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Abstract
A considerable literature is devoted to the introduction and analysis of variants of the SI

epidemiology models. Similar models are also proposed to describe the spread of riots and,
more generally, of collective behaviors in various social contexts. The use of epidemiology
models to describe such social phenomena is based on the analogy between the mechanisms
of contagion and social imitation. In turn, this analogy also points to the social nature of
epidemics.

This paper is concerned with a family of Reaction-Diffusion systems introduced in [17]
that aims at unifying, generalizing, and enlarging the fields of application for epidemiology
and collective behavior models. In this paper, we propose a modeling approach on these
apparently various phenomena through the example of the dynamics of social unrest. The
model involves two quantities, the level of social unrest, or, more general, activity u, and a
field of social tension v, which play asymmetric roles: u is thought of as the actual observed or
explicit quantity while v is an ambiant, sometimes implicit field of susceptibility that modulates
the growth of u.

In this article, we explore this class of model and prove several theoretical results based on
the framework developed in [17], of which the present work is a companion paper. Here we
place the emphasis on two subclasses of systems defined in [17]: tension inhibiting and tension
enhancing. These are characterized by the fact that the unrest has respectively a negative
or positive feedback on the social tension (though no monotonicity condition is assumed).
In [17] we derive a threshold phenomenon in terms of the initial level of social tension: below
a critical value, a small triggering event is quickly followed by a resumption of calm, while,
above this value, it generates an eruption of social unrest spreading through space with an
asymptotically constant speed. The new results we derive in the present paper concern the
behavior of the solution far from the propagating edge, that is, we give a description of the
new regime of the system following the initial surge of activity. We show in particular that
the model can give rise to many diverse qualitative dynamics: ephemeral or limited-duration
social movements – referred to as “riots” – in the tension inhibiting case, and persisting social
movements – lasting upheavals – in the tension enhancing case, as well as other more complex
behaviors in some mixed cases. We also investigate this model by numerical simulations that
highlight the richness of this framework. We finally propose and study extensions of the model,
such as spatially heterogeneous systems.

Key words: Epidemiology models · SIR model · COVID-19 · Threshold phenomenon · Modeling
in social sciences · Reaction-diffusion systems · Traveling waves · Speed of propagation
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1 Motivation and framework
A number of large-scale phenomena, such as epidemics, riots and other collective behaviors, exhibit
complex dynamics that can only be described by elaborate modeling approaches. In the current
context, there is no doubt on the importance of reliable models to describe these phenomena.
However, these are sometimes difficult to study empirically because of the scarcity of data and
the difficulty of conducting large-scale experiments. Mathematics has a lot to offer in this field of
modeling since it allow rigorous analysis, identifying the mechanisms, and testing the hypotheses
through numerical experiments.

In the present circumstances, a considerable number of studies are devoted to the introduction
and analysis of epidemiology models. The most widely used model in this area is undoubtedly
the SIR compartmental model or one of the many extensions and variants. Actually the SIR
framework is but one particular instance in the family of models introduced by Kermack and
McKendrick [50]. This model features two populations: the Susceptible, represented by S(t, x),
and the Infected, represented by I(t, x). In its simplest form (with spatial component), the model
is written as the following system of two reaction-diffusion equations:{

∂tI − d1∆I = βIS − γI,
∂tS − d2∆S = −βIS.

(1.1)

This model is essential in epidemic modeling, both from the point of view of theory [44–46,58,68,
71, 77] and applications [5, 10, 62]. However, most of the mathematical approaches available can
hardly be generalized to a broader class of systems. Given the variety of extensions and variants
of this model, it is a major challenge to propose a unified mathematical framework and to identify
the core general properties of this class of system.

Apart from the epidemiology context, variants of the SI model have been proposed to account
for contagion in social contexts, for example, to describe the dynamics of riots and social unrest. In
their pioneering work, Burbeck et al [25] write: “Patterns within three major riots suggest that the
dynamics of the spread of riot behavior during a riot can be fruitfully compared to those operative
in classical epidemics. We therefore conceptualize riots as behavioral epidemics, and apply the
mathematical theory of epidemics [...].”. This approach has been adopted in many articles dealing
with the modeling of riots [15,18,20,22,27,64,82].

Similar ideas have also been applied to many other collective behaviors in various social con-
texts: the propagation of rumors [1, 4, 29, 49, 54, 65, 78, 84–86], the diffusion of a new product in a
market [21,33,34,36,40,43,67], the propagation of ideas and scientific knowledge [3,26,39,48,51,60],
the growth of political parties [47], the propagation of memes and hashtags [37, 72, 79, 81], or ex-
treme ideology in a society [69].

The use of epidemiology models to describe social phenomena is based on the analogy between
the mechanisms of contagion, from one side, and social imitation from the other. This feature
is the main driving force behind many collective behaviors, as outlined in the celebrated work of
Granovetter [42], among others.

In turn, this analogy also denotes that epidemics are essentially a social phenomenon. This
assertion is clearly revealed by the impacts and challenges of the current COVID-19 epidemic. As
an example, we can read on the Institute of Development Studies’ website [56]: “As the COVID-
19 pandemic rages across the world, one thing is clear: this epidemic, like all others, is a social
phenomenon. The dynamics of the virus, infection and immunity, not to mention on-going efforts
to revise and improve clinical care, and endeavors to develop medical treatments and vaccines,
are a critical part of the unfolding story. So, too, are peoples’ social responses to the disease and
interactions with each other.”

The dynamics of epidemics, riots, and other collective behaviors, although very different in na-
ture, have a similar structure that can be described by fairly simple mechanisms. As explained by
Granovetter [42], collective behaviors are situations where the inclination of an individual to join
the movement depends on the intensity of the movement itself: once the movement has reached
a certain size, owing to several mechanisms such as imitation or social influence, more people are
prone to join it and the movement grows. It is therefore of particular importance to understand
whether a small initial movement, called triggering event, can ignite this self-reinforcement mech-
anism. This involves a threshold phenomenon on an ambient level of susceptibility: typically, in a
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context of low susceptibility, the triggering event promptly fades out, whereas, in a context of high
susceptibility, the triggering event leads to a significant movement.

Our main goal in [17] and in the present article is to develop a unified mathematical framework
to deal with this general setting. We aim to unify, generalize, and open new fields of application for
epidemiology and collective behavior models. Let us emphasize that many articles consider non-
spatial models, even though spatial diffusion often plays a key role [22, 24, 73, 82]. Our objective
in [17] and here is to provide general mathematical tools to deal with these models in a unified
way including spatial propagation.

In our approach, we consider the coupled dynamics of a level of activity, denoted by u, rep-
resenting the intensity of activity (e.g. rioting activity, fraction of population having adopted a
belief or a technology, etc.), and an underlying level of susceptibility, denoted by v, representing the
ambient context. We emphasize that these two quantities play an asymmetric role: u is thought of
as the actual observed or explicit quantity while v is a potential field that modulates the growth
of u. From a modeling perspective, the level of activity u often represents an explicit quantity
that is tractable empirically, whereas the level of susceptibility v is an implicit field. In a sense, we
postulate the existence of such a field which is a lumped variable that results from several complex
social interactions. Then, these two quantities interact: the field v modulates the dynamics of the
activity level, and there is also a feedback mechanism whereby the level of activity influences the
field of susceptibility. This is why we call this general class of systems the activity/susceptibility
systems.

Assuming that u and v are subject to diffusion and coupled reaction, the resulting mathematical
model takes the following general form:

∂tu− d1∆u = Φ(u, v) := uF (u, v),
∂tv − d2∆v = Ψ(u, v) := uG(u, v) + (vb − v)H(u, v),
u(t = 0, x) = u0(x) 	 0 ; v(t = 0, x) ≡ vb.

(1.2)

We aim at keeping the assumptions on the terms in the system as general as possible. In fact,
the form of Φ and Ψ given in (1.2) is only suggested in this introduction to give an insight of our
approach, but in the paper we actually deal with more general nonlinear terms, see Section 2.3
below.

Let us briefly justify the structural form of the above system. In a normal situation, i.e., in the
absence of any exogenous event, we consider the system at equilibrium at some steady state u ≡ 0,
v ≡ vb, where the level of activity u is null and the social tension v is at its base value vb. This
is guaranteed by the special form of Φ, Ψ in (1.2). We also assume that the steady-state (0, vb) is
weakly stable in a situation where u = 0, that is, H(0, v) ≥ 0.

We consider that an exogenous event occurs at t = 0 and propose to study its effect on the
system. This exogenous event is encoded in the initial condition u0(·) 	 0.

As we will see, the class of systems (1.2) gives rise to many diverse qualitative behaviors. This
variety is well represented by two models classes that we will investigate in more details, namely,
the tension inhibiting case (Ψ ≤ 0) which gives rise to an ephemeral episode of activity, and the
tension enhancing case (Ψ ≥ 0) which gives rise to a time-persisting episode of activity.

The class of systems (1.2) defines a paradigm which encompasses various models considered in
the literature. For example, taking Φ(u, v) = βuv − γu and Ψ(u, v) = −βuv, system (1.2) reduces
to the SI (or SIR) model of epidemiology (1.1). In this context, the Susceptible are represented
by v, and the Infected are represented by u: this illustrates well the role of potential field assumed
by v – here the susceptibles. The term βuv accounts for the contagion from one individual to
another. This term, which could be described as a law of mass action type term, is derived
from the assumption that the contagion is proportional to the probability of encounter between a
susceptible and an infected individual in a evenly mixed population.

A comparable mathematical model is used to describe flame propagation in a combustion
process, see [9, 14, 16] and references therein. This is a typical instance of propagation in an
excitable medium. The model features the temperature (represented by u) and the chemical fuel
(represented by v). In its simplest version, assuming that the reaction is adiabatic and neglecting
the hydrodynamic of the medium (for example if the medium is a solid), then the model is obtained
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by taking d2 = 0, Φ(u, v) = qF (u)v and Ψ(u, v) = −F (u)v, where q > 0 is a constant. The
function F is given by the Arrhenius law and is typically of the type F (u) = (u − θ)+, where
θ ∈ (0, 1) is the ignition temperature. If we include heat dissipation and assume q = 1, we take
Φ(u, v) = F (u)v − γu, and we fall back to the SIR model with F (u) instead of u.

Another example is the classical Lotka-Volterra predator-prey model, obtained by taking (over-
looking various parameters) Φ(u, v) = u(v−ω) and Ψ(u, v) = −uv+v(1−v) (with vb = 1). In our
context, u represents the density of predators and v the density of preys. The term ±uv represents
the transfer between prey and predators (through a law of mass action type term) ; −ωu represents
the natural death rate of predators ; v(1−v) represents the natural birth rate and saturation effect
(due, for instance, to the limitations of ressources) in the prey population.

The class of system (1.2) encompasses other monotonic and non-monotonic systems appearing
in various fields of application, such as Belousov-Zhabotinski equation for biochemical systems [76],
or the Bass model in marketing [33]. See [17] for a more comprehensive discussion on the classical
models that fit into the framework of (1.2).

In our paper [17], we propose a theoretical study of (1.2) in a general framework. In the present
article, we discuss the significance of the results for modeling purposes. We also prove some new
theoretical results concerning the long-time behavior of solutions in the tension inhibiting and the
tension enhancing cases, dealing with the behaviors of solutions far from the leading edge of the
front. Those results deal with both the traveling wave problem and the Cauchy problem. We
accompany our analysis with several numerical simulations.

To fix ideas, we focus here on the modeling of social unrest, which is a textbook case of
a propagating collective behavior. The epidemiology approach is particularly relevant in this
context, as highlighted by the pioneering work of Burbeck et al. [25]. However, our approach can
be envisioned to model other sociological phenomena in social sciences and population dynamics.
Let us also mention that the literature on the modeling of social unrest often considers models
with very particular forms, even though the quantities at stake (especially the susceptibility, or
social tension) are not directly accessible from data. It thus seems important to us to develop a
unified approach with minimal assumptions on the parameters.

Hence, our aim here is not to assess the validity of our model with quantitative data from the
field, but rather to illustrate the richness of the framework and to discuss its qualitative relevance
regarding the topic, while keeping the mathematical approach quite general.

Outline. We start with presenting, in Section 2.1, the social phenomena that we aim at describ-
ing, pointing out the basic sociological assumptions that lead, in Section 2.2, to the mathematical
derivation of our model. The model and the assumptions are then stated in Sections 2.3-2.4. In
Section 2.5, we discuss the existing literature on this and related topics. Section 3 is devoted to a
general analysis of the model. Applying the results of [17], we enlighten a threshold phenomenon
on the initial level of social tension for the ignition of a social movement. We present some es-
timates on the speed of propagation of the movement and comment on the interpretation of the
mathematical results in terms of modeling. Next, we focus on two important classes of models: the
tension inhibiting case (Section 4), which generates ephemeral movements of social unrest, and the
tension enhancing case (Section 5), which gives rise to time-persisting movements of social unrest.
In both cases, we present some new results about the behavior of solutions far from the leading
edge of the propagating front, as well as for traveling wave solutions. These results are corrob-
orated by numerous numerical simulations. In Section 6, we examine several mixed cases which
are neither tension inhibiting nor tension enhancing, and that exhibit more complex dynamics.
Section 7 deals with extensions of the model including spatial heterogeneity. Section 8 contains all
the proofs of our results. Finally, Section 9 is devoted to concluding remarks and perspectives.

Remark on the numerical simulations. Numerical simulations are performed with a standard
explicit Euler finite-difference scheme, with time-step dt = 0.05, and space-step dx = 1. In the
caption of each figure, we give a clickable URL link and the reference to a video of the simulation
available online1.

