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Abstract

The gravitational potential of a constant density general polyhedron can be expressed

both in terms of a closed analytical expression and as a series expansion involving the corre-

sponding spherical harmonic coefficients. The latter can be obtained from two independent

algorithms, which differ not only in their algorithmic architecture but in their efficiency and

overall performance, especially when computing the coefficients of higher degree and order. In

the present paper a comparative study of all these three approaches is carried out focusing on

the numerical implementation of the recursive relations appearing in the two algorithms for

the computation of the polyhedral potential harmonic coefficients. The performed numerical

investigations show that the linear algorithm proposed by Jamet and Thomas (2004) but so

far not implemented achieves a reasonable accuracy at a computational expense that opens

to practical applications, for instance in the field of satellite gravimetry/gradiometry inter-

pretation. The convergence behavior of the linear recursion algorithm is studied thoroughly

and a computational procedure is proposed that enables the stable computation of potential

harmonic coefficients up to degree 60 when referring to an arbitrarily shaped polyhedral body.

Keywords: Gravitational potential, general polyhedron, spherical harmonics, analytical

expression, recursive algorithms
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Introduction

The use of the general polyhedron can be found in a wide range of applications in geodesy, geophysics and

planetary sciences. Its unique geometry, i.e., its construction from an irregular number of faces, each built

from a varying number of segments, defines an efficient and flexible modeling tool for the computation -

among others - of accurate terrain effects (Tsoulis 2001), or the representation of entire planetary bodies

and the evaluation of the corresponding gravity signal (Simonelli et al 1993, Werner and Scheeres 1996).

For the practical evaluation of the polyhedral gravity signal there exist, in principle, three computational

strategies: the direct numerical computation of closed analytical expressions which are available for the

potential, its derivatives and the full gravity tensor for the case of the general polyhedron of constant

density, the evaluation of the potential harmonic coefficients for the gravitational potential of the same

body and numerical quadrature methods that can be applied directly to the corresponding integral

expressions. The latter possibility is not going to be considered here.

The analytical formulas are valid everywhere in space including the polyhedron’s faces, edges or ver-

tices, where certain non zero singularity terms have to be taken into account (Petrović 1996, Tsoulis and

Petrović 2001). The fundamental property that is exploited for the derivation of the respective equa-

tions is the divergence theorem of Gauss, which permits the stepwise transformation of the initial three

dimensional integral to a summation of a number of line integrals defined for the same number of seg-

ments building each face and leads to the evaluation of transcendental expressions involving the relative

position of the coordinates of each vertex with respect to the computation point. Although the repeated

application of the divergence theorem (for the transition from volume to surface and from surface to

line integrals respectively) produces the aforementioned results in a straightforward manner, this is not

the only way to proceed. Equivalent procedures have been proposed in the literature that are also valid

everywhere but use different parametrization for the problem, for example the definition of the so-called

solid angle subtended by a face when viewed from the field point (Werner 1994; Werner and Scheeres

1996). Apart from that, the task of deriving an analytical expression for the polyhedral gravity field has

been dealt with from different algorithmic point of views by a variety of authors, e.g., Pohanka (1988),

Barnett (1976) and many other contributions going back to the mid-1800s.

The computation of the potential harmonic coefficients of the general constant density polyhedron, which

is an alternative way of evaluating the polyhedral gravity signal, is based on the expansion of its gravi-

tational potential into an infinite spherical harmonics series expansion. The potential expansion in solid

spherical harmonics has been always the preferable means of modeling the gravity field of an observed

body in satellite-related applications. Thus, the polyhedral modeling has been applied successfully in

studies of the gravity field of planetary objects for which satellite orbit perturbations were available.

Formulating the expression for the potential in solid spherical harmonics and applying different strategies
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for the integration over the surface of the observed body one can be led to the corresponding harmonic

coefficients of the body’s gravitational potential. Thus, the spherical harmonic representation of the

polyhedral gravity signal has been applied up to now in modelling the gravity field of planetary bodies

such as asteroids or planets as a synthetic counterpart of the corresponding satellite-range related models

(Chao and Rubincam 1989; Martinec, Peck and Bursa 1989; Balmino 1994).

As far as the algorithmic procedure is concerned, two basic approaches have been proposed so far for the

spherical harmonic coefficients of the gravitational potential of a constant density general polyhedron.

The first approach proposes the use of the representation of the radius vector of the integrand appearing

in the general expression for the potential of the polyhedral source in terms of a spherical harmonic

expansion. After introducing this expression into the respective equations which define the coefficients

of the potential, one may proceed to the computation of these coefficients either numerically (Chao and

Rubincam 1989) or analytically (Martinec, Peck and Bursa 1989; Balmino 1994). The second approach

derives recurrent relations for the computation of these coefficients. Werner (1997) elaborated the well

known recurrent relations for the associated Legendre functions in the integral expressions defining the

sought coefficients. The basic geometric feature of his proposed algorithm is the partitioning of the

polyhedron into a collection of simplices of tetrahedral shape. Then, the recurrent relations which he

has derived for the harmonic coefficients for point masses and have to be integrated over the domain

of the extended body, are expressed analytically over each tetrahedron in terms of certain trinomial

expressions and then summed for each tetrahedron to give the final results for the harmonic coefficients.

The trinomial expressions that are used in these approach are provided by the solution to the problem of

integrating Cartesian-coordinated polynomials on a polyhedral domain as proposed by Lien and Kajiya

(1984).

Both of the aforementioned approaches are restricted, each for different reasons, to the computation of

harmonic expansions that are limited only to lower degrees. Werner’s method, for example, requires

the expansion of the respective polynomial integrands, for which the number of the necessary operations

behaves as the square of the number of the harmonic coefficients that are going to be computed. Another

method for the computation of the polyhedral potential harmonic coefficients has been proposed by Jamet

and Thomas (2004). This method is also based on the division of the polyhedral source into a number

of distinct tetrahedra and leads also to a recurrent solution. As for Werner’s approach, the needed

computational effort behaves thus linearly with respect to the number of tetrahedral simplices that have

to be defined. However, in this case the recursions concern the integrals that define the coefficients. This

defines an algorithm of linear complexity with respect to the number of computed coefficients, a fact that

permits the computation of higher degrees. This latter alorithm was never implemented and one of the

scope of the present paper concerns its assessment.

