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is a neighbourhood of q in which M0 is invertible. Thus, writing M as the inverse of M0 we get:

Q0 =


x1 − f1(xn)

. . .

. . .

xn−1 − fn−1(xn)

 = M ·


P1

. . .

. . .

Pn−1

 . (4.6)

To prove that min{ord(f1(xn)), ord(f2(xn))} > 1, we take the Jacobian matrices of both sides of (4.6) and we

evaluate them at q = 0. We get the equation JQ0(q) = M(q) · JP (q). By invertibility of M(q) we deduce that the

k-th minors (obtained by removing the k-th column) of JQ0(q) and JP (q) have the same rank. Computing JQ0(q)

and considering the fact that det(M1(q)) = det(M2(q)) = 0 implies that f ′1(0) = f ′2(0) = 0, we thus have that

min{ord(f1(xn)), ord(f2(xn))} is at least two.

Lemma 46. Preserving the notation and the assumptions in Lemma 45, the multiplicity m of the system S =

{Q0(x) = 0 ∈ Rn−1, x1 = x2 = 0} at q is equal to d = min{ord(f1(xn)), ord(f2(xn))}.

Proof. First, we start with the case m < ∞. By Proposition 4, we can assume without loss of generality, that

f1, . . . , fn−1 are polynomials. Following the notation in Definition 2, let R[x] (resp. R[xn]) be the ring of poly-

nomials with n variables (resp. one variable) and R[x]q (resp. R[xn]0) be its localization at q (resp. 0 ∈ R).

Also, define IS to be the ideal generated by the polynomials of S in R[x]q (as IG is defined in Definition 2),

i.e., IS = 〈x1 − f1(xn), x2 − f2(xn), . . . xn−1 − fn−1(xn), x1, x2〉 = 〈x1 − f1(xn), x2 − f2(xn), . . . xn−1 −

fn−1(xn), f1(xn), f2(xn)〉. If f1(xn) = f2(xn) = 0, then the ideal IS is of dimension one, hence, S has an in-

finite number of solutions which contradicts the assumption m < ∞. Thus, d < ∞ which means that there exist

h1, h2 ∈ R[xn]0 such that h1(xn)f1(xn) +h2(xn)f2(xn) = xdn. Thus, IS = 〈x1− f1(xn), x2− f2(xn), . . . , xn−1−

fn−1(xn), xdn〉. Note that the set {x1 − f1(xn), x2 − f2(xn), . . . xn−1 − fn−1(xn), xdn} is a Gröbner basis of IS

with respect to Local Lexicographical ordering x1 > · · · > xn. Hence, By [CLO05, Theorem 4.4.3] we have

dim(
R[x]q
IS

) = dim(
R[x]q
LT (IS) ) = dim(

R[x]q
〈x1,x2,...xn−1,xdn〉

), where LT (IS) is the ideal generated by the leading terms of

IS . Consequently, m = dim(
R[x]q
IS

) = dim(R[xn]0
〈xdn〉

) = d.

Second, assume that m = ∞. We prove that d = ∞, that is, ∂
kf1
∂xkn

(0) = ∂kf2
∂xkn

(0) = 0 for any positive integer

k. Preserving the notation in Definition 3, consider the dual space Dk
q [S]. We are going to show that for any positive

integer k and any element c ∈ Dk
q [S]\Dk−1

q [S] (which always exists sincem =∞), the coefficient cxkn corresponding

to ∂k

∂xkn
, for c, is non-zero. We consequentially show that ∂

kf1
∂xkn

(0) = ∂kf2
∂xkn

(0) = 0. We prove the previous statements

by induction on k.

For k = 1, since q ∈ Lc, we already showed in the proof of Lemma 8 that a non-trivial element c =
n∑
i=1

vi
∂
∂xi

is in D1
q [S] \ D0

q [S] if and only if v = (v1, . . . , vn) is in TqC. On the other hand, TqC is generated by the vector

(f ′1(0), . . . f ′n−1(0), 1), thus cx1
n

= vn 6= 0. The function f1(xn) is in the set of functions generated by S thus

0 = c · (f1(xn)) =
n∑
i=1

vi
∂
∂xi q

· (f1(xn)) = cx1
n

∂f1
∂xn

(0), and thus ∂f1
∂xn

(0) = 0. Thus, the induction hypothesis holds

for k = 1.

Define c′ = φn(c) and consider two cases:
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(a) c′ ∈ Dk−1
q [S] \ Dk−2

q [S]: By the induction hypothesis, the coefficient c′
xk−1
n

corresponding to ∂k−1

∂xk−1
n

for c′

is non-zero and ∂k
′
f1

∂xk′n
(0) = ∂k

′
f2

∂xk′n
(0) = 0, for all k′ < k. Notice that by the definition of φn, we have

cxkn = c′
xk−1
n
6= 0. Hence, 0 = c · f1(xn) =

k∑
i=1

cxin
∂if1
∂xin

(0) = cxkn
∂kf1
∂xkn

(0). Hence, ∂
kf1
∂xkn

(0) = 0. Similarly, we

prove that ∂
kf2
∂xkn

(0) = 0. Thus in Case (a), the lemma is proved.

(b) c′ ∈ Dk−2
q [S]: Since c ∈ Dk

q [S] \Dk−1
q [S], there exists j ∈ {1, . . . , n − 1} such that the element c′′ = φj(c)

is in Dk−1
q [S] \Dk−2

q [S]. By the induction hypothesis, the coefficient c′′
xk−1
n

corresponding to ∂k−1

∂xk−1
n

for c′′, is

non-zero. On the other hand, cxjxk−1
n

= c′′
xk−1
n
6= 0. Hence, since φn(cxjxk−1

n

∂k

∂xj∂x
k−1
n

) ∈ Dk−1
q [S] \Dk−2

q [S],

then so is φn(c) = c′ which contradicts the assumption. Thus, Case (b) is impossible.

With the additional AssumptionsA2,A3 andA4, one can give a more precise form of f1 and f2 in Equation (4.4).

Lemma 47. Let P ∈ C∞(Rn,Rn−1). Let q ∈ Lc such that AssumptionsA1,A2,A3 andA4 in B, then there exist an

invertible matrix M̃ of size (n− 1)× (n− 1) of smooth functions in a neighbourhood of q, a smooth diffeomorphism

ϕ defined in an open subset of Rn, with z = (z1, . . . , zn) = ϕ−1(x) and smooth functions f3, . . . , fn−1, g defined in

a neighbourhood of 0 ∈ R, such that

Q =



z1 − zn · g(z2
n)

z2 − z2
n

z3 − f3(zn)

. . .

. . .

zn−1 − fn−1(zn)


= M̃ ·



P1

P2

P3

. . .

. . .

Pn−1


◦ ϕ, (4.7)

on a neighbourhood of q. Moreover, either ord(g(zn)) =∞ or there exists an integer k > 0 with g(zn) = zkn.

Proof. Step 1: Equation (4.6) implies that Q0 and P define the same curve C in a neighbourhood of q and that the

function Q0 satisfies the same assumptions as P around q. By Lemma 46, d = min{ord(f1(xn)), ord(f2(xn))} is

the multiplicity of the system {Q0(x) = 0 ∈ Rn−1, x1 = 0, x2 = 0} at q. By Assumption A3, we have that d = 2.