1Temporary address: https://sites.google.com/view/samuelnordmann/research/modeling-social-unrest-videos
Definite address to be specified in the published paper.
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2 The model

2.1 The dynamics of Social Unrest
In this section, we introduce our modeling assumptions on the dynamics of social unrest in society
and other collective behaviors. We do not aim at discussing the sociological origins of social unrest
which have given rise to a vast literature in the social sciences and continue to be studied. Instead,
we propose a model built from simple ingredients to account for recurrent patterns observed in
these phenomena [22, 28]. Our purpose here is to identify some possible features and mechanisms
that land themselves to mathematical analysis. Of particular importance in this respect is the
dynamical unfolding and spatial spreading of social unrest.

Our approach, in the spirit of [15, 18, 20], consists of using epidemiology models to account
for the coupled dynamics of social unrest and social tension. The first paper using epidemiology
models to describe the mechanism of riots is due to Burbeck et al. [25]: “A new approach to the
study of large-scale urban riots has resulted in the discovery of remarkably coherent patterns in the
distribution of riot events over time. Patterns within three major riots suggest that the dynamics
of the spread of riot behavior during a riot can be fruitfully compared to those operative in classical
epidemics. We therefore conceptualize riots as behavioral epidemics, and apply the mathematical
theory of epidemics to data from the Los Angeles (1965), Detroit (1967), and Washington, D.C.,
(1968) riots.”

This approach turned out to account for the dynamics of the rioting activity in a rather remark-
able way. In particular, a model [22] of the class we consider here reproduces rather remarkably
and precisely the dynamics and spreading of the French riots of 2005, which was triggered by the
death of two young men trying to escape the police in Clichy-sous-Bois, a poor suburb of Paris.
This event occurred in a context of high social tension and was the spark for the riots that spread
throughout the country and lasted over three weeks.

For literature on the modeling of social unrest, riots, and related topics, we refer the reader
to [15, 22, 23, 41, 42, 75] and references therein. We return in Section 2.5 to the existing literature
and give a more detailed comparison between our model and several others.

We define the level of social unrest, abbreviated to SU, as the number of rioting activities or civil
disobedience. We can think of SU as the level of illegal actions resulting from rioting, measured in
some homogeneous way (e.g. number of rioting incidents reported by the police).

Our model also features a level of Social Tension, abbreviated to ST, accounting for the re-
sentment of a population towards society, be it for political, economic, or for social reasons. This
implicit quantity can be seen as the underlying (or potential) field of susceptibility for an individual
to join a social movement.

The guiding principle of our approach rests on the hypothesis that SU and ST follow coupled
dynamics.

Let us now review the most common characteristics of the dynamics of SU and define some
vocabulary.

Even if social movements can take many different forms, it appears that they often occur as
episodic bursts. A first simplistic classification would be to distinguish an ephemeral movement of
social unrest, that we call here a “riot”, which lasts at most a couple of weeks and then fades (e.g.
the London riots of 2011 [11,28] or the French riot of 2005 [22]), from a long-duration or persisting
movement of social unrest, that we call here a “lasting upheaval”, which lasts longer and can result
in significant political or sociological changes (e.g. the Yellow Vest Movement [61, 80], the Arab
Spring [52,55], the Russian revolution of 1905–1907 [63], or the French Revolution. See also [6]).

However, most social protests are commonly considered to have been ignited by a single trig-
gering event [31].

Accordingly, we assume that in a normal situation, the level of SU is null and that ST is at
equilibrium at its base value. To account for the triggering event, we assume that the system is
perturbed at t = 0.

We therefore expect that whether the triggering event ignites a burst of SU depends on the level
of ST. If ST is high enough, a small triggering event triggers a burst of SU; whereas if ST is low, the
same event is followed by a prompt return to calm. This threshold phenomenon was highlighted
in the classical work of Granovetter [42].
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These observations suggest that, in a context of low ST, an intrinsic mechanism of relaxation
occurs on SU. The relaxation rate accounts for various sociological features after a burst, such as
fatigue, police repression, incarceration, etc.

On the other hand, a high ST activates an endogeneous growth of SU. In other words, if ST is
above a threshold level, then a mechanism of self-reinforcement occurs on SU. This is analogous to
a flame propagation (an endogenous growth is activated when the temperature is high enough) and
pertains, more generally to “excitable media”. One can think of this endogeneous feature as the
gregarious dimension of social movements: the larger the movement, the more prone an individual
is to join it [66,70].

Naturally, this self-reinforcement mechanism can be counterbalanced by a saturation effect,
accounting for the limited number of individuals, resources, goods to be damaged, etc.

Another important feature usually observed during movements of SU is the geographical spread [24,
82]. A striking example is the case of the 2005 riots in France [22,74]. This phenomenon is either
caused by the rioters movement as in London 2011, or by a diffusion of the riot as in France 2005.
However, the role played by the geography in the dynamics of ST is less clear. For example, one
could consider that ST is, or is not, affected by diffusion, or even that it is affected by a non-local
diffusion (see Section 9.2.1) since information nowadays is often available instantaneously through
global media.

With this vocabulary at hand, a riot (i.e., an ephemeral movement of social unrest) will typically
be observed in a case where the burst of SU results in a decrease of ST. Once ST falls below a thresh-
old value, SU fades and eventually stops. We call this case tension inhibiting. It is qualitatively
comparable to the outburst of a disease, which propagates until the number of susceptible individ-
uals falls below a certain threshold. This behavior is well captured by the famous SI epidemiology
model, with S = ST and I = SU.

On the contrary, a lasting upheaval (i.e., a time-persisting movement of social unrest) will
typically be observed in a case where the burst of SU results in an increases of ST. In this case, the
dynamics escalates towards a sustainable state of high SU. We call this case tension enhancing.
From a modeling point of view, it points to a cooperative system.

These two model classes give a first good idea of the variety of behaviors generated by the
model. They suggest different classes of systems: epidemiology models on the one hand and
monotone systems on the other hand. Those two classes of model are studied quite separately in
the literature. Our aim here is to take advantage of the unified framework of [17] to propose a
single model able to encompass both behaviors.

Of course, one can also consider more complex scenarios where the feedback of SU on ST is
neither positive nor negative. This situation is included in our framework and illustrated with
numerous examples later on.

2.2 Construction of the model
We propose a mathematical model inspired from [15,18,20] to account for the dynamics of SU and
ST. We let u(t, x) denote the level of SU at given time t and position x, and let v(t, x) be the level
of ST. We consider the general form of systems of Reaction-Diffusion equations{

∂tu− d1∆u = Φ(u, v),
∂tv − d2∆v = Ψ(u, v).

(2.1)

The diffusion terms d1∆u(t, x) and d2∆v(t, x) describe the influence that one location has on its
geographical neighbors. The reaction terms Φ and Ψ model the endogenous growths and feebacks
of u and v.

The level u = 0 represents the absence of social unrest, or activity. The value vb stands for
the base value of the social tension in the normal (quiet) regime. We assume that the system is
at equilibrium in the quiet regime, that is, (u ≡ 0, v ≡ vb) is a steady state for (2.1) (Φ(0, vb) =
Ψ(0, vb) = 0). For example, we can choose, as in (1.2),

Φ(u, v) = uF (u, v) ; Ψ(u, v) = uG(u, v) + (vb − v)H(u, v). (2.2)

We further assume that vb is a weakly stable state for the second equation when u ≡ 0, i.e.,
Ψ(0, v) ≥ 0 if v ≤ vb and Ψ(0, v) ≤ 0 if v ≥ vb. Under the particular form (2.2), it amounts to
saying that H(0, ·) ≥ 0 (which is the case of the SI system, where H ≡ 0).
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We then introduce a triggering event. This corresponds to a small perturbation of the steady-
state (u = 0, v = vb) and is encoded in the initial condition. For simplicity, we suppose that the
initial perturbation only occurs on the u component, that is, we take v0(·) ≡ vb. We study the
case of more general initial conditions v0 in [17].

We choose the term Φ in the first equation of (2.1) to be of the form

Φ(u, v) := u
[
r(v)f(u)− ω

]
.

The term f(u) represents the endogenous factor (or self-reinforcement/saturation mechanism).
We take f nonincreasing (to account for a saturation effect) and positive at u = 0; for example,
f(u) = 1− u or f(u) = 1.

The parameter ω > 0 is the natural rate of relaxation of SU in absence of self-reinforcement.
The endogenous factor is regulated by r(v), which models the role of activator played by ST.

We choose r(·) to be nonnegative and increasing. We can think of this term as an on-off switch of
the endogenous growth. For example, r(·) can be linear r(v) = v, or take the form of a sigmoïd

r(v) = 1
1 + e(α−v)β ,

where, α ≥ 0 is a threshold value while β > 0 measures the stiffness of the transition between the
relaxed state and the excited state (the case β = +∞ corresponds to r(v) := 1v>α).

Let us emphasize that most of our theoretical results can be adapted to a more general func-
tion Φ, see [17]. We choose this particular form for convenience and to make clearer the interpre-
tation in terms of modeling.

Let us now describe the reaction term Ψ in the second equation of (2.1). For the sake of clarity,
we want to normalize v such that it ranges in (0, 1); thus we will assume that v0 ∈ (0, 1), Ψ(u, 0) ≥ 0
and Ψ(u, 1) ≤ 0. We devote a particular attention to the following two classes of models. Each
case illustrates a typical qualitative behavior.

1. The tension inhibiting case: Ψ(u, v) < 0 for u > 0, v ∈ (0, 1). In this case, a burst of u
causes a decrease of v. We expect this case to give rise to an ephemeral riot and to behave
comparably to the SI epidemiology model, in which

Ψ(u, v) = −βuv,

with β > 0.

2. The tension enhancing case: Ψ(u, v) > 0 for u > 0, v ∈ (0, 1). In this case, a burst of u
causes an increase of v. We expect this case to give rise to a lasting upheaval and to behave
comparably to a cooperative system (although we do not assume that Ψ is monotonic). As
an example, we can take

Ψ(u, v) = uv(1− v).

2.3 The model: assumptions and notations
We consider u(t, x), which stands for the level of social unrest at time t ≥ 0 and location x ∈ Rn,
and v(t, x), which stands for the level of social tension, solution of

∂tu− d1∆u = Φ(u, v) := u
[
r(v)f(u)− ω

]
,

∂tv − d2∆v = Ψ(u, v),
u(0, x) := u0(x), v(0, x) := v0(x).

(2.3)

Here are our standing assumptions, that will be understood throughout the paper:

a) d1 > 0, d2 ≥ 0, ω > 0.

b) f(u) is smooth and nonincreasing on [0,+∞), with f(0) > 0;
for example, f(u) = 1 or f(u) = 1− u.

c) r(v) is smooth, nonnegative and increasing on (0, 1);
for example, r(v) = v.
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d) r(0) < ω
f(0) < r(1), and we define

v? := r−1
(

ω

f(0)

)
∈ (0, 1). (2.4)

e) Ψ(0, ·) has a (weakly) stable zero vb ∈ (0, 1), i.e.,

Ψ(0, v) ≥ 0, ∀v ∈ (0, vb) ; Ψ(0, v) ≤ 0, ∀v ∈ (vb, 1); (2.5)

for example, Ψ(0, ·) ≡ 0.

f) Ψ(u, v) is smooth and satisfies the saturation conditions at v = 0, 1

Ψ(u, 0) ≥ 0 and Ψ(u, 1) ≤ 0 ∀u ≥ 0. (2.6)

g) u0(x) 	 0 is bounded and v0 ≡ vb, where vb is a constant defined in assumption (2.5).

Our set of assumptions covers many diverse systems, which may be highly non-monotone and
exhibit quite different qualitative behaviors, as illustrated in the sequel. We give in [17] a more
detailed discussion on the link between this system and several others, such as the SI (or SIR)
epidemiology model or predator-prey systems.

The particular form of Φ and the monotonicity assumptions on f and r are not strictly necessary
but allow to simplify the presentation. Also, most of our result extend to the case where v0 − vb
is compactly supported. Since, here, we assume v0 ≡ vb, we shall write indifferently v0 or vb. We
refer the reader to [17] for results in a more general framework.

If one assumes that Ψ(0, ·) ≡ 0, then (2.5) is automatically satisfied and thus any vb ∈ (0, 1) is
suitable for our set of assumptions.

The following property is an immediate consequence of our assumptions.

Lemma 2.1. Any solution of (2.3) satisfies

u(t, x) > 0 and 0 < v(t, x) < 1, ∀t > 0, x ∈ Rn.

Proof. Recall that u0 	 0 and v0 ∈ (0, 1). For the range of v, we notice that in view of (2.6), v
satisfies the inequalities

∂tv − d2∆v −
(
Ψ(u, v)−Ψ(u, 0)

)
= Ψ(u, 0) ≥ 0,

and
∂t(1− v)− d2∆(1− v)−

(
Ψ(u, 1)−Ψ(u, v)

)
= −Ψ(u, 1) ≥ 0.

This implies that v(t, x) has range in (0, 1), thanks to the parabolic strong comparison principle if
d2 > 0, or simple ODE considerations if d2 = 0. Analogously, since the constant 0 is a solution of
the first equation in (2.3), we have that u(t, x) > 0 for t > 0, x ∈ Rn.

The quantity v? defined by (2.4) coincides with the value of v where ∂uΦ(0, v) changes sign, i.e.,

v? := sup
{
v ∈ (0, 1) : r(v) ≤ ω

f(0)

}
= sup {v ∈ (0, 1) : ∂uΦ(0, v) ≤ 0} .

We will see in the sequel that v? is the threshold value on v0 ≡ vb which determines the regime of
dynamics:

• if vb < v?, a small triggering event is followed by a return to calm,

• if vb > v?, a small triggering event ignites a burst of social unrest. This is akin to the
Hair-trigger effect in KPP equations.

The assumption (2.4) allows us to cover both possibilities of a burst or a return to calm depending
on the choice of vb ∈ (0, 1).

The above dichotomy is readily revealed by the analysis of the constant steady states of (2.3).
Namely, consider the scalar equation (with unknown u)

Φ(u, vb) := u
[
r(vb)f(u)− ω

]
= 0, u ≥ 0, (2.7)
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(a) Case vb < v? (b) Case vb > v?