The present work presents a detailed numerical survey of the aforementioned recursive algorithms (Werner
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1997 & Jamet and Thomas 2004). Their numerical implementation revealed that even the linear algorithm

of Jamet and Thomas (2004) presented certain numerical deficiencies, when computed for higher degrees.

In order to overcome this problem the algorithm is expanded to its normalized counterpart, something

that increases the computational stability considerably and permits the computation of coefficients up

to degree 400 and higher. The numerical implementation of these algorithms enabled not only their

quantification and their direct comparisons with the closed analytical solution which are presented in this

paper, but also revealed or verified numerically certain theoretical handicaps that are apparently inherited

with the linear algorithm of Jamet and Thomas (2004). These numerical instabilities are documented in

detail both theoretically and numerically. Finally a computational procedure is proposed that deals with

these problems and enables the stable computation of a polyhedral gravity field for higher degrees. Using

the shape model of asteroid 433 EROS as a test body we managed to apply this technique successfully

and obtained a reproducible gravity field up to degree 60.

The linear algorithm

The fundamental formula for the present discussion is the expression for the gravitational potential of an

extended body as an infinite series expansion in solid spherical harmonics

V (r, θ, λ) =
GM

r

{
1 +

∞∑
n=1

(a
r

)n n∑
m=0

Pn,m(cos θ)
[
Cn,m cos(mλ) + Sn,m sin(mλ)

]}
(1)

where G is the gravitational constant, M stands for the total mass of the body and a denotes a reference

distance, often chosen as the radius of the smallest sphere centered at the origin which circumscribes the

extended body. (r, θ, λ) are the spherical coordinates of the field point (radius, colatitude and longitude

respectively, cf. Figure 2a) with respect to the coordinate origin and Pn,m are the Legendre polynomials

(for m = 0) or associated Legendre functions (for m > 0) as defined by Heiskanen and Moritz (1967).

For the dimensionless coefficients Cn,m and Sn,m the following integral expression holds


 Cn,m

Sn,m


 =

2− δ0,m
Man

(n−m)!
(n+m)!

∫ ∫ ∫

Q∈U
hn,m(Q) du(Q) (2)

where du(Q) is the volume element of the total volume U at point Q(rQ, θQ, λQ) and the vector hn,m(Q)

has been inserted to denote the product between the radial distance of point Q with the associated
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Legendre functions according to

hn,m(Q) = rnQ Pn,m(cosθQ)


 cos(mλQ)

sin(mλQ)


 (3)

Thus, hn,m(Q) defines a ‘vector function’ whose elements are functions of the spherical coordinates of

point Q with respect to the coordinate origin. The computation of equation 2, or equally the integration

of function hn,m(Q) over the volume of a known polyhedral source of constant density is the scope of the

contributions of Werner (1997) and Jamet and Thomas (2004). The common tool for both approaches

is the division of the total volume U of the polyhedron into a collection of simplices (tetrahedra), each

having one vertex at the origin and the opposite face taken from one of the polyhedral faces (Figure 2

(b)). With this geometrical decomposition the volume integral of equation 2 can be expressed as the

algebraic sum of the integrals over each simplex of the body U , where an integral is counted as positive

if the outer normal to the polyhedron lies outside the simplex and negative otherwise. Thus, the sign of

the respective contributions to the final value of the coefficients Cn,m and Sn,m depends on the relative

position of each polyhedral face with respect to the respective tetrahedron.

To explain this we may consider the example of a cube. Its division into 6 simplices (one for each of its

faces) of volume Uj leads according to the distinction made above to the expression of its volume as U =
∑
δjUj , with δj equal to +1 for cases 4-6 and −1 for cases 1-3, giving thus U = −U1−U2−U3+U4+U5+U6

(see Figure 1). After calculating the coefficients of all simplices, we will get for the harmonic coefficients

of the cube the corresponding expression


 Cn,m

Sn,m


 =

∑
δj


 Cn,m(j)

Sn,m(j)


 (4)

with δj obtaining the same values as above.

In the following we will consider that U denotes the volume of a simplex (tetrahedric element). Any

polyhedron is decomposed into a set of such simplices (tetrahedra). The four faces building each one of

these simplices will be denoted by σk, with k = 0, . . . , 3, σo being the face that belongs to the polyhedron

surface and σk, with k = 1, . . . , 3, the faces which share the origin as common vertex. The three edges

of face σo will be noted as εk, k = 1, . . . , 3, where εk is the common edge between face σo and face

σk. The numbering of the edges is performed in the standard counterclockwise fashion, according to

which the normal vectors to the corresponding faces will point in the outgoing direction of the respective

tetrahedron. The normal vector to each face σk will be denoted by nk and the direction unit vector of

each edge εk will be noted tk. Finally, the involved spherical coordinates are defined by the standard

expressions
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x = r sin θ cosλ

y = r sin θ sinλ

z = r cos θ (5)

while the unit vector bases of the local spherical and cartesian frames will be given by (ur,uθ,uλ) and

(ux,uy,uz) respectively. An overview of all involved geometrical quantities is given in Figure 2.

We may introduce, for the sake of simplicity, the following parameter for the representation of the three

dimensional integral in the right hand side of equation 2

Hn,m =
∫ ∫ ∫

Q∈U
hn,m(Q) du(Q) (6)

with boldface denoting again a vector function, the simple notation Hn,m representing the three dimen-

sional integral of either component hn,m of the vector hn,m.

Taking into account the equality

∇ ·
(

1
n+ 3

r hn,m ur

)
=

1
r2

∂

∂r

(
r3hn,m
n+ 3

)
=

1
r2

∂

∂r


 rn+3

n+ 3
Pn,m(cosθ)


 cos(mλ)

sin(mλ)






= rnPn,m(cosθ)


 cos(mλ)

sin(mλ)


 = hn,m (7)

and applying the divergence theorem of Gauss to equation 2 gives

Hn,m =
∫ ∫ ∫

U

hn,m du =
1

n+ 3

∫ ∫

σo

r hn,m ur · no dσ (8)

Equation 7 transforms now at a first instance the three dimensional integral at the right hand side of

equation 2 to a sole surface integral, which expresses the flow of the vector field r hn,m ur through the

triangular face that belongs to the polyhedral surface σo and defines the specific tetrahedron, with ur

expressing the unit vector along the radial coordinate of the local spherical coordinate system, and hn,m
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denoting either component of the ‘vector function’ hn,m. The derivation of equation 7 expresses also the

fact that vector ur is per definition orthogonal to all three normal vectors nk, k = 1, . . . , 3, of the three

tetrahedral faces not belonging to the polyhedron. Since all three faces building each simplex share the

origin as common vertex, the direction vector ur will be always orthogonal to the normal vectors nk of

each face.

