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3 Laboratoire de Ǵeomagńetisme et Paléomagńetisme, Institut de Physique du Globe de Paris, France

Abstract Present and forthcoming satellite gravity mis-
sions provide us with new and unique datasets in order
to model the Earth’s gravity field at 100 km resolution.
These new models will bring significant advances in our
understanding of the Earth’s structure and dynamics.
However, it will be necessary to combine satellite data
with surface and airborne measurements in order to
improve the short wavelength components of the gravity
field. The derived regional models with an increased
spatial resolution will be used to carry out geodynamic
studies at lithospheric or crustal scale. Whereas the
classical spherical harmonics decomposition leads to
strong numerical difficulties when dealing with local
features, wavelet-based representations can handle the
local scales as well as the global ones; they should thus
be extremely useful to derive local models taking into
account data of different origins. Here we describe the
construction of wavelet frames on the sphere based on
the Poisson multipole wavelet. Those wavelets are of
special interest for field modelling since their shape is
linked to the potential of multipole sources, and their
scaling parameter to the multipole depth (Holschneider
et al., 2003). We also compute a local wavelet decom-
position of the gravity field at high resolution from
evenly and unevenly distributed data using least squares
collocation. Our first results show the efficiency of such
a representation.

Keywords Spherical wavelets, multipoles, frame,
covariances.

1 Introduction

Gravity field observation from space provides promising
advances for improving measurement of the geoid at
100 km resolution, and of its time variations at400
km resolution. The derived models of the static and
time-varying gravity field will lead to a better under-
standing of the internal geodynamic processes and of the

superficial fluid envelops. They will also contribute to
improve global and national height references. However,
it will be necessary to densify them locally with surface
and airborne measurements in order to improve their
resolution for local studies. If the spherical harmonic
analysis is well suited for global representations, it
is very demanding for such high resolution models
since the number of functions involved is quite large.
Moreover, the systems to solve are badly conditioned
when the data do not cover the whole sphere. That is the
reason why other methods have been investigated last
years: orthonormalization of the spherical harmonics
over a bounded domain (Albertella et al., 1999; Hwang,
1993), spherical cap harmonic analysis (de Santis et
al.,1997), and a promising approach: wavelet frames
(Freeden et al., 1998; Holschneider et al., 2003).

Discrete wavelet frames are based on the dis-
cretization of the continuous wavelet transform on the
sphere. Many mother wavelets can be used, and among
them, axisymmetric wavelets are of special interest.
Indeed, they can be expressed in a simple way as series
of Legendre polynomials. In the present paper, we
focus on a particular family of axisymmetric wavelets,
well-suited for modelling of potential fields: the Poisson
multipole wavelets. Let us notice that wavelets based
on the Poisson kernel were already used in one or
two dimensions to analyse and interprete gravity and
magnetic anomalies (Sailhac et al., 2000, Martelet et al.,
2001).

Contrary to the spherical harmonics basis, wavelet
frames are not made of orthonormal functions. Thus,
computing the dual frame is required in order to derive
the covariances between wavelet coefficients involved
in collocation. We finally derive local representations
underlining the interest of wavelets for regional, high
resolution modelling.



2 Frames of wavelets

2.1 Frames

A collection of functions{gn}n=0,1,... in a Hilbert space
H is a frame ofH if we have for alls ∈ H:

A‖s‖2 ≤
∑

n

|〈gn, s〉|
2 ≤ B‖s‖2 (1)

The constants(0 < A ≤ B < ∞) are called frame-
bounds, and〈gn, s〉 denotes the scalar product ofgn with
s. Such a family provides a complete and stable rep-
resentation of the spaceH, which may be redundant.
s ∈ H can be written as:

s =
∑

n

〈s, g̃n〉 gn (2)

where{g̃n}n=0,1,... is the dual frame (see section 3.2).
WhenA = B, the frame is tight. No direction of space
H is privileged. In the opposite case,A andB reflect
the extremal sensitivities of the frame.

In the following, the spaceH is the space of square
integrable functions on the unit sphere (admitting an har-
monic continuation outside this sphere). The considered
frames are spherical wavelet frames. The wavelets are
characterized by a scale parameter, defining their spec-
tral content, and a position parameter, defining the point
around which they concentrate their energy in space do-
main. We discretize the continuous wavelet transform
via these two parameters. Scales are discretized in or-
der to cover the whole spectrum. For each chosen scale,
we discretize the positions in order to cover the whole
sphere homogeneously. This defines successive genera-
tionsj of wavelets.