Without loss of generality, assume that ord(f2(xn)) = 2 and ∂2f2
∂x2
n

(0) = 2. Hence, there is a smooth func-

tion v such that f2(xn) = x2
n(1 + xn · v(xn)). Now, consider the diffeomorphism φn that sends xn to zn =

xn
√

1 + xn · v(xn). We have that x2−f2(xn) = x2−z2
n. Define f̃1(zn) = f1(φ−1

n (zn)) and f̃2(zn) = f2(φ−1
n (zn)) =

z2
n. Since ord(f̃1(zn)) = ord(f1(xn)) > d = 2, there exists a smooth function h such that f̃1(zn) = z2

nh(zn). Write

f̃1(zn) = z2
n[h(zn)+h(−zn)

2 + h(zn)−h(−zn)
2 ]. Since h(zn)+h(−zn)

2 (resp. h(zn)+h(−zn)
2 ) is even (resp. odd), then by

Theorem 16 there exists a smooth function ξ1 (resp. ξ2) such that h(zn)+h(−zn)
2 = ξ1(z2

n) (resp. h(zn)−h(−zn)
2 =

znξ2(z2
n)). Thus, f̃1(zn) = z2

n(ξ1(z2
n) + znξ2(z2

n)). Notice that ξ2(x2
n) cannot be the zero function, otherwise

f̃1(ε) = f̃1(−ε) and f̃2(ε) = f̃2(−ε) for all small enough ε > 0, which contradicts Assumption A4.

Step 2: We have two cases:
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Case 1: ord(ξ2(zn)) =∞, then define the diffeomorphism φwhich sends x1 to z1 = x1−x2ξ1(x2), xi to zi = xi

for all integers i ∈ {2, . . . , n − 1} and xn to zn = xn
√

1 + xn · v(xn). Taking g(zn) = znξ2(zn) and ϕ = φ−1 we

prove the claim for the first case.

Case 2: ord(ξ2(zn)) = k < ∞, that is, ξ2(zn) = zknu(zn), for some smooth function u, with u(0) 6= 0 and an

integer k > 0. Hence, we can write x1 − f̃1(zn) = x1 − z2
nξ1(z2

n)− z2k+3
n u(z2

n) = x1 − x2ξ1(x2)− z2k+3
n u(x2).

So, defining the diffeomorphism φ which sends xi to zi = xi for all integers i ∈ {2, . . . , n − 1}, xn to zn =

xn
√

1 + xn · v(xn) and x1 to z1 = (x1 − x2ξ1(x2))u−1(x2) (which means that x1 − f1(xn) = u(x2)[z1 − z2k+3
n ]),

we get that:


x1 − f1(xn)

. . .

. . .

xn−1 − fn−1(xn)

 =

 u(x2) 01×(n−2)

0(n−2)×1 In−2

 ·



z1 − z2k+3
n

z2 − z2
n

z3 − f3(zn)

. . .

. . .

zn−1 − fn−1(zn)


◦ φ, (4.8)

for a small enough neighbourhood of q, where In−2 is the identity matrix of size n− 2. Comparing with (4.4), we get:

M ·



P1

P2

P3

. . .

. . .

Pn−1


=

 u(x2) 01×(n−2)

0(n−2)×1 In−2

 ·



z1 − z2k+3
n

z2 − z2
n

z3 − f3(zn)

. . .

. . .

zn−1 − fn−1(zn)


◦ φ. (4.9)

Hence, taking M̃ =

 u(x2) 01×(n−2)

0(n−2)×1 In−2

−1

·M and ϕ = φ−1 we recover (4.7).

Following the conclusion of Lemma 47, the reader may wonder whether the projection of q in πC is always singular.

This is clear when g(xn) = xkn for 0 < k <∞ since this implies z2
1 − zk+1

2 = 0 and thus πC(q) is a singularity of the

type A2k. We next prove that the projection is also singular if ord(g(zn)) =∞.

Lemma 48. Preserving the notation and the assumptions in Lemma 47, consider the function g defined in (4.7), if

ord(g(zn)) =∞, then πC(q) is singular in πC(C).

Proof. Since ord(g(zn)) = ∞, then Case 1 in the proof of Lemma 47 holds. Moreover, we saw in the same proof

that ξ2(z2
n) (restricted to an open neighbourhood of 0 ∈ R) cannot be the zero function. This implies that neither is the

function g(z2
n) = z2

nξ(z
2
n), i.e., g(z2

n), restricted to an open neighbourhood of 0 ∈ R, is not the zero function. Assume

for the sake of contradiction that πC(q) is smooth in πC(C), then using the implicit function theorem, there exists a

C∞-function defined in a neighbourhood of 0 in R, with f(0) = 0 such that for a small neighbourhood of πC(q) in

R2, one of the following cases is satisfied:
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(a) f(z1) = z2 ⇐⇒ (z1, z2) ∈ πC(C). Then, by (4.7), we have f(zng(z2
n)) = z2

n. Taking the second derivative

of both sides with respect to zn and then evaluating at 0 (recall that ord(g(zn)) =∞), we get the contradiction

0 = 2.

(b) f(z2) = z1 ⇐⇒ (z1, z2) ∈ πC(C). Then f(z2
n) = zng(z2

n). The function zng(z2
n) is an odd function but not

the zero function, and on the other hand f(z2) is an even function, which leads to a contradiction.

Thus, in both cases we have a contradiction, that is, f does not exist and πC(q) cannot be smooth in πC(C).

Returning to (4.7), notice that ϕ is defined in such a way that it preserves the singularity class of πC(C) at the

point πC(q). In other words, if C is the plane projection of the curve defined by the Q then (πC(C), 0) and (C, 0) are

equivalent. As a corollary of Lemmas 21, 22, 47 and 48, the points of C in Lc ∪Ln are projected to the singular points

of πC(C).

Corollary 49. If P satisfies AssumptionsA1,A2,A3 andA4, then a point q ∈ C projects to a singular point in πC(C)

if and only if q ∈ Lc ∪ Ln.

Proof. If q ∈ Lc ∪ Ln, then by Lemmas 22, 47, and 48, πC(q) is singular in πC(C). If q 6∈ Lc ∪ Ln, then by Lemma

21, πC(q) is smooth in πC(C).

Finally, we prove that the solutions of the ball system project to the singular points of πC(C).

Proof of Theorem 36: By Corollary 49, if (x1, x2) is singular in πC(C), then there exists a point q1 ∈ Lc ∪ Ln, with

πC(q1) = (x1, x2). If q1 ∈ Lc, let q2 = q1 and otherwise let q2 be the unique (by AssumptionA3) point in Ln, distinct

from q1, that projects onto (x1, x2), i.e. πC(q1) = πC(q2) = (x1, x2). Hence, (q1, q2) is in L̂. Since ΩP is surjective

(Lemma 40), there exists X = (x1, x2, y, r, t) ∈ SolBall(P ) with ΩP (X) = (q1, q2).

On the other hand, if X is a solution of Ball(P ), then by Lemma 38 the pair (q1, q2) = ΩP (X) is in L̂. Hence,

q1 = (x1, x2, y + r
√
t) ∈ R × R × Rn−2 is in Lc ∪ Ln. Hence, by Corollary 49 the point (x1, x2) is singular in

πC(C).

4.3. Regularity of the ball system

In this section, our goal is to prove Theorem 51 determining necessary and sufficient conditions for Ball(P ) to be

regular. We first recall the definition of a regular system.

Definition 50. For some integer m 6 n, let F = (f1, . . . , fm) be a vector of smooth real-valued functions that are

defined in Rn and let a ∈ Rn be a solution of the system {F = 0}. We say that the latter system is regular at a ∈ Rn

if the rank of its Jacobian matrix, evaluated at a, equals to m. We call {F = 0} regular if it is regular at all of its

solutions.

Theorem 51. Let P ∈ C∞(Rn,Rn−1) that satisfies Assumptions A1, A2,A3 and A4, then P satisfies Assumption

A5 if and only if Ball(P ) is regular in BBall.
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In order to prove Theorem 51, we are going to show that the Jacobian matrices of Ball(P ) and Ball(Q) evaluated

at X have the same rank, where Q is defined in Equation (4.7). Recall that Equation (4.7) implies that P and Q define

the same curve around q. Notice also that if X = (q, r, 0) ∈ Rn×Rn−2×R is in Ω−1
P ((q, q)), then X ∈ Ω−1

Q ((q, q)).

Lemma 52. Let P and Q be as defined in (4.7). Under Assumption A1, let (q, r, 0) ∈ Rn × Rn−2 × R be a solution

of the system Ball(P ) in BBall, then Ball(P ) is regular at (q, r, 0) if and only if Ball(Q) is regular at the point

(0, r, 0) ∈ Rn × Rn−2 × R (recall that for simplicity, we assume in Lemma 47 that q = 0 ∈ Rn).

Proof. Let us write X = (q, r, 0). We are going to prove that the Jacobian matrices of Ball(P ) and Ball(Q) evaluated

at X have the same rank. By Remark 41 we have that ΩP (X) = (q, q) ∈ L̂c (see Definitions 39 and 37), and hence,

q ∈ Lc. By Lemma 38 we have that (0, 0, r) ∈ TqC. We prove the claim in three steps:

Step 1: Let M̃ = (fij)16i,j6n−1 be as defined in the Equality (4.7). We define S ·M̃ (resp. D ·M̃ ) to be the matrix

(S · fij)16i,j6n−1 (resp. (D · fij)16i,j6n−1). Using the identity 1
2 (ab+ cd) = 1

4 (a+ c)(b+ d) + 1
4 (a− c)(b− d),

one deduces the properties for any f, g ∈ C∞(Rn,R):

S · fg = (S · f)(S · g) + t(D · f)(D · g) (4.10)

D · fg = (D · f)(S · g) + (S · f)(D · g) (4.11)

These identities applied to Equation (4.7) yield


S ·Q1

. . .

. . .

S ·Qn−1

 =
(
S · M̃ tD · M̃

)
·



S · (P1 ◦ ϕ)

. . .

. . .

S · (Pn−1 ◦ ϕ)

D · (P1 ◦ ϕ)

. . .

. . .

D · (Pn−1 ◦ ϕ)


and


D ·Q1

. . .

. . .

D ·Qn−1

 =
(
D · M̃ S · M̃

)
·



S · (P1 ◦ ϕ)

. . .

. . .

S · (Pn−1 ◦ ϕ)

D · (P1 ◦ ϕ)

. . .

. . .

D · (Pn−1 ◦ ϕ)


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Combining the last two equalities:

S ·Q1

. . .

. . .

S ·Qn−1

D ·Q1

. . .

. . .

D ·Qn−1



=

S · M̃ tD · M̃

D · M̃ S · M̃

 ·



S · (P1 ◦ ϕ)

. . .

. . .

S · (Pn−1 ◦ ϕ)

D · (P1 ◦ ϕ)

. . .

. . .

D · (Pn−1 ◦ ϕ)



(4.12)

Notice that

S · M̃ tD · M̃

D · M̃ S · M̃


X

=

 M̃(q) 0

D · M̃(X) M̃(q)

 (recall that on our case we have S · M̃(X) = M̃(q) )

and that the latter matrix has an inverse (recall that, by Lemma 47, M̃(q) is an invertible matrix of size n−1), namely, M̃(q)−1 0

−M̃(q)−1 · (D · M̃)(X) · M̃(q)−1 M̃(q)−1

 which implies (by continuity of the determinant function) thatS · M̃ tD · M̃

D · M̃ S · M̃

 is invertible in a neighbourhood of X .

Step 2: Writing y = (y3, . . . , yn) and r = (r3, . . . , rn), consider the diffeomorphism ϕ defined in Lemma 47

and define the smooth function ψ over an open subset of R2n−1 containing X which maps the point (x1, x2, y, r, t) to

(ϕ1, ϕ2, S · ϕ3, . . . , S · ϕn, D · ϕ3, . . . , D · ϕn, t). Notice that we have:

S · (Pj ◦ ϕ) = (S · P ) ◦ ψ and D · (Pj ◦ ϕ) = (D · P ) ◦ ψ, for 1 6 j 6 n− 1, (4.13)

since ϕi(x1, x2, y± r
√
t) = ψi±ψn+i−2

√
ψ2n−1 for all i ∈ {3, . . . , n}. In fact, using the last two equalities we can

also see that ψ−1 exists and is smooth. Thus, ψ is a diffeomorphism.

Step 3: Now, comparing (4.12) with (4.13) we get:

SD ·Q :=



S ·Q1

. . .

. . .

S ·Qn−1

D ·Q1

. . .

. . .

D ·Qn−1



=

S · M̃ tD · M̃

D · M̃ S · M̃

 ·



S · P1

. . .

. . .

S · Pn−1

D · P1

. . .

. . .

D · Pn−1



◦ ψ.

Consider the vector SD ·P = (S ·P1, . . . , S ·Pn−1, D ·P1, . . . , D ·Pn−1)T and let JSD·P , JSD·Q and Jψ be the
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Jacobian matrices of SD · P, SD ·Q and ψ respectively. Taking the Jacobian matrix of both sides of the last equality:

JSD·Q =

S · M̃ tD · M̃

D · M̃ S · M̃

 · JSD·P · Jψ + Jacobian(

S · M̃ tD · M̃

D · M̃ S · M̃

) ·



S · P1

. . .

. . .

S · Pn−1

D · P1

. . .

. . .

D · Pn−1



◦ ψ.

Evaluating the last equality at X = (0, r, 0) and using the fact that ψ(X) = ψ(0, r, 0) = (0, r, 0) = X , we note that

the second term of the right-hand side is zero. One thus has:

JSD·Q(X) =

S · M̃ tD · M̃

D · M̃ S · M̃


X

· JSD·P (X) · Jψ(X). (4.14)

Computing Jψ(X), we get Jψ(X) =

 ∂ϕ1

∂z1
(0) ∂ϕ1

∂z2
(0) 01×(2n−3)

0(2n−2)×1 I2n−2

, with ∂ϕ1

∂z1
(0) 6= 0 according to the

formula in Lemma 47.

Hence by Equation (4.14), it is straightforward to check that:

JBall(Q) =

JSD·Q(X)

2X

 =


S · M̃ tD · M̃ 0

D · M̃ S · M̃ 0

01×(n−1) 01×(n−1) 1


X

·

JSD·P (X)

2X

 · Jψ(X) =


S · M̃ tD · M̃ 0

D · M̃ S · M̃ 0

01×(n−1) 01×(n−1) 1


X

· JBall(P )(X) · Jψ(X).

Recalling that Jψ(X) and


S · M̃ tD · M̃ 0

D · M̃ S · M̃ 0

01×(n−1) 01×(n−1) 1


X

are invertible matrices, the proof of the lemma follows.

Now, we are ready to prove Theorem 51 which characterizes the regularity of the solutions of Ball(P ) under

generic assumptions. We split the proof in two Lemmas 54 and 55. Before that, we introduce a new assumption that

helps to simplify the proof.

Definition 53. Let (q1, q2) ∈ L̂. We say that (q1, q2) satisfies Assumption A′5 if q1 and q2 are isolated in Ln ∪ Lc and

any of the following conditions is satisfied:

(a) If (q1, q2) ∈ L̂n, then the plane projections of the tangent lines of q1 and q2 to C are linearly independent.

(b) If (q1, q2) ∈ L̂c, then the plane projection of a small enough neighbourhood of q1 in C is an ordinary cusp at

πC(q1) and the multiplicity of the system {P (x) = 0, (x1, x2) = πC(q1)} at q1 is two.

Assumption A′5 can be seen as a "local version" of Assumption A5. We are going to prove that if Assumptions

A1, A2, A3 and A4 are satisfied, then Assumption A5 is equivalent to the condition that Assumption A′5 is satisfied

for all L̂.
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The main reason behind introducing Assumption A′5, is that we are going to prove in Lemma 54 that, under

Assumption A1, a pair (q1, q2) ∈ L̂ satisfies Assumption A′5 if and only if every X in Ω−1
P ((q1, q2)) is a regular

solution of Ball(P ), whereas AssumptionA5 is, in general, not sufficient for the regularity of the solutions of Ball(P ).

For example, take n = 3 and P = (x1 − x6
3, x2 − x9

3). We can see that P satisfies Assumption A1, the set Lc consists

of a unique point q = (0, 0, 0) and the set Ln is empty. The plane projection of C is the curve given by the equation

x3
1 − x2

2 = 0. Hence, Assumption A5 is satisfied. However, the multiplicity of the system {P (x1, x2, x3) = 0 ∈

R2, x1 = x2 = 0} at the point q equals to 6 (Lemma 46). Hence, Assumption A′5 is not satisfied and one can also

check that Ball(P ) is not regular.

Lemma 54. Let P ∈ C∞(Rn,Rn−1) that satisfies Assumption A1. Let X be a solution of Ball(P ) and (q1, q2) =

ΩP (X) (Definition 39), then X is a regular solution of Ball(P ) if and only if (q1, q2) satisfies Assumption A′5.

Proof. Let X = (x1, x2, y, r, t) ∈ R× R× Rn−2 × Rn−2 × R be a solution of Ball(P ). We consider two cases:

Case (a). t 6= 0, i.e., q1 6= q2.

It is easy to see that ∂(S·Pi)
∂xj

, ∂(D·Pi)
∂xj

, ∂(S·Pi)
∂rk

, ∂(D·Pi)
∂rk

, ∂(S·Pi)
∂t , ∂(D·Pi)

∂t are respectively equal to: S · ∂(Pi)
∂xj

, D · ∂(Pi)
∂xj

, t ·

D · ∂(Pi)
∂xk

, S · ∂(Pi)
∂xk

, 1
2

n∑
m=3

D · ( ∂Pi∂xm
) · rm, 1

2t [
n∑

m=3
S · ( ∂Pi∂xm

) · rm−D ·Pi]. Hence, by computing the Jacobian matrix

of the Ball(P ) we get the matrix:


S · ∂(P1)
∂x1

. . . S · ∂P1
∂xn

t ·D · ∂(P1)
∂x3

. . . t ·D · ∂(P1)
∂xn

1
2

n∑
m=3

D · ( ∂P1
∂xm

) · rm

· · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · ·

S ·
∂(Pn−1)

∂x1
. . . S ·

∂(Pn−1)

∂xn
t ·D ·

∂(Pn−1)

∂x3
. . . t ·D ·

∂(Pn−1)

∂xn
1
2

n∑
m=3

D · (
∂Pn−1
∂xm

) · rm

D · ∂(P1)
∂x1

. . . D · ∂(P1)
∂xn

S · ∂(P1)
∂x3

. . . S · ∂(P1)
∂xn

1
2t

[
n∑

m=3
S · ( ∂P1

∂xm
) · rm −D · P1]

· · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · ·

D ·
∂(Pn−1)

∂x1
. . . D ·

∂(Pn−1)

∂xn
S ·

∂(Pn−1)

∂x3
. . . S ·

∂(Pn−1)

∂xn
1
2t

[
n∑

m=3
S · (

∂Pn−1
∂xm

) · rm −D · Pn−1]

0 . . . 0 2r3 . . . 2rn 0



. (4.15)

We denote by Ci (resp. Li) the i-th column (resp. line) of the latter matrix. Replace the last column C2n−1 with
n−2∑
m=1

rm+2

2t Cn+m +C2n−1, also for all integers 1 6 k 6 n− 1 we replace the line Lk with Lk +
√
t ·Lk+n−1 and then

the line Lk+n−1 with Lk − 2
√
tLk+n−1. The resulting matrix is:



∂(P1)
∂x1

(q1) . . .
∂P1
∂xn

(q1)
√

(t) · ∂(P1)
∂x3

(q1) . . .
√

(t)
∂(P1)
∂xn

(q1) 0

· · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · ·
∂(Pn−1)

∂x1
(q1) . . .

∂Pn−1
∂xn

(q1)
√

(t) ·
∂(Pn−1)

∂x3
(q1) . . .

√
(t)

∂(Pn−1)

∂xn
(q1)) 0

∂(P1)
∂x1

(q2) . . .
∂(P1)
∂xn

(q2) −
√

(t)
∂(P1)
∂x3

(q2) . . . −
√

(t)
∂(P1)
∂xn

(q2) 0

· · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · ·
∂(Pn−1)

∂x1
(q2) . . .

∂(Pn−1)

∂xn
(q2) −

√
(t)

∂(Pn−1)

∂x3
(q2) . . . −

√
(t)

∂(Pn−1)

∂xn
(q2)) 0

0 . . . 0 2r3 . . . 2rn
1
2t



.

The determinant of the latter matrix is zero if and only if the determinant of the following matrix is zero:

M0 =

NP (q1) MP (q1) MP (q1)

NP (q2) MP (q2) −MP (q2)

, where MP (q1),MP (q2) are the minors that are obtained respec-

tively by removing the first two columns from JP (q1), JP (q2) and NP (q1), NP (q2) are the matrices formed by the

first two columns of JP (q1), JP (q2) respectively. By linear operations on M0, we can see that M0 has same rank as

the matrix M(q1, q2) (see Definition 23). Thus, X is regular for Ball(P ) if and only if M(q1, q2) is invertible. By
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Lemma 24 we have that M(q1, q2) is invertible if and only if none of q1, q2 is in Lc (and hence none of the plane

projections of Tq1C, Tq2C is trivial) and the plane projection of their tangent spaces are different. Equivalently, the pair

(q1, q2) is in L̂n and satisfies Assumption A′5.

Case (b) t = 0, i.e., q1 = q2.

Let us write q = q1. We prove the claim in three steps:

Step 1: We first simplify P . Without loss of generality and by Lemma 45 we can assume that q = 0 and

P1, . . . , Pn−1 are respectively equal to x1 − f1(xn), x2 − f2(xn), . . . , xn−1 − fn−1(xn) with the property that

min{ord(f1), ord(f2)} > 2. For all i ∈ {3, . . . , n− 1}, using Taylor’s theorem, we can write fi(xn) =
3∑
j=1

ai,jx
j
n +

x4
nhi(xn), for some ai,j ∈ R and smooth functions hi(xn). Since min{ord(f1), ord(f2)} > 2, we can write

f1(xn) =
3∑
j=2

αjx
j
n + x4

nh1(xn) and f2(xn) =
3∑
j=2

βjx
j
n + x4

nh2(xn). Notice that

(f1(xn), f2(xn), f3(xn), . . . , fn−1(xn), xn)

is a local parametrization system of C around q. Since dim(TqC) = 1 (Assumption A1), there exists λ ∈ R∗ with

(a3,1, . . . , an−1,1, 1) = λr (because the vectors (0, 0, r) ∈ R × R × Rn−2 and (0, 0, a1,3, . . . , a1,n−1, 1) are in

TqC \ {0}). In particular, rn 6= 0.