Figure 1: Graph of u 7→ Φ(u, vb) depending on the base level of tension vb. The dashed line
represents the slope at the origin (i.e. Kb).

under the assumption that f is strictly decreasing and f(1) = 0. Call

Kb := ∂uΦ(0, vb) = r(vb)f(0)− ω. (2.8)

Note that, since r(·) is increasing, the sign of Kb coincides with that of vb − v?. We have the
following dichotomy:

• If vb < v?, then Kb < 0, and (2.7) has exactly one solution u = 0 (stable). See Figure 1a.

• If vb > v?, then Kb > 0, and (2.7) has exactly two solutions, u = 0 (unstable) and u = u?(vb)
(stable), defined by

u?(v) := f−1
(

ω

r(v)

)
. (2.9)

See Figure 1b. Note that v 7→ u?(v) is continuous increasing and that u?(v)↘ 0 as v ↘ v?.
For example, if f(u) = 1− u and r(v) = v, then v? = ω and u?(v) := 1− ω

v .

2.4 Traveling waves
It is reasonable to expect that, when a burst of social unrest occurs, the solution of (2.3) converges
to a traveling wave, that is, an identical profile moving at a constant speed. Although we do not
prove such a result, we corroborate it with numerical evidence in the sequel. It is thus interesting
to study the existence, non-existence, and the shape of traveling waves.

A traveling wave is defined as a solution of (2.3) of the form u(t, x) = U(x · e + ct), v(t, x) =
V (x · e+ ct), with c > 0, e ∈ Sn−1 and prescribed values at −∞. The profiles U(ξ) and V (ξ) thus
satisfy the elliptic problem

− d1U
′′ + cU ′ = Φ(U, V ) := U

[
r(V )f(U)− ω

]
,

− d2V
′′ + cV ′ = Ψ(U, V ),

c > 0 ; U > 0 is bounded ; 0 < V < 1.
(2.10)

We complete it with the semi-boundary conditions at −∞{
U(−∞) = 0,
V (−∞) = vb.

(2.11)

The term semi-boundary conditions comes from the fact that we do not impose a prescribed value
at +∞. The traveling waves under consideration might not be unique and may take many diverse
forms, such as monotone waves or bumps. This will be illustrated in the following sections.

2.5 Comparison with previous models and remarks
Our model is directly inspired by a series of papers [15,18,20] which introduce a system of Reaction-
Diffusion equation, comparable to (2.3), to model the dynamics of riots. As before, the quantity
u(t, x), depending on time t ≥ 0 and location x ∈ Rn, represents the level of social unrest, and
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v(t, x) represents the level of social tension. In most cases, the model reduces to the following
system {

∂tu = d∆u+ ur(v)f(u)− ω(u− ub(x)),
∂tv = d∆v + S(t, x)− θ

(
1

(1+u)p v − vb(x)
)
.

(2.12)

This model has been first introduced [15].
Let us describe the model (2.12) and discuss the main differences with our model (2.3). The

parameters r(·), f(·) and ω are the same as described in the previous section. The quantity θ > 0
stands for the natural relaxation rate on the level of social tension to the base rate vb in absence
of any rioting activity.

The function ub(x) stands for the low recurrent rioting activity in the absence of any unusual
factors. Accordingly, vb(x) denotes the base level of social tension in absence of any rioting activity.
Our model (2.3) corresponds to the case where ub and vb are constant (using the change of variable
ũ := u− ub).

With non-constant ub(x) and vb(x), the model (2.12) is spatially heterogenous. On the contrary,
our model (2.3) is spatially homogeneous. The non-homogeneous setting is however an interesting
perspective and is discussed in Section 7.

The parameter p ∈ R models the feedback of u on v. If p > 0, then a burst of u will slow down
the relaxation of v; if p < 0, then a burst of u will speed up the relaxation of v. If p = 0, the system
is decoupled. In [18, 20], the cases p < 0 and p > 0 are called respectively tension enhancing and
tension inhibiting, however it does not correspond to what we call tension enhancing and tension
inhibiting in the present work. Let us be more precise. Assume for simplicity that vb ≡ 0 and
S ≡ 0. In (2.12), the cases p > 0 and p < 0 model respectively a negative and a positive feedback
of u on v. However, the fact that the term −θ 1

(1+u)p v is negative results in the fact that t 7→ v(t, x)
is decreasing and decays to 0, regardless of the sign of p. This implies that any burst of social
unrest eventually vanishes. The behavior observed in (2.12) in both cases p > 0 and p < 0 is well
captured by what we call tension inhibiting in the present work (Section 4). System (2.12) does
not model a situation where a burst of social unrest results in an increase of the social tension.
Yet, this case is reasonable from the modeling perspective and allows to account for time-persisting
movement of social unrest (see Section 5).

In [15, 18, 20], the source term S(t, x) accounts for exogenous events. In the present paper, we
consider that a single exogenous event occurs at time t = 0 and encode it in the initial conditions.

In [20], the authors focus on the effect of a restriction of information, which is modeled by
substituting the KPP term uf(u) with the combustion term (u − α)+f(u), α ∈ (0, 1), where the
subscript + denotes the positive part. The paper [18] considers (2.12) without space (i.e. d = 0)
and studies the dynamics of the system for a periodic source term

S(t) := A
∑
i≥0

δt=iT .

We also mention [82] in which a numerical analysis is conducted to investigate the influence of
the parameters on the shape and speed of traveling waves. The article [19] also proposes a model
comparable to (2.12) for criminal activity.

A recent work [64] proposes an other model to account for the dynamics of social unrest quite
different in spirit from the model we discuss here. In this work, u(t, x) represents the number of
individuals that take part in the social movement. It is assumed to satisfy the equation

∂tu− d1∂
2
xxu = ε0 + εu+ au2

h2 + u2 −m(t, x)u, (2.13)

where ε0, ε, a and h are positive constants. The term ε0 + εu stands for the rate at which people
are willing to join the social movement. The nonlinear term au2

h2+u2 accounts for a saturation effect.
The quantity m(t, x) represents the rate at which individuals exit the movement. It can be thought
as a field of non-susceptibility, and is somehow opposite to v in our model. It is assumed in [64]
that m is either constant, or given by the explicit formula

m(t) = m1 + (m0 −m1)e−bt,

or by the equation
∂tm− d2∂

2
xxm = βu ; m(t = 0, x) = m0.
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Let us emphasize that, for some range of parameters, the equation on u is of the bistable type.
For example, if ε0 = 0 and m is a constant lying in the interval (ε, ε + a

2h ), then equation (2.13)
admits three constant steady states (two of them are stable and the third one is unstable). This
differs from our model in which u satisfies a monostable equation.

Finally, we mention that many other mathematical approaches have been taken to model the
dynamics of riots, protests and social unrest, such as individual-based models [32,35], cost/benefits
analysis [28], or diffusion on networks [83]. The pioneering paper using epidemiology models for
riots is due to Burbeck et al. [25].

3 General properties
In this section, we state general properties on the system (2.3) under the assumptions presented
in Section 2.3. These results are established in [17]. Here, we apply the results of [17] in our
context and discuss the implications in terms of modeling. In particular, we highlight a threshold
phenomenon on the initial level of social tension for a small triggering event to ignite a movement
of social unrest.

3.1 Return to calm
First, let us observe that in a context of low social tension, a small triggering event is followed by
a return to calm. Mathematically speaking, if vb < v?, with v? defined in (2.4), the steady state
(u = 0, v = vb) is stable with respect to a small perturbation on u. Indeed, from [17, Theorem 1],
if d2 > 0 and v0 ≡ vb < v?, then any solution with u0 sufficiently small and compactly supported,
satisfies

lim
t→+∞

(
u(t, x), v(t, x)

)
= (0, vb), uniformly in x ∈ Rn. (3.1)

This has two implications from the modeling point of view. First, it means that a triggering event
with small intensity has no effect in the long run. Furthermore, since the convergence is uniform
in space, it means that a localized triggering event has a localized effect.

Under the same conditions, but with d2 = 0, and u0 < ε small but not necessarily compactly
supported, there holds that

lim
t→+∞

u(t, x) = 0, uniformly in x ∈ Rn,

sup
x∈Rn

|v(t, x)− vb| ≤ Cε, ∀t ≥ 0,

for some constant C independent of u0 and ε. This expresses the fact that a triggering event with
small intensity, even if spread out, will have a small effect on the system.

We point out that, in the tension inhibiting case (c.f. assumption (4.1) below), the above results
hold true for u0 not necessarily small, see [17, Theorem 6].

3.2 Burst of Social Unrest
In contrast with the above return to calm, when the initial level of social tension is sufficiently
large, an arbitrarily small triggering event ignites a movement of social unrest. This feature is
usually called a Hair-trigger effect.

In other words, if v0 ≡ vb > v? defined by (2.4), the steady state (0, vb) is unstable. Namely,
from [17, Theorem 1], we know that for any x0 ∈ Rn and r > 0, there holds that

lim sup
t→+∞

(
u(t, x0) + sup

x∈Br(x0)
|v(t, x)− vb|

)
> 0. (3.2)

This means that even a small event is sufficient to trigger a burst of social unrest, which will
drive the system away from the initial condition. This can be put in contrast with the scenario
when v0 ≡ vb < v? for which (3.1) occurs.

Aside from property (3.2), the asymptotic behavior of the solution can be diverse, as revealed
by numerical simulations presented later on in this paper. Nevertheless, we are able to detail the
picture for two important and general classes of systems: the tension inhibiting systems or tension
enhancing systems, see Sections 4 and 5 respectively.
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3.3 Spatial propagation
Next, we investigate the long-range effect and the geographical spreading of a burst. When v0 ≡
vb > v? given by (2.4), we define

cb := 2
√
d1 (r(vb)f(0)− ω), c1 := 2

√
d1 (r(1)f(0)− ω). (3.3)

Note that cb < c1 because r(·) is increasing and vb < 1. Then [17, Theorem 2] states that, for any
x0 ∈ Rn, r > 0 and any direction e ∈ Sn−1, the following hold:

∀c ∈ (0, cb), lim sup
t→+∞

(
u(t, x0 + cte) + sup

x∈Br(x0)
|v(t, x+ cte)− vb|

)
> 0, (3.4)

∀c > c1, lim
t→+∞

(
sup
|x|≥ct

∣∣∣(u(t, x), v(t, x)
)
−
(
0, vb

)∣∣∣) = 0. (3.5)

From the modeling point of view, it means that a localized triggering event leads to a movement
of social unrest that propagates through space. More precisely, an observer moving at a speed c
eventually outruns the propagation if c > c1, whereas, if c < cb, he will face situations away from
the quiet state (0, vb).

Properties (3.4)-(3.5) do not allow us to assert the existence of an asymptotic speed of propa-
gation, as usually intended, because of the gap between cb and c1 and also of the fact that we only
have a “lim sup” in (3.4). The gap between cb and c1 is filled in the inhibiting case, because we
show in [17] that in such case property (3.5) holds with c1 replaced by cb. That is, in this case,
cb is the asymptotic speed of propagation. The numerical simulation in Section 5.3.3 shows that
in the general case the asymptotic speed of propagation may be different from both cb and c1. We
also show in [17] that, in the enhancing case, we can replace the “lim sup” with a “lim inf” in (3.4).
This means that an observer moving at speed c < cb faces an excited scenario for all sufficiently
large times.

4 Tension Inhibiting - dynamics of a riot
We consider our main equation (2.3). The tension inhibiting structure relies on following negativity
assumptions on Ψ: Ψ(u, v) < 0 for all u > 0, v ∈ (0, 1),

lim sup
u→+∞

Ψ(u, v)
u

< 0 locally uniformly in v ∈ (0, 1].
(4.1)

In particular, in view of the saturation assumption (2.6), there holds that Ψ(u, 0) = 0 for all u ≥ 0.
Assumptions (4.1) essentially mean that u has a negative feedback on v (however, we do not

assume any monotonicity on u 7→ Ψ(u, v) as in the SI model (1.1)). As a direct consequence of
this assumption and the parabolic comparison principle (or ODE considerations if d2 = 0), we
have that

v(t, x) < v0 = vb, ∀ t > 0, x ∈ Rn.

A typical example of a tension inhibiting system is the celebrate SI epidemiology model (1.1). This
system enters the general class (2.3) by taking r(v) = v, f(u) = u, and Ψ(u, v) = −uv in (2.3).
Note that the SI model is inhibiting for any vb ∈ (0, 1).

As we will see, the tension inhibiting case typically grasps the dynamics of a limited-duration
movement of social unrest, that we call a riot. A good heuristics of the behavior of the model
is given by a formal analysis of the underlying ODE system. Consider a constant initial datum
u0, hence the solutions u(t, x) and v(t, x) of (2.3) do not depend on x. In this case, we easily see
that if the initial level of social tension vb is above the threshold v? then the system features a
Hair-trigger effect, that is, any triggering event (i.e., u0 > 0) ignites a movement of social unrest.
Then, from assumption (4.1), the level of social tension decreases, until it goes below than the
threshold value v?. At this point, the level of social unrest begins to fade and eventually goes to
0, while the level of social tension converges to some final state smaller than the initial one.
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The same qualitative behavior is observed in the context of epidemiology, where v represents the
number of susceptible and the number of infected. When an epidemic spreads out, the susceptible
population decreases until it goes below a threshold value, after what the infection dies out.

The goal of this section is to recover, at least partially, the above properties for the PDE
general system (2.3). We begin with the study of traveling waves, next we present partial results
for solutions of the Cauchy problem. We conclude this section with detailed numerical simulations.

4.1 Traveling waves
Let us first reclaim from [17] the existence and non-existence results for traveling waves, i.e.,
solutions to (2.10)-(2.11). Recalling that the sign of vb − v? (from definition (2.4)) coincides with
the one of Kb (from (2.8)), [17, Theorem 8] implies that the following hold under the inhibiting
assumption (4.1):

• if vb < v?, there exists no traveling wave;

• if vb > v?, there exists no traveling wave with speed c < cb and there exists a traveling wave
for any speed c > cb, where cb is defined in (3.3).

Here we derive some further qualitative properties of traveling waves, concerning monotonicity
and identification of their limit at +∞.

The following result states that U has the shape of a bump, and V that of a monotone wave.

Theorem 4.1. Under the inhibiting assumption (4.1), any traveling wave (U, V ) satisfies V ′ < 0
in R and U ′ > 0 in (−∞, ξ0), U ′ < 0 in (ξ0,+∞), for some ξ0 ∈ R. In addition,

U(+∞) = 0, V (+∞) = V∞,

where V∞ ∈ [0, vb) is a root of Ψ(0, ·) and moreover V∞ ≤ v? from (2.4).

Recall that assumptions (2.6) and (4.1) yield Ψ(0, 0) = 0. If Ψ(0, ·) has many roots (e.g., if
Ψ(0, ·) ≡ 0), an important issue is the identification of the limiting state V∞ among them. From
a modeling perspective, the quantity vb − V∞ measures the amount of social tension dissipated by
the movement of social unrest. In the context of epidemiology, vb−V∞ represents the total number
of individuals that has been infected during the epidemic. Theorem 4.1 provides us with the a
priori bound V∞ ≤ v?. To derive a more precise estimate on V∞, one can integrate the equation
on V (and use V ′(±∞) = 0) to find

c(V∞ − vb) =
∫ +∞

−∞
Ψ(U, V ).

Analogously, from U(±∞) = U ′(±∞) = 0, integrating the equation on U gives∫ +∞

−∞
U
[
r(V )f(U)− ω

]
= 0.

However, this formula is not explicit. In some particular cases (including the SI model (1.1) with
d2 = 0), one can obtain a rather explicit expression for V∞.

Proposition 4.2. Let (U, V ) be a solution (2.10)-(2.11) with d2 = 0, f ≡ 1 and Ψ(U, V ) = UG(V ),
that is {

− d1U
′′(ξ) + cU ′(ξ) = U

(
r(V )− ω

)
,

cV ′(ξ) = UG(V ),

and assume that G < 0 on (0, 1). Then, letting Q be a primitive of v 7→ ω−r(v)
G(v) , there holds that

Q(V∞) = Q(vb).

In particular, V∞ does not depend on c, nor on d1.
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(a) Graph of Q(v) = v − 1
2 ln(v) (solid line) and

graphic construction of the solution of (4.2) (dashed
lines)

b

(b) V∞ solution of (4.2) as a function of vb, for
Q(v) = v − 1

2 ln(v).

Figure 2

In the particular case of the SI model (1.1) with d2 = 0, we have

Q(v) = 1
β

(v − ω ln(v)).

See Figure 2a. In this case, V∞ is uniquely determined by the conditions{
Q(V∞) = Q(vb),
V∞ ≤ v?.

(4.2)

The numerical values of V∞ as a function of vb are plotted in Figure 2b for β = 1
2 . We see that V∞

is a decreasing convex function of vb ∈ (v?,+∞). From a modeling perspective, it means that the
higher the initial level of social tension, the lower the final level of social tension after the burst of
a riot.

4.2 Large time behavior for the Cauchy problem
We now turn to the more intricate question of studying the large time behavior of solutions to (2.3).
Compared with the previous section on traveling waves, we are only able to establish partial results.
We have seen in Section 3.1 that when v0 ≡ vb < v?, perturbations of the steady state (0, vb) (not
necessarily small) eventually disappear as t→ +∞. On the contrary, if v0 ≡ vb > v?, perturbations
do not tend to 0 as t → +∞, at least in one of the (u, v) components, see Section 3.2. However,
solutions can exhibit many qualitatively diverse behaviors in general. We are able to obtain some
informations in the inhibiting case.

Theorem 4.3. Assume that the inhibiting hypothesis (4.1) holds, that d2 > 0, and that the dimen-
sion is n = 1 or 2. Then any solution of (2.3) satisifes

lim inf
t→+∞

u(t, x) = 0 locally uniformly in x ∈ Rn. (4.3)

If in addition v(t, x) converges pointwise to some v∞(x) as t→ +∞, then v∞ is a constant in
[0, v?] and u(t, x)→ 0 as t→ +∞ locally uniformly in x ∈ Rn.

The first part of the theorem states that the movement of social unrest vanishes along some
sequences of time. Moreover, if we assume that v converges as t → +∞, then the second part of
the theorem states that u converges to 0. This means that only the v component matters in the
estimate (3.2) for the case vb > v?.

An interesting question is to estimate the final state v∞. The following result concerns the
homogeneous case, i.e., when u0(·) is constant
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Proposition 4.4. Assume that (4.1) holds. Let (u, v) and (ũ, ṽ) be the solutions of (2.3) with
initial conditions (u0, v0) and (u0, ṽ0) respectively, where u0 is constant and v0 ≡ vb, ṽ0 ≡ ṽb. If
vb > ṽb > v?, the corresponding final states v∞ and ṽ∞ satisfy

v∞ ≤ ṽ∞ < v?.

Moreover,
max
t>0

u(t) > max
t>0

ũ(t).

The above proposition states that the final level v∞ is decreasing with respect to vb. From the
modeling point of view, it implies that a higher initial level of social tension will lead to a lower
final level of social tension. On the contrary, the higher the initial level of social tension, the higher
the maximal level of social unrest. This enlightens very well the non monotone structure of the
inhibiting case.

4.3 Numerical simulations
Let us illustrate the dynamics of (2.3) in the inhibiting case (4.1) with numerical simulations.

4.3.1 Threshold between calm and riot

Consider the following particular instance of (2.3):∂tu− ∂xxu = u

[
5v(1− u)− 1

2

]
,

∂tv − ∂xxv = −uv.
(4.4)

As for the initial datum, we take u0(x) = 0.2(1− x2

100 )+, where (·)+ denotes the positive part, and
v0 ≡ vb. Observe that any vb ∈ (0, 1) is allowed by the stability hypothesis (2.5). System (4.4)
satisfies the inhibiting assumption (4.1). The quantities defined in (2.4) and (2.8) are given by
v? = 1

10 and Kb = 5vb − 1
2 .

First, if vb < v? we observe in Figure 3 that a triggering event is promptly followed by a return
to calm, i.e., u rapidly vanishes. Next, v converges in long time to its initial value vb. This is in
agreement with the property (3.1).

On the contrary, when vb = 0.15 > v?, Figure 4 shows that the solution does not vanish
uniformly in space, but rather develops two traveling waves –one leftward and the other rightward–
i.e., two fixed profiles propagating at constant speed. This is in agreement with the discussion in
Sections 3.2, 3.3. The profile of u has the shape of a bump, while the profile of v is a decreasing
wave, as stated in Theorem 4.1. The fact that the level of SU decays as t → +∞, which was
expected from Theorem 4.3, means that social movements get extinct after some times. Thus, the
dynamics describe a limited-duration movement of social unrest, that we call a riot.

4.3.2 Speed of propagation

Let us investigate in more details the dependence of the speed of propagation with respect to vb
on the system ∂tu− ∂xxu = u

[
v(1− u)− 1

3

]
,

∂tv − ∂xxv = −uv.
(4.5)

We consider u0(x) = 0.2(1 − x2)+ as an initial datum for u, then we will study the asymptotic
speed of propagation as the initial datum for v, v0 ≡ vb, varies in (0, 1).

Let us briefly explain how we numerically compute the speed of propagation. For each sim-
ulation and two given times t1 = 99 and t2 = 399, we track the leftmost locations xi where the
solution u(ti, ·) reaches half its supremum, i.e., the value 1

2 supx∈R u(ti, x). See Figure 5. Then, we
compute the speed as

c = x2 − x1

t2 − t1
.
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Figure 3: Inhibiting case – return to calm. Snapshots at different times of the solution of (4.4)
with vb = 0.05 < v?. Horizontal axis: space. Blue solid line: u(t, ·). Brown dashed line: v(t, ·).
Video: Inhibiting_v0=005.mp4
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Figure 4: Inhibiting case – riot. Snapshots at different times of the solution of (4.4) with
vb = 0.15 > v?. Horizontal axis: space. Blue solid line: u(t, ·). Brown dashed line: v(t, ·).
Video: Inhibiting_v0=015.mp4
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We recall that, according to Section 3.3, the speed of propagation of the solution is equal to

cb := 2
√
vb −

1
3 .

We plot in Figure 6 the computed speed c and the theoretical speed cb, and we see that the two
speeds are indeed equal.

4.3.3 Eventual level of social tension

As we can see in Figure 4 and Figure 7, the solution (u, v) converges to some (0, v∞) as t→ +∞.
We can verify numerically that v∞ ≤ v?, which is in agreement with Theorem 4.3.

It is an interesting question to estimate more precisely the final level of social tension v∞.
Theoretical results in this direction are given by Propositions 4.2 and 4.4. Let us now study this
question with numerical simulations.

We plot in figure Figure 7 the simulation of equation (4.4) with a high initial level of social
tension vb = 0.9. Compared with the simulation for vb = 0.15, in Figure 4, we observe that u
reaches higher values, that its shape is sharper, and that the speed of propagation is larger.

We also observe in Figure 7 that the eventual level of social tension v(t = +∞) is very low. To
see this more precisely, we plot in Figure 8a the value of v∞ as a function of vb on the system (4.4).
We observe that v∞ is indeed a decreasing function of vb. From a modeling perspective, it means
that the higher the initial level of social tension, the lower the final level of social tension. This
phenomenon is in agreement with what was observed in Figure 2b for the SI model.

Now, let us focus on the dependence of v∞ with respect to the diffusion on social tension d2.
We consider (4.5) with a varying diffusion on the second equation, that is,∂tu− ∂xxu = u

[
v(1− u)− 1

3

]
,

∂tv − d2∂xxv = −uv.
(4.6)

We fix v0 ≡ vb = 0.5 and u0(x) = 0.2(1− x2

10 )+. We plot in Figure 8b the value of v∞ as a function
of d2. We observe that v∞ is increasing. From a modeling point of view, it means that the higher
the diffusion on the social tension, the higher the final level of social tension. Heuristically, this is
explained by the fact that lim|x|→+∞ v(t, x) = vb > v∞ and that, the larger d2, the more v(t, x) is
influenced by its value at far distances.

5 Tension Enhancing - dynamics of a lasting upheaval
The tension enhancing structure relies on the following saturation assumptions on f and positivity
on Ψ: {

f is strictly decreasing and f(M) ≤ 0 for some M > 0,
Ψ(u, v) > 0 ∀u ∈ (0,M), v ∈ (0, 1).

(5.1)

The assumption on f accounts for the saturation effect on the level of social unrest. A typical
example is to take f(u) = M − u. As a direct consequence, the parabolic comparison principle
yields

lim sup
t→+∞

u(t, x) ≤M, ∀x ∈ Rn.

The assumption on Ψ essentially means that u has a positive feedback on v (we do not assume,
however, that u 7→ f(u, v) is increasing). Again, as a direct consequence of the positivity of Ψ we
have that

v(t, x) > v0 ≡ vb ∀ t > 0, x ∈ Rn.

A typical example of the tension enhancing case is the cooperative system{
∂tu− d1∆u = u

[
v(1− u)− ω

]
,

∂tv − d2∆v = uv(1− v),

obtained by taking r(u, v) = v, f(u, v) ≡ 1− u, Ψ(u, v) = uv(1− v) in (2.3).
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Figure 5: Illustration of the method to compute the speed numerically. The horizontal coordinates
of the green circles represent respectively the leftmost locations x1 and x2 where u(t1, ·) and u(t2, ·)
reach half their supremum. The simulation is performed on (4.5) with vb = 0.9.
Video: Speed_v0=09.mp4

Figure 6: Inhibiting case – speed of propagation as a function of vb. Blue solid line: empirical
speed c computed numerically via the solution of (4.5). Dashed orange line: theoretical speed
cb = 2

√
vb − 1

3 .
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Figure 7: Inhibiting case – strong riot. Snapshot at different times of the solution of (4.4) with
vb = 0.9 > v? (compare with Figure 4 where vb = 0.15). Horizontal axis: space. Blue solid line:
u(t, ·). Brown dashed line: v(t, ·). Video: Inhibiting_v0=09.mp4
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(a) v∞ as a function of vb in (4.4).
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Figure 8: Inhibiting case – eventual level of social tension v∞ = limt→+∞ v(t, ·) as a function of
the parameters for the solution of (4.6).
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The tension enhancing assumption typically grasps the dynamics of a persisting movement of
social unrest, that we refer to here as a lasting upheaval. A good heuristic of the behavior of the
model is given by a formal analysis of the underlying ODE system. Taking u0 constant implies
that the solutions u and v of (2.3) do not depend on x. If the initial level of social tension is above
the threshold v? = ω from (2.4), then any triggering event ignites a burst of social unrest. The level
of social tension then increases, which enhances the growth of social unrest. Eventually, both the
level of social tension and social unrest converge to an excited state, v → 1 and u→ u?(1) = 1−ω
from definition (2.9).

We begin by stating qualitative properties for the traveling waves, then we investigate the large
time behavior of solutions to (2.3). On this latter question, we obtain more complete results than
in the inhibiting case (Section 4), since we prove that the solution converges to an excited state as
t→ +∞. The results are illustrated by numerical simulations.

5.1 Traveling waves
Let us first discuss the existence and non-existence of traveling solutions of (2.10)-(2.11) using the
results of [17]. Consider the function γ : [c1,+∞)→ R defined by

γ(c) :=
√
c2 − c2b −

√
c2 − c21

2c ,

where cb and c1 are defined in (3.3). Because cb < c1, we have that γ is positive and decreasing,

with γ(c1) = 1
2

√
1− c2

b

c2
1
and γ(+∞) = 0. Let us define

c̄ := inf {c ≥ c1 : d2γ(c) ≤ d1} ∈ [c1,+∞).