From the geometrical setup of Figure 2b the following relation can also be obtained directly

r(Q) ur(Q) · no = do , ∀Q ∈ σo (9)

where do is the distance of the origin from the plane defined by face σo. This leads to the expression

Hn,m =
do

n+ 3

∫ ∫

σo

hn,m dσ (10)

A subsequent application of the Stokes theorem can reduce each of these surface integrals into a set of

three line integrals, each defined along the perimeter of the triangular polyhedral face.

Using the identity

∇×




yhn,m

−xhn,m
0


 = (n+m)



xhn−1,m

yhn−1,m

zhn−1,m


− (n+ 2)




0

0

hn,m




= (n+m)rhn−1,mur − (n+ 2)hn,muz (11)

permits the application of the Stokes theorem for every segment εk of the face σo. With [yhn,m − xhn,m 0]

being the corresponding vector function the theorem of Stokes leads for face σo to the expression

3∑

k=1

∫

εk




yhn,m

−xhn,m
0


 · tkdl = (n+m)

∫ ∫

σo

r hn−1,m ur · no dσ − (n+ 2)
∫ ∫

σo

hn,m uz · no dσ (12)

with uz denoting the unit vector in the direction of the third coordinate of the cartesian frame, no the

unit vector perpendicular to face σo, do the distance between the origin and the plane of the face σo, tk
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the direction unit vector (tangent vector) of each edge εk and dl the infinitesimal line element denoting

the integration along these edges. Finally, x and y simply describe the two coordinates of the local

cartesian frame (see Figure 2a).

Using equations 8 and 10 equation 12 becomes

Hn,m =
do(n+m)

(n+ 3)(uz · no) Hn−1,m

− do
(n+ 2)(n+ 3)(uz · no)

3∑

k=1

∫

εk




yhn,m

−xhn,m
0


 · tkdl (13)

Equation 13 demonstrates that it is possible to compute the three dimensional integrals appearing on the

right hand side of equation 2 in terms of a recurrence over degree n. At each step of this recurrence scheme

the evaluation of three line integrals along the edges of face σo is necessary. Jamet and Thomas (2004)

showed that it is possible to evaluate each of these remaining line integrals through a set of recurrence

relations as well. This leads finally to a nested recurrence scheme which delivers the integrals Hn,m. In

order to comprehend the link between these two recursions, the recursive schema which can be developed

for the computation of the line integrals appearing in the right hand side of equation 13 is going to be

presented briefly in the following.

If one defines the curvilinear abscissa s along each edge as a new parameter, choosing as an origin for its

computation the point ok on εk that minimizes the distance d from the origin of the spherical coordinate

frame then we obtain the geometrical definitions (see Figure 2b)

(ox, oy, oz) ≡ ok , the cartesian coordinates of the origin of the edge

d ≡
√
o2
x + o2

y + o2
z , the distance from ok to the origin of the frame

(tx, ty, tz) ≡ tk , the cartesian components of vector tk

smin, smax , the bounds of the integration domain along the edge

and furthermore

x = ox + tx s (14)
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y = oy + ty s (15)

z = oz + tz s (16)

r = d2 + s2 (17)

Through these definitions the line integrals of the right hand side of equation 13 become

∫

ε




yhn,m

−xhn,m
0


 · tdl = (txoy − tyox)

∫

ε

hn,mdl (18)

Let us now use the symbol In,m to denote the integral on the left hand side of equation 18 and In,m for

the corresponding 2×1 matrix, according to the notation used so far. It will hold

In,m =
∫

ε

hn,m dl (19)

Similarly we define two additional integrals in matrix form which enter the subsequent calculations,

namely

Jn,m =
∫

ε

shn,m dl (20)

and

Kn,m =
∫

ε

s2 hn,m dl (21)

The link to the recurrence computation of these integral forms is obtained from the stable recurrence

relation of the associated Legendre polynomials (Press et al. 1992, p. 253)

(n−m)Pn,m(ξ) = ξ(2n− 1)Pn−1,m(ξ)− (n+m− 1)Pn−2,m(ξ) (22)

with ξ = cos θ. Multiplying first both sides of this equation by rn


 cosmλ

sinmλ


 and then integrating with

respect to ε, we finally get, by incorporating also expressions 5, 16 and 17, following recurrence formula

9



(n−m) In,m = (2n− 1) ozIn−1,m − (n+m− 1) d2In−2,m

+ (2n− 1) tzJn−1,m − (n+m− 1) Kn−2,m (23)

In order to be able to compute the recurrence scheme of equation 23, which relates In,m with Jn,m and

Kn,m, we need additional information. Indeed, if we calculate the first derivative of hn,m with respect to

s we get

(
d2 + s2 − (oz + tzs)

2
) ∂

∂s
hn,m = (n+m)

(
tzd

2 − ozs
)
hn−1,m

= −n (tzoz −
(
1− t2z

)
s
)
hn,m

= +m (txoy − tyox)


 0 1

−1 0


hn,m (24)

Integrating both sides of this equation for ε gives

(n+ 2)
(
1− t2z

)
Jn,m =

∣∣∣
(
d2 + s2 − (oz + tzs)

2
)

hn,m
∣∣∣
smax

smin

+ (n+ 2) tzozIn,m −m (txoy − tyox)


 0 1

−1 0


 In,m

− (n+m) tzd2In−1,m + (n+m) ozJn−1,m (25)

Following the same approach for the derivative of shn,m with respect to s leads to the additional recursive

relation

(n+ 3)
(
1− t2z

)
Kn,m =

∣∣∣
(
d2 + s2 − (oz + tz.s)

2
)
shn,m

∣∣∣
smax

smin

− (d2 − o2
z

)
In,m + (n+ 4) tzozJn,m

−m (txoy − tyox)


 0 1

−1 0


Jn,m
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− (n+m) tzd2Jn−1,m + (n+m) ozKn−1,m (26)

Equations 23, 25 and 26 offer the complete recursion scheme for the computation of the line integrals in

equation 13 through quantities I, J and K. The two major comments regarding these relations are (a)

the strong dependencies between the three integrals, which leads to a nested computation of all three

formulas and (b) the recurrent relationships apply to the degree n, with the order m remaining constant.