2.2 The Poisson multipoles wavelets

The Poisson multipole wavelets, introduced by
Holschneider et al. (2003), are of special interest for
potential field modelling. Indeed, their shape may be
identified with the potential of a multipolar source. The
waveletψa,n,~e

i at point~x on the unit-sphere is expressed
as:

ψ
a,n,~e
i (~x) = Ni

∑

ℓ

(aℓ)
n
e−aℓQℓ

(

~e

‖~e‖
· ~x

)

(3)

with :

Ni =
(

〈ψa,n,~e
i (~x), ψa,n,~e

i (~x)〉
)

−
1

2

(4)

Figure 1: Meshes at generations3 (left) and5 (right).

Its harmonic continuation at point~x outside the sphere
Ψa,n,~e

i is given by:

Ψa,n,~e
i (~x) = (5)

Ni

∑

ℓ

1

‖~x‖ℓ+1
(aℓ)

n
e−aℓQℓ

(

~e

‖~e‖
·
~x

‖~x‖

)

In the above equations,Ni is aL2-normalisation factor,
ℓ is the degree of the Legendre polynomialPℓ andQℓ

is the related reproducing kernel:Qℓ = 2ℓ+1

4π
Pℓ. a is

the scale parameter,~e is the position of the multipole,
andn its order. Increasingn improves the frequency
localization but deteriorates the space localization. The
depth of the multipole in the case of the unit sphere is
linked to the scale parameter by‖~e‖ = e−a.

2.3 Discretization of scales and positions

We chose a simple sampling of the sphere, based on
the successive subdivisions of the facets of a regular
convex polyhedron centred with respect to the sphere.
The directions of the vertexes are then projected onto
the sphere. The more we subdivide the polyhedron’s
facets, the finer the mesh: thus, we create easily a set
of hierarchical meshes associated with wavelets at dif-
ferent scales. The polyhedron chosen is the icosahe-
dron, since it leads to very regular meshes, as shown
by Figure 1 (the dispersion of distances between points
comes to about10% of the mean value). The con-
struction of an icosahedric mesh was implemented based
on C++ code from Richard J. Bono freely distributed
on http://www.applied-synergetics.com, following Ken-
ner (1976).

To provide a regular coverage of the spectrum, we
discretize the scale parameter according to a geomet-
ric progression: the scaleaj at level j is given by:
aj = C.γj−1. We choseC = 3 andγ = 1

2
. Thus, the

spectrum is covered (see Figure 2); and the multipoles
regularly sample the Earth’s interior.

The number of wavelets for each scale is large
enough so that the wavelet set shows a good sensitivity
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Figure 2: Spectrum of the wavelets(ajℓ)ne−ajℓ as a func-

tion of spherical harmonic degreeℓ for generationsj = 1 to j = 7

of the wavelet frame (ordern = 3 multipoles).

to all degrees and orders of the spherical harmonics. Fig-
ure 3, presented in Sect.3, can be interpreted as a mean
number of wavelets per degree/order taking into account
a spectral ponderation: the observed values are clearly
larger than1 (case of the spherical harmonics basis) and
never tend to0.

2.4 Frames of spherical wavelets

We did not prove that the above family of wavelets is
actually a frame ofH. In particular, results describing
appropriate discretizations of positions via fundamen-
tal systems for band-limited wavelets (Freeden, 1998)
can not be applied to wavelets with an infinite spectrum.
However, numerical tests seem to support the hypothesis
that the wavelet set is a frame (see for instance Sect. 3.2).
In any case, the wavelet family provides an approxima-
tion of the gravity field. Its quality depends on the gener-
ating properties of the wavelets. Thus, a bad representa-
tion of the gravity field can be symptomatic of ungener-
ated harmonic spaces whereas a good one guaranties that
the wavelets at least numerically generate those spaces.
Numerical tests (Chambodut et al., submitted) at a global
scale show that the first generations of wavelets numer-
ically generate spherical harmonics. Given the process
of construction of the wavelets set, one can reasonably
assume the next generations to show the same approxi-
mating properties.

3 Collocation in the non-orthogonal case

Our aim is to derive a high resolution wavelet model
of the disturbing potential based on gravity disturbances
data. In this section, we derive the collocation formulas
in the general frame settings.

3.1 Deriving a model from observations

Taking into account the multipolar nature of the
wavelets, we express the disturbing potentialT as a lin-
ear combination of wavelets:

T =
∑

i

αiΨi (6)

Thus, wavelet coefficients can be interpreted as a pon-
deration of multipolar sources. Gravity disturbancesδg

are hereafter deduced in the spherical approximation:

δg =
∑

i

αi

∂Ψi

∂r
(7)

or, in matricial notation:δg = M · α. α is the vec-
tor of unknown coefficients,M the observation matrix.
We denoteb the vector of measurements (of gravity dis-
turbances). The solution vector is given after Moritz
(1989):

α = K ·M t(M ·K ·M t +W )−1 · b (8)

whereW is the covariance matrix of the noise of the
measurements andK the covariance matrix of the coef-
ficients, detailed in the following.

3.2 Dual frame

If the wavelets set is a frame, the coefficients are defined
as the scalar products between restriction of the disturb-
ing potential to the unit sphereTΣ and the dual frame:
αi = 〈TΣ, ψ̃i〉. The dual frame is given by (Mallat,
1999):

ψ̃i = (U∗U)−1ψi (9)

whereU is the operator defined by:

∀i, ∀s ∈ H, Us[i] = 〈s, ψi〉 (10)

and U∗ its adjoint. This definition is equivalent to:
〈ψj , ψ̃i〉 = δij when the wavelets set is independant.

However, the computation of the dual frame based on the
above relationship is computationally demanding, unless
the frame is tight. Indeed, a tight frame with frame-
bounds equal toA verifies:

ψ̃i =
1

A
ψi (11)

We provide here a qualitative argument supporting the
hypothesis that the described wavelet family is close to
be tight. We already discussed the generating proper-
ties of the wavelet set. In this section, we focus on its
isotropy in the spaceH. Let us defineEℓ

m as:

Eℓ
m =

∑

i

|〈ψi, Y
ℓ
m〉|2 (12)
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Figure 3: Value ofEℓ
m for the first7 generations of wavelets,

for all degrees and orders lower than30. Abscissa : degree of

spherical harmonics,ordinate : order of spherical harmonics.

Eℓ
m increases when the redundancy of the wavelet fam-

ily (ψi)i in the direction of the spherical harmonicY ℓ
m

increases. A necessary condition for the frame to be
tight is thatEℓ

m be constant. This condition is not suf-
ficient. Though, since the directionsY ℓ

m sample regu-
larly the directions ofH, we consider that it supports the
tightness hypothesis. Figure 3 plots the values ofEℓ

m

taking into account the first7 generations of wavelets:
they are all coming around7.5, with relative variations
of 18%. Adding further scales would not change this re-
sult significantly since the next generations of wavelets
have almost no power at degrees lower than30. Thus,
the wavelet set is rather isotropic in the directionsY ℓ

m,
and we assume the framebounds to be close. Further ex-
perimental results will confort this hypothesis.

3.3 Covariance matrix K

Thus, we computed the covariances between wavelet co-
efficients applying the tight frame approximation. We
denoteK(~r, ~r1) the covariance function of gravity dis-
turbances at points~r and ~r1 on the sphere. We make the
assumption thatK(~r, ~r1) only depends on the spherical
distance between~r and ~r1. In this case, it can be written
as a series of Legendre polynomials after Moritz (1989):

K(~r, ~r1) =
∑

ℓ

cℓPℓ(~r · ~r1) (13)

The coefficientscℓ are equal to the variance of grav-
ity anomalies for degreeℓ. We assume that the power
spectrum of the gravity potential follows Kaula’s rule of
quadratic decrease (Kaula, 1966). Thus, the power spec-

trum of the gravity disturbance at degreeℓ decreases as:

cℓ = (ℓ+ 1)2(2ℓ+ 1)
α

ℓ4
(14)

Let us now denoteK~r, ~r1
the operator associating to

each square integrable function on the spheref its scalar
product withK(~r, ~r1):

K~r, ~r1
f(~r1) = 〈K(~r, ~r1), f(~r)〉 (15)

We derive the covariance between two coefficientsαi

andαi′ as a scalar product between the corresponding
wavelets. This comes from the formulas of covariance
propagation:

Ki,i′ ≈
1

A2
〈K~r, ~r1

ψi(~r1), ψi′(~r1)〉 (16)

4 Results

4.1 Data

In this section, we derive wavelet models of the grav-
ity field applying our approach. The studied area is
in the northern part of the Andes. Synthetic datasets
are obtained by sampling the EGM96 gravity distur-
bances model from Lemoine et al. (1998). We applied
a gaussian filtering to the coefficients up to degree360
(with an attenuation of0.6 at degree250) in order to
avoid artificial oscillations. We considered2 datasets,
the one made of regularly distributed data, the other
made of randomly distributed data. The regular distribu-
tion of data counts1369 samples, with one data per bin
of 0.25◦ in the area of−5◦/−14◦ lat. N, and278◦/287◦

long. E. The irregular one counts576 samples between
0◦/−18◦ lat. N, and275◦/293◦ long. E. The concen-
tration of data is higher in the northern half (394 data)
whereas the southern half is more sparsely covered (182
data).

4.2 Parameters

We inverted these datasets on generations2 to 8 of the
frame for the case of irregular data distribution (1920
wavelets), and2 to 10 for the case of regular data dis-
tribution (7189 wavelets). Indeed, since gravity distur-
bances have no component on degree1, we do not ex-
pect the first generation of wavelets (mainly centred on
degree1) to be significant in the representation. We ap-
plied a spatial selection of the wavelets : only wavelets
whose influence radius intersects the area under study
are selected. The influence radius of a wavelet is based
on its spatial variance as defined by Freeden (1998).



Matrix W is diagonal, assuming an uncorrelated
noise. As the data are perfect, the choice ofW is ar-
bitrary. We considered a noise of10−2 mGals for the
regular distribution and2.5 10−3 mGals for the irregu-
lar one. The covariance matrixK is evaluated assuming
thatψ̃i = 1

7.5
ψi ∀i. Lastly, the filter applied to the syn-

thetic data is taken into account within the observation
equations.

4.3 Results

Results for the regular case are presented in Figure 4.
Wavelets succeed in representing the local gravity dis-
turbances. Wavelet model shows visually no difference
with the EGM 96 model. Residuals between synthetic
data and wavelet model amount to a few microGals.
Residuals between the EGM 96 model and the wavelet
model are of same order that measurements residuals in
the central part of the area. We could not avoid small
edge effects, around0.1 to 0.2 mGals, due to the spatial
selection of the wavelets. A possible explanation is that
the vertices of the meshes show a slight obliquity with
respect to meridians and parallels, thus, two edges out
of four are privileged. However, this issue still has to be
investigated in more details.

Results for the irregular case are presented in Fig-
ure 5. The wavelets handle the gaps without oscillat-
ing, and restitute the main features of the gravity distur-
bances. Residuals between synthetic data and wavelet
model mainly amount to a few tens of microGals. Resid-
uals between the EGM 96 model and the wavelet model
are smaller in the norther part of the area, reflecting the
higher density of data. They increase in the areas of
strong gravity variations since the available data do not
constrain sufficiently the model.

5 Conclusion

These tests proved the ability of a subset of the wavelet
frame to represent the gravity field at a rather high reso-
lution in a delimited area, and to cope with an irregular
distribution of data. They validate the approximations
made in the estimation of the dual frame. The frame
used here may be too redundant: good results were also
obtained in the regular case with less wavelets (4607
wavelets only). Lastly, let us notice that the wavelet
coefficients can be interpreted for geophysical purposes,
the generations1 to 10 corresponding to multipoles lo-
cated at varying depths from the core up to the Earth’s
crust. Applying this method, we intent to derive local
refinements of the global gravity model from current
and planned space missions by jointly modelling two
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Figure 4: From top to bottom : EGM 96 gravity disturbances

model; wavelet gravity disturbances model computed from the reg-

ular distribution of data; residuals between above wavelet model

and EGM 96; residuals between wavelet model and synthetic data.
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Figure 5: From top to bottom : EGM 96 gravity disturbances

model (black dots represent the data); wavelet gravity disturbances

model computed from the irregular distribution of data; residu-
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wavelet model and synthetic data.

datasets: the first one based on a satellite-derived gravity
model, and the other one made of ground measurements,
bringing the high frequency content.
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