We point out that

c̄ =


c1, if d2γ(c1) ≤ d1,

γ−1
(
d1

d2

)
, otherwise.

Recalling that the sign of vb−v? (from definition (2.4)) coincides with the one ofKb (from (2.8)),
[17, Theorem 4] imply that, under the assumptions (5.1) and vb > v?, the following hold:

• there exists no traveling wave with speed c < cb;

• there exists a traveling wave with any speed c > c̄.

In particular, if d2 is sufficiently small, then c̄ = c1, and so there exists a traveling wave for any
speed greater than c1.

The following result deals with the shape of the traveling waves.

Theorem 5.1. Under the enhancing assumption (5.1), any traveling wave satisfies U ′ > 0, V ′ > 0
in R and

U(+∞) = u?(1) := f−1
(

ω

r(1)

)
, V (+∞) = 1.

5.2 Large time behavior for the Cauchy problem
In the previous section, we have identified the limits of traveling waves as ξ → +∞. We now show
that the same limits hold for the solution of (2.3) as t→ +∞.

Theorem 5.2. Assume that (5.1) holds and that vb > v?. Then any solution of (2.3) with v0 ≡ vb
and u0 compatcly supported satisfies

lim
t→+∞

u(t, x) = u?(1) := f−1
(

ω

r(1)

)
, lim

t→+∞
v(t, x) = 1,

locally uniformly in x ∈ Rn.

This theorem states that the level of social unrest converges to a sustainable excited state u?(1).
From a modeling point of view, this corresponds to a persisting social movement, that we refer to
as a lasting upheaval.
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5.3 Numerical simulations
In this section we provide some numerical illustrations of the dynamics of system (2.3) in the
enhancing case (5.1).

5.3.1 Threshold between calm and lasting upheaval

Let us consider the following particular instance of (2.3) satisfying the enhancing assumption (5.1):∂tu− ∂xxu = u

[
v(1− u)− 1

3

]
,

∂tv − ∂xxv = uv(1− v),
(5.2)

with initial condition u0(x) = 0.2(1 − x2)+ and v0 ≡ vb ranging in (0, 1). In this case we have
v? = 1/3 and Kb := vb − 1/3.

Figure 9 refers to the case vb < v?. We observe there that a triggering event is promptly
followed by a return to calm, namely, u rapidly vanishes. Next, v converges in long time to its
initial value vb. This is in agreement with the discussion in Section 3.1. Let us emphasize, however,
that this is only true when considering a sufficiently small initial condition u0(x), see Section 5.3.2
for more details.

On the contrary, if vb > v?, a small triggering event ignites a burst of social unrest that spreads
through space, as can be seen on Figure 10. This is in agreement with Sections 3.2 and 3.3. More
precisely, the simulation shows that the solution converges to two traveling waves, one leftwards
and the other one rightwards, i.e., two fixed profiles moving at a constant speed. The profiles
for both u and v have the shape of monotone waves, as stated in Theorem 5.1. In addition, the
solution converges pointwise to (u?(1), 1) as t→ +∞, in agreement with Theorem 5.2.

Since the asymptotic state as t→ +∞ features a positive level of activity, the dynamics describe
a persisting movement of social unrest, that we call a lasting upheaval.

5.3.2 Magnitude of the triggering event

In the tension enhancing case, the magnitude of the triggering event (i.e., the size of u0(x)) may
be of crucial importance to determine the regime of the dynamics when v0 ≡ vb < v?. This has to
be put in contrast with tension inhibiting case (described in Section 4) for which the regime of the
dynamics do not depends on the size of u0(x).

Figure 11 depicts two distinct dynamics for system (5.2) corresponding to vb = 0.3 < v? = 1/3:
the initial condition u0(x) = 0.1(1 − x2)+ exhibits a return to calm, see Figure 11a, whereas
u0(x) = 0.5(1− x2)+ ignites a lasting upheaval, see Figure 11b.
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Figure 9: Enhancing case – return to calm. Snapshots at different times of the space distribution
of the solution of (5.2) with vb = 0.2 < v?. Horizontal axis: space. Blue solid line: u(t, ·). Brown
dashed line: v(t, ·). Video: Enhancing_v0=02.mp4
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Figure 10: Enhancing case – lasting upheaval. Snapshots at different times of the solution of (5.2)
with vb = 0.4 > v?. Horizontal axis: space. Blue solid line: u(t, ·). Brown dashed line: v(t, ·).
Video: Enhancing_v0=04.mp4
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(a) Calm for u0(x) = 0.1(1 − x2)+. Video: Triggering_u0=01.mp4
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(b) lasting upheaval for u0(x) = 0.5(1 − x2)+. Video: Triggering_u0=05.mp4

Figure 11: Enhancing case – influence of the magnitude of the triggering event. Snapshots at
different times of the solution of (5.2) with vb = 0.3 < v?. Horizontal axis: space. Blue solid line:
u(t, ·). Brown dashed line: v(t, ·).
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Figure 12: Enhancing case – lasting upheaval. Simulation of (5.2) with vb = 0.9 > v?. Horizontal
axis: space. Blue solid line: u(t, ·). Brown dashed line: v(t, ·). Video: Enhancing_v0=09.mp4

The phenomenon depicted by Figure 11 can be explained by the following heuristic: if u0 is
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large enough, then u(t, ·) remains at high values for a sufficiently long time so that v increase and
reach values above the threshold v?.

5.3.3 Speed of propagation

We see in Figure 10 that, if the initial level of social tension vb is above the threshold v?, the
solution of (5.2) propagates through space at a constant speed. If we increase the initial social
tension, we observe that the solution propagates faster through space. See Figure 12 for a numerical
simulation of (5.2) with vb = 0.9.

To see this phenomenon more clearly, we plot the speed of propagation c of the solution of (5.2)
as a function of vb in Figure 13a (the speed is computed with the method presented in Section 4.3.2).
We see that c is indeed an increasing function of vb.

The theoretical result presented in Section 3.3 states that c ranges in (cb, c1) defined in (3.3).
This is confirmed numerically in Figure 13a.

(a) On system (5.2). (b) On system (5.3) with d2 = 20.

Figure 13: Enhancing case – speed of propagation. Blue solid line: empirical speed c. Dashed
lines: theoretical bounds on the speed, cb = 2

√
vb − 1

3 and c1 = 2
√

1− 1
3 .

Figure 13a could suggest that c ≈ cb, or that c does not depend on the equation on v (i.e. d2
and Ψ) like in the inhibiting case (Section 4.3.2). However, numerical experiment shows that it is
not the case in general. This is a substential difference with the inhibiting case, for which c = cb.
To see this, let us consider the same system (5.2) with a diffusion coefficient d2 on the second
equation: ∂tu− ∂xxu = u

[
v(1− u)− 1

3

]
,

∂tv − d2∂xxv = uv(1− v).
(5.3)

We plot in Figure 13b the speed of propagation c of the solution of (5.3) with d2 = 20 as a function
of vb. We see that c and cb largely differ, especially for small values of vb. This is a numerical
evidence that vb depends on d2. Fixing vb = 0.9, we see on Figure 14a that c is indeed an increasing
function of d2. Again, this has to be put in contrast with the inhibiting case, for which c = cb does
not depend on d2.

Let us now investigate how the speed depends on the magnitude of Ψ. Consider the analogous
of system (5.2) with a variable magnitude for the reaction term in the second equation, namely,∂tu− ∂xxu = u

[
v(1− u)− 1

3

]
,

∂tv − ∂xxv = kuv(1− v),
(5.4)

where k ≥ 0 is a parameter, and vb = 0.5. We plot the speed c as a function of k in Figure 14b.
We see that c is an increasing function of k, and so that it indeed depends on the magnitude of Ψ.

These observations motivate the following questions.
Open problem: Do we have limd2→+∞ c = c1 in (5.3)? Do we have limk→0 c = cb or limk→+∞ c =
c1 in (5.4)?
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(a) Speed c as a function of d2 on the sys-
tem (5.3) with vb = 0.9.

b

(b) Speed c as a function of k on the sys-
tem (5.4) with vb = 0.5.

Figure 14: Enhancing case – dependence of the speed c on the parameters d2 and Ψ

6 Mixed cases
We propose in this section to focus on some particular instances of (2.3) which exhibit more complex
behaviors. We begin with a model featuring a double threshold phenomenon which can give rise
to both ephemeral riots and lasting upheaval. Next, we present other models where oscillating
traveling waves appear.

6.1 Double threshold: calm-riot-lasting upheaval
Consider the system 

∂tu− ∂xxu = u

[
v(1− u)− 1

3

]
,

∂tv − d2∂xxv = uv(1− v)(v − 1
2),

(6.1)

and some initial conditions u0(x) 	 0 and vb ∈ (0, 1). We find v? = 1/3 from definition (2.4).
Depending on the value of vb, we have the following dichotomy:

• if v0 ≡ vb < 1/2: the system is tension inhibiting (4.1),

• if v0 ≡ vb > 1/2: the system is tension enhancing (5.1).

Indeed, note that v0 < 1/2 implies that v(t, x) ∈ (0, 1/2) and v0 > 1/2 that v(t, x); one can thus
restrict Ψ to a suitable range where Ψ(·, v(t, x)) is either positive or negative.

We can then apply the results of the previous sections to infer that a small triggering event can
lead to three different situations:

• For a small initial level of social tension vb ∈ (0, v?): return to calm (Section 3).

• For an intermediate initial level of social tension v ∈ (v?, 1/2): burst of an ephemeral riot
(Section 4).

• For a high initial level of social tension v ∈ (1/2, 1): burst of a lasting upheaval (Section 3).

From the modeling point of view, this double threshold phenomenon means that, in the model (6.1),
the initial level of social tension determines whether a small triggering event ignites a social move-
ment, and also whether the movement will be ephemeral or persisting.

We propose to illustrate this double threshold phenomenon with numerical simulations of (6.1).
We take v0 ≡ vb ∈ (0, 1) and u0(x) = 0.1(1 − x2)+. Figure 15 illustrates the return to calm for
vb = 0.3 ; Figure 16 the propagation of a riot for vb = 0.4 ; Figure 17 the propagation of a lasting
upheaval for vb = 0.6.
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Figure 15: Mixed Case – Calm. Snapshots at different times of the solution of (6.1) with
vb = 0.3 < v?. Horizontal axis: space. Blue solid line: u(t, ·). Brown dashed line: v(t, ·).
Video: Mixed_V0=03.mp4
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Figure 16: Mixed Case – riot. Snapshots at different times of the solution of (6.1) with vb =
0.4 ∈ (v?, 1/2). Horizontal axis: space. Blue solid line: u(t, ·). Brown dashed line: v(t, ·).
Video: Mixed_V0=04.mp4
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6.2 Oscillating traveling waves
We saw in Sections 4.1, 5.1 that the traveling wave can have the shape of a bump or a monotonic
wave. Yet, some traveling waves may have a more complex shape. For example, consider the
following particular instance of (2.3)∂tu− ∂xxu = u

[
v(1− u)− 1

3

]
,

∂tv − ∂xxv = uv(1− v)(v − 10u).
(6.2)

We see in Figure 18 that the solution converges to a traveling wave which features damped oscil-
lations on its tail.

We suspect that some well-chosen parameters could generate travelings wave with undamped
oscillation; yet, we are not able to produce such an example.

6.3 Magnitude of the triggering event and terraces
As described in Section 5.3.2, when the system is not tension inhibiting, the magnitude of the
triggering event (i.e. the size of u0) may be of crucial importance to determine the regime of the
dynamics when v0 ≡ vb < v?.

The same phenomenon may occur even in the case v0 ≡ vb > v?. Indeed, consider the system
∂tu− ∂xxu = u

[
v(1− u)− 1

3

]
,

∂tv − ∂xxv = uv(1− v)(v + u− 1
2).

(6.3)

We find v? = 1/3 from definition (2.4). Fixing v0 ≡ vb > v? close to the threshold 1/2, we
expect that the magnitude of the triggering event determines whether the dynamics give rise
to an ephemeral riot or a lasting upheaval. We see in Figure 19a that, taking vb = 0.4 and
u0(x) = 0.1(1− x2

10 )+, system (6.3) gives rise to an ephemeral riot. On the contrary, with the same
initial level of social tension vb = 0.4, but with a larger triggering event u0(x) = 0.5(1− x2

10 )+, we
observe a lasting upheaval in Figure 19b.

There are also some examples where a sufficiently large triggering event generates a fast riot
followed by a slower persisting upheaval. Mathematically speaking, this consists of a terrace, that
is, the superposition of two traveling waves traveling at different speeds. Consider

∂tu− ∂xxu = u

[
v(1− u)− 1

3

]
,

∂tv − ∂xxv = 1
2uv(1− v)(v + u− 2

3).
(6.4)

with vb = 0.44 and u0 = ε(1 − x2)+. Taking ε = 1.5, we see in Figure 20 that the dynamics
correspond to that of a riot. However, if we consider a triggering event with a larger magnitude by
taking ε = 1.6, we observe a terrace in Figure 21, featuring an ephemeral riot followed by a lasting
upheaval (the traveling speed of the upheaval equals approximately half the one of the riot).

The same phenomenon can also be observed on the following example
∂tu− ∂xxu = u

[
v(1− u)− 1

3

]
,

∂tv − ∂xxv = u

(
u− 1

4

)
v(1− v).

for vb = 0.5 and u0 = ε(1 − x2)+. Loosely speaking, this system can be interpreted as ten-
sion inhibiting for u < 1/4 and tension enhancing for u > 1/4. We observe a riot for ε = 0.5
(video: Terrace2_eps=05.mp4) and a terrace consisting of a riot followed by a lasting upheaval for
ε = 0.6 (video: Terrace2_eps=06.mp4).

28

https://drive.google.com/file/d/1CoHGi0pdrG4xlulolwmObx56mCDFnxUH/view
https://drive.google.com/file/d/1VNRnLojb_L-XCGR3eeWLUpTmUwJHxPmh/view


200 150 100 50 0 50 100 150 200
0.0

0.1

0.2

0.3

0.4

0.5

0.6

t=0

u
v

200 150 100 50 0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0

t=42

u
v

200 150 100 50 0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0

t=85

u
v

200 150 100 50 0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0

t=128

u
v

Figure 17: Mixed Case – lasting upheaval. Snapshots at different times of the solution of (6.1) for
vb = 0.6 ∈ (1/2, 1). Video: Mixed_V0=06.mp4
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Figure 18: Mixed Case – Oscillating traveling wave. Snapshots at different times of the solution
of (6.2) for vb = 0.4 and u0(x) = 0.2(1− x2

100 )+. Video: Oscillation_v0=04.mp4
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(a) Riot for u0(x) = 0.1(1 − x2

10 )+. Video: Threshold_Riot-Revolution_u0=01.mp4
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(b) lasting upheaval for u0(x) = 0.5(1 − x2

10 )+. Video: Threshold_Riot-Revolution_u0=05.mp4

Figure 19: Mixed case – influence of the magnitude of the triggering event. Snapshots at different
times of the solution of (6.3) with vb = 0.4
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Figure 20: No terrace: simple riot. Snapshots at different times of the solution of (6.4) for vb = 0.44
and u0(x) = 1.5(1− x2)+. Video: Terrace_eps=15e-1.mp4
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7 Spatially heterogeneous models
Data show that the dynamics of social unrest is highly influenced by many factors that are not
homogeneous in space, such as the density of population, poverty, etc. See, e.g. [22]. An interesting
extension of our model is to introduce spatial heterogeneity in the system (2.3). In this section,
we propose some possible ways to do this and provide some numerics.

7.1 Gap problem
The first approach to account for space heterogeneity is to assume that the function Φ(u, v) (which,
we recall, stands for the growth of the level of social unrest u) depends explicitly on the space
variable x. We may assume that some areas in space are not favorable to the growth of social
unrest. It is then an interesting problem to determine whether a propagating movement of social
unrest can overcome those areas.

For some interval K := (a, a + L), representing the gap (or the obstacle), we choose Φ of the
form

Φ(x, u, v) = u
[
r(v)f(u)1x 6∈(a,a+L) − ω

]
.

Namely, in dimension n = 1, we consider the system{
∂tu− d1∂xxu = u

[
r(v)f(u)1x 6∈(a,a+L) − ω.

]
,

∂tv − d2∂xxv = Ψ(u, v).

We ask the following question: is there a threshold on the length L of the obstacle above which
the propagation of the solution is blocked?

First, let us remark that, if v0 ≡ vb > v?, then our system enjoys a Hair-Trigger effect: it
means that arbitrarily small initial conditions ignites a social movement (see Sections 3.1 and
3.2). Since, for all t > 0, we have that u(t, ·) > 0, we deduce that there exists no gap that can
block the propagation. We illustrate this remark with a numerical simulation on Figure 22 for the
system (4.5), that is ∂tu− ∂xxu = u

[
v(1− u)1x 6∈(60,60+L) −

1
3

]
,

∂tv − ∂xxv = −uv,
(7.1)

with vb = 0.6 (we recall that v? = 1/3) and u0(x) = 0.2(1− x2)+. We see on Figure 22 that a riot
begins to propagate, but then fades as it reaches the obstacle. However, after some times, the riot
grows again and continue to propagate beyond the obstacle.

However, if we are in a situation where v0 ≡ vb < v? but u0 is large enough to triggers a social
movement (as described in Sections 5.3.2, 6.3), there might exists a length L above which the gap
blocks the propagation. Let us consider the following system

∂tu− ∂xxu = u

[
v(1− u)1x 6∈(60,60+L) −

1
3

]
,

∂tv − ∂xxv = 6uv(1− v)(v + 10u− 2
3),

(7.2)

with vb = 0.3 and u0(x) = (1 − x2

10 )+. We plot in Figure 23 a numerical simulation of the above
system for L = 40. We observe that an upheaval propagates until it reaches the obstacle. Then,
after some time, the upheaval manages to overpass the obstacle and continue to propagate. If now
we increase the length of the gap to L = 60, we see in Figure 24 that the spreading of the upheaval
is blocked by the gap (even after a long time).

Of course, one could also consider that Ψ depends on the space variable x, but we omit this
case for conciseness.

7.2 Non-uniform initial social tension
So far, we have only dealt with a constant initial level of social tension v0 ≡ vb (although more
general results are available in [17] when v0 − vb is compactly supported). Another way to encode
space heterogeneity in our model is to consider the case of a non-constant initial level of social
tension v0. This case is relevant from a modeling perspective, since the social tension may indeed
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Figure 21: Terrace: riot followed by a lasting upheaval. Snapshots at different times of the solution
of (6.4) for vb = 0.44 and u0(x) = 1.6(1− x2)+. Video: Terrace_eps=16e-1.mp4

Figure 22: Gap problem – propagation. Snapshots at different times of the solution of (7.1) with
L = 100, vb = 0.6 and u(x) = 0.2(1−x2)+. The shaded area represents the obstacle K = (60, 160).
Video: Gap_Hair-Trigger_inhibiting.mp4
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Figure 23: Gap problem – propagation. Snapshots at different times of the solution of (7.2) with
L = 40, vb = 0.3 and u0(x) = (1 − x2

10 )+. The shaded area represents the obstacle K = (60, 100).
Video: Gap=40.mp4

Figure 24: Gap problem – blockage. Snapshots at different times of the solution of (7.2) with
L = 60, vb = 0.3 and u0(x) = (1 − x2

10 )+. Space is represented horizontally, and the shaded
area represents the obstacle K = (60, 120). Blue solid line: u(t, ·). Brown dashed line: v(t, ·).
Video: Gap=60.mp4
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vary between, for examples, cities and suburbs, or poor and rich areas (see [22]). To account for
this situation with a model case, we may assume that v0(x) := v(t = 0, x) is periodic and oscillates
around the threshold v?.

Consider the inhibiting system (4.5), that we recall here,∂tu− ∂xxu = u

[
v(1− u)− 1

3

]
,

∂tv − ∂xxv = −uv,
(7.3)

with u0(x) = 0.2(1− x2)+ and

vb(x) =
{

0.2 if |x| ∈ [100k, 100k + L],
0.6 if |x| ∈ (100k − L, 100k),

∀k = 1, 2, . . . , (7.4)

for some parameter L ∈ (0, 100). We recall that, for equation (7.3), we have v? = 1
3 (where v? is

defined in (2.4)). Therefore, v0(x) oscillates periodically around v?, creating zones of length 100−L
that are favorable for propagation (v0(x) = 0.6 > v?), and zones of length L that are unfavorable
(v0(x) = 0.2 < v?). If the favorable zone is sufficiently large, then the solution manages to
propagate, as can be seen on Figure 25 for L = 20. On the contrary, if the favorable zone is too
thin, then the propagation is blocked, as can be seen on Figure 26 for L = 60. (We point out that,
for the numerical simulation, we impose v0(x) = 0.6 on (−60, 60) to ensure that the movement of
social unrest gets properly ignited at x = 0 before being affected by the oscillations of vb).

We leave for future works the rigorous analysis of the case of a non-constant initial level of
social tension v0(·) ≡ vb(·). In this case, however, let us indicate that the threshold phenomenon
on the initial level of social tension may not involve the sign of vb − v?, but rather the sign of λb
defined as the lowest eigenvalue of the operator, ∀ϕ ∈ C2(Ω),

−d1∆ϕ− ∂uΦ(0, vb(x))ϕ,

and given by the expression

λb := inf
{∫

Rn
d1|∇ϕ|2 − [r(vb(x))f(0)− ω]ϕ2 : ϕ ∈ H1(Rn), ‖ϕ‖L2 = 1

}
.

7.3 Including geometry
Another possible way to include spatial heterogeneity in our model is to consider the system (2.3)
on a domain Ω ⊂ Rn rather than on the entire space. We may impose Neumann boundary condition

∂νu = 0, on ∂Ω,

with ∂ν the outer normal derivative, accounting for the fact that there is no flux of individuals
across the boundary.

From the modeling point of view, the boundary ∂Ω could stand for various structural spatial
obstructions for rioters, such as streets, highways, fences, rivers, mountains etc. These features
play sometimes a significant role; for example, the ring around Paris in the 2005 riots [22].

Mathematically speaking, it is known that heterogeneous geometry can largely affect the prop-
agation properties of Reaction-Diffusion equations (e.g., see [13, 30]). However, fewer papers deal
with systems of Reaction-Diffusion such as our system (2.3). We leave further investigations on
this topic for future works.

8 Proofs

8.1 The tension inhibiting case
8.1.1 Traveling waves

Before proving the results from Section 4.1, we derive from (2.10) two general identities which will
be useful in the following.

34



400 200 0 200 400
0.0

0.1

0.2

0.3

0.4

0.5

0.6

t=0

u
v

400 200 0 200 400
0.0

0.1

0.2

0.3

0.4

0.5

0.6

t=71

u
v

400 200 0 200 400
0.0

0.1

0.2

0.3

0.4

0.5

0.6

t=214

u
v

400 200 0 200 400
0.0

0.1

0.2

0.3

0.4

0.5

0.6

t=428

u
v

Figure 25: Non-uniform initial social tension v0 – propagation. Snapshots at different times of the
solution of (7.3)-(7.4) with L = 20, u0(x) = 0.2(1− x2)+. Horizontal axis: space. Blue solid line:
u(t, ·). Brown dashed line: v(t, ·). Video: Periodic_V0_L=20.mp4
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Figure 26: Non-uniform initial social tension v0 – blockage. Snapshots at different times of the
solution of (7.3)-(7.4) with L = 60, u0(x) = 0.2(1− x2)+. Horizontal axis: space. Blue solid line:
u(t, ·). Brown dashed line: v(t, ·). Video: Periodic_V0_L=60.mp4
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Lemma 8.1. Any solution U, V of (2.10) satisfies

U ′(ξ) = 1
d1

∫ +∞

ξ

e−
c
d1

(z−ξ)U(z)
[
r(V (z))f(U(z))− ω

]
dz, (8.1)

and, if d2 > 0,

V ′(ξ) = 1
d2

∫ +∞

ξ

e−
c
d2

(z−ξ)Ψ(U(z), V (z))dz. (8.2)

Proof. A straightforward computation gives

− d
dξ

(
U ′(ξ)e−

c
d1
ξ
)

= e−
c
d1
ξ

d1
Φ(U, V ).

Integrating this equation from ξ to +∞ and using the boundedness of U ′, which follows from
elliptic estimates, we get (8.1). The proof of (8.2) is analogous.

Proof of Theorem 4.1. The inhibiting assumption (4.1) yields Ψ(U, V ) < 0. If d2 = 0, we directly
deduce from (2.10) that V ′ < 0; the same conclusion holds when d2 > 0 thanks to (8.2). Since V
is also bounded, there holds that V (+∞) =: V∞ ∈ [0, vb).

Assume now by contradiction that lim supξ→+∞ U(ξ) > 0. Then, by the boundedness and
uniform continuity of U (following from elliptic estimates) we can find ε > 0, δ > 0 and a diverging
sequence (ξj)j∈N such that U ≥ ε in the interval [ξj , ξj + δ], for all j ∈ N.

Suppose first that V∞ > 0. In such case, (4.1) and (8.2) yield, for any j ∈ N and ξ ∈ [ξj , ξj+δ/2],

V ′(ξ) ≤ 1
d2

∫ ξ+δ/2

ξ

e−
c
d2

(z−ξ)Ψ(U(z), V (z))dz ≤ 1
d2
e−

cδ
2d2 min

[ε,supU ]×[V∞,vb]
Ψ < 0.

This, together with V ′ ≤ 0, yields V (+∞) = −∞: a contradiction. Thus, U(+∞) = 0 in such case.
Suppose now that V∞ = 0. Since r(0)f(0) < ω by hypothesis (2.4), the monotonicity of f

implies the existence of a constant h > 0 and ξ̄ ∈ R such that r(V (ξ))f(U(ξ)) ≤ r(V (ξ))f(0) ≤ ω−h
for ξ ≥ ξ̄. Then (8.1) implies that U ′ < 0 in (ξ̄,+∞) and moreover, for any j ∈ N such that ξj ≥ ξ̄
and ξ ∈ [ξj , ξj + δ/2],

U ′(ξ) ≤ 1
d1

∫ ξ+δ/2

ξ

e−
c
d1

(z−ξ)U(z)
[
r(V (z))f(U(z))− ω

]
dz ≤ − 1

d2
e−

cδ
2d1 εh.

This leads to the contradiction U(+∞) = −∞. We have thereby shown that U(+∞) = 0.
Since U > 0 and U(+∞) = 0, there exists ξ ∈ R such that U ′(ξ) ≤ 0. Let us show that

U ′ ≤ 0 on (ξ,+∞). By contradiction, assume that there exists ξ > ξ such that U ′(ξ) > 0. By the
continuity of U ′ and because U(+∞) = 0, there exist ξ ≤ ξ1 < ξ < ξ2 such that U ′ > 0 in (ξ1, ξ2)
and U ′(ξ1) = U ′(ξ2) = 0. Observe in particular that U ′′(ξ1) ≥ 0, whence, from the first equation
in (2.10),

0 ≥ U(ξ1)
(
r(V (ξ1)f(U(ξ1))− ω

)
.

By integrating the equation, and recalling that V is decreasing, this leads to the contradiction

c(U(ξ2)− U(ξ1)) =
∫ ξ2

ξ1

U(r(V )f(U)− ω) < (ξ2 − ξ1)U(ξ2)
(
r(V (ξ1)f(U(ξ1))− ω

)
≤ 0.

This means that the set where U ′ ≤ 0 is given by some half-line [ξ0,+∞).
Let us now show that the strict inequality U ′ < 0 holds in (ξ0,+∞). Since U reaches its global

maximum at ξ0, from the equation on U , we have

0 ≤ −d1U
′′(ξ0) = U(ξ0)

[
r(V (ξ0))f(U(ξ0))− ω

]
.

Differentiating the equation for U we get

c(U ′)′ − d1(U ′)′′ = U ′
[
r(V )f(U)− ω

]
+ Ur(V )f ′(U)U ′ + Ur′(V )V ′f(U).

The last term of the right-hand side is negative because f(U) ≥ f(U(ξ0)) ≥ ω/r(V (ξ0)) > 0,
which means that U ′ is a strict subsolution of a linear elliptic equation. Since U ′ is non positive
in (ξ0,+∞), the strong maximum principle implies that U ′ < 0 in (ξ0,+∞).
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It remains to show that V∞ is a root of Ψ(0, ·) and that V∞ ≤ v?. The former property follows
by observing that otherwise Ψ(0, V∞) < 0, due to (4.1), whence either (8.2) in the case d2 > 0,
or direct computation if d2 = 0, would lead to the contradiction lim supξ→+∞ V ′ < 0. Instead,
if V∞ > v?, then r(V∞)f(0) > ω and therefore (8.1) would imply that U ′(ξ) > 0 for ξ large,
contradicting what we have shown above.

Proof of Proposition 4.2. First of all, we know from Theorem 4.1 that U(±∞) = 0, whence
U ′(±∞) = 0 by elliptic estimates. From the equation on V , we get

U = cV ′

G(V ) .

Injecting this formula into the equation on U , and integrating over (−∞,+∞) we find

c (U(+∞)− U(−∞)) = d1(U ′(+∞)− U ′(−∞)) + c

∫ +∞

−∞
V ′
[
r(V )− ω
G(V )

]
,

that is, ∫ +∞

−∞
V ′
[
r(V )− ω
G(V )

]
= 0,

and so Q(V∞)−Q(vb) = 0

8.1.2 Large time behavior

Let us first give a proof of Proposition 4.4 which rests on elementary arguments.

Proof of Proposition 4.4. The smallness of u0 is determined by the following condition:

∀v ∈ [ṽb, vb], r(v)f(u0) > ω, (8.3)

which can be achieved since vb ≥ ṽb > v? and so r(v)f(0) > ω for all v ∈ [ṽb, ṽ]. For all time
t ≥ 0, both u(t, ·) and v(t, ·) are constant. We thus omit to write the dependence on x. The proof
relies on a simple argument in the phase plane. Denote γ(t) and γ̃(t) the trajectories in the plane
(u, v), namely γ(t) := (u(t), v(t)) and γ̃(t) := (ũ(t), ṽ(t)). By the inhibiting assumption (4.1), these
trajectories are nonincreasing in the v component and, by Theorem 4.3, they have two endpoints
(0, v∞), (0, ṽ∞) respectively. In addition, by uniqueness of solutions of the Cauchy problem, they
cannot cross each other, nor can γ cross the segment {u0} × (ṽb, vb), because there u′ > 0 thanks
to (8.3). The result then follows.

Let us now turn to the more intricate proof of Theorem 4.3. In the proof, we use the following
result quoted from [17].

Lemma 8.2. [17, Theorem 5] Under the inhibiting assumption (4.1), the solution (u, v) is bounded.

Proof of the first statement of Theorem 4.3. Let us suppose for the moment that

inf
t>0

v(t, 0) > 0. (8.4)

We claim the following:

∀ε > 0, ∃τ > 0, min
t∈[t0,t0+τ ]

u(t0, 0) < ε, for all t0 ≥ 0. (8.5)

This would imply that u(t, 0)→ 0 along some diverging sequence of t, and therefore property (4.3)
thanks to the parabolic Harnack inequality, c.f. [8, Theorem 3].

Assume by contradiction that the claim (8.5) does not hold, that is, there exists ε > 0 such
that, for any τ > 0, we can find tτ > 0 so that u(t, 0) ≥ ε for all t ∈ [tτ , tτ +τ ]. Observe that u and
v, being bounded owing to Lemma 8.2, are uniformly continuous by parabolic estimates. Thus, by
the contradictory assumption and (8.4), we can find δ > 0 such that

inf
t∈[tτ ,tτ+τ ]
x∈Bδ

u(t, x) > ε/2, inf
t>0
x∈Bδ

v(t, x) > 0,

37



where Bδ is the ball centered at x = 0 of radius δ. As a consequence, owing to (4.1), the function

Ψ̃(t, x) := Ψ(u(t, x), v(t, x))
u(t, x) ,

satisfies
Ψ̃ < 0 in R and m := sup

t∈[tτ ,tτ+τ ], τ>0
x∈Bδ

Ψ̃(t, x) < 0. (8.6)

Let us set w(t, x) := v(t, x)− vb. This is a solution of the equation

wt − d2∆w = Ψ̃(t, x)u, t > 0, x ∈ Rn,

with initial condition w(0, x) ≡ 0. We can explicitly compute w using the heat kernel:

w(t, x) =
∫ t

τ

1
(4πd2(t− s))n/2

∫
Rn
e
− |x−y|2

4πd2(t−s) Ψ̃(s, y)u(s, y) dy ds.

It follows from (8.6) that

w(tτ + τ, x0) ≤ m
ε

2

∫ tτ+τ−1

tτ

1
(4πd2(tτ + τ − s))n/2

∫
Bδ

e
− |x−y|2

4πd2(tτ+τ−s) dy ds

≤ m
ε

2e
− δ2

2πd2 |Bδ|
∫ τ−1

0

1
(4πd2(τ − s))n/2

ds.

Observe that the last term tends to −∞ as τ → +∞ provided n ≤ 2. This means that inf v = −∞,
which is impossible because v ≥ 0. Whence (8.5) holds, which concludes the proof provided v
satisfies (8.4).

Next, if (8.4) does not hold then v(tk, 0)→ 0 as k → +∞ for some sequence (tk)k∈N diverging
to +∞. By parabolic estimates and the boundedness provided by Lemma 8.2, the sequences of
functions u(t+ tk, x), v(t+ tk, x) converge locally uniformly (up to subsequences) as k → +∞ to
some functions ũ(t, x), ṽ(t, x) respectively, solutions in t ∈ R, x ∈ Rn of{

∂tũ− d1∆ũ = ũ
[
r(ṽ)f(ũ)− ω

]
,

∂tṽ − d2∆ṽ = Ψ(ũ, ṽ),

with ṽ ≥ 0 and vanishing at (0, 0). The strong maximum principle then yields ṽ ≡ 0 (recall that
Ψ(·, 0) = 0 by (2.6) and (4.1)). This, in turn, yields

∂tũ− d1∆ũ = ũ
[
r(0)f(ũ)− ω

]
≤ ũ

[
r(0)f(0)− ω

]
.

Recalling that r(0)f(0) < ω by assumption (2.4), one readily deduces from the boundedness of ũ
that ũ ≡ 0, whence (4.3) holds.

In order to prove the second statement of Theorem 4.3, we make use of the following classical
lemma, whose proof is inspired from that of [12, Theorem 1.8].

Lemma 8.3. Let w ∈ C2(Rn) be a bounded function satisfying w∆w ≥ 0 in Rn. If n ≤ 2, then w
is constant.

Proof. For R > 0, we define a cut-off function

χR(x) := χ

(
|x|
R

)
, ∀x ∈ Rn,

for χ a smooth nonnegative function such that

χ(z) =
{

1 if 0 ≤ z ≤ 1,
0 if z ≥ 2,

|χ′| ≤ 2.

Multiplying the equation on w by χ2
R, integrating on Rn and using the divergence theorem, we

find

0 ≤ −
∫
Rn
∇
(
χ2
Rw
)
· ∇ w

= −
∫
Rn
χ2
R|∇w|2 − 2

∫
Rn
χRw∇χR · ∇w.
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Using the Cauchy-Schwarz inequality, we deduce∫
Rn
χ2
R|∇w|2 ≤ 2

√∫
B2R\BR

χ2
R|∇w|2

√∫
Rn
w2|∇χR|2, (8.7)

where BR is the ball of radius R and center 0. Recall that w is bounded and that |∇χR|2 ≤
R−2‖∇χ‖∞. As n ≤ 2, we deduce that∫

Rn
w2|∇χR|2 is bounded, uniformly in R ≥ 1.

From (8.7), we have that
∫
Rn χ

2
R|∇w|2 is uniformly bounded. Therefore,

∫
B2R\BR χ

2
R|∇w|2 con-

verges to 0 as R→ +∞, and so the term on the left-hand side of (8.7) also converges to 0. At the
limit, we find

∫
Rn |∇w|

2 ≤ 0. Hence ∇w ≡ 0, which ends the proof.

Proof of the second statement of Theorem 4.3. Assume that v(t, x) converges pointwise to some
v∞(x) as t → +∞. From classical parabolic estimates, the convergence actually occurs in C2

loc.
Since ∂tv −∆v ≤ 0, when t→ +∞ we find

−∆v∞ ≤ 0 on Rn.

Lemma 8.3 implies that v∞ is constant.
We claim that v∞ ≤ v?. By contradiction, assume v∞ > v?, then, for t large enough, u satisfies

∂tu ≥ d1∆u+ u
(
r(α)f(u)− ω

)
,

with α := v∞+v?
2 > v?. Thus, u is a supersolution of a classical KPP equation, we deduce

lim inf
t→+∞

u(t, x) > 0.

We reach a contradiction with the first assertion of Theorem 5.2, namely (4.3), which we proved
previsouly.

Finally, let us show that u(t, ·) converges locally uniformly to 0 when t → +∞. Let us first
consider the case v∞ 6= 0. By contradiction, assume that there exists a diverging sequence of times
tk > 0 and a ball B ⊂ Rn such that

inf
k≥0
x∈B

u(tk, x) > 0. (8.8)

We use the notation
Ψ̃(t, x) := Ψ(u, v)

u
.

Since v∞ ∈ (0, 1), the inhibiting assumption (4.1) implies

sup
k≥0
x∈B

Ψ̃(tk, x) < 0. (8.9)

From the equation on v, we can write

∂tv −∆v = uΨ̃.

From the convergence of v(t, ·), we deduce that u(t, ·)Ψ̃(t, ·) converges locally uniformly to 0 as
t→ +∞. From (8.9), we thus have that u(tk, x) converges to 0 as k → +∞ and x ∈ B: we reach
a contradiction with (8.8).

Let us now consider the case v∞ = 0. Fixing ε ∈ (0, v?), for t large enough u satisfies

∂tu− d1∆u ≤ u (r(ε)f(u)− ω) ≤ −Cu,

where C := ω − r(ε)f(0) > 0. It proves that u(t, ·) converges uniformly to 0 as t→ +∞.
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8.2 The tension enhancing case
Proof of Theorem 5.1. We first show that the enhancing assumption (5.1) yields U < M . Observe
that if U has a local maximum at some point ξ̄ then the first equation in (2.10) implies that

r(V (ξ̄))f(U(ξ̄))) ≥ ω,

whence U(ξ̄) < M by (5.1). It follows that if U(ξ̃) = M at some ξ̃ ∈ R, then necessarily U ′ ≥ 0 on
[ξ̃,+∞), and moreover U(+∞) > M . But then (8.1) from Lemma 8.1, together with (5.1), yield

U ′(ξ̃) = 1
d1

∫ +∞

ξ̃

e−
c
d1

(z−ξ̃)U(z)
[
r(V (z))f(U(z))− ω

]
dz < 0,

hence a contradiction.
Next, we show that V ′ > 0. Assumption (5.1) yields Ψ(U, V ) > 0. If d2 = 0, we directly deduce

from (2.10) that V ′ > 0; the same conclusion holds when d2 > 0 thanks to (8.2).
Let us show that U ′ ≥ 0. By contradiction, assume that U ′(ξ̄) < 0 at some ξ̄ ∈ R. Hence,

because U(−∞) = 0, there exist ξ1 < ξ̄ < ξ2 ≤ +∞ such that U ′ < 0 in (ξ1, ξ2) and U ′(ξ1) =
U ′(ξ2) = 0. Observe in particular that U ′′(ξ1) ≤ 0, whence, from the first equation in (2.10),

0 ≤ U(ξ1)
(
r(V (ξ1)f(U(ξ1))− ω

)
.

By integrating the equation, this leads to the contradiction

c(U(ξ2)− U(ξ1)) =
∫ ξ2

ξ1

U(r(V )f(U)− ω) > (ξ2 − ξ1)U(ξ2)
(
r(V (ξ1)f(U(ξ1))− ω

)
≥ 0.

Hence U ′ ≥ 0.
Now that we know that both U(+∞) and V (+∞) exist, we readily deduce from (8.1) and (8.2)

the following equivalences, respectively:

r(V (+∞))f(U(+∞)) = ω, Ψ(U(+∞), V (+∞)) = 0.

Recalling that U(+∞) ∈ (0,M ] and V (+∞) ∈ (0, 1], owing to (5.1) we infer from the first equiv-
alence that U(+∞) < M and thus from the second one that V (+∞) = 1, which in turn yields
r(1)f(U(+∞)) = ω.

To conclude the proof it remains to show the strict inequality U ′ > 0. Differentiating the
equation for U we get

c(U ′)′ − d1(U ′)′′ = U ′
[
r(V )f(U)− ω

]
+ Ur(V )f ′(U)U ′ + Ur′(V )V ′f(U)U.

The last term of the right-hand side is positive because f(U) ≥ f(U(+∞)) = ω/r(1) > 0, which
means that U ′ is a nonnegative strict supersolution of a linear elliptic equation. This prevents U ′
from vanishing.

Proof of Theorem 5.2 in the case d2 > 0. First of all, we know from Lemma 2.1 that u > 0 and
0 < v < 1 for all t > 0, x ∈ Rn. The proof is achieved in four steps: we first derive an upper bound
for u, next a lower bound for v, then for u, and we finally conclude.

Upper bound for u.
Let us derive the upper bound for u as t→ +∞. We see that, by the monotonicity of r,

∂tu− d1∆u ≤ u
[
r(1)f+(u)− ω

]
,

where f+ := max{f, 0} is the positive part of f . Let U be the solution of the ODE U ′ =
U
(
r(1)f+(U) − ω

)
with initial datum U(0) = max{M, supu0}. There holds that U ↘ u?(1)

given by (2.9), i.e., the zero of u 7→ r(1)f(u) − ω, whose existence and uniqueness is guaranteed
by (2.4) and (5.1). Then, by comparison, we get the desired upper bound:

lim sup
t→+∞

(
sup
x∈Rn

u(t, x)
)
≤ u?(1) < M.

It follows that there exist M ′ < M and T > 0 such that

u(t, x) ≤M ′ < M, ∀t ≥ T, x ∈ Rn. (8.10)
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Lower bound for v.
Consider a sequence (xk)k∈N in Rn such that |xk| → +∞. By parabolic estimates, the functions
u(·, xk+·), v(·, xk+·) converge (up to subsequences) as k → +∞, locally uniformly in [0,+∞)×Rn,
to some functions ũ, ṽ which are still solutions of (2.3), with initial datum (0, vb). Hence (ũ, ṽ) ≡
(0, vb) because Φ(0, vb) = Ψ(0, vb) = 0. This means that (u(t, x), v(t, x)) → (0, vb) as |x| → +∞,
for any given t ≥ 0. In particular, for any fixed t ≥ 0 and v ∈ (v?, vb), we have that v(t, x) > v for
|x| sufficiently large. Moreover, (5.1) and (8.10) imply that Ψ(u, v) > 0 for t ≥ T , x ∈ Rn, that is,
v is a supersolution of the heat equation, and we know that at time T it is larger than v outside a
large ball. By comparison with the heat equation, one readily deduces that, for given v′ ∈ (v?, v),
there exists T ′ > T such that

v(t, x) ≥ v′ > v?, ∀t ≥ T ′, x ∈ Rn. (8.11)

Lower bound for u.
Consider the equation

∂tû− d1∆û = û
[
r(v′)f(û)− ω

]
,

which is a standard scalar KPP equation. Observe indeed that r(v′)f(0)−ω > 0 > r(v′)f(M)−ω
by the definition (2.4) of v? and (5.1). We consider the solution of this KPP equation starting at
time T ′ with the datum û(T ′, x) = min{u(T ′, x), u?(v′)}, where u?(v′) > 0 is given by (2.9), i.e.,
r(v′)f(u?(v′)) = ω. It follows from the classical result of [7] that û(t, x) ↗ u?(v′) as t → +∞,
locally uniformly in x ∈ Rn. For t ≥ T ′, using that û(t, ·) ≤ u?(v′) and v(t, ·) ≥ v′ by (8.11), we
see that û is a subsolution of the first equation in (2.3), whence, by comparison,

lim inf
t→+∞

u(t, x) ≥ u?(v′), ∀x ∈ Rn. (8.12)

Conclusion.
Let (tk)k∈N be an arbitrary sequence diverging to +∞. The functions u(tk+·, ·), v(tk+·, ·) converge
(up to subsequences) as k → +∞, locally uniformly in R × Rn, to some functions u∞, v∞ which
are entire solutions (i.e., for t ∈ R, x ∈ Rn) of the equations in (2.3). Moreover, (8.10), (8.11),
(8.12) yield u?(v′) ≤ u∞ ≤ u?(1) and v∞ ≥ v′. From (5.1) we deduce that necessarily v∞ ≡ 1 and
then that u∞ ≡ u?(1).

Proof of Theorem 5.2 in the case d2 = 0. We immediately see that 0 < u < max{supu0,M}, ow-
ing to (5.1) and the parabolic strong maximum principle, and that 0 < v < 1, by elementary ODE
considerations, for all t > 0, x ∈ Rn. Moreover, we observe that the upper bound (8.10) for u is
derived in the above proof for the case d2 > 0 only by arguing on the first equation in (2.3), hence
it holds true when d2 = 0. We want to derive now the upper bound

u(t, x) < M, ∀t ≥ 0, |x| ≥ R, (8.13)

for some possibly very large R. For this we consider, for any given direction e ∈ Sn−1, the function

ue(t, x) = eσ(t+1)−x·e.

It is readily seen that there exists σ sufficiently large so that this is a supersolution of the first
equation in (2.3). Moreover, since u0 is compactly supported, we can choose σ, possibly even larger
and independent of e, so that in addition ue(0, x) > u0(x) for all x ∈ Rn. Therefore, by comparison,
u ≤ ue for all t ≥ 0 and x ∈ Rn, which, being true for any e ∈ Sn−1, yields u(t, x) ≤ eσ(t+1)−|x|.
We deduce in particular that u(t, x) < M for all t ∈ [0, T ) an |x| ≥ σ(T + 1)− logM . Combining
this with (8.10) eventually gives (8.13) with R = σ(T + 1)− logM .

We now use the upper bound (8.13) for u in the equation for v. Owing to (5.1), it implies that,
for t ≥ 0 and |x| ≥ R, ∂tv = Ψ(u, v) > 0, hence

v(t, x) ≥ vb, ∀t ≥ 0, |x| ≥ R. (8.14)

Let us derive a lower bound on u. Let λρ be the Dirichlet principal eigenvalue of −∆ in Bρ, and
ϕρ be the associated (positive) eigenfunction. It is well known that λρ ↘ 0 as ρ→ +∞, hence in
particular d1λρ < r(vb)f(0)−ω for ρ large enough, because vb > v? defined by (2.4) and therefore
r(vb)f(0) > ω. It follows that, for such a ρ and for ε > 0 small enough,

−d1∆(εϕρ) = λρεϕr < εϕρ
[
r(vb)f(εϕρ)− ω

]
,
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whence, by (8.14), εϕρ(x−x0) is a subsolution to the first equation in (2.3) for t > 0 and x ∈ Bρ(x0)
whenever |x0| > R+ ρ. Take x0 satisfying |x0| > R+ ρ and ε > 0 small enough so that the above
property holds and moreover εϕρ(x − x0) < u(1, x) for all x ∈ Bρ(x0). The comparison principle
yields u(t, x) > εϕρ(x−x0) for all t ≥ 1, x ∈ Bρ(x0), thus, using the parabolic Harnack inequality,
we find, for any compact set K ⊂ Rn,

m := inf
t≥2
x∈K

u(t, x) > 0. (8.15)

We are now in a position to conclude. For s ≥ 0 call

g(s) := min
z∈[m,M ′]

Ψ(z, s).

This function satisfies g(s) > 0 for s ∈ (0, 1) by (5.1) and g(1) = 0 by (2.6). For t ≥ max{T, 2}
and x ∈ K, since m ≤ u(t, x) ≤M ′ by (8.10) and (8.15), we see that

∂tv(t, x) = Ψ(u, v) ≥ g(v).

As a consequence, because minx∈K v(max{T, 2}, x) > 0, by the continuity of v,we infer that
v(t, x) → 1 as t → +∞ uniformly in x ∈ K. We have thereby shown that v(t, x) → 1 as
t → +∞ locally uniformly in x ∈ Rn. Finally, for any sequence (tk)k∈N diverging to +∞, the
function u(tk + ·, ·) converges (up to subsequences) as k → +∞, locally uniformly in R×Rn, to a
nonnegative, bounded solution ũ of

∂tũ− d1∆ũ = ũ
[
r(1)f(ũ)− ω

]
,

which satisfies ũ(t, x) ≥ m for all t ∈ R, x ∈ K thanks to (8.15). It is a straightforward consequence
of [7] that the only entire solution of this standard KPP equation satisfying such a property is
ũ ≡ u?(1). This concludes the proof.

9 Conclusion

9.1 Main findings
An increasing number of papers consider systems of Reaction-Diffusion equations to model the
dynamics of riots or other collective behaviors. However, most of the work study particular and
different cases. In this paper, we try to propose a unified mathematical approach, based on the
theoretical framework developed in [17]. Although we focus on the problem of modeling social
unrest, our goal is to keep a rather general mathematical approach that can be transposed to other
topics in social dynamics.

Our model involves two quantities, the level social unrest u and the level of social tension v,
which play asymmetric roles. We examine the problem of a system initially at equilibrium u = 0,
v = vb, for which a triggering event u0(·) 	 0 occurs at t = 0. After stating our modeling
assumptions, we derive the Reaction-Diffusion system (2.3).

In Section 3, we highlight a threshold phenomenon on the initial level of social tension v0 ≡ vb.
On the one hand, if vb is below a threshold value v? and the triggering event is small enough, the
system returns to equilibrium quickly, and we speak of a return to calm. On the other hand, if
vb is above v?, an arbitrarily small triggering event causes an eruption of social unrest. Then, the
movement of social unrest spreads through space with an asymptotically constant speed.

The core of the paper deals with two classes of models, for which we are able to derive more
complete theoretical and numerical results.

The first one, called tension inhibiting, is such that the movement of social unrest dissipates
social tension. Once the level of social tension falls below the threshold value v?, in turn, the level of
social unrest fades until it is extinguished as t→ +∞. This behavior is exhibited by both traveling
wave solutions, c.f. Theorem 4.1, as well as by solutions of the Cauchy problem, c.f. Theorem 4.3.
Tension inhibiting models thus give rise to limited duration movement of social agitation, that we
call “riots”. An interesting property is that the intensity of the triggering event has no influence
on the qualitative dynamic of the system. We numerically observe that the solution converges
to two opposite traveling waves moving with the speed cb := 2

√
r(vb)f(0)− ω (which does not
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depend on the parameters of the equation on v) and link the steady state (0, vb) to another one
(0, v∞), the profile of u having the shape of a bump, and that of v a monotonous decreasing wave,
linking . We also invesigate theoretically and numerically the question of estimating the final level
of social tension v∞, revealing the non-monotonic structure underlying the inhibiting system, see
Proposition 4.4.

The second specific class of models we examine is the tension enhancing. For such systems, if
the initial level of social tension vb is higher than the threshold value v?, the dynamics gives rise to a
movement of social agitation that converges in a long time to a sustainable excited state. This case
typically accounts for time-persisting social movements, which we call here lasting upheaval. We
numerically observe that if vb < v?, the solution converges towards two opposite traveling waves,
whose speed can take intermediate values between cb and c1 := 2

√
r(1)f(1)− ω (depending on the

parameters of the equation on v, c.f. Figure 14). These waves connect (0, vb) to (u?(1), 1) (from
definition (2.9)), the profiles of u and v having the shape of increasing waves, c.f. Theorem 5.1. If
vb < v?, contrarily to the tension inhibiting case, we observe that a sufficiently strong triggering
event can still ignite a lasting upheaval, see Figure 11.

The tension inhibiting and tension enhancing classes of models give a good idea of the variety
of behaviors that our model can generate. In Section 6, we examine mixed cases that exhibit more
complex behaviors; some models feature a double threshold effect between return to calm, riot
and lasting upheaval, others generate oscillating traveling waves or terraces (consisting of a riot
followed by a lasting upheaval).

In Section 7, we propose several ways to include spatial heterogeneity in our model. We first
consider the case of heterogeneous coefficients and study how an obstacle (i.e. an area of depressed
growth for social unrest) affects the propagation of a social movement. On the one hand, if vb > v?,
the propagation of the social movement is guaranteed in any case. On the other hand, if vb < v?,
propagation is only possible if the triggering event is sufficiently large and the gap is sufficiently
small. We then consider the case of an initial level of social tension v0 that is not constant. This case
accounts for the variability of populations according to the neighborhood (for example, between a
city and its suburbs) which may have a significant impact on social movement according to data.
Finally, we mention that our framework allows to include geometrical heterogeneity through the
domain on which we pose the system of equations (2.3).

9.2 Possible extensions and perspectives
We conclude by mentionning several other extensions which are relevant regarding the modeling
of social unrest.

9.2.1 Non-local diffusion

A possible extension of our model is two replace the Laplace operator in (2.3) with some non-local
diffusion operator. One can consider, for example, that the classical diffusion is replaced by the
convolution with an integrable kernel K(·)

K ∗ u(x) =
∫

Ω
K(x− y)u(y)dy.

Another interesting example is the fractional Laplacian, for s ∈ (0, 1),

∆su(x) = cn,s

∫
Rn

u(x)− u(y)
|x− y|n+2s dy, ∀x ∈ Rn,

with cn,s a normalization constant.
On the one hand, a non-local diffusion on the level of activity u could account for the fact that

rioters can travel to another location. On the other hand, a nonlocal on the level of social tension
could account for the global spreading of information through media.

Non-local diffusion is increasingly used in various modeling situations (e.g., [18] deals with
the modeling of riots, and [57] contains many other topics), and often leads to some anomalous
behaviors. We let the reader refer to [53,57] and references therein for more details.
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9.2.2 Compartmental models

An underlying hypothesis of our modeling approach is that all individuals are identical. Yet, the
variability of individuals sometimes plays an important role in collective behaviors [38, 42]. It is
often admitted that certain social and economic classes are more prone to trigger or drive a social
movement, such as students [2], rural population [63], activists [59], etc.

One way to include individuals variability in our model is to consider two different levels of
activity u1 and u2, the first accounting for the rioting activity of activist and leaders, the other
accounting for the rioting activity of more reluctant individuals. It remains unclear how our
conclusions would be affected by this additional feature, and we leave this question as an open
problem.
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