Step 2: Now, we compute JBall(P )(X) by first computing it for Xt, which is X but its last variable t 6= 0, and then

taking the limit when t goes to 0. The operator S being linear, we can write S(xi − fi(xn)) = S(xi −
3∑
j=1

ai,jx
j
n)−

S(x4
nhi(xn)). On the other hand, using the identity (4.10) we deduce that S(x4

nhi(xn)) = S(x4
n) · S(hi(xn)) +

tD(x4
n) · D(hi(xn)), for all ∈ {1, . . . , n − 1}. It is straightforward to see that S(x4

n) = r4
nt

2 + 6r2
ntx

2
n + x4

n and

tD(x4
n) = 4r3

nxnt
2 + 4rnx

3
nt with r = (r3, . . . , rn). Hence, all of the first-order partial derivatives of S(x4

nhi(xn)),

evaluated at Xt, converge to zero when t goes to 0. Hence, the evaluation of the partial derivatives of the functions

S(xi−fi(xn)) and S(xi−
3∑
j=1

ai,jx
j
n), atX are equal. Using an analogical argument, we deduce that the evaluation of

the partial derivatives of the functionsD(xi−fi(xn)) andD(xi−
3∑
j=1

ai,jx
j
n), atX are also equal. Thus, JBall(P )(Xt)

and JBall(P )(Xt) converge to the same limit JBall(P )(X), where P is the function obtained by truncating P beyond

degree 3 with respect to the variable xn.
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Computing JBall(P )(X) = limt→0 JBall(P )(Xt), we get:

1 0 . . . 0 0 0 . . . 0 −α2r
2
n

0 1 . . . 0 0 0 . . . 0 −β2r
2
n

0 0 . . . . . . −a3,1 0 . . . 0 −a3,2r
2
n

· · · · · · . . . · · · · · · · · ·

· · · · · · . . . · · · · · · · · ·

0 0 . . . 1 −an−1,1 0 . . . 0 −an−1,2r
2
n

0 0 . . . . . . −2α2rn 0 . . . 0 −α3r
3
n

0 0 . . . . . . −2β2rn 0 . . . 0 −β3r
3
n

0 0 . . . . . . −2a3,2rn 1 . . . −a3,1 −a3,3r
3
n

· · · · · · . . . · · · · · · · · ·

· · · · · · · · · . . . · · · · · ·

0 0 . . . . . . −2an−1,2rn 0 . . . 1 −an−1,1 −an−1,3r
3
n

0 0 . . . . . . 0 2r3 . . . 2rn−1 2rn 0



. (4.16)

Hence, observing that the matrix is block diagonal, its determinant is zero if and only if the determinant of the

following one is: 

−2α2rn 0 . . . 0 0 −α3r
3
n

−2β2rn 0 . . . 0 0 −β3r
3
n

−2a3,2rn 1 0 . . . 0 −a3,1 −a3,3r
3
n

. . . . . .

−2an−1,2rn 0 0 . . . 1 −an−1,1 −an−1,3r
3
n

0 2r3 . . . 2rn−1 2rn 0


.

Shifting the columns of the last matrix we get:

−α3r
3
n −2α2rn 0 . . . 0 0

−β3r
3
n −2β2rn 0 . . . 0 0

−a3,3r
3
n −2a3,2rn 1 0 . . . 0 −a3,1

. . . . . .

−an−1,3r
3
n −2an−1,2rn 0 0 . . . 1 −an−1,1

0 0 2r3 . . . 2rn−1 2rn


.

To compute the determinant of the second block, we expand it about the last row. Hence, the determinant of the last

matrix is zero if and only if rn(α2β3−α3β2)(rn+
n−1∑
i=3

ai,1ri) = 0. Notice that, by Step 1, we have that rn 6= 0 and the

third factor (rn +
n−1∑
i=3

ai,1ri) is never zero since it is equal to λ. Thus, JBall(P )(X) is invertible iff α2β3 − α3β2 6= 0,

equivalently, the matrix A =

α2 α3

β2 β3

 is invertible.
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Step 3: We now show that the invertibility of A is equivalent to the condition that (q, q) satisfies Assumption A′5.

First assume that A is invertible. It follows that either α2 6= 0 or β2 6= 0 and this yields that the minimum of the orders

of f1 and f2 is 2. By Lemma 46, the multiplicity of the system {P (x1, x2, y) = 0 ∈ Rn−1, (x1, x2) = πC(q)} at q is

equal to 2, thus Assumption A′5 (b) is satisfied. Using the same notation as in the proof of Lemma 47, one can write

f̃1(zn) = z2
n(ξ1(z2

n) + znξ2(z2
n)). Notice that ξ2(x2

n) cannot be the zero function, otherwise f̃1(ε) = f̃1(−ε) and

f̃2(ε) = f̃2(−ε) for all small enough ε > 0, which means that X would be the limit of solutions Xε of Ball(P ) with

ΩP (Xε) ∈ L̂n. X would then be a non-isolated solution and thus a non-regular solution of Ball(P ) which contradicts

the assumption. We then have two cases as in Lemma 47. The first one is when ord(ξ2(zn)) = ∞, that would imply

that α2 = α3 = 0 and contradicts the invertibility of A. We then must satisfy the second case ord(ξ2(zn)) = k <∞

and, after a change of variables, the first equation of the system becomes equivalent to z1−z2k+3
n = 0. The invertibility

of A implies that k = 0. The projection of the curve in the plane is thus locally parametrized by (z3
n, z

2
n) and is an

ordinary cusp, Assumption A′5 (a) is satisfied.

Second, assume that Assumption A′5 is satisfied. By Lemma 46 and Assumption A′5 (b), the minimum of the

orders of f1 and f2 is 2. Using again the proof of Lemma 47, one can assume that f2(zn) = z2
n and f1(zn) = zng(z2

n)

or f1(zn) = z2k+3
n . By Assumption A′5 (a), the projection is an ordinary cusp and thus has a parametrization of the

form (z2
n, z

3
n), that is f1(zn) = z3

n. This implies that A is equivalent to

0 1

1 0

 and hence is invertible.

Lemma 55. If Assumptions A1, A2, A3 and A4, then Assumption A5 is satisfied if and only if Assumption A′5 is

satisfied for all (q1, q2) ∈ L̂ ⊂ B ×B.

Proof. Assume that AssumptionA5 is satisfied and (q1, q2) ∈ L̂. If (q1, q2) ∈ L̂c, then by Lemma 47 and Assumption

A5 we must have that the plane projection of a small enough neighbourhood of q1 in C is an ordinary cusp at πC(q1).

By Assumption A3 and Lemma 8, the multiplicity of the mentioned system at q1 = q2 is two. Thus, (q1, q2) satisfies

Assumption A′5. If (q1, q2) ∈ L̂n, then by Lemma 22 and Assumption A5, we have that πC(q1) is a node in πC(C).

Thus, we have that πC(q1) is a transverse intersection of two smooth branches of πC(C). Those branches are the plane

projections of two disjoint branches of C each of which contains either q1 or q2. Hence, the plane projections of the

tangent spaces of q1 and q2 to C are linearly independent. Thus, (q1, q2) satisfies Assumption A′5.

Assume conversely that A′5 is satisfied for all (q1, q2) ∈ L̂. By Corollary 49, any singular point of πC(C) is the

plane projection of a point q1 ∈ Lc ∪ Ln. For some q2 ∈ C, the pair (q1, q2) is in L̂ (which satisfies Assumption A′5).

Hence, if (q1, q2) is in L̂n (resp. in L̂c) the plane projection of q1 is a node (resp. an ordinary cusp) by Lemma 22

(resp. Lemma 47).

Example 56. Consider n = 4 and let us represent R4 by the variables x, y, z, h. Let B the subset of R4 with

x, y, z ∈ [−1, 4] and h ∈ [− 3π
2 −0.1,−pi2 +0.1]. Define overB the function P1 = x−cos(h)(3+sin4(h))+3, P2 =

y − sin2(h)(3 + sin(2h)), z − h2 and P = (P1, P2, P3).

We can see that JP (q) is full rank for all q ∈ C, thus Assumption A1 is satisfied by P . Moreover, the set Ln

consists of the points corresponding to the values h = −3π
2 , −π2 . Also, the set Lc has a unique point, namely, the
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Figure 4: The plane projection of C.

point corresponding to the value h = −π. Hence, Assumptions A2 and A4 are satisfied. We can also check that

AssumptionsA3 andA5 are satisfied using the Taylor expansion of P1, P2 and P3 centered at the points of Lc and Ln

separately. Thus, P satisfies the assumptions in Section 2. The plane projection of C is a singular curve (Figure 4)

that has one node and one ordinary cusp.

Now, Computing Ball(P ) we get:

S · P1 = x− S · [cos(h)(3 + sin4(h))] + 3 = 0

S · P2 = y − S · [sin2(h)(3 + sin(8h))] = 0

S · P3 = z − h2 − r2
4t = 0

D · P1 = −D · [cos(h)(3 + sin4(h))] = 0

D · P2 = −D · [sin2(h)(3 + sin(8h))] = 0

D · P3 = r3 − 2hr4 = 0

|r|2 − 1 = 0

By Lemma 54, Ball(P ) is regular at its solutions. Hence, we can use a certified numerical solver to check that the

singular points of the plane projection of C are characterized by the solutions of Ball(P ) (Corollary 49).

5. Checking assumptions

In this section we present Semi-algorithm 3 for checking the assumptions of Section 2. This semi-algorithm stops

if and only if all the assumptions are satisfied. The main idea of the semi-algorithm comes from Lemmas 38 and

54. We use interval arithmetic as the main tool (see for example [Neu91, MKC09a]) to represent and compute with

the given functions and matrices like P , Ball(P ), JP or JBall(P ). In Section 5.1, we present the basics of interval

arithmetic with the notation and definitions by Lin and Yap [LY11].

5.1. Interval arithmetic

Recall that for some positive integer k, by a closed (resp. open) k-box B, we mean the Cartesian product of k

closed (resp. open) intervals. The width of a box B, denoted by w(B), is the maximal length of the intervals of
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that product. For a subset A ⊂ Rk, the set IA is the set of all closed k-boxes that are contained in A. For the

positive integer m and a function f : A → Rm, the function �f : IA → IRm is called an inclusion of f if the set

f(B) = {f(x) | x ∈ B} is contained in �f(B), for all B ∈ IA. An inclusion �f of f is called a box function,

if for any descending sequence of closed k-boxes B1 ⊃ B2 ⊃ . . . that converges to a point q ∈ Rk, the sequence

�f(B1) ⊃ �f(B2) ⊃ . . . converges to f(q). In the rest of this section, we assume that we are given a box function

�f for any function f we consider. The command subdivide is applied to a closed k-box B, and it returns the set of

boxes obtained by bisecting B in all dimensions.

An interval matrix �M is a matrix whose coefficients are intervals. It can also be seen as the set of all matrices

whose (i, j)-th coefficients belong to the (i, j)-th interval. The rank of an interval matrix�M , denoted by rank(�M),

is the minimum of the ranks of all the matrices in this set.

5.2. Semi-algorithm

This section is dedicated to prove the following theorem:

Theorem 57. For an open n-box B and a smooth function P from B to Rn−1, Semi-algorithm 3 stops if and only if

P satisfies Assumptions A1, A2, A3, A4 and A5 in B.

To check whether a given function P satisfies Assumptions A1, A2, A3, A4 and A5 in B, we use their relation

to the solutions of Ball(P ) studied in the previous sections. Recall that for any subset A ⊆ Rn, we defined ABall =

{(x1, x2, y, r, t) | t > 0, (x1, x2, y + r
√
t), (x1, x2, y − r

√
t) ∈ A, ‖r‖2 = 1}. Let B be an open n-box and P be a

smooth function from B to Rn−1 that satisfies Assumption A1 in B. Consider the following assumptions:

ℵ1 All solutions of Ball(P ) in BBall are regular.

ℵ2 For every solution X of Ball(P ) in BBall, none of the points of the pair ΩP (X) (Definition 39) is in the

boundary of B.

ℵ3 No two distinct solutions of Ball(P ) in BBall, except the twin solutions (Remark 42), have the same plane

projection.

Lemma 58. Let B be an open n-box and P be a smooth function from B to Rn−1 that satisfies Assumption A1 in B.

Then, Assumptions ℵ1, ℵ2 and ℵ3 are satisfied if and only if Assumptions A2, A3 , A4 and A5 are satisfied in B.

Proof. If AssumptionsA2,A3,A4 andA5 are satisfied inB, then by Theorem 51 we have Assumption ℵ1 is satisfied.

Moreover, by Assumptions A2 and A4 we have that none of L′n, L′c intersects ∂B. By Definition 39, for any solution

X of Ball(P ), we have that the points of the pair ΩP (X) are in L′n ∪ L′c and hence are not in ∂B which implies

that Assumption ℵ2 is satisfied. Assume that Assumption ℵ3 is not satisfied, that is, there exist two distinct non-twin

solutions X,X ′ that have the same plane projection p ∈ R2. Let (q1, q2) = ΩP (X) and (q′1, q
′
2) = ΩP (X ′). By

Lemma 38, the pairs (q1, q2), (q′1, q
′
2) are distinct and the points q1, q2, q

′
1, q
′
2 have the same plane projection p. By

Assumption A3, we cannot have three pairwise distinct points among q1, q2, q
′
1, q
′
2. Moreover, if the multiplicity at all

of the points q1, q2, q
′
1, q
′
2 is one, then (q1, q2), (q′1, q

′
2) are in L̂n and not distinct. Hence, at least a point say q1 has
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multiplicity larger than one, i.e., q1 ∈ Lc (Lemma 8). Hence, the number of solutions counted with multiplicity is at

least three which contradicts Assumption A3. Hence, Assumption ℵ3 is satisfied.

Now, assume that Assumptions ℵ1, ℵ2 and ℵ3 are satisfied. Since, by Assumption ℵ1, Ball(P ) is a regular square

system, its solution set is a zero-dimensional manifold in the compact set BBall(P ) (regular value theorem). Hence,

Ball(P ) has a finite number of solutions in BBall. Since ΩP (Definition 39) is surjective (Lemma 40), the set L̂

(Definition 37) is also finite. Hence, the set Lc ∪ Ln is finite (since Lc ∪ Ln is the image of L̂ under the surjective

function (q1, q2)→ q1). Moreover, by Assumption ℵ2, the set L′n ∪ L′c does not intersects the boundary of B. Hence,

Assumption A2 and A4 are satisfied in B. To prove that Assumption A3 is satisfied, let p = (α, β) ∈ πC(C) and

|π−1(p)| > 3. For pairwise distinct points q1, q2, q3 ∈ π−1(p), by Lemma 38, we have that there exist two distinct

non-twin solutions X,X ′ of Ball(P ), with ΩP (X) = (q1, q2) and ΩP (X ′) = (q1, q3) such that we have the same

plane projection p which contradicts Assumption ℵ3. Hence, π−1
C (p) consists of at most two distinct points. We

consider two cases:

(a) π−1
C (p) has two distinct elements, say q1, q2. By Lemma 38, the pair (q1, q2) is in L̂n, and hence, there exists

a solution X = (α, β, y, r, t) ∈ R × R × Rn−2 × Rn−2 × R of Ball(P ), with t 6= 0 and ΩP (X) = (q1, q2).

Since X is a regular solution (Assumption ℵ1), by Lemma 54 we have that none of q1, q2 is in Lc. Hence, by

Lemma 8, the multiplicity of {P (x1, x2, y) = 0 ∈ Rn−1, x1 − α = x2 − β = 0} at q1 (resp. q2) is one. Thus,

the number of solutions counted with multiplicity is two.

(b) π−1
C (p) has a unique point q. Let m denote the multiplicity of the system {P (x1, x2, y) = 0 ∈ Rn−1, x1 −α =

x2 − β = 0} at q. If m = 1, then we are done. If m > 1, then by Lemma 8 we have that q ∈ Lc. Hence,

there exists a solution of Ball(P ) of the form X = (α, β, y, r, 0) ∈ R × R × Rn−2 × Rn−2 × R such that

ΩP (X) = (q, q) (Lemma 40). Since X is regular (Assumption ℵ1), by Lemma 54 we have that (q, q) satisfies

assumption A′5. In particular, the multiplicity m is equal to two.

Thus, for all p ∈ πC(C) the sum of the multiplicities of the solutions in the system {P (x) = 0 ∈ Rn−1, x1 − α =

x2−β = 0} is at most two, i.e., AssumptionA3 is satisfied. Now, Since AssumptionsA1,A2,A3 andA4 are satisfied

and since all solutions of Ball(P ) are regular, by Theorem 51, we have that Assumption A5 is also satisfied.

Using Lemma 58, we are ready to check Assumptions A2, A3, A4 and A5 using ℵ1, ℵ2 and ℵ3. Since Lemma 58

requires Assumption A1, we start by checking that assumption with Semi-algorithm 1 that is based on subdivision.

Semi-algorithm 1 Checking Assumption A1

Input: An integer n > 2, an open n-box B and a function P from B to Rn−1.

Output: True if and only if P satisfies Assumption A1 in B.

1: L := {B}

2: while L 6= ∅ do

3: B := pop(L)

4: if 0 ∈ �P (B) and rank(�JP (B)) < n− 1 then
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5: Subdivide B and add its children to L.

6: return True.

Lemma 59. Semi-algorithm 1 stops if and only if P satisfies Assumption A1 in B.

Proof. If Semi-algorithm 1 stops, by the conditions in Step (4), the box B is partitioned into two sets of boxes. A set

of boxes that are disjoint with C and the other one is a set of boxes that contain parts of C that satisfy Assumption

A1. Thus, Assumption A1 is satisfied in B. On the other hand, assume that P satisfies Assumption A1 in B and

Semi-algorithm 1 does not stop, then, for every positive real ε there exists a closed box Bε ⊂ B, with w(Bε) < ε such

that the conditions in Step (4) are satisfied in Bε. Consider the infinite chain B 1
1
,B 1

2
,B 1

3
. . . and take qk ∈ B 1

k
,

with qk 6= qk′ for k 6= k′. Since B is compact, then there exists a subsequence of qk that converges to a point on B

say q. Since �P and �JP are box function we must have that P (q) = 0 and rank(JP (q)) < n− 1. Thus, q is a point

in C that does not satisfy Assumption A1 which is a contradiction. Hence, Semi-algorithm 1 stops.

The next step is to check Assumptions ℵ1 and ℵ2. For this goal, we want to find a finite set of pairwise disjoint

boxes in BBall such that every box contains at most one solution of Ball(P ) and the union of these boxes contains

all solutions of Ball(P ) in BBall. Notice that, by the definition of box functions, for a closed (2n − 1)-box U, if

0 6∈ �Ball(P )(U), then U does not contain a solution of Ball(P ), whereas the condition 0 ∈ �Ball(P )(U) does

not necessarily imply that a solution is in U. This is why the set we are going to find might have unnecessary boxes.

However, we will see later that this is enough for our purpose. Before introducing Semi-Algorithm 2, we define the

following functions.

Definition 60. Consider the set R2n−1
t>0 = {(x1, x2, y, r, t) ∈ R× R× Rn−2 × Rn−2 × R | t > 0} and define

f+
Ball : R2n−1

t>0 → Rn

(x1, x2, y, r, t) 7→ (x1, x2, y + r
√
t)

and

f−Ball : R2n−1
t>0 → Rn

(x1, x2, y, r, t) 7→ (x1, x2, y − r
√
t).

Define the function fBall : R2n−1
t>0 → Rn ×Rn that maps X to (f+

Ball(X), f−Ball(X)). Notice that fBall is an extension

of ΩP (Definition 39).

Semi-algorithm 2 Isolating the solutions of Ball(P ) in BBall (under Assumption A1)

Input: An integer n > 2, an open n-box B, a function P from B to Rn−1 such that P satisfies Assumption A1 in B

and a (2n− 1)-closed box U0 that contains BBall (see Remark 63).

Output: (If Semi-algorithm 2 terminates) A finite set of pairwise disjoint (see Remark 61) (2n− 1)-boxes such that

every solution of Ball(P ) in BBall is contained in a box of this set and each box contains at most one solution.
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1: Solutions = ∅.

2: L := {U0}.

3: while L 6= ∅ do

4: U := pop(L).

5: if 0 6∈ �Ball(P )(U) or (�fBall(U)) ∩ (B ×B) = ∅ then

6: Continue.

7: if rank(�JBall(P )(U)) = 2n− 1 and �fBall(U) ⊂ B ×B then

8: Add U to Solutions.

9: else

10: Subdivide U and add its children to L.

11: return Solutions

Remark 61. Notice that the output of Semi-algorithm 2, as described in the algorithmic part, may not be a set of

pairwise disjoint boxes. More precisely, two boxes of the output may intersect in their boundaries if a solution of the

Ball system is on or near their common boundary. To solve this issue, one could use the so-called ε-inflation (see for

instance [Sta95, §5.9.1][Kea97]), but we just sketch a simple method. For every connected component of Solutions

(i.e., an inclusion-wise maximal subset of Solutions such that the union of its boxes is a connected set) that contains

more than one box, we compute the smallest box U
′

that contains this component and we remove the boxes of this

connected component from Solutions. After shifting the grid with a small enough ε > 0, we subdivide U
′

in smaller

boxes and add them to Solutions. We then repeat Semi-algorithm 2 starting from Step (2) such that L is assigned to

the modified set Solutions. We repeat the same process as long as we have a non-empty intersection of two boxes in

Solutions.

We assume that the process described in this remark is part of Semi-algorithm 2.

Lemma 62. Under AssumptionA1 inB, if Semi-algorithm 2 stops, it returns a finite set Solutions of pairwise disjoint

(2n− 1)-boxes such that every solution of Ball(P ) in BBall is contained in a box of this set and each box contains at

most one solution. Moreover, Semi-algorithm 2 stops if and only if Ball(P ) satisfies Assumptions ℵ1, ℵ2 in BBall.

Proof. First let us prove the correctness. Assume that Semi-algorithm 2 stops and Solutions is the output set. Then,

by Remark 61, we have that the boxes in Solutions are pairwise disjoint. Moreover, BBall is covered by a set of boxes

such that every box of this set satisfies:

(a) one of the conditions in Step (5) which implies that no interesting solutions (i.e., that characterize singular points

in πC(C)) are in this box, or

(b) the conditions in Step (7) which guarantee that if a solution X exists in this box, then it is regular and ΩP (X) ∈

B ×B. Thus, X satisfies Assumptions ℵ1 and ℵ2.

Hence, every solution of Ball(P ) in BBall is regular and contained in a box of Solutions. The condition

rank(�JBall(P )(U)) = 2n − 1 guarantees that each box of Solutions contains at most one solution of Ball(P )

[Sny92, Theorem A.1].
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To prove the equivalence, assume that Semi-algorithm 2 stops and returns Solutions. According to the correctness

proof, every solution X of Ball(P ) in BBall is regular and satisfies ΩP (X) ∈ B × B. Thus, Assumptions ℵ1 and ℵ2

are satisfied in BBall.

On the other hand, assume that ℵ1 and ℵ2 hold. We prove that Semi-Algorithm 2 stops in two steps:

Step 1: By Assumption ℵ1 all solutions of the square system Ball(P ) are regular. Hence, they form a zero dimen-

sional manifold in the compact space BBall. Thus, the solution set is finite. Consider U
′

mentioned in Remark 61 that

contains the boxes of a connected component of Solution with more than one box. Notice that if U
′

is in the interior

of BBall, then the boundary of U
′
, shared with the boundary of the connected component, cannot have a solution of

Ball(P ). Otherwise, a neighbour box of the connected component is in Solution which contradicts the maximality of

the connected component. Hence, after changing the grid finitely many times (that is done in the process described

in Remark 61), every solution is contained in the interior of a box in Solution, except those solutions that are in the

boundary of BBall. Thus, after repeating the process in Remark 61 finitely many times, the boxes of Solutions are

pairwise disjoint.

Step 2: We prove that for any box U ∈ L with a small enough width, one of the conditions in Step (5) or the

conditions in Steps (7) are satisfied. Thus, in both cases U will be removed from L, and hence, Semi-algorithm 2 stops

after a finite number of iterations. If a small enough box of L does not contain an interesting solution of Ball(P ), then

it satisfies one of the conditions of Step (5). Let X be a solution of Ball(P ) in BBall. By Assumption ℵ2, we have

fBall(X) ∈ B × B. Hence, by the continuity of fBall there must exist a box U
′ ∈ L (in some iteration of the while-

loop) with a small enough width that containsX and satisfies�fBall(U
′
) ⊆ B×B. By Assumption ℵ1, X is a regular

solution. Assume that for any box U ∈ L that containsX the rank of�JBall(P )(U) is less than 2n−1. Let U1 ⊃ U2 . . .

be a chain of those boxes. Since �JBall(P ) is a box function, we have that limi→∞�JBall(P )(Ui) = JBall(P )(X).

Consider the box function det(�JBall(P )). Notice that det(�JBall(P )(Ui)) converges to det(JBall(P )(X)). However,

0 ∈ det(�JBall(P )(Ui)) for all i ∈ N∗ but det(JBall(P )(X)) 6= 0 (Assumption ℵ1) which contradicts the fact that

det(�JBall(P )(Ui)) is a box function of det(JBall(P )). Thus there exists a box that contains X such that the rank of

�JBall(P ) is 2n− 1.

Thus, For any box in L with a small enough width one of the conditions of Step (5) is satisfied or all of the

conditions in Step (7) are satisfied which proves the lemma. Hence, Semi-algorithm 2 terminates.

Remark 63. Semi-algorithm 2 requires a closed (2n − 1)-box U0 that contains BBall. For instance the follow-

ing set could be used: {(q, r, t) ∈ R2n−1 | q ∈ B,−1 6 ri 6 1 for i ∈ {3, . . . , n}, 0 6 t 6 ξ2

4 } with

ξ = max {‖q − q′‖ | q, q′ ∈ B}.

Finally, using Lemma 58, Semi-algorithm 3 checks whether P satisfies Assumptions A1, A2, A3, A4 and A5 in

B.

Semi-algorithm 3 Checking Assumptions A1, A2, A3, A4 and A5

Input: An open n-box B and a smooth function P from B to Rn−1.

Output: True, if and only if P satisfies Assumption A1, A2, A3, A4 and A5 in B.
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1: Check Assumption A1 (Semi-algorithm 1).

2: Compute a closed (2n− 1)-box U0 that contains BBall (Remark 63).

3: L := the output of Semi-algorithm 2.

4: for all distinct U,U
′ ∈ L do

5: Keep refining U,U
′

until their plane projections are disjoint (ignoring the twin solutions) or it is guaranteed that

one of them has no solution of Ball(P ).

6: return True.

Remark 64. In Step (5), by refining we mean that we subdivide both U and U
′

until one of the mentioned conditions

in Step (5) is satisfied. Analogously to the process described in Remark 61, we can subdivide in such a way that if a

solution of Ball(P ) in U (resp. U
′
) exists, then it is contained in a unique child of U (resp. U

′
).

5.3. Isolation of singularities

If Semi-algorithm 3 stops, L is a set of pairwise disjoint boxes each of which containing at most one solution of

Ball(P ). If a box of L does not intersect the hyperplane t = 0 on its boundary, then an interval existence test such as

Miranda test [X] or the interval Newton operator [Neu91, Section 5.1] can be applied together with further refinements

to conclude whether the box actually contains a solution of Ball(P ) or not. When the box isolates a solution, this so-

lution then projects to a node of the plane curve πC(C). On the other hand, if a box of L intersects the hyperplane

t = 0 on its boundary, since an existence test cannot decide the existence of a solution on the boundary of a box, it

cannot decide whether the box contains a solution of Ball(P ) or not.

One may wish to solve independently the Ball system with the additional constraint t = 0 to identify cusps. Unfor-

tunately, in this case Ball(P ) is an overdetermined system and thus it is difficult to certify its solutions numerically.

However, in the special case of a silhouette curve defined by P (using the notation in Definition 26), if X ∈ BBall,

with t = 0, the equationsD ·Pi(X) = 0 for 1 6 i 6 n−2 imply the equation Pn−1(X) = 0. Moreover, the functions

Pn−1 and S ·Pn−1 coincide for t = 0. Hence, in the set {X ∈ BBall | t = 0}, the system Ball(P ) without the equation

Pn−1(X) = 0 is a square system of 2n − 2 equations. In the case where n = 3, it is proved in [IMP16a, Lemmas 9

& 10] that this system is regular iff the solution projects to an ordinary cusp. However, for n > 3, the regularity of

Ball(P ) is not clear and we leave it as a conjecture.

6. Conclusion

We propose a regular square system that encodes the singularities of the plane projection of a generic curve in

Rn. The genericity of the assumptions is proved via transversality theory. For the silhouette case, the genericity of a

part of the assumptions is proved and we state the missing part as Conjectures 32 & 33. We provide a semi-algorithm

that checks whether a given system satisfies the generic assumptions. The cost of our approach is that the number

of variables is doubled, this is a drawback for subdivision methods that are exponential in the dimension. One way

to overcome this issue is to restrict the search domain for the Ball system. Similarly as in the 3-dimensional case
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[IMP18], the smooth curve in Rn could first be enclosed in a set of boxes by a certified tracking. For the computation

of nodes, the Ball system could then only be solved in the small (2n − 1)-dimensional domains corresponding to

enclosing boxes of the curve that overlap in projection.
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