One consequence of (a) is of computational nature. When a general polyhedron is considered, part of

the calculations giving the contributions of each resulting tetrahedron can be performed independently,

which can facilitate a parallel computation. The consequence of (b) has an impact on the initializations

of the recursive algorithm. Since 0 ≤ m ≤ n, the computation has to be initialized with the values In,n,

Jn,n, Kn,n and Hn,n for every n smaller than the maximum degree that is to be computed. Taking

m = n and setting all terms for which m > n equal to zero, we verify that equations 13, 25 and 26 are

valid. The same holds for equation 23 for m = n− 1.

For the initialization of In,n we can use the identity

Pn,n(ξ) = (2n− 1)
√

1− ξ2Pn−1,n−1(ξ) (27)

to derive a relation between hn,n and hn−1,n−1 according to

hn,n = rnPn,n(ξ)


 cosnλ

sinnλ




= (2n− 1) sin θrn−1Pn−1,n−1(ξ)r


 cosλ − sinλ

sinλ cosλ




 cosn(λ− 1)

sinn(λ− 1)




= (2n− 1)


 x −y
y x


hn−1,n−1 (28)

Recalling the coordinate definition given by equation 5 and integrating equation 28 along ε we get the

sought iteration for In,n

In,n =


 ox −oy
oy ox


 In−1,n−1 +


 tx −ty
ty tx


Jn−1,n−1 (29)

11



where Jn−1,n−1 can be obtained directly from equation 25 using only In−1,n−1, with terms In−2,n−1 and

Jn−2,n−1 being null.

By initializing the diagonal and subdiagonal terms in the recursions for the integrals I, J and K one can

compute all the other terms recursively for degree n for a certain order m. Each step of these recurrences

only requires the evaluation of the function h at the vertices of the tetrahedron. With all In,m finally

available one can calculate the volume integrals Hn,m by the recurrence relationship 13 and deduce the

values for the harmonic coefficients Cn,m and Sn,m.

Expansion of the linear algorithm to the normalized case

If one increases n and m considerably then the Pn,m obtain extremely large values and the coefficients

Cn,m and Sn,m become very small. To avoid these numerical problems and permit the computation of

high degree and order terms one can introduce the normalization factor (Heiskanen and Moritz 1967, eq.

(1-73))

Nn,m =

√
(2− δ0,m)(2n+ 1)

(n−m)!
(n+m)!

(30)

with

δ0,m =





1, m = 0,

0, m 6= 0.

The normalized coefficients and the normalized associated Legendre functions can then be computed

according to


 Cn,m

Sn,m


 =


 Cn,m/Nn,m

Sn,m/Nn,m


 (31)

and

Pn,m = Pn,m Nn,m (32)

respectively. The inclusion of the normalization factor produces new recurrent relations for the linear

algorithm presented in the previous section and these relations are going to be presented in the present

section.
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Definitions. From equations 2 and 31, the values of normalized harmonic coefficient of the contribution

of volume U to the potential obey the following relation


 Cn,m

Sn,m


 =

1
Nn,m

2− δ0,m
Man

(n−m)!
(n+m)!

∫ ∫ ∫

Q∈U
hn,m(Q) du(Q) (33)

In order to simplify further the calculations, let us define the normalization factor Fn,m as

Fn,m ≡ 1
Nn,m

2− δ0,m
Man

(n−m)!
(n+m)!

=
1

Man

√
(2− δ0,m) (n−m)!
(2n+ 1) (n+m)!

(34)

as well as the subsequent normalized quantities, in accordance with the definitions of the previous section

hn,m ≡ Fn,mhn,m

Hn,m ≡ Fn,mHn,m

In,m ≡ Fn,mIn,m (35)

Jn,m ≡ Fn,m
a

Jn,m

Kn,m ≡ Fn,m
a2

Kn,m

As well as previously, non bold face letters will represent either component of the corresponding ‘vector

function’.

We will also need the following ratios

Rmn,n−1 ≡ Fn,m
Fn−1,m

=
1
a

√
(2n− 1) (n−m)
(2n+ 1) (n+m)

(36)

Rmn,n−2 ≡ Fn,m
Fn−2,m

=
1
a2

√
(2n− 3) (n−m) (n−m− 1)
(2n+ 1) (n+m) (n+m− 1)

(37)

Normalized recurrent relationships. With the previous definitions, the harmonic coefficients of

the contribution of one simplex are


 Cn,m

Sn,m


 =

∫ ∫ ∫

Q∈simplex
hn,m(Q) du(Q) = Hn,m
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The multiplication of equation 13 by factor Fn,m yields

Hn,m =
Rmn,n−1do(n+m)
(n+ 3)(uz · no) Hn−1,m

− do
(n+ 2)(n+ 3)(uz · no)

3∑

k=1

∫

εk




yhn,m

−xhn,m
0


 · tkdl (38)

where

∫

εk




yhn,m

−xhn,m
0


 · tkdl = (oytx − oxty)

∫

εk

hn,m (s) ds

= (oytx − oxty) In,m

The derivation of recurrent relationships between the In,m, Jn,m and Kn,m proceeds the same way, as

for equations 23, 25 and 26. We obtain

(n−m) In,m = (2n− 1)Rmn,n−1ozIn−1,m

− (n+m− 1)Rmn,n−2d
2In−2,m

+ (2n− 1) aRmn,n−1tzJn−1,m

− (n+m− 1) a2Rmn,n−2Kn−2,m (39)

and similarly

(n+ 2)
(
1− t2z

)
Jn,m =

∣∣∣∣
1
a

(
d2 + s2 − (oz + tzs)

2
)

hn,m

∣∣∣∣
smax

smin

+ (n+ 2)
tzoz
a

In,m

−m (txoy − tyox)
a


 0 1

−1 0


 In,m

− (n+m)Rmn,n−1

tzd
2

a
In−1,m

+ (n+m)Rmn,n−1ozJn−1,m (40)

and

(n+ 3)
(
1− t2z

)
Kn,m =

∣∣∣∣
1
a2

(
d2 + s2 − (oz + tzs)

2
)
shn,m

∣∣∣∣
smax

smin

14



−d
2 − o2

z

a2
In,m + (n+ 4)

tzoz
a

Jn,m

−m (txoy − tyox)
a


 0 1

−1 0


Jn,m

− (n+m)Rmn,n−1

tzd
2

a
Jn−1,m

+ (n+m)Rmn,n−1ozKn−1,m (41)

Equations 38, 40 and 41 require that n > m, while equation 39 applies for n > m+ 1. Though, as stated

by Jamet and Thomas (2004), these recurrent relationships do extend to every pair (n,m) of degree and

order with n ≥ m, by setting equal to zero all terms for which the degree n is smaller than the order m.

Werner’s method

An alternative iteration algorithm for the computation of the spherical harmonic coefficients for the

potential of a polyhedral mass with constant density has been proposed by Werner (1997). In his approach

Werner treats at a first level the general expression of the potential in spherical harmonics incorporating

the standard recurrent relations for the associated Legendre functions as well for their fully normalized

integrals. The obtained recurrences correspond to the integrands of Cn,m and Sn,m defined for individual

point masses. In order to expand this formulation to an extended polyhedral body Werner implemented

the polynomial integration technique over a polyhedral domain, proposed by Lien and Kajiya (1984).

For the algorithmic details of the method the reader is referred to Werner (1997). His algorithm has

been implemented here numerically in order to perform an independent test of our own derivations. Our

calculations showed that the central transformation taking place in this procedure, i.e. the polynomial

change of variables of the polyhedron’s vertices, expresses one of the main handicaps of Werner’s method,

which creates a practically unbearable computational effort when attempting to compute coefficients of

increasing degree and order.

Comparative tests for simple case studies

Background

In order to assess the two recursive algorithms, the one proposed by Werner (1997) and the one pre-

sented here, we set up some simple case studies of simple constant density tetrahedra and compare the
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harmonic expansion to the direct computation of closed analytical formulas. While the direct comparison

between the two approaches is straightforward, the assessment of their accuracy though the comparison

of the numerical value obtained from the series expansion of the potential with analytical values is more

problematic. Series expansions yield band limited approximations of the value of the potential at a given

point that are not directly comparable to the analytical values. To cope with this issue, we performed

several numerical investigations.

The fundamental property which underlines all our experiments is the behavior of the kernel 1/rP , which

defines the decay of the potential with increasing distance of the computation point from the attracting

source. Furthermore, for the present case of the expression of the potential in a spherical harmonic

expansion the numerical behavior of V is also fundamentally affected by the ratio (rQ/rP )n, where rQ

and rP are respectively the distance from the origin of the frame of the points Q of the attracting source

and of the computation point P . As rP becomes larger the convergence rate for the series expansion

increases. As rP becomes smaller the series convergence is not guaranteed. More precisely, the series

converges for all P s located outside a sphere enclosing all masses (rQ < rP ); for rP < rQ the area of

convergence is again a sphere, such that the mass distribution is nowhere included or intersected (Tsoulis

1999).

The above well known theoretical assets of spherical harmonic expansions led us to set up a first exper-

iment aiming at assessing the convergence of the series expansion with respect to (a) increasing degree

and order and (b) increasing values of rP . The second experiment consists in studying the convergence

of the series through the computation of high degree and order expansions, and will sketch an integrated

view on the accuracy of the coefficients.

Both these experiments apply only to the normalized Jamet and Thomas’s algorithms presented in this

paper, as stated below. We will thus previously perform a direct comparison of both methods at low

degrees.

Direct comparison

For the numerical implementation of the aforementioned tests a simple prismatic source as the one shown

in Figure 2b has been defined. It is a simple tetrahedron, since both existing recurrence algorithms

for the evaluation of the potential harmonic coefficients (Werner’s approach and the linear algorithm

presented previously) refer to a tetrahedral geometry. Furthermore it is identical to the test body used

by Werner (1997) for the numerical assessment of his own recursive algorithm. This choice has been made

deliberately, in order to draw a first immediate conclusion on the validity of our approach. Following

Werner (1997) the constant density of the tetrahedral mass has been also taken equal to 5.52 g/cm3 and
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the origin of the local coordinate system has been defined as one of the four vertices. The two matrices

needed for the implementation of the linear algorithm presented here are the coordinates of the four

vertices and their linkage, which forms an extra topology matrix with the precondition that the order of

the vertices will be such, that the normal vector to each of the corresponding planes will point outside

the tetrahedron. Thus, the two matrices G and H read for our test tetrahedron correspondingly

G =




−2 −1 1

1 0 1

0 1 1

0 0 0




, H =




1 2 3

1 4 2

3 4 1

2 4 3




(42)

The obtained numerical values for the coefficients Cn,m and Sn,m up to degree 4 applying the linear

recursive algorithm read

C =




1.6727272727 0 0 0 0

0.2851622661 −0.0950540886 0 0 0

0.0463802081 −0.0401664385 0.0200832192 0 0

0 −0.0086628747 0.0124520069 −0.0030501063 0

−0.0033967950 0.0021180637 0.0042791349 −0.0024016585 −0.0002830382




(43)

and

S =




0 0 0 0 0

0 0 0 0 0

0 0 0.0200832193 0 0

0 0.0023626022 0.0124520069 −0.0091503189 0

0 0.0027232248 0.0040651782 −0.0072049755 0.0039625344




(44)

where we have used a matrix notation, with rows expressing the degree n and columns the order m.

These values are identical with those given by Werner (1997, Table 1) down to the numerical level of

1e-16, which corresponds to the intrinsic precision of the personal computer.

Although both methods produce identical results, they perform differently in terms of computational

efficiency. For degrees n < 10 the required CPU time for both is comparable. However, when computing

the higher degrees the differences become very significant. Taking the same tetrahedron and computing

its potential harmonic coefficients for increasing degree and order using both methods we get a similar

evolution of the required CPU time, which increases exponentially with respect to the increased degree.
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However, this exponential behavior refers to different order of magnitudes. Thus, the linear algorithm

requires 16 seconds in order to produce the coefficients of the aforementioned tetrahedron up to degree and

order 360, whereas the Werner method consumes about 350 seconds of CPU time for the computation

of the coefficients only up to degree and order 50. The increase of CPU time behaves exponentially,

almost approximating a function of degree four. Thus, the necessary computer time becomes very quickly

unmanageable, leading approximately to 9.4e5 seconds (approximately 11 days) of required CPU time for

the computation of the coefficients up to degree and order 360 of a single tetrahedron on the same standard

contemporary PC. The introduction of the coordinate mapping through the corresponding polynomials

which enables the final integration step in the Werner method, produces an enormous computational

effort and makes the method inapplicable for higher degrees and more complicated bodies.

Hence, from both available recurrent algorithms the linear integration algorithm proves to be a much

more efficient method, though producing the same level of accuracy as the method proposed by Werner.

The linear algorithm is superior in terms of required CPU time for the lower degrees and is the only

applicable method for the higher degrees. When applied to a complex body, for which a decomposition

into a number of simple tetrahedra as many as the body’s faces is necessary, the corresponding CPU time

would increase linearly as to the total number of these faces. On the same computer the expansion up

to degree 400 requires 22 seconds for a single tetrahedron, and would require approximately 100 days for

the expansion up to the same degree of the potential of a body counting 400,000 faces — for instance a

DTM at the resolution 25 km over the whole Earth. This still represents a heavy computation burden,

but would become manageable if shared among a few tens of CPUs. Hence, our recursive approach may

allow some applications at the scale of the whole Earth, such as, for instance, an exact removal of the

effect of the topography from the gravity signal of the future GOCE satellite, which would enhance our

interpretation capabilities.

Comparison to analytically derived values

In order to assess the precision of the derived recurrent algorithm one has to compare it with the corre-

sponding analytical solution at a given point P . A detailed evaluation should investigate the main factors

that define the recurrent relationships numerically, namely the maximum degree of the expansion and

the position of the computation point with respect to the attracting source. As a general rule of thumb

it holds that a higher degree of expansion into spherical harmonics produces potential values that are

closer to the (exact) analytical ones. Furthermore, as stated before, the further the computation point

gets with respect to the attracting source the smaller the numerical value of the ratio
(
rq
rp

)n
becomes, Q

symbolizing any point of the attracting source. This well known numerical asset of spherical harmonics

implies that higher degree coefficients are more important to the precision of the corresponding potential

values the closest one gets to the attracting source. On the contrary, one should expect that a small
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number of coefficients would suffice for reaching the desired agreement with the analytical solution when

the computation point is located in a fairly large distance from the prismatic source.

To assess more precisely this effect, we compare the convergence with increasing rP of the series truncated

at a given degree with the convergence of the series obtained for a point mass located at the center of

mass of the studied tetrahedron. As any body with a certain spatial extent should generate a potential

with more energy in the low frequencies than a point mass, we expect that the point mass convergence

should be better for series truncated at a very low degree, and should get worse for series truncated some

higher degree.

Table 1 presents the comparison of the tetrahedron truncated potential series expansions at points P

of increasing distance rP from the origin of the frame with analytical values. The corresponding exact

numerical value for the potential of the source tetrahedron at every location of P is evaluated through

the closed analytical expressions for the general constant density polyhedron, which are valid everywhere

in space including all possible singularity terms, as given by Tsoulis and Petrović (2001).

We use again the model body of Figure 2b, with equation 42 describing its geometry. The series expansion,

expressed by equation (1) with rp playing the role of r, is actually an expansion in powers of 1/rp. For

increasing rp the convergence of the series becomes better, for smaller rp this convergence cannot be

guaranteed. With the origin of the local coordinate system being situated at vertex 4 of the tetrahedron

we studied the aforementioned expansion for degrees 2 and 10 using the coefficients obtained by the

presented recursive linear algorithm. The computations took place at eleven distinct points, namely

starting at [-2 -1 -1] and gradually getting at point [-4 -2 -2] with respect to the same coordinate system.

Table 1 summarizes these results giving also the respective analytical values and the corresponding

differences. The obvious remark taken from these values is that when the distance from the tetrahedron

increases the expansion becomes more precise for the same degree, with the differences between these two

specific degrees decreasing in value for the same point as this moves away from the tetrahedron. This

observation proves the expected behavior of the harmonics Cn,m and Sn,m to obtain smaller numerical

values both for increasing n and for increasing distance rp. Consequently, the closer the computation

point P and the attracting point Q get, the higher is the difference between the contributions of the same

degree, in other words one has to use a higher degree expansion to be as accurate.

The convergence with increasing rP of these series truncated at a given degree is compared to the

convergence of identically truncated series expansion of the potential of a mass point located at the

center of mass of the tetrahedron in Table 2. The spherical harmonic expansion of the potential of a mass

point is derived after the well known expression (Heiskanen and Moritz, 1967)

1
PQ

=
1
rP

(
1 +

+∞∑
n=1

(
rQ
rP

)n
Pn

(
cos P̂Q

))
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where PQ is the distance between P and Q, and where P̂Q is the angle between the directions of P and

Q at the origin of the frame. Table 2 presents, for each value of rP , the error of the truncated series at

degrees 2 and 10 in percentage to the analytical value of the potential. As expected, we observe that, at

degree 2, the series of the tetrahedron converges more slowly with rP than the corresponding series of

the point mass, while at degree 10, the series of the tetrahedron does converge more quickly. While this

experiment does not allow to quantify the accuracy of the individual coefficients of the series, it shows

that the implemented algorithm does behave as expected, allowing thus to assess the correctness of the

implementation at low degrees.

Convergence at high degrees

Table 1 reveals a certain trend for the potential as the location of the computation point increases. In

order to underline this trend and furthermore demonstrate the role of the distance between P and the

tetrahedron for the convergence of the corresponding series expansions we proceeded to the numerical

tests summarized in Figures 3-5. The computations take place at two locations, namely [-4 -4 0] (Figure

3) and [-2 -2 0] (Figures 4 and 5). In these graphs the relation between the expansion degree and the

precision with respect to the analytical values becomes more evident. For an increased distance from the

tetrahedron and a given degree the spherical harmonic expansion for the potential becomes more accurate.

The series convergence is also affected by the relative position of P with respect to the tetrahedron. The

more distant point (Figure 3) causes a rapid convergence of the series which coincides with the analytical

solution already by degree 6 at the 2e-13 level and from degree 7 upwards at the 1e-15 level. On the

other hand, the nearest location of the computation point leads to a series expansion that converges only

after degree 25. Up to that degree the series expansion for the potential oscillates around the analytical

solution showing a much slower convergence as Figure 4 and the first part of Figure 5 demonstrate. The

agreement between the series expansion and the analytical solution is 9e-14 for degree 25 and it oscillates

around 1e-15 from degree 30 up to degree 50 (Figure 5, right part).

The magnitude of these differences, especially the oscillating behavior of the series expansion solution

with respect to the analytical solution for increasing degree, intrigued us to explore their development

for even higher degrees. Thus, we extended these comparisons for the same positions of P incorporating

coefficients Cn,m and Sn,m up to degree and order 360. This led to a very interesting numerical finding.

The levels of accuracy obtained for the two cases are namely not identical. The accuracy, or equally

the level of agreement between series expansion and analytical solution, that is achieved for the ’near’

situated point ([-2 -2 0]) is less than the one obtained for the ’far’ point ([-4 -4 0]), the actual values

being 1e-17 and 1e-22 respectively. Furthermore, these upper accuracy bounds are reached at different

degrees. The 1e-22 accuracy level is obtained for the more distant point already by degree 30, while the

1e-17 accuracy level is reached at the nearest point only after degree 100. This finding quantifies a bit
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more precisely the numerical accuracy of the recurrent scheme. The computation of the series expansion

at the ’near’ point yield an estimate of the accuracy of the series at degree and order 100, while the same

computation at the ’far’ point yields an estimate of the accuracy of the series at degree and order 30: the

energy of the potential at higher degrees appears to be lesser than the accuracy of the algorithm at the

given locations. As expected, the accuracy gets worse as the expansion is computed for higher degrees

and orders. Though, the increase of the error keeps reasonable with respect to the intrinsic accuracy of

the computer itself.

Divergence cases

All of the aforementioned results referred to a specific choice for the origin of the local coordinate system,

namely one of the corners of the tetrahedron. In order to test the method in a more general case, namely

to mimic the case of the computation of the spherical harmonic decomposition of the potential of a

geological structure, we chose to keep our test tetrahedron and to move the origin of the frame relatively

to it. For these computations the tetrahedron is handled as a four-faced prismatic source with the final

value of the coefficients being obtained according to equation 4. Thus, the source tetrahedron is divided

each time into 4 simplices all of which have the origin as their common vertex and the computation

proceeds according to Figure 1 and equation 4.

Our numerical investigations revealed that the choice of the origin is mostly critical for the overall stability

of the process. In simple words, any displacement of the origin away from its initial location makes the

method immediately divergent.

This fact is demonstrated briefly in Figure 6. The position of both the source tetrahedron and the

computation point remain unaltered relative to each other. This implies that the corresponding potential

values should be insensitive to the actual location of the origin of the local coordinate system. We then

start to move gradually the origin from its original location (vertex 4) along the x-axis. As Figure 6

demonstrates, the deviation of the series expansion from the analytical value is abrupt. This instability

characterizes all degrees, although Figure 6 deals with a maximum degree and order of 360.

Thus, the linear recursive algorithm which permits an efficient and accurate computation of the spherical

harmonic coefficients that describe the gravitational potential of a constant density polyhedron is inherited

with severe numerical instabilities, that cause immediate divergence of the method, depending on the

location of the origin of the local coordinate system. This instability has a solid theoretical explanation

and is linked with the actual orientation of the tetrahedral faces with respect to the coordinate system,

as will be demonstrated in the following section.
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Method assessment

The severe numerical instabilities that were outlined through the computations of the coefficients of the

tetrahedron for various origins of the local coordinate system can be interpreted as a numerical assessment

of patent theoretical weaknesses of the linear method. In this section, we show that the recurrent scheme

initially proposed by Jamet and Thomas (2004) and normalized previously is inherently unstable.

Volume integrals

Assuming that the line integrals In,m are properly estimated, the volume integrals Hn,m are derived

from the scalar autoregressive relation 38. The stability of this computation is ensured if and only if the

propagation factor αn = Rmn,n−1
d0(n+m)

(n+3)(uz.n0) is smaller than 1. This factor verifies the relation

αn =

√
(2n− 1) (n2 −m2)
(2n+ 1) (n+ 3)2

d0

a

1
uz · no <

d0

a

1
uz · no (45)

where d0 is the distance between the origin of the frame and the plane of the considered face of the

polyhedron, uz ·no the cosine of the angle between the normal to this face and the vertical direction and

a is the chosen reference distance.

For large degrees n, αn approaches its upper limit as

lim
n→+∞

αn =
d0

a

1
uz · no .

The computation of large degrees is thus only possible for the faces of the considered polyhedron that

verify

d0

a

1
uz · no < 1 .

For a given tetrahedron with a horizontal upper face such as our test body, there always exists a rotation

around the origin of the frame for which uz · no becomes as small as wished, that is for which αn > 1.

In other words, the recurrent relationship linking the volume integrals does not allow the computation of

the spherical harmonic coefficient for any given face geometry and orientation.

Moreover, the reference distance a is generally chosen as small as possible, since a is also the smallest

distance r to the origin for which the series of spherical harmonic representing the potential (equation 1)

converges. In practical applications, a defines the smallest sphere enclosing all masses of the considered
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body. The ratio d0
a is thus very likely to be very close to 1 for at least one face of the considered

polyhedron. Consequently the recurrent scheme will only apply when theses faces are horizontal in the

chosen reference frame.

For theses reasons, the proposed algorithm will only apply to restricted cases of tetrahedra (the reference

frame beeing given). In particular, it can be applied to any tetrahedron whose face opposite to the origin

is horizontal.

Line integrals

The computation of the line integrals makes use of more complex recurrent relationships. Let Vn,m be

the 6 component vector defined as

Vn,m =




In,m

Jn,m

Kn,m


 (46)

where In,m, Jn,m and Kn,m are the 2 component vectors corresponding to the line integrals defined by

equation 35. The recurrent relationships 39, 40 and 41 can then be written in matrix form as follows

Vn,m = M0Vn,m +M1Vn−1,mM2Vn−2,m + Dn (47)

where M0, M1 and M2 are three 6× 6 matrices defined as

M0 =




0 0 0 0 0 0

0 0 0 0 0 0
tzoz

a(1−t2z) − m
n+2

(txoy−tyox)
a(1−t2z) 0 0 0 0

m
n+2

(txoy−tyox)
a(1−t2z)

tzoz
a(1−t2z) 0 0 0 0

− 1
n+3

d2−o2
z

a2(1−t2z) 0 n+4
n+3

tzoz
a(1−t2z) − m

n+3
(txoy−tyox)
a(1−t2z) 0 0

0 − 1
n+3

d2−o2
z

a2(1−t2z)
m
n+3

(txoy−tyox)
a(1−t2z)

n+4
n+3

tzoz
a(1−t2z) 0 0




(48)

M1 = Rmn,n−1




2n−1
n−m oz 0 2n−1

n−m atz 0 0 0

0 2n−1
n−m oz 0 2n−1

n−m atz 0 0

−n+m
n+2

tzd
2

a(1−t2z) 0 n+m
n+2

oz
1−t2z 0 0 0

0 −n+m
n+2

tzd
2

a(1−t2z) 0 n+m
n+2

oz
1−t2z 0 0

0 0 −n+m
n+3

tzd
2

a(1−t2z) 0 n+m
n+3

oz
1−t2z 0

0 0 0 −n+m
n+3

tzd
2

a(1−t2z) 0 n+m
n+3

oz
1−t2z




(49)
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M2 = −n+m+ 1
n−m Rmn,n−2




d2 0 0 0 a2 0

0 d2 0 0 0 a2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




(50)

and where Dn,m is a 6 component vector of inputs at each step of the recurrence.

The 6 component vectorial second order recurrent relationship of equation 47 can be expressed as a 12

component vectorial recurrent relationship of order 1 as follow


 Vn,m

Vn−1,m


 =


 (1−M0)−1

M1 (1−M0)−1
M2

1 0




 Vn−1,m

Vn−2,m


+


 Dn

0




≡ A


 Vn−1,m

Vn−2,m


+


 Dn

0


 (51)

The stability of this recurrent scheme depends on the eigenvalues of the matrix A as defined by equation

51. Theses eigenvalues do not have a simple analytical expression, and we cannot derive a general theory

about the divergences of the recurrent computations. Considering that the computation of the volume

integrals applies mainly to horizontal faces, and that the method should apply to faces lying close to the

sphere of radius a, we focus on the situation when

tz = 0 (horizontal case)

d ≈ a (edge close to the tangent to the convergence sphere)

and investigate the behavior of the eigenvalues of matrix A for large degree and order.

Setting the ratio n
m as a constant, one can show that matrix A∞ ≡ limm→+∞A depends on 3 parameters :

the ratio da ≡ d

a
∈ [0, 1]

the ratio k ≡ n

m
∈ [1,+∞[

a position factor f ≡
√
d2 − o2

z

a
∈ [0, 1]

24



The ratio da indicates whether the line carrying the considered edge of the body is close (small ratio)

to the origin of the frame or not (high ratio). The ratio k increases though the recurrent steps of the

computation (k = 1 at initialization). The position factor f is linked with the position of the line carrying

the edge; oz is the z coordinate of the closest point of this line to the origin of the frame. f is small when

the edge is close to the poles of the convergence sphere of radius a and it increases as the edge comes

closer to the equator.

Figure 7 plots the maximum eigenvalue of matrix A∞, for da = 1, as a function of k and f . It shows

that for small values of k, that is for the first steps of the recurrence, the recurrence is always divergent

(with a maximum eigenvalue greater than 1), whatever the position of the edge might be. Figure 7 also

shows that the recurrence relationships tend to become stable as the ratio k = n
m increases. This test

computation of the eigenvalues of the recurrence matrix illustrates the behavior of the process for very

large values of the computed order, and for edges nearly tangential to the convergence sphere of radius

a.

For the test tetrahedron presented in the previous section, we ran a computation of the spherical harmonic

coefficients with a random perturbation of the last significant digit of the input values of equations 40

(computation of Jn,m) and 41 (computation of Kn,m). The comparison between the values issued from

this perturbated computation and the values obtained without perturbation yields a numerical estimate

of the stability of the line integral recurrence procedure (the computation of the volume integral for a

horizontal face being stable). Figure 8 presents an estimate of the relative accuracy of the coefficients

obtained this way (ratio of difference between perturbated and not perturbated results and the result

itself). The two diagonals (dashed lines) correspond to the coefficients Cn,n and Sn,n (initialization of

the recurrence), and the recurrent computation is processed along the verticals of the drawing. One can

notice that the computation errors increase at the beginning of the recurrence, for low values of the ratio
n
m , and then decrease as the degree n increases for any given order m. This observation is in complete

agreement with the behavior of the eigenvalues of the matrix A∞ shown in Figure 7.

Application

We conclude from the previous analysis that, while the volume recurrent computation can be made

stable by choosing a proper reference frame in which the face of the tetrahedron opposite to the origin

is horizontal, the line recurrent computations are essentially divergent. Nevertheless, considering that

i) the proposed algorithm is linear and thus computationally much more efficient that other existing

approaches, and ii) that the perturbation method presented in the previous section seems to allow the

computation of a reasonable estimate of the accuracy loss due to this instability, we propose in this section

a computational strategy for deriving the spherical harmonic coefficients of the potential of a constant
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density polyhedron based on the present recurrent relationships, and assess the results obtained for a test

body.

Computational strategy

The approach we implemented proceeds as follows. The considered polyhedral body is triangulated and

divided into tetrahedra having each one vertex at the origin of the reference frame, and a face coinciding

with one triangular face of the body.

The spherical harmonic coefficients of the potential of each tetrahedron are computed up to a given

degree and order N in a local frame rotated around the origin of the reference frame in such a way that

the considered face of the body will be horizontal. This computation is performed twice, once without

perturbation, and once with a perturbation of the last significant digit of the input values of the line

integrals recurrent relationships. All the coefficients for which the two estimates differ by more that 10−2

of the estimated values are set to zero.

The harmonic coefficients of the potential of the whole body in the initial reference frame are then obtained

by cumulating the individual face contributions after rotating the spherical harmonic decomposition of

each face from its own frame to the initial reference frame. In order to avoid the computation of a spherical

harmonic rotation matrix for each face of the body, this rotation is achieved through the computation,

for each degree n ≤ N , of the total potential of the whole body at 3 (2n+ 1) points homogeneously

distributed on a sphere of radius a. This degree n potential is then inverted into a spherical harmonic

decomposition at degree n (on the basis of the 2n+ 1 spherical harmonic functions of order m ≤ n).

Test body

The results presented here were computed for a triangulated shape model of the asteroid 433 EROS

(approximate size 13 x 13 x 33 km), which was mapped by the NEAR Shoemaker probe from April to

October 2000. Several models of this body at various resolutions have been made available through the

internet by the Planetary Science Institute (USA). We used the model ’eros001708’ consisting of 1708

faces, presented in Figure 9 and available at http://www.psi.edu/pds/archive/shape.html.

Results

The spