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Abstract We construct a new Absorbing Boundary Condition (ABC) adapted to solving the
Helmholtz equation in polygonal domains in dimension two. Quasi-continuity relations are ob-
tained at the corners of the polygonal boundary. This ABC is then used in the context of domain
decomposition where various stable algorithms are constructed and analysed. Next, the oper-
ator of this ABC is adapted to obtain a transmission operator for the Domain Decomposition
Method (DDM) that is well suited for broken line interfaces. For each algorithm, we show the
decrease of an adapted quadratic pseudo-energy written on the skeleton of the mesh decompo-
sition, which establishes the stability of these methods. Implementation within a finite element
solver (GMSH/GetDP) and numerical tests illustrate the theory.

Keywords Absorbing Boundary Condition, Domain Decomposition Method, Transmission
Condition, Helmholtz equation, Corners, Time-harmonic

1 Introduction

The analysis of Domain Decomposition Methods (DDM) [11] for time harmonic wave equations
has always received a strong interest from the mathematical community [9,3,25,10] because of
its role for the development of efficient linear solvers [7,30]. Optimized DDM [18,15,5] aim at the
acceleration of these linear solvers in view of applications, and in most contributions optimized
DDM are based on higher order approximations of transmission conditions between subdomains.
Recently, the question of DDM acceleration in combination with a sound treatment of mesh singu-
larities, which are unavoidable for meshes obtained from generic softwares, has gained attraction
[16,17,28]. But as explained in the literature [16,19,26,28,27], optimized DDM and mesh singu-
larities are often in contradiction. Solutions have been proposed [4,6,14] but without a complete
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mathematical justification. In [25] for example, the optimization is based on quasi-local opera-
tors with convenient regularity, but ultimately the problem posed by mesh singularities is not
solved. In [17,19], some results have been proven in the purely discrete case. Therefore, there are
still many issues widely open for a rigorous mathematical treatment of optimized DDMs with
mesh singularities. In particular, we are not aware of any Partial Differential Equations (PDE)
based proof of stability, to which convergence follows, for a DDM with corners, either external
ones on the boundary of the domain or internal ones on the interface between two subdomains,
except the recent contribution [8] in which a completely different approach is used through the
multi-trace formalism.

Note that mesh singularities for a polygonal model domain Ω ⊂ R2 partitioned in non-
overlapping polygonal subdomains Ωi can be classified into corners and cross-points. By corners,
we understand classical corners, either on the boundary ∂Ω of the polygonal domain, or on the
intersection of the boundaries of two different subdomains ∂Ωi and ∂Ωj . By cross-points, we
understand the general situation of internal points on the intersection of the boundaries of three
or more different subdomains ∂Ωi, ∂Ωj , ∂Ωk, . . .

This work contributes to the issue of corners, by studying the mathematical structure of
new optimized DDMs with strong stability properties adapted to corners. Cross-points will be
treated in subsequent work. The reason for this distinction is that the intuition of our treatment
for corners comes naturally from a second order Absorbing Boundary Condition (ABC) with
corners, while the generalization to cross-points will require a different algebraic approach outside
the scope of this article.

The reference problem of this work is, for the above reasons, the propagation of a time-
harmonic wave u in the space R2 generated by a compactly supported source f . It is modeled
by the Helmholtz equation coupled to the Sommerfeld radiation condition at infinity

(−∆− ω2)u = f, in R2,

lim
‖x‖→∞

(
∇u(x) · x

‖x‖
− iωu(x)

)
= O

(
1

‖x‖2

)
.

(1)

To solve (1) using a finite element method, the full propagation domain R2 is truncated. This
can be done for example by defining an artificial boundary Γ that encloses the support of f . In
this paper, Γ is assumed to be a polygon. This assumption is actually natural as the bounded
computational domain Ω ⊂ R2, enclosed by Γ = ∂Ω, will next be meshed with triangles, making
it polygonal anyway. These considerations naturally lead to the Helmholtz equation in a polygonal
bounded domain Ω

(−∆− ω2)u = f. (2)

Conditions at the boundary Γ of the domain must then be prescribed, such as an ABC or a
combination of ABC with hard, soft or Robin boundary conditions. In this work, we focus on a
second order coercive ABC which can be derived from the family described in [13] or in [24]. Let
n and t be the unit normal and tangential vectors to Γ such that the local system (n, t) is direct.
It is well known that the system made of (2) and of the ABC with zero order tangential operator
∂nu− iωu = 0 on Γ is a well-posed problem in H1(Ω). The accuracy of this ABC is restricted to
first order and higher order conditions yield better approximation properties. A classical second
order ABC [23] is ∂nu− iω

(
1 + 1

2ω2 ∂tt
)
u = 0. It is based on a second order tangential operator,

∂tt being the second order tangential derivative along the flat edges of Γ . In the more general
case of a curved boundary, an additional term depending on the curvature radius is introduced
[13]. For mathematical reasons, we need a coercive ABC, and this requirement is not satisfied by
the operator u 7→

(
1 + 1

2ω2 ∂tt
)
u. This is why we consider the modified second order ABC that
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writes (
1 − 1

2ω2 ∂tt

)
∂nu− iωu = 0, (3)

and now the operator ∂nu 7→
(
1 − 1

2ω2 ∂tt
)
∂nu is formally coercive. This operator is defined on

the flat parts of Γ , that is except at corners. The ABC must thus be complemented with corner
conditions [2,21,22]. Now that we have introduced these notions, we can describe the original
contributions of this work:

• In Section 2, we construct corner conditions to complement the ABC (3). We show that the
complemented ABC has a coercive formulation, and derives various natural inequalities. In
particular, a new isometry in Lemma 6 generalizes classical results [9,25]. The well-posedness
of the global problem is stated in Theorem 2.

• In Section 3, we construct two different DDMs, named DDM-1 and DDM-2. Both of them solve
the Helmholtz equation (2) with the complemented ABC, with various levels of decoupling
between the subdomains. As a consequence of the natural inequalities satisfied by the coercive
formulation at the boundary, we show in Lemmas 7, 8 and 13 that the DDMs are endowed
with a skeleton energy which naturally decreases from one iteration to the other. In this work,
this is referred to as the stability of these DDMs: using standard techniques [9,3,25] briefly
recalled in Remark 2, the convergence follows.

• In Section 4, we construct a Transmission Condition (TC) for broken-line interfaces. We show
in Lemma 10 that the new isometry Lemma 6 for the ABC yields the stability of the new
DDM with this TC.

• Some numerical results illustrate the various theoretical properties in our last Section.
• In Appendix A, we explain how to recover curvature effects of the ABC when the polygon

tends to a circle.
• In Appendix B, we present DDM-3, an evolution of algorithm DDM-2 with more decoupling.

Conventions. Our constructive method starts from discrete notations adapted to a general mesh.
The global indices k and ` are reserved for the edges of the exterior boundary. The global indices
i and j are reserved for subdomains of Ω. The local indices r and s are reserved for the edges of
interfaces between two subdomains. Bounds in sums will be omitted or specified depending on
the context to help global understanding. With these notations, a node denoted as Aij

k` belongs
to the intersection of the kth and of the `th edges of Γ , and to the boundaries of the ith and of
the jth subdomains. A subtle distinction will be made by using either the subscripted nk for the
exterior normal to Ω on the kth edge of Γ or the superscripted ni for the exterior normal to Ωi.
The same distinction will be made between the tangent unit vectors tk and ti. The index p will
be used for algorithm iterations. The purely imaginary number is written in bold i2 = −1.

2 A second order ABC with corner treatment

2.1 Geometry and notations

We define the notations which correspond to the edge and corner geometries illustrated in Fi-
gures 1 and 2. On an oriented edge Γk = (ak,bk) of Γ , the unit tangential vector is tk =

bk−ak

‖bk−ak‖ and the unit normal vector is nk = −t⊥
k , its rotation of −π/2. Table 1 summarizes their

coordinates in the local (x, y) frame. At the boundary points ak and bk of Γk, which are corner
points, a unit vector τ k parallel to tk and pointing outside of Γk is introduced.
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bk Γk
ak

τ kτ k

nk

tk

Fig. 1: Edge geometry: normal and tangent vectors nk and tk, and outgoing corner vectors τ k

on a segment Γk = [ak,bk].

ak

Γk

a` = bk

Γl

b`
Ω

nk

tk

τ k

τ kn`

t`

τ `

τ `

θk`

θk`

x

y

x

y

dη
π
2 + η

Fig. 2: Corner geometry: local frame at the intersection of two segments Γk and Γ` with bk =
a` = Ak`.

With these notations, for two segments Γk = (ak,bk) and Γ` = (a`,b`) sharing a common
summit ak = b`, we denote this summit

Ak` = A`k = ak = b`.

The chosen convention is to characterize the angle between two such segments by a negative
value θk` ∈ (−2π, 0), see Figure 2. The geometrically degenerate case θk` = −π will appear
to be a mathematical singularity of some of the formulations in this work. Another singularity
will show up for right angles θk` ∈

{
− π

2 ,−
3π
2
}

in other formulations. A rigorous treatment will
systematically be indicated for each case, and we suggest the reader to set them aside for the
general presentation.



Corners and stable optimized domain decomposition methods for the Helmholtz problem 5

Segment Γk Segment Γ`

nk =
(

cos
(
θk`

2

)
,− sin

(
θk`

2

))
n` =

(
− cos

(
θk`

2

)
,− sin

(
θk`

2

))
τ k =

(
sin
(
θk`

2

)
, cos

(
θk`

2

))
τ ` =

(
− sin

(
θk`

2

)
, cos

(
θk`

2

))
Table 1: Local coordinates of the tangent and normal vectors with respect to the angle θk` for
two intersecting segments Γk and Γ` at bk = a`.

2.2 Quasicontinuity relations

The goal here is to obtain two quasicontinuity relations at a corner point Ak` between two
segments for a plane wave uη with an incident angle π

2 + η as in Figure 2

uη(x) = eiω(dη,x), with dη =
(

cos
(π

2 + η
)
, sin

(π
2 + η

))
= (− sin(η), cos(η)) ∈ R2.

At the intersection point Ak` = A`k, one has the following expressions of the derivatives of uη
∂nk

uη(Ak`) = iω(nk,dη)uη(Ak`),
∂n`

uη(Ak`) = iω(n`,dη)uη(Ak`),
∂τ k

∂nk
uη(Ak`) = −ω2(τ k,dη)(nk,dη)uη(Ak`),

∂τ `
∂n`

uη(Ak`) = −ω2(τ `,dη)(n`,dη)uη(Ak`).

(4)

The scalar products between the direction dη and the normal and tangent vectors of Γk are
(nk,dη) = − cos

(
θk`

2

)
sin(η) − sin

(
θk`

2

)
cos(η) = − sin

(
θk`

2 + η

)
,

(τ k,dη) = − sin
(
θk`

2

)
sin(η) + cos

(
θk`

2

)
cos(η) = cos

(
θk`

2 + η

)
,

while the scalar products between the direction dη and the normal and tangent vectors of Γ` are
(n`,dη) = cos

(
θk`

2

)
sin(η) − sin

(
θk`

2

)
cos(η) = − sin

(
θk`

2 − η

)
,

(τ `,dη) = sin
(
θk`

2

)
sin(η) + cos

(
θk`

2

)
cos(η) = cos

(
θk`

2 − η

)
.

For small η, we outline two linear combinations of uη derivatives (4).We will use these linear
combinations to define quasicontinuity relations.

Lemma 1 Consider a corner point Ak`. For η close to zero, the following relation holds

iω cos(θk`) (∂nk
uη − ∂n`

uη) (Ak`) − cos
(
θk`

2

)
(∂τ k

∂nk
uη − ∂τ `

∂n`
uη) (Ak`) = O

(
η3) . (5)

Proof On the one hand, the difference between the first order derivatives from (4) is

(∂nk
uη − ∂n`

uη)(Ak`) = iω
[
− sin

(
θk`

2 + η

)
+ sin

(
θk`

2 − η

)]
uη(Ak`)

= −2iωη cos
(
θk`

2

)
uη(Ak`) +O

(
η3) .
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On the other hand, the difference between the second order derivatives from (4) is

(∂τ k
∂nk

uη − ∂τ `
∂n`

uη)(Ak`)

= −ω2
[
− cos

(
θk`

2 + η

)
sin
(
θk`

2 + η

)
+ cos

(
θk`

2 − η

)
sin
(
θk`

2 − η

)]
uη(Ak`)

= −ω2
[
−1

2 sin (θk` + 2η) + 1
2 sin (θk` − 2η)

]
uη(Ak`)

= −ω2 [−2 cos (θk`) +O
(
η3)]uη(Ak`) = 2ω2η cos (θk`)uη(Ak`) +O

(
η3) .

Combining these two relations yields the claim.

Lemma 2 For a corner point Ak` and η close to zero, the following relation holds

− iω cos
(
θk`

2

)
(∂nk

uη + ∂n`
uη) (Ak`) + (∂τ k

∂nk
uη + ∂τ `

∂n`
uη) (Ak`) = O

(
η2) . (6)

Proof First, adding the two first order derivatives from (4) gives

(∂nk
uη + ∂n`

uη)(Ak`) = −iω
[
sin
(
θk`

2 + η

)
+ sin(θk`

2 − η)
]
uη(Ak`)

= −2iω sin
(
θk`

2

)
cos(η)uη(Ak`)

= −2iω sin
(
θk`

2

)
uη(Ak`) +O

(
η2) .

Second, adding the two second order derivatives from (4) gives

(∂τ k
∂nk

uη + ∂τ `
∂n`

uη)(Ak`)

= ω2
[
sin
(
θk`

2 + η

)
cos
(
θk`

2 + η

)
+ sin

(
θk`

2 − η

)
cos
(
θk`

2 − η

)]
uη(Ak`)

= ω2
[

1
2 sin (θk` + 2η) + 1

2 sin (θk` − 2η)
]
uη(Ak`)

= ω2 sin (θk`)uη(Ak`) +O
(
η2)

= 2ω2 sin (θk`/2) cos
(
θk`

2

)
uη(Ak`) +O

(
η2) .

The expected relation is obtained by combining the above two equations.

We now introduce the quantity ϕk := 1
iω∂nk

uη on each segment Γk. Rewriting (5) and (6)
using this new variable and dropping the O(η2) and O(η3) terms leads to the second order
quasicontinuity relations

iω cos(θk`) (ϕk − ϕ`) (Ak`) − cos
(
θk`

2

)
(∂τ k

ϕk − ∂τ `
ϕ`) (Ak`) = 0,

−iω cos
(
θk`

2

)
(ϕk + ϕ`) (Ak`) + (∂τ k

ϕk + ∂τ `
ϕ`) (Ak`) = 0.

(7)

For a flat angle θk` = −π, this system corresponds exactly to the continuity relations{
ϕk(Ak`) − ϕ`(Ak`) = 0,

∂τ k
ϕk(Ak`) + ∂τ `

ϕ`(Ak`) = 0.

We now recast these equations to have symmetric relations with repect to k and `. A first
symmetric system of quasicontinuity relations is derived for non-flat corners.
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Lemma 3 Consider a corner point Ak` such that θk` 6= −π. If relations (7) are satisfied then
the following second order quasicontinuity relations are also satisfied

∂τ k
ϕk(Ak`) − iω2

(
cos (θk`)
cos
(

θk`

2
) + cos

(
θk`

2

))
ϕk(Ak`)

= iω2

(
− cos (θk`)

cos
(

θk`

2
) + cos

(
θk`

2

))
ϕ`(Ak`),

∂τ `
ϕ`(Ak`) − iω2

(
cos (θ`k)
cos
(

θ`k

2
) + cos

(
θ`k

2

))
ϕ`(Ak`)

= iω2

(
− cos (θ`k)

cos
(

θ`k

2
) + cos

(
θ`k

2

))
ϕk(Ak`).

(8)

Proof For θk` 6= −π, system (7) is equivalent to
−iω cos(θk`)

cos
(

θk`

2
) (ϕk − ϕ`) (Ak`) + (∂τ k

ϕk − ∂τ `
ϕ`) (Ak`) = 0,

−iω cos
(
θk`

2

)
(ϕk + ϕ`) (Ak`) + (∂τ k

ϕk + ∂τ `
ϕ`) (Ak`) = 0.

The first relation of (8) is obtained by adding these two lines and dividing by 2, and the second
one is obtained by subtracting the first line to the second and dividing by 2.

A family of mixed symmetric systems of quasicontinuity relations parametrized by a coefficient
β 6= 0 can also be constructed, for non right angled corners.
Lemma 4 Consider a corner point Ak` such that θk` 6∈ {− π

2 ,−
3π
2 } and let β 6= 0. If relations

(7) are satisfied then the following second order quasicontinuity relations are also satisfied

(
1 + β

i cos
(

θk`

2
)

ω cos(θk`)

)
∂τ k

ϕk(Ak`) +
(
β − iω cos

(
θk`

2

))
ϕk(Ak`)

=
(

−1 + β
i cos

(
θk`

2
)

ω cos(θk`)

)
∂τ `

ϕ`(Ak`) +
(
β + iω cos

(
θk`

2

))
ϕ`(Ak`),(

1 + β
i cos

(
θ`k

2
)

ω cos(θ`k)

)
∂τ `

ϕ`(Ak`) +
(
β − iω cos

(
θ`k

2

))
ϕ`(Ak`)

=
(

−1 + β
i cos

(
θ`k

2
)

ω cos(θ`k)

)
∂τ k

ϕk(Ak`) +
(
β + iω cos

(
θ`k

2

))
ϕk(Ak`).

(9)

Proof Multiplying the first line of (7) by β
iω cos(θk`) , and adding it to the second line leads to the

first relation of (9). Multiplying by −β
iω cos(θk`) instead gives the second relation. This algebra is

non singular for β 6= 0.
Desingularization near cos(θk`) = 0 and homogeneity considerations lead to take β propor-

tional to ω cos(θk`). For energy reasons explained in the sequel (see Remark 4), the sign of β will
also prescribed. Therefore, we immediately set

β := −|ω| cos(θk`). (10)

We will now consider relations (9) for any angle θk`: when θk` = −π/2 or −3π/2, the relations will
be desingularized beforehand using the expression of β. We note here that there exists previous
works [23,28] treating the specific case of right angles, for which nk and t` are colinear as well
as tk and n`.
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A50

A01A12

A23

A34 A45

Ω
Γ

0 (=
Γ

6 )

Γ1

Γ 2

Γ
3

Γ4

Γ 5
(=
Γ −

1
)

Fig. 3: Example of a polygonal domain Ω with boundary Γ = ∪N−1
k=0 Γk composed of 6 segments.

2.3 Definition of the second order ABC

The boundary Γ :=
⋃K−1

k=0 Γk is assumed to be polygonal and decomposed in K ≥ 3 segments, as
illustrated in Figure 3, with ΓK = Γ0 and Γ−1 = ΓK−1. The segments are numbered consecutively
counter-clockwise and the previous notations are used: on a segment Γk, the normal vector nk

is pointing outside the domain Ω; the tangential vector tk points towards Γk+1 ; and at the two
corners Ak`, for ` = k ± 1, the vectors τ k(Ak`) are tangent to Γk and pointing outside.

For u ∈ L2(Γ ), we define ϕ ∈ ⊕kH
1(Γk) such that, for k = 0, . . . ,K − 1, the quantity

ϕk = ϕ|Γk
is the variational solution of



(
1 − 1

2ω2 ∂tktk

)
ϕk = u, in Γk,

∂τ k
ϕk(Ak`) − iω2

(
cos (θk`)
cos
(

θk`

2
) + cos

(
θk`

2

))
ϕk(Ak`)

= iω2

(
− cos (θk`)

cos
(

θk`

2
) + cos

(
θk`

2

))
ϕ`(Ak`), ` = k ± 1.

(11)

Let ϕ ∈ ⊕kH
1(Γk) be a strong solution of (11). Integrating by parts the equation on each Γk

against the conjugate of ψ ∈ ⊕kH
1(Γk) gives the variational form

∑
k

[∫
Γk

(
ϕkψk + 1

2ω2
∂ϕk

∂tk

∂ψk

∂tk

)
dγ − 1

2ω2

∑
`=k±1

(
∂ϕk

∂τ k
ψk

)
(Ak`)

]
=
∑

k

∫
Γk

uψk dγ. (12)
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The boundary Γ being closed, the corner terms can be regrouped, yielding∑
k

∑
`=k±1

(
∂ϕk

∂τ k
ψk

)
(Ak`) =

∑
k

`=k+1

(
∂ϕk

∂τ k
ψk + ∂ϕ`

∂τ `
ψ`

)
(Ak`).

The quasicontinuity relations (8) verified by ϕ ensure that at Ak`, one has

∂ϕk

∂τ k
ψk + ∂ϕ`

∂τ `
ψ` = 1

2

(
∂ϕk

∂τ k
+ ∂ϕ`

∂τ `

)(
ψk + ψ`

)
+ 1

2

(
∂ϕk

∂τ k
− ∂ϕ`

∂τ `

)(
ψk − ψ`

)
= iω

2

[
cos
(
θk`

2

)
(ϕk + ϕ`)(ψk + ψ`) + cos (θk`)

cos
(

θk`

2
) (ϕk − ϕ`)(ψk − ψ`)

]
.

After substitution in (12), the variational formulation reads
Find ϕ ∈ ⊕kH

1(Γk) such that for every test function ψ ∈ ⊕kH
1(Γk),

a(ϕ,ψ) =
∑

k

∫
Γk

uψk dγ, (13)

where, for (ϕ,ψ) ∈ ⊕kH
1(Γk) × ⊕kH

1(Γk), the sesquilinear form is

a(ϕ,ψ) =
∑

k

∫
Γk

(
ϕkψk + 1

2ω2
∂ϕk

∂tk

∂ψk

∂tk

)
dγ

− i
4ω

∑
k

`=k+1

(
cos
(
θk`

2

)
(ϕk + ϕ`)(ψk + ψ`) + cos (θk`)

cos
(

θk`

2
) (ϕk − ϕ`)(ψk − ψ`)

)
(Ak`).

(14)

Theorem 1 For u ∈ L2(Γ ), there exists a unique solution ϕ ∈ ⊕kH
1(Γk) of the variational

formulation (13).

Proof The well posedness of problem (13) amounts to show that a given system of linear ordinary
differential equations admits a unique solution: since it is ODE based, it can be reduced to a
finite dimensional system, and it is sufficient to prove uniqueness of the solution to obtain well-
posedness.

Take ψ = φ in (13). The real part verifies

∑
k

∫
Γk

(
|ϕk|2 + 1

2ω2

∣∣∣∣∂ϕk

∂tk

∣∣∣∣2
)

dγ = Re
(∑

k

∫
Γk

uϕk dγ
)
,

implying that

‖ϕ‖2
L2(Γ ) + 1

2ω2

∑
k

∥∥∥∥∂ϕk

∂tk

∥∥∥∥2

L2(Γk)
≤ ‖ϕ‖L2(Γ ) ‖u‖L2(Γ ) .

Taking u = 0 leads to ϕ = 0, which proves the uniqueness of the variational solution for u ∈
L2(Γ ), and therefore its existence.

We now define the operator

T : u ∈ L2(Γ ) 7−→ Tu = ϕ ∈ L2(Γ ),

where ϕ is the unique solution to (13) for a given u ∈ L2(Γ ).
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Proposition 1 The operator T satisfies the bound ‖T‖L(L2(Γ )) ≤ 1.

Proof For u ∈ L2(Γ ) and ϕ = Tu ∈ ⊕kH
1(Γk) ⊂ L2(Γ ), one has

(Tu, Tu)L2(Γ ) =
∑

k

∫
Γk

(
−1
2ω2

∣∣∣∣∂ϕk

∂tk

∣∣∣∣2 + Re(uϕk)
)

dγ ≤ Re (u, Tu)L2(Γ ) , (15)

and consequently ‖T‖L(L2(Γ )) = inf
u∈L2(Γ )

‖T u‖L2(Γ )
‖u‖L2(Γ )

≤ 1.

Remark 1 Starting from the sesquilinear form a∗(ϕ,ψ) = a(ψ,ϕ), one defines in a similar way
an operator S. It is a standard property that S = T ∗ is the adjoint operator of T with respect to
space L2(Γ ). Indeed, one has by definition that a(Tu, Sv) = (u, Sv)L2(Γ ) and that a∗(Sv, Tu) =
(v, Tu)L2(Γ ). Therefore, for all u, v ∈ L2(Γ )

(Tu, v)L2(Γ ) = (v, Tu)L2(Γ ) = a∗(Sv, Tu) = a(Tu, Sv) = (u, Sv)L2(Γ )

which shows that S = T ∗ as an L2(Γ ) operator.

The operator T is now used as a second order ABC for the Helmholtz equation (2) to obtain{
(−∆− ω2)u = f in Ω,
∂nu− iωTu = g on Γ.

(16)

The associated weak formulation writesFind u ∈ H1(Ω) such that for all v ∈ H1(Ω),∫
Ω

(
∇u · ∇v − ω2uv

)
dx − iω

∫
Γ

Tuv dγ =
∫

Ω

fv dx +
∫

Γ

gv dγ. (17)

Theorem 2 There exists a unique solution to the variational problem (17).

Proof Classical methods based on a coercive plus compact decomposition, Fredholm alternative,
and a unique continuation principle, yield the existence and uniqueness of the variational solution
u ∈ H1(Ω). The key step is the uniqueness of the solution. For f = 0 and g = 0 in (17),
inequality (15) yields Tu = 0 and consequently, due to (16), the normal derivative ∂nu also
vanishes. Moreover, the variational definition (13) of ϕ = Tu implies that u actually vanishes on
Γ . Since ∂nu = 0 and u = 0 on Γ , one can invoke a unique continuation principle to get u = 0
in Ω. Technical details are left to the reader.

2.4 Two technical lemmas

We detail two lemmas which summarize important properties of the operator T , that will be of
substantial importance in Section 4.

Lemma 5 The operator T + T ∗ is self-adjoint and positive.

Proof The self-adjoint property is straightforward. Let us now show the positiveness. For any
u ∈ L2(Γ ), the following relation holds

((T + T ∗)u, u)L2(Γ ) = 2 Re (u, Tu)L2(Γ ) = 2 Re [a (Tu, Tu)]

= 2
(

‖Tu‖2
L2(Γ ) + 1

2ω2

∑
k

‖∂tk
Tu‖2

L2(Γ )

)
≥ 0.
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If u ∈ L2(Γ ) is such that (T + T ∗)u = 0, then necessarily Tu = 0 and, for all ψ ∈ ⊕kH
1(Γk)

0 = a (Tu, ψ) = (u, ψ)L2(Γ ) ,

which implies that u = 0.
The operator T +T ∗ is also compact in L2(Γ ), and therefore admits a spectral decomposition

(T + T ∗)un = λnun, ‖un‖L2(Γ ) = 1, where span{un} = L2(Γ ). The eigenvalues satisfy 2 ≥ λn ≥
λn+1 > 0 and λn converges towards zero as n goes to infinity. This leads us to the definition of
the L2(Γ ) subspace

H1
T (Γ ) :=

{
g ∈ L2(Γ ), |||g||| < ∞

}
,

equipped with the norm

|||g|||2 :=
∑
n≥0

|gn|2

λn
, with gn = (g, un)L2(Γ ) .

For g ∈ H1
T (Γ ), one has |||g|||2 =

∥∥(T + T ∗)−1/2g
∥∥2

L2(Γ ). The scalar product associated with the

norm |||·||| is denoted by (g, h)|||·||| =
∑

n
gnhn

λn
.

Definition 1 Let T : L2(Γ ) → L2(Γ ) be the operator such that for g ∈ L2(Γ ),

T g = ∂nu+ iωT ∗u,

where u is the weak solution of (16) with f = 0.
The following lemma describes an interesting algebraic property which generalizes the classical

one for T = I [9,3] and the generalized one where T is quasilocal with convenient regularity [25].
The algebraic property has the form of an isometry lemma which fundamentally expresses that
a specific norm of ∂nu + iωT ∗u is equal to the one of ∂nu − iωTu. It can be interpreted as a
generalized scattering identity for operators T 6= T ∗.
Lemma 6 For all g ∈ H1

T (Γ ), one has the identity |||g||| = |||T g|||.
Proof First we show that T is a bounded operator in H1

T (Γ ). Let u ∈ H1(Ω) be the weak solution
of (16) with f = 0 and g ∈ H1

T (Γ ). It follows that

T g = ∂nu+ iωT ∗u = g + iω(T + T ∗)u.

The quantity (T + T ∗)u belongs to H1
T (Γ ) since we have

|||(T + T ∗)u|||2 =
∑
n≥0

1
λn

∣∣∣((T + T ∗)u, un)L2(Γ )

∣∣∣2 =
∑
n≥0

1
λn

∣∣∣(u, λnun)L2(Γ )

∣∣∣2 =
∑
n≥0

λn

∣∣∣(u, un)L2(Γ )

∣∣∣2 ,
and thus |||(T + T ∗)u|||2 ≤ 2 ‖u‖2

L2(Γ ). Second, the following relations are satisfied

|||T g|||2 − |||g|||2 = |||g + iω(T + T ∗)u|||2 − |||g|||2

= 2 Re (g, iω(T + T ∗)u)|||·||| + ω2|||(T + T ∗)u|||2

= 2 Re (g, iωu)L2(Γ ) + ω2|||(T + T ∗)u|||2

= 2 Re (∂nu− iωTu, iωu)L2(Γ ) + ω2|||(T + T ∗)u|||2

= 2 Re (∂nu, iωu)L2(Γ ) − 2ω2 Re (Tu, u)L2(Γ ) + ω2|||(T + T ∗)u|||2

= 2 Re (∂nu, iωu)L2(Γ ) + ω2
(

|||(T + T ∗)u|||2 − Re ((T + T ∗)u, u)L2(Γ )

)
.

The first term vanishes since u is a solution of the homogeneous Helmholtz equation. The re-
maining terms cancel due to the identity above.
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3 Two DDMs using the 2nd order ABC

This Section is dedicated to the proof that problem (16), where the boundary operator is global,
can be solved using two iterative DDM algorithms. The difference between these algorithms is
the level of decoupling between the subdomains. Both methods are shown to be convergent using
a technique based on a suitable quadratic energy defined on the skeleton of the mesh [9]. Using
a comparison argument between the iterative solution of the DDM and the exact solution, it
will be shown that the quadratic energy is decreasing by a factor which controls the solution at
the boundary Γ . This stability property is sufficient to show the convergence of the DDM using
propagation techniques explained in [9,3,25]. In this work we concentrate on the essential part
which concerns the stability of the quadratic energy.

We consider a decomposition of Ω into subdomains Ωi for 0 ≤ i ≤ Ndom − 1 with Ndom ≥ 2
the total number of subdomains. The exterior normal to a subdomain Ωi is ni.

3.1 DDM-1

A natural DDM writes: for all subdomains, initialize u0
i ∈ H1(Ωi) with square integrable normal

derivatives and iterate for p = 0, 1, . . .
(−∆− ω2)up+1

i = f, in Ωi,

(∂ni − iω)up+1
i = − (∂nj + iω)up

j , on ∂Ωi ∩ ∂Ωj ,∀j 6= i,

∂nu
p+1
i = iωT (up+1), on ∂Ωi ∩ Γ.

(18)

The third line of equation (18) couples every ui together and makes this algorithm non-local. We
define the following energy

Ep :=
Ndom−1∑

i=0

∫
∂Ωi\Γ

|(∂ni − iω)up
i |2 dγ.

This quantity is well defined since iterating on p ensures that the normal derivatives of up
i are

square integrable provided the normal derivatives of u0
i are square integrable.

Lemma 7 The algorithm (18) is stable. For f = 0, it has decreasing energy

Ep+1 ≤ Ep − 4ω2 ‖up‖2
L2(Γ ) .

Proof One has by definition

Ep+1 =
Ndom−1∑

i=0

∫
∂Ωi\Γ

∣∣∣(∂ni − iω)up+1
i

∣∣∣2 dγ =
Ndom−1∑

j=0

∫
∂Ωj\Γ

∣∣(∂nj + iω)up
j

∣∣2 dγ.

Algebraic manipulations and an integration by parts on the closed border ∂Ωi give

Ep+1 =
Ndom−1∑

j=0

∫
∂Ωj\Γ

∣∣(∂nj − iω)up
j

∣∣2 dγ + 4 Re
Ndom−1∑

j=0

∫
∂Ωj\Γ

∂up
j

∂nj
iωup

j dγ
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=
Ndom−1∑

j=0

∫
∂Ωj\Γ

∣∣(∂nj − iω)up
j

∣∣2 dγ

− 4 Re
Ndom−1∑

j=0

(∫
∂Ωj

iω∂nj

(
|up

j |2

2

)
dγ +

∫
∂Ωj∩Γ

∂up
j

∂nj
iωup

j dγ
)

=
Ndom−1∑

j=0

∫
∂Ωj\Γ

∣∣(∂nj − iω)up
j

∣∣2 dγ − 4 Re
Ndom−1∑

j=0

∫
∂Ωj∩Γ

∂up
j

∂nj
iωup

j dγ.

From (15), the boundedness of T and from the boundary condition on ∂Ωi ∩ Γ , it follows that

Ep+1 = Ep − 4ω2 Re (T (up), up)L2(Γ ) ≤ Ep − 4ω2 ‖T (up)‖2
L2(Γ ) = Ep − 4 ‖up‖2

L2(Γ ) ,

and the claim is proven.

Remark 2 We detail here how convergence follows from this inequality. First, one has

Ep + 4ω2
p−1∑
n=0

‖un‖2
L2(Γ ) ≤ E0

and this is enough to show the convergence of the trace on the boundary ‖un‖L2(Γ ) →
n

0.
Second, a propagation technique based on the unique continuation principle [9,3,25] yields the
H1 convergence to zero in Ω.

Nevertheless, this method lacks an original asset of DDMs: decoupling between local problems.
Indeed, since the operator T is non-local, see (13), all subdomains Ωi such that ∂Ωi ∩ Γ 6= 0 are
coupled through the ABC.

3.2 DDM-2: subdomains decoupled

To restore the full-decoupling between subdomains, we start by noticing that the coupling be-
tween boundary subdomains is due to the corner conditions (11) which define the operator T .
Since this operator is constructed through the solution of a differential form on the boundary,
it is possible to decouple the subdomains using another level of DDM for the problem on the
boundary.

We start by introducing the notations in line with Figure 4. Each corner Aij
k` is indexed by k

and `, as before, to know at the intersection of which edges of Γ it corresponds, and by i and j to
know at the intersection of which subdomains it lies. The intersection of a subdomain’s border
∂Ωi and of an exterior edge Γk is noted Γ i

k := ∂Ωi ∩Γk. It can either be empty or be a segment.
It is convenient to introduce the partition of nodes ∂Γ i

k = Ci
k ∪ F i

k. The first set Ci
k contains the

endpoints of Γ i
k that are endpoints of Γk (and thus, corners of Γ ), and the second set F i

k contains
the endpoints of Γ i

k that are interior points of Γk (and thus, flat points of Γ ). They write

Ci
k := {Aij

k` = Γ i
k ∩ Γ j

` ,∀j, ∀` 6= k} and F i
k := {Bij

k = Γ i
k ∩ Γ j

k ,∀j}.

In the case where Γ i
k = ∅, which is frequent, we set by convention Ci

k = ∅ and F i
k = ∅.

An auxiliary unknown ϕi,k is introduced on each segment Γ i
k, which stands for the local value

of the global quantity Tu. Algorithm (18) is adapted as follows. For all subdomains, initialize
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Fig. 4: Example of a hexagonal domain with two subdomains.

u0
i ∈ H1(Ωi) with square integrable normal derivatives, and (ϕ0

i,k)k ∈ ⊕kH
1(Γ i

k). Then, for
p = 0, 1, . . . , solve for each subdomain


(−∆− ω2)up+1

i = f, in Ωi,

(∂ni − iω)up+1
i = − (∂nj + iω)up

j , on ∂Ωi ∩ ∂Ωj ,∀j 6= i,

∂niup+1
i = iωϕp+1

i,k , on Γ i
k,∀k,

(19)



(
1 − 1

2ω2 ∂tktk

)
ϕp+1

i,k (x) = up+1
i (x), x ∈ Γ i

k,((
1 + iβ

ω

cos
(

θk`

2
)

cos θk`

)
∂ϕp+1

i,k

∂τ k
+
(
β − iω cos

(
θk`

2

))
ϕp+1

i,k

)
(Aij

k`)

=
((

−1 + iβ
ω

cos
(

θk`

2
)

cos θk`

)
∂ϕp

j,`

∂τ `
+
(
β + iω cos

(
θk`

2

))
ϕp

j,`

)
(Aij

k`), ∀Aij
k` ∈ Ci

k,

(∂τ k
+ iβ)ϕp+1

i,k (Bij
k ) = (−∂τ k

+ iβ)ϕp
j,k(Bij

k ), ∀Bij
k ∈ F i

k.

(20)

Remark 3 As stated in Section 2, the singularity β
cos(θk`) for θk` = − π

2 ,−
3π
2 is artificial. It is

systematically removed by taking β = −|ω| cos(θk`), see (10).

The resolution of (19)-(20) can be done in parallel for all subdomains by solving local problems
in Ωi ×

(
⊕kΓ

i
k

)
with unknowns (up+1

i , (ϕp+1
i,k )k). Once again, we prove the algorithm is endowed
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to a decreasing energy for f = 0. This energy is defined by

F p :=
Ndom−1∑

i=0

(∫
∂Ωi\Γ

|(∂ni − iω)up
i |2 dγ

+
K−1∑
k=0

Aij
k`

∈Ci
k

1

2β
(

1 −
cos2
(

θk`
2

)
cos θk`

) ∣∣∣∣∣
(

1 + iβ
ω

cos
(

θk`

2
)

cos θk`

)
∂ϕp

i,k

∂τ k
+
(
β − iω cos

(
θk`

2

))
ϕp

i,k

∣∣∣∣∣
2

(Aij
k`)

+
K−1∑
k=0

Bij
k

∈Fi
k

1
2ω

∣∣∣∂τ k
ϕp

i,k + ωϕp
i,k

∣∣∣2 (Bij
k )
)
.

Remark 4 We explain here the choice for the sign of β: it is determined by the non negativity
of energy F p. For β = b ω cos θk`, the denominator on the second line of the definition of F p

rewrites

2β
(

1 −
cos2 ( θk`

2
)

cos θk`

)
= 2bω

(
cos2

(
θk`

2

)
− 1
)

= −2bω sin2
(
θk`

2

)
,

and is positive for b signω < 0. Therefore, we take b := − signω and it justifies the choice
β = −|ω| cos θk` introduced previously.

Lemma 8 The algorithm (19)-(20) is stable. For f = 0, it has decreasing energy

F p+1 = F p − 2
Ndom−1∑

j=0

K−1∑
`=0

∫
Γ j

`

(
2ω2|ϕp

j,`|
2 + |∂t`

ϕp
j,`|

2
)

dγ.

Proof Using the definition of the energy F p+1 and of the quantities up+1
i and ϕp+1

i,k , it gives

F p+1 =
Ndom−1∑

i=0


∫

∂Ωi\Γ

∣∣∣(∂ni − iω)up+1
i

∣∣∣2 dγ +
K−1∑
k=0

Bij
k

∈Fi
k

1
2ω

∣∣∣ωϕp+1
i,k + ∂τ k

ϕp+1
i,k

∣∣∣2 (Bij
k )

+
K−1∑
k=0

Aij
k`

∈Ci
k

1
2|ω| sin2 ( θk`

2
) ∣∣∣∣∣
(

1 + iβ
ω

cos
(

θk`

2
)

cos θk`

)
∂ϕp+1

i,k

∂τ k
+
(
β − iω cos

(
θk`

2

))
ϕp+1

i,k

∣∣∣∣∣
2

(Aij
k`)



=
Ndom−1∑

j=0


∫

∂Ωj\Γ

∣∣(∂nj + iω)up
j

∣∣2 dγ +
K−1∑
`=0

Bij
`

∈Fj
`

1
2ω

∣∣∣ωϕp
j,` − ∂τ `

ϕp
j,`

∣∣∣2 (Bij
` )

+
K−1∑
`=0

Aij
k`

∈Cj
`

1
2|ω| sin2 ( θk`

2
) ∣∣∣∣∣
(

−1 + iβ
ω

cos
(

θk`

2
)

cos θk`

)
∂ϕp

j,`

∂τ `
+
(
β + iω cos

(
θk`

2

))
ϕp

j,`

∣∣∣∣∣
2

(Aij
k`)


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The integrals on the boundary are treated as in the proof of Lemma 7. One has
Ndom−1∑

j=0

∫
∂Ωj\Γ

∣∣(∂nj + iω)up
j

∣∣2 dγ =
Ndom−1∑

j=0

∫
∂Ωj\Γ

∣∣(∂nj − iω)up
j

∣∣2 dγ − 4
Ndom−1∑

j=0
Re

∫
∂Ωj∩Γ

∂up
j

∂nj
iωup

j .

For the terms concerning the non flat corners Aij
k`, similar algebraic relations yield

K−1∑
`=0

Aij
k`

∈Cj
`

1
2|ω| sin2 ( θk`

2
) ∣∣∣∣∣
(

−1 + iβ
ω

cos
(

θk`

2
)

cos θk`

)
∂ϕp

j,`

∂τ `
+
(
β + iω cos

(
θk`

2

))
ϕp

j,`

∣∣∣∣∣
2

(Aij
k`)

=
K−1∑
`=0

Aij
k`

∈Cj
`

1
2|ω| sin2 ( θk`

2
) ∣∣∣∣∣
(

1 + iβ
ω

cos
(

θk`

2
)

cos θk`

)
∂ϕp

j,`

∂τ `
+
(
β − iω cos

(
θk`

2

))
ϕp

j,`

∣∣∣∣∣
2

(Aij
k`)

− 4 Re
K−1∑
`=0

Aij
k`

∈Cj
`

1
2|ω| sin2 ( θk`

2
) ( iβ

ω

cos
(

θk`

2
)

cos θk`

∂ϕp
j,`

∂τ `
+ βϕp

j,`

)(
∂ϕp

j,`

∂τ `
− iω cos

(
θk`

2

)
ϕp

j,`

)
(Aij

k`)

=
K−1∑
`=0

Aij
k`

∈Cj
`

1
2|ω| sin2 ( θk`

2
) ∣∣∣∣∣
(

1 + iβ
ω

cos
(

θk`

2
)

cos θk`

)
∂ϕp

j,`

∂τ `
+
(
β − iω cos

(
θk`

2

))
ϕp

j,`

∣∣∣∣∣
2

(Aij
k`)

− 4 Re
K−1∑
`=0

Aij
k`

∈Cj
`

1
2|ω| sin2 ( θk`

2
) (ib cos

(
θk`

2

)
∂ϕp

j,`

∂τ `
+ bω cos θk`ϕ

p
j,`

)(
∂ϕp

j,`

∂τ `
− iω cos

(
θk`

2

)
ϕp

j,`

)
(Aij

k`)

=
K−1∑
`=0

Aij
k`

∈Cj
`

1
2|ω| sin2 ( θk`

2
) ∣∣∣∣∣
(

1 + iβ
ω

cos
(

θk`

2
)

cos θk`

)
∂ϕp

j,`

∂τ `
+
(
β − iω cos

(
θk`

2

))
ϕp

j,`

∣∣∣∣∣
2

(Aij
k`)

− 2 Re
K−1∑
`=0

Aij
k`

∈Cj
`

∂ϕp
j,`

∂τ `
(Aij

k`)ϕ
p
j,`(A

ij
k`).

Similarly, for the flat corners Bij
` , one has

K−1∑
`=0

Bij
`

∈Fj
`

1
2ω

∣∣∣ωϕp
j,` − ∂τ `

ϕp
j,`

∣∣∣2 (Bij
` ) =

K−1∑
`=0

Bij
`

∈Fj
`

1
2ω

∣∣∣ωϕp
j,` + ∂τ `

ϕp
j,`

∣∣∣2 (Bij
` )

− 2 Re
K−1∑
`=0

Bij
`

∈Fj
`

∂ϕp
j,`

∂τ `
(Bij

` )ϕp
j,`(B

ij
` ).

Therefore, it holds that

F p+1 = F p − 4 Re
Ndom−1∑

j=0

∫
∂Ωj∩Γ

∂up
j

∂nj
iωup

j dγ − 2 Re
Ndom−1∑

j=0

∑
`

A∈Cj
`

∪Fj
`

∂ϕp
j,`

∂τ `
(A)ϕp

j,`(A).
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It remains to manipulate the two last terms. It follows from (19) that for all j∫
∂Ωj∩Γ

∂up
j

∂nj
iωup

j dγ =
K−1∑
`=0

∫
Γ j

`

∂up
j

∂nj
iωup

j dγ =
K−1∑
`=0

∫
Γ j

`

ω2ϕp
j,`u

p
j dγ.

Integrating by parts the equation from (20) at iteration p on Γ j
` against ϕp

j,` and taking the sum
over all subdomain and edge indices j and ` yields

Ndom−1∑
j=0

K−1∑
`=0

∫
Γ j

`

|ϕp
j,`|

2 + 1
2ω2

∣∣∣∣∣∂ϕ
p
j,`

∂t`

∣∣∣∣∣
2
 dγ − 1

2ω2

∑
A∈Cj

`
∪Fj

`

∂ϕp
j,`

∂τ `
(A)ϕp

j,`(A)


=

Ndom−1∑
j=0

K−1∑
`=0

∫
Γ j

`

up
jϕ

p
j,` dγ.

Therefore F p+1 = F p − 4
Ndom−1∑

j=0

K−1∑
`=0

∫
Γ j

`

ω2|ϕp
j,`|

2 + 1
2

∣∣∣∣∣∂ϕ
p
j,`

∂t`

∣∣∣∣∣
2
 dγ and the proof is ended.

Algorithm (19)-(20) has the advantage of restoring a full-decoupling with respect to the
subdomains. There remains some coupling between up+1

i and (ϕp+1
i,k )k since in the DDM defining

up+1
i , it is imposed that ∂niup+1

i = iωϕp+1
i,k on each Γ i

k, and that at the same time, in the DDM
defining ϕp+1

i,k , it is imposed that ϕp+1
i,k − ∂tktk

ϕp+1
i,k /(2ω2) = up+1

i on Γ i
k. Decoupling the systems

(19) and (20) is possible using another level of DDM, and allows to solve the equation on up+1
i as

a classical Helmholtz boundary value problem. This new method introduces new unknowns and
complicates the expression of the energy, but does not require any new mathematical concept,
see DDM-3 in Appendix B.

4 A DDM with transmission conditions for corners

Based on the decreasing energy endowed ABC derived previously, our goal is now to generalize
the corner approach to the definition of transmission conditions for subdomains with broken line
interfaces. This situation is often encountered in applications, when using a mesh generator for
example. A first difference is that a 2nd order ABC is a model for radiation condition while a
2nd order TC is essentially a preconditioning of the continuity conditions

ui − uj = 0 and ∂ui

∂ni
+ ∂uj

∂nj
= 0 on ∂Ωi ∩ ∂Ωj . (21)

A second difference is that the reformulation of (21) must be localized on interfaces to be com-
patible with the notion of DDM.

To do so, we define local operators Rij and Rji defined on ∂Ωi ∩ ∂Ωj and we replace the
continuity relations (21) by{ (∂ni − iωRij)ui = − (∂ni + iωRij)uj ,

(∂nj − iωRji)uj = − (∂nj + iωRji)ui.

To construct operators Rij and Rji, we start from the same second order differential relation as
for the ABC (

1 − 1
2ω2 ∂tt

)
∂nu = iωu
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and incorporate different features, as boundary conditions for the operator ∂tt, so as to construct
Rij ≈

(
1 − 1

2ω2 ∂tt
)−1. An originality of our construction with respect to the literature [25,28,

30] is that Rij 6= Rji if the angle at the corner is non trivial. However we will see that Rji = R∗
ij

by construction and using the new isometry Lemma 6, it is the cornerstone of the mathematical
justification of this construction. We recall that we adopt in this work the distinction between
corners and cross-points which is common in the literature (see for example [26]). Whenever an
endpoint of a segment lies on the interface of two subdomains only or is an angular point of the
exterior boundary, we call it a corner. All the other endpoints are called cross-points, and lie on
the interfaces of at least three subdomains. We remind the reader that we only consider in this
work subdomain decompositions that do not contain cross-points.

4.1 Description of the interfaces

We consider polygonal subdomains Ωi for i = 0, . . . , Ndom − 1, and introduce the notations
corresponding to Figure 5. Two adjacent subdomains Ωi and Ωj share a broken-line interface
∆ij = ∆ji = ∂Ωi ∩ ∂Ωj in common. The broken line ∆ij is composed of mij segments ∆ij =
∪mij−1

r=0 ∆ij
r , for mij ≥ 1. If mij = 1, the interface is a straight line, and the extremities lie

on the global boundary Γ . Otherwise, the interface is a broken line, and in addition to the
extremities, there are corner points that belong to ∆ij . In that second case, the segments ∆ij

r

are numbered consecutively in the counter-clockwise order according to Ωi. Inverting the roles
of i and j, the relation ∆ji

r = ∆ij
mij−1−r thus holds. As in the previous section, it is convenient

to introduce a partition of nodes ∂∆ij
r = Cij

r ∪ N ij
r . Indeed, since cross-point are discarded from

our configuration, a segment ∆ij
r can have two types of endpoints: they are either corner points

of ∆ij and belong to ∆ij
r ∩ ∆ij

s for given r and s, or lie on the boundary Γ , The first category
forms the set Cij

r and the second category forms the set N ij
r :

Cij
r :=

{
Qij

rs = ∆ij
r ∩∆ij

s ,∀s 6= r
}
, N ij

r :=
{

P = ∆ij
r ∩ Γ

}
.

At a corner Qij
rs, we define θij

rs ∈ (−2π, 2π)\{0} the angle from ∆ij
r to ∆ij

s . The degenerate cases
θij

rs = ±π are set aside as they correspond to flat corners. Exchanging the roles of i and j, the
following relation holds:

θij
rs = −2π − θji

mij−1−s,mij−1−r ∈ (−2π, 2π) \ {−π, 0, π}. (22)

Once again, on the flat parts of ∆ij , ti is the counter-clockwise oriented tangent vector to Ωi

and ni = (ti)⊥ is the outgoing normal vector. By construction, one has ti = −tj and ni = −nj .
At the endpoints of a segment ∆ij

r , τ i
r is the tangential vector pointing outwards, see Figure 2.

4.2 Adapting the corner strategy for ABC to define a TC

The design principle of the new TC is to adopt a form that writes with a new operator Rij

∂up+1
i

∂ni
− iωRiju

p+1
i = −

∂up
j

∂nj
− iωRiju

p
j , on ∆ij . (23)

Many operators fall into this setting [25]. The original idea here is to mimic the 2nd order corner-
based ABC from (18) to treat the Cij

r corners. We will use homogeneous Neumann boundary
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Fig. 5: Example of a Ndom = 2 subdomain decomposition with a mij = 4 segments broken-line
interface.

conditions for the N ij
r nodes. For an unknown ϕi,r defined on ∆ij

r for 0 ≤ r ≤ mij − 1 and fixed
0 ≤ i ≤ Ndom − 1, we adapt relations (8) to get



∂τ i
r
ϕi,r(Qij

rs) − iω
2

(
cos(θij

rs)
cos( θij

rs

2 )
+ cos

(
θij

rs

2

))
ϕi,r(Qij

rs)

= iω
2

(
− cos(θij

rs)
cos( θij

rs

2 )
+ cos

(
θij

rs

2

))
ϕi,s(Qij

rs), ∀Qij
rs ∈ Cij

r ,

∂τ i
r
(P) = 0, ∀P ∈ N ij

r .

(24)

The quantities are well defined as cos
(

θij
rs

2

)
6= 0 since θij

rs 6= ±π. The above system yields
2(mij − 2) linear relations for ∪rCij

r , which we will use below.

Remark 5 Relation (22) implies that cos
(

θij
rs

2

)
= − cos

(
θji

mij −1−s,mij −1−r

2

)
and cos

(
θij

rs

)
=

cos
(
θji

mij−1−s,mij−1−r

)
. Therefore, writing (24) for Ωj instead of Ωi comes down to taking the

conjugate of each coefficient.

We then define operator Rij , which replicates the variational formulation (13), but in a
different geometric setting and with a different functional space. Instead of Γ and ⊕kH

1(Γk) for
k = 0, . . . ,K − 1, we consider ∆ij and the space ⊕rH

1(∆ij
r ) for r = 0, . . . ,mij − 1.
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Definition 2 Let Rij : L2(∆ij) → L2(∆ij) be the boundary operator such that, for u ∈ L2(∆ij),
Rij(u) = ϕ ∈ ⊕rH

1(∆ij
r ), where ϕr = ϕ|∆ij

r
, is the unique variational solution of

Find ϕ ∈ ⊕rH
1(∆ij

r ) such that for all ψ ∈ ⊕rH
1(∆ij

r ),
mij−1∑

r=0

∫
∆ij

r

(
ϕrψr + 1

2ω2
∂ϕr

∂ti

∂ψr

∂ti

)
dγ

− i
4ω

mij−2∑
r=0

s=r+1

cos
(
θij

rs

2

)
(ϕr + ϕs)

(
ψr + ψs

)
+ cos(θij

rs)
cos
(

θij
rs

2

) (ϕr − ϕs)
(
ψr + ψs

) (Qij
rs)

=
mij−1∑

r=0

∫
∆ij

r

uψr dγ.

We now write the DDM algorithm. Initialize u0
i ∈ H1(Ωi) with square integrable derivatives

in each subdomain. Then, for p = 0, 1, . . ., solve for each subdomain
(−∆− ω2)up+1

i = f, in Ωi,

∂up+1
i

∂ni
− iωRij

(
up+1

i

)
= −

∂up
j

∂nj
− iωRij

(
up

j

)
, on ∆ij , ∀j 6= i,

(∂ni − iω)up+1
i = 0, on ∂Ωi ∩ Γ.

(25)

The following lemma states that the operator of the interface has similar properties to the
one of the global boundary problem studied in Section 2.4.

Lemma 9 The family of operators (Rij)i,j satisfies Rji = R∗
ij, and Rij +Rji is positive.

Proof This a direct consequence of Remark 5: inverting the role of i and j in Rij changes the sign
of the corner quantities in the bilinear form, see the second line of the expression in Definition 2.
The positivity is obtained using the same arguments as in the proof of Lemma 5.

We once more prove that the algorithm is endowed to a decreasing energy for f = 0. Define
the energy

Jp := 2
∑

i

∑
j

∥∥∥∥(Rij +Rji)−1/2
(
∂up

i

∂ni
− iωRiju

p
i

)∥∥∥∥2

L2(∂Ωi∩∂Ωj)
.

Under convenient integrability assumptions, it can be rewritten as

Jp = 2
∑

i

∑
j

∫
∂Ωi∩∂Ωj

(Rij +Rji)−1
(
∂up

i

∂ni
− iωRiju

p
i

)(
∂up

i

∂ni
− iωRiju

p
i

)
dγ.

Lemma 10 The algorithm (25) is stable. For f = 0, it has decreasing energy

Jp+1 = Jp − 4ω2
∑

i

∫
∂Ωi∩Γ

|up
i |2 dγ.

Proof Using the transmission condition, one has

Jp+1 = 2
∑

i

∑
j

∫
∂Ωi∩∂Ωj

(Rij +Rji)−1

(
∂up

j

∂nj
+ iωRiju

p
j

)(
∂up

j

∂nj
+ iωRiju

p
j

)
dγ.
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Define Rii as the identity operator on ∂Ωi ∩ Γ . Decompose v ∈ L2(∂Ωi) = L2(∂Ωi ∩ Γ ) ⊕j 6=i

L2(∂Ωi ∩ ∂Ωj) as vii = v|∂Ωi∩Γ and vij = v|∂Ωi∩∂Ωj . Each subdomain can thus be interpreted
as an individual domain, associated to an operator defined on its exterior boundary

Ti : L2(∂Ωi) −→ L2(∂Ωi)
v 7−→ Tiv s.t. (Tiv)ij = Rijvij ∀j.

where (Tiv)ii = (Tiv)|∂Ωi∩Γ and (Tiv)ij = (Tiv)|∂Ωi∩∂Ωj
. It follows that

Jp+1 = 2
∑

i

∑
j

∫
∂Ωi∩∂Ωj

(Tj + T ∗
j )−1

(
∂up

j

∂nj
+ iωT ∗

j u
p
j

)(
∂up

j

∂nj
+ iωT ∗

j u
p
j

)
dγ

= 2
∑

j

∫
∂Ωj

(Tj + T ∗
j )−1

(
∂up

j

∂nj
+ iωT ∗

j u
p
j

)(
∂up

j

∂nj
+ iωT ∗

j u
p
j

)
dγ −

∫
∂Ωj∩Γ

∣∣∣∣∣∂u
p
j

∂nj
+ iωup

j

∣∣∣∣∣
2

dγ

Applying Lemma 6 to Ωj and the boundary operator Tj instead of Ω and T , it yields

Jp+1 = 2
∑

j

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∂u

p
j

∂nj
+ iωT ∗

j u
p
j

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

− 4ω2‖up
j ‖2

L2(∂Ωj∩Γ )

= 2
∑

j

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∂u

p
j

∂nj
− iωTju

p
j

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

− 4ω2‖up
j ‖2

L2(∂Ωj∩Γ )

= 2
∑

j

∫
∂Ωj

(Tj + T ∗
j )−1

(
∂up

j

∂nj
− iωTju

p
j

)(
∂up

j

∂nj
− iωTju

p
j

)
dγ − 4ω2‖up

j ‖2
L2(∂Ωj∩Γ )

= Jp +
∑

j

∫
∂Ωj∩Γ

∣∣∣∣∣∂u
p
j

∂nj
− iωup

j

∣∣∣∣∣
2

dγ − 4ω2‖up
j ‖2

L2(∂Ωj∩Γ )

= Jp − 4ω2‖up
j ‖2

L2(∂Ωj∩Γ ) dγ,

and the proof is ended.

Remark 6 Combining the TC developed above and the ABC developed in section 3 should come
down to adapting the operator Rii and the energy.

5 Numerical experiments

5.1 Framework

The corner conditions proposed in this paper can be integrated in any finite element framework
without major difficulty. The numerical simulations presented in this section have been achieved
using open-source software: GMSH1 [20] (mesh and post-processing), GetDP2 [12] (finite element
solver) and its domain decomposition module GetDDM3 [30]. The program written by the authors

1 http://gmsh.info/, commit number 418deb961, version 4.6.0, May 7th 2020
2 http://getdp.info/, version 3.3.0
3 http://onelab.info/GetDDM/

http://gmsh.info/
http://getdp.info/
http://onelab.info/GetDDM/
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is available online4 under open-source license. Every algorithm presented in Sections 3 and 4
are available. Readers are welcome to try and test the program as it has been designed to be
user-friendly and easy to use on every major operating systems without a compiling process.
Installation instructions are explained in the README.md file which is provided in the source
code.

The implementation of the algorithms follows the same procedure as explained in [30]. The
implementation of the DDM with TC (25) is detailed below, and is relatively similar for the DDMs
with ABC from Section 3. For each segment ∆ij

r , auxiliary functions
(
ϕij

r

)p := Rij (up
i )|∆ij

r
and(

ψij
r

)p := Rji (up
i )|∆ij

r
are introduced as well as the unknown (gij

r )p := − ∂up
j

∂nj − Rji (up
i )|∆ij

r
=

− ∂up
j

∂nj − iω
(
ϕij

r

)p. The algorithm (25) is then implemented:

• Initialize u0
i for every subdomain.

• For i = 1, . . . , Ndom − 1, compute up+1
i

(−∆− ω2)up+1
i = f, in Ωi,

∂up+1
i

∂ni
− iω

(
ϕij

r

)p+1 = (gij
r )p, on ∆ij

r , ∀j, ∀r,
(∂ni − iω)up+1

i = 0, on ∂Ωi ∩ Γ.

(26)

• For i, j = 1, . . . , Ndom − 1, j 6= i, for all r, compute the transmitted data on ∆ij
r

(gji
r )p+1 = − ∂up+1

i

∂ni

∣∣∣∣∣
∆ij

r

− iω
(
ψij

r

)p+1 = −(gij
r )p − iω

((
ϕij

r

)p+1 +
(
ψij

r

)p+1)
. (27)

The whole algorithm is then recast into a linear system

(I −A)g = b, (28)

where g is the vector containing every unknown gij
r , b is the right-hand side and Ag is obtained

by solving problems (26) and (27) with f = 0. The linear system (28) can obviously be solved
using a fast solver such as GMRES [29]. In the associated program, it is possible to chose between
a Jacobi and a GMRES solver.

We point out that, first, contrary to [30], the two tangential transmission operators over an
interface ∆ij are not equal (i.e. Rij 6= Rji), and second, the goal of this section is to illustrate
the stability of the different algorithms proposed in the paper, not to compare their efficiency
with existing techniques.

5.2 A simple test with analytical solution

To validate the implementation of the second order transmission condition (3), we consider a
simple wave guide problem. The domain is Ω := (−D,D) × (0, D), and the subdomains are
Ω0 := (−D, 0)× (0, D) and Ω1 := (0, D)× (0, D), with a straight line interface ∆ := {0}× (0, D).
The equation in Ω is completed by the following boundary conditions. On the left boundary, we
consider a non-homogeneous Robin condition −∂xu(−D, y) − iωu(−D, y) = g(y) for 0 < y < D.
On the top and bottom boundaries, we take a homogeneous Neumann condition ∂yu(x, 0) =
∂yu(x,D) = 0 for −D < x < D. On the right boundary, we consider the simple absorbing
boundary condition ∂xu(D, y) − iωu(D, y) = 0 for 0 < y < D.

4 https://plmlab.math.cnrs.fr/ddm-corner-helmholtz-2d/scripts-onelab, commit 22263828, May 18th 2020

https://plmlab.math.cnrs.fr/ddm-corner-helmholtz-2d/scripts-onelab


Corners and stable optimized domain decomposition methods for the Helmholtz problem 23

0 50 100 150

10−2

10−1

100

Iteration number

N
or

m
of

re
si

du
al

Low order

|λ|p (shifted)

Order 2

|λ′|p (shifted)

Fig. 6: Left: comparison of the residual’s convergence for low order and 2nd order TC, with
references curves |λ|p and |λ′|p. Right: solution at (quasi-)convergence with DDM and 2nd order
TC.

The solution is computed with the DDM described in Section 4, where the transmission
condition on the interface ∆ is formulated either as a low order condition as in (18), or as a second
order condition as in (23), where the operator Rij is the formal inverse of L =

(
I − 1

2ω2 ∂yy

)
. The

operator L is supplemented with homogeneous Neumann conditions at the two endpoints of the
interface ∆. To construct a simple analytical solution, we take a pure mode with homogeneous
Neumann boundary data in the vertical direction

g(y) = 2 cos(ωy) with ω = qπ

D
and q ∈ N.

With separation of variables in Ω1, a solution of −∆u−ω2u = 0 with homogeneous Neumann
∂yu(x, 0) = ∂yu(x,D) = 0 for −D < x < D writes u(x, y) = (α+ βx) cos(σy). The absorbing
condition at x = D writes β − iω(α+ βD) = 0, so that (1 − iωD)β = iωα.

For the low order DDM, define the transmission over ∆ quantities{
a := −∂nu− iωu = (β − iωα) cos(ωy) = iωDβ cos(ωy),
b := ∂nu− iωu = (−β − iωα) cos(ωy) = (−2 + iωD)β cos(ωy).

The proportionality ratio between a and b is λ = iωD
−2+iωD = iqπ

−2+iqπ . Its modulus is also the
modulus of a single iteration of DDM in Ω1, and is

|λ| = |q|π√
4 + q2π2

< 1.

A similar algebra can be performed in Ω0, but with a homogeneous Dirichlet boundary condition
on the right boundary. Since this boundary condition is not absorbing, the modulus of the similar
complex number λ is now equal to 1.

For the second order DDM, as Lg = 3
2g, the corresponding transmission over ∆ quantities

are now {
a′ := −∂nu− 2

3 iωu =
(
β − 2

3 iωα
)

cosωy =
( 1

3 + 2
3 iωD

)
β cosωy,

b′ := ∂nu− 2
3 iωu =

(
−β − 2

3 iωα
)

cosωy =
(
− 5

3 + 2
3 iωD

)
β cosωy.

The modulus of the proportionality ratio λ′ between a′ and b′ is now

|λ′| =
√

1 + 4q2π2√
25 + 4q2π2

< 1.
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For the numerical illustration of Figure 6, we chose ω = 1, q = 3 and D = 3π. The values
of the two modulus are |λ| ≈ 0.9782 and |λ′| ≈ 0.9679. On the left of Figure 6 are plotted the
residual’s norms for the DDM with low and second order TC, against the reference curves |λ|p
for low order and |λ′|p for second order. The agreement is very good between the computed and
the reference curves. On the right is plotted the quasi-converged solution computed with 2nd

order TC DDM. We consider that these results validate our implementation of the second order
transmission condition.

5.3 ABC

This second test case is devoted to the illustration of the new corner conditions (8). We consider
a disk or radius R = 1 inside an hexagon of diameter L = 10, and compute the acoustic
field diffracted by an incident plane wave uinc(x, y) = eiωx. The diffracted field satisfies the
homogeneous Helmholtz equation in the domain plus a non homogeneous Dirichlet boundary
condition u = −uinc on the interior boundary. The exterior boundary is equipped with either:
a) a low order ABC; b) a second order ABC (3) with homogeneous Neumann conditions at the
6 corners of the exterior boundary; c) a second order ABC (3) with the corner condition (8) at
the 6 corners of the exterior boundary. In what follows, the wavenumber ω is set to 2π, so that
the wavelength is λ = 2π

ω = 1, and the mesh refinment is set to 15 points per wavelength. The
direct solver MUMPS [1] is used to solve the volume (sub-)problems.

5.3.1 Global ABC

The numerical solution is computed using the global ABC, which we also call the “mono-domain”
problem. In Figure 7, the first column corresponds to real part of the diffracted field with the
three different ABCs. The second column corresponds to the norm of the difference with respect
to the reference solution uref in R2 \ {x2 + y2 ≤ R2}, computed using a standard analytical
method (Mie series). The results are qualitatively the same along the first column, with extra
oscillations for the low order ABC (top right). The results from the second column show that
the error may be due to the modeling at the rightmost corner. The magnitude of the error is of
0.245 for low order, 0.204 for second order ABC with Neumann and 0.152 with the new second
order ABC (3) with corner conditions: it shows the ability of the new method to lower the corner
errors.

5.3.2 DDM-1

Now that the different ABCs have been compared in the mono-domain problem, we compute
the numerical solution for the ABC with the new corner condition using the DDM-1 algorithm
(18) with 3 subdomains. The results are presented in Figure 8, using the Jacobi solver with
500 iterations (left column) and using the GMRES solver until convergence (67 iterations) for a
tolerance of 10−6 (right column).

We first focus on the first column, and the Jacobi solver. The obtained solution (Figure 8a) is
satisfactory and the error with respect to the mono-domain solution (Figure 8c) is located on the
transmission boundaries. The algorithm is convergent (Figure 8e), as predicted by Lemma 7 and
Remark 2. Convergence is, however, very slow, and oscillating. The histories of convergence for
the two other ABCs (low order and 2nd order with homogeneous Neumann) are also displayed,
and we observe that the convergence rate is not really affected by the ABC, which is quite
natural.
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(a) Re(u): Order 0 (b) |u− uref|: Order 0

(c) Re(u): Order 2 + Homog. Neumann (d) |u− uref|: Order 2 + Homog. Neumann

(e) Re(u): Order 2 + Corner correction (f) |u− uref|: Order 2 + Corner correction

Fig. 7: Global problem solved using a direct solver (MUMPS) and the three different ABCs.
Left: real part of the resulting scattered field. Right: error with respect to the reference solution.
Parameters are: wavenumber ω = 2π, unit disk sound-soft obstacle (Dirichlet condition) and
hexagonal diameter of L = 10. Incident plane wave uinc(x, y) = eiωx. Mesh refinement set to 15
points per wavelength.
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On the right column, the same tests were done using the GMRES solver. The results lead to
the same conclusion as for the Jacobi case: the solution is satisfactory (Figure 8b) and the ABC
does not play a central role in the convergence rate. The magnitude of the error with respect to
the mono-domain solution is now of the order of the tolerance rate (Figure 8d).

5.3.3 Comparison DDM-2/DDM-1

We now want to assess the convergence of algorithm DDM-2 (19)-(20) which is more local than
DDM-1, since the ABC on the exterior boundary is split by using another decomposition method
level. The results for DDM-2 after 1000 iterations of the Jacobi solver is shown in Figure 9a for the
absolute value of the real part of the diffracted field. The reflection region is visible on the right
of the obstacle. The error with respect to the DDM-1 solution (with 1000 iterations of Jacobi) is
shown in Figure 9b. This error is removed when using a converged GMRES. The results confirm
that the solution at convergence is the same for both DDM-2 and DDM-1 algorithms.

On the bottom line, Figures 9d-9c correspond to DDM-2 for the two other ABCs. These
results are also the same as one would obtained with DDM-1.

Less oscillations are observed in Figure 9a, and we conclude that the results are better with
the 2nd order ABC and new corner conditions than without the corner condition or with low
order ABC, for which algorithms DDM-2 and DDM-1 become identical.

5.4 TC

We consider a transmission problem for a wave guide with the geometry depicted in Figure 5.
The domain is a square Ω = (0, 10)2 with two subdomains. The wavenumber is set to ω = π
and the mesh refinement to 15 points per wavelength. The interface connects the corner and
endpoints, from bottom to top: P = (5,−5), Q0 = (5,−2), Q1 = (6, 0), Q2 = (5, 2) and
P′ = (5, 5). The boundary conditions are: non homogeneous Robin − (∂x + iω)u(0, y) = g on
the left, homogeneous Robin ∂xu(10, y)−iωu(10, y) = 0 on the right, and homogeneous Neumann
on the top and bottom boundaries. The source is a plane wave g = − (∂x + iω) eiωx, so that the
analytical solution is known and is the same plane wave u(x, y) = eiωx. With this test, we can
measure the numerical errors generated by the three corners Q0,1,2 in the regime of nearly normal
incidence at the corners.

On the left of Figure 10 are plotted the norm of the residual computed with 4 different TCs.
The first one is the classical low order TC and, without surprise, we recover a low rate of conver-
gence. The three other ones are computed with different 2nd order conditions, labeled Order 2,
where R is constructed as the inverse of the second order tangential operator R = (I− 1

2ω2 ∂tt)−1,
with Neumann boundary conditions at P and P′, but with 3 different conditions at Q0,1,2: con-
tinuity, labeled Dirichlet; homogeneous Neumann, labeled Neumann; the corner conditions from
Section 4, labeled Corner Correction. In terms of the asymptotic rate of convergence, the new
corner conditions are not a great improvement with respect to the three other conditions. The
constant is however much better as the level of the plateau is lower, which is already an important
improvement.

To evaluate the differences between the three 2nd order TCs, Figure 11 shows the values of the
function R(up) along the interface at iteration p = 10. For this test, another source g(y) calculated
from a pure plane wave which propagates at 45 degrees is used. It is interesting to notice that
the value of R(up) brings information about the corners values of the normal derivatives ∂n0,1u

p.
Indeed, starting from a zero initial iterate u0 = 0, the TCs (25) propagate the homogeneous
Neumann boundary conditions at Q0,1,2, see the center plot, while the normal derivatives of
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(a) Jacobi : Re(u) (b) GMRES : Re(u)

(c) Jacobi: |u− umono| (d) GMRES: |u− umono|
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Fig. 8: Results obtained with DDM-1 and Jacobi solver (left) and GMRES solver (right). For
each solver are displayed: the real part of the scattered field with the new ABC (top), the error
with the mono-domain solution with the new ABC (center) and the history of convergence with
the three ABCs (bottom). Parameters are the same as in Figure 7.



28 B. Després, A. Nicolopoulos, B. Thierry

(a) Corner correction: |u| (b) Corner correction: |uDDM-1 − uDDM-2|

(c) Homog. Neumann: |u| (d) Low order: |u|

Fig. 9: Absolute value of the real part of the diffracted field using DDM-2 after 1000 iterations
with Jacobi solver. Second order ABC with (a) corner correction, (c) homogeneous Neumann. (d)
Low order ABC. (b) Error between DDM-2 and DDM-1. Parameters are the same as in Figures
7 and 8.

the exact solution ∂n0,1u
exact do not satisfy such artificial conditions. The Dirichlet continuity

relations, see the left plot, are also artificial. On the contrary, the new corner conditions do not
propagate such simple and erroneous corners conditions, see the right plot. It is however an open
problem to understand in more details the new corner conditions’ nature.

A Geometric interpretation of the ABC

To provide a geometric intuition of the different terms of the bilinear form a from (14), we consider the simple
situation where the domain is a K sided regular polygon approximating the disc D = {x2 + y2 ≤ R2} from the
interior as K goes to infinity. The corners of the polygon are denoted Ak = R(cos 2kπ

K
, sin 2kπ

K
) with k defined

modulo K. The middle of the edges are the Ak+1/2 = R(cos (2k+1)π
K

, sin (2k+1)π
K

). With our convention, see
Figure 2, the interior angle is θK = 2π

K
−π ∈ (−π, 0). The arclength between two successive corners is `K = 2π

K
R.
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Fig. 10: Left: comparison between the convergence of the residuals for low order TC and 2nd

order TC with Dirichlet, homogeneous Neumann and the new corner conditions developed in
this work. Right: solution at (quasi-)convergence for the DDM with new TC.
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Fig. 11: Value of R(up) with p = 10, R = (I− 1
2ω2 ∂tt)−1 and different conditions at corners Q0,1,2.

Left: Dirichlet continuity relations. Center: homogeneous Neumann conditions. Right: the new
corner conditions.

Let ϕ and ψ be two regular functions defined on the circle ∂D = {x2 + y2 = R2}. First, the Hermitian part
of a, defined on the first line of (14), is a simple broken approximation of the integral

I1(ϕ,ψ) :=
∫

∂D

(
ϕ(s)ψ(s) +

1
2ω2 ϕ

′(s)ψ′(s)
)
ds,

where s is the curvilinear abscissa. Consider now the anti-Hermitian part of a, defined on the second line of (14).
We study the two quantities

AK :=
∑

k

cos
(
θK

2

)
(ϕ(Ak+1/2) + ϕ(Ak−1/2))(ψ(Ak+1/2) + ψ(Ak−1/2)),

BK :=
∑

k

cos (θK)
cos
(

θK
2

) (ϕ(Ak+1/2) − ϕ(Ak−1/2))(ψ(Ak+1/2) − ψ(Ak−1/2)).

Lemma 11 As K → ∞, one has AK → I2(ϕ,ψ) := 2
R

∫
∂D ϕ(s)ψ(s)ds.

Proof For large K, cos
(

θK
2

)
∼ `K

2R
. Therefore AK =

∑
k

`K
2R

2ϕ(Ak)2ψ(Ak) + high order terms. One recognizes
a Riemann sum, and passing to the limit yields the claim.

Lemma 12 As K → ∞, one has BK → I3(ϕ,ψ) := −2R
∫

∂D ϕ′(s)ψ′(s)ds.
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Proof For large K, cos θK

cos
(

θK
2

) ∼ −2R
`K

. Therefore BK =
∑

k
−2R
`K

`Kϕ
′(Ak)`Kψ′(Ak) + high order terms. Again,

passing to the limit yields the claim.

The sesquilinear form ϕ,ψ 7→ a(ϕ,ψ) is thus an approximation of the sesquilinear form

ã(ϕ,ψ) := I1(ϕ,ψ) −
i

4ω
(I2(ϕ,ψ) + I3(ϕ,ψ)) ,

where the Hermitian part I1 is independent of the curvature radiusR, and where the anti-Hermitian part − i
4ω

(I2+
I3) depends on the curvature radius via terms proportional to R and 1/R. Similarily, the sesquilinear form
ϕ,ψ 7→ a∗(ϕ,ψ) approximates the sesquilinear form ã∗(ϕ,ψ) := I1(ϕ,ψ) + i

4ω
(I2(ϕ,ψ) + I3(ϕ,ψ)). In classical

planar differential geometry, a smooth curve Γ locally separates the domain into two regions Ω±. The curvature
radius R of Γ seen from Ω+ is the opposite of the curvature radius −R of Γ seen from Ω−. Therefore, another
possible interpretation of the difference between ã and ã∗ is that they correspond to the same curve Γ seen from
one side or the other.

Remark 7 Considering Remark 1, the same interpretation holds for T and T ∗: they account for the curvature
radius, and a change of sign of the curvature radius changes T in T ∗ and reciprocally.

The ABC associated to ã(ϕ,ψ) = (u, ψ)L2(Γ ), noticing that ϕ ' (iω)−1∂nu, writes in its strong form(
1 −

1
2ω2 ∂ss −

i
4ω

( 2
R

+ 2R∂ss

))
∂nu− iωu = 0.

In polar coordinates and on the border of the disk D, the normal derivative is the derivative along r (ϕ '
(iω)−1∂ru) and the curvilinear derivative is given by ∂ss = 1

R2 ∂θθ. Hence the following strong form of the ABC
in polar coordinates: (

1 −
1

2R2ω2 ∂θθ −
i

2ωR
(1 + ∂θθ)

)
∂ru− iωu = 0.

When the radius of the disk R goes to infinity, the border of D tends to be (locally) straight and the ABC
converges towards the classical low order ABC ∂ru− iωu = 0.

B Subdomains and unknowns decoupled: DDM-3

In this appendix, we modify algorithm DDM-2 to decouple (19) from (20), at the price of introducing a new
auxiliary unknown on each edge Γ i

k. This unknown, denoted ψi,k, represents the Dirichlet trace of ui on Γ i
k.

The interest is that up+1
i can be obtained by solving a classical Helmholtz boundary value problem, where the

boundary condition involves (ϕp
i,k

)k and (ψp
i,k

)k at the previous iteration index p.
Initialize u0

i ∈ H1(Ωi) with square integrable normal derivatives on each subdomain, and (ϕ0
i,k)k ∈ ⊕kH

1(Γ i
k),

(ψ0
i,k)k ∈ ⊕kL

2(Γ i
k) on the exterior boundary of each subdomain. For p = 0, 1, . . ., solve for each subdomain (−∆− ω2)up+1

i = f in Ωi,

(∂ni − iω)up+1
i = − (∂nj + iω)up

j on ∂Ωi ∩ ∂Ωj , ∀j 6= i,

(∂ni − iω)up+1
i = iω

(
ϕp

i,k
− ψp

i,k

)
on Γ i

k, ∀k,
(29)

and for each edge

(
1 −

1
2ω2 ∂tktk

)
ϕp+1

i,k
(x) = ψp+1

i,k
(x), x ∈ Γ i

k,

ϕp+1
i,k

(x) + ψp+1
i,k

(x) =
1
iω
∂up

i

∂ni
(x) + up

i (x), x ∈ Γ i
k,((

1 +
iβ
ω

cos
(

θk`
2

)
cos θk`

)
∂ϕp+1

i,k

∂τ k
+
(
β − iω cos

(
θk`

2

))
ϕp+1

i,k

)
(Aij

k`
)

=

((
−1 +

iβ
ω

cos
(

θk`
2

)
cos θk`

)
∂ϕp

j,`

∂τ `
+
(
β + iω cos

(
θk`

2

))
ϕp

j,`

)
(Aij

k`
), Aij

k`
∈ Ci

k,

(
iωϕp+1

i,k
+ ∂τ kϕ

p+1
i,k

)
(Bij

k
) =
(

iωϕp
j,k

− ∂τ kϕ
p
j,k

)
(Bij

k
), Bij

k
∈ F i

k,

(30)
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with the same β as before to remove the singularity, see Remark 3. We now show the algorithm is endowed with
a decreasing energy for f = 0. Define

Gp :=
Ndom−1∑

i=0

(∫
∂Ωi\Γ

∣∣(∂ni − iω)up
i

∣∣2 dγ +
K−1∑
k=0

∫
Γ i

k

ω2
∣∣ϕp

i,k
+ ψp

i,k

∣∣2 dγ

+
K−1∑
k=0

Aij
k`

∈Ci
k

1
2|ω| sin2

(
θk`

2

) ∣∣∣∣∣
(

1 +
iβ
ω

cos
(

θk`
2

)
cos θk`

)
∂ϕp

i,k

∂τ k
+
(
β − iω cos

(
θk`

2

))
ϕp

i,k

∣∣∣∣∣
2

(Aij
k`

)

+
K−1∑
k=0

Bij
k

∈Fi
k

1
2ω

∣∣ωϕp
i,k

+ ∂τ kϕ
p
i,k

∣∣2 (Bij
k

)
)

= F p +
Ndom−1∑

i=0

K−1∑
k=0

∫
Γ i

k

ω2
∣∣ϕp

i,k
+ ψp

i,k

∣∣2 dγ.

Lemma 13 The algorithm (29)-(30) is stable. For f = 0, it has decreasing energy

Gp+1 = Gp − 2
Ndom−1∑

j=0

K−1∑
`=0

∫
Γ

j
`

(
2ω2|ϕp

j,`
|2 + |∂t`

ϕp
j,`

|2
)

dγ.

Proof Similar computations to the ones of the proof of Lemma 8 give

Gp+1 = Gp − 4 Re
Ndom−1∑

j=0

K−1∑
`=0

∫
Γ

j
`

ω2ϕp
j,`
ψp

j,`
dγ − 2 Re

Ndom−1∑
j=0

K−1∑
`=0

A∈Cj
`

∪Fj
`

∂ϕp
j,`

∂τ `
(A)ϕp

j,`
(A).

Integrating the first equation of system (30) at iteration p on Γ j
`

against ϕp
j,`

and taking the sum over all subdomain
and edge indices j and ` gives the result:

Ndom−1∑
j=0

K−1∑
`=0

∫
Γ

j
`

(
|ϕp

j,`
|2 +

1
2ω2

∣∣∣∣∂ϕp
j,`

∂t`

∣∣∣∣2
)

dγ−
1

2ω2

Ndom−1∑
j=0

K−1∑
`=0

A∈Cj
`

∪Fj
`

∂ϕp
j,`

∂τ `
(A)ϕp

j,`
(A) =

Ndom−1∑
j=0

K−1∑
`=0

∫
Γ

j
`

ψp
j,`
ϕp

j,`
dγ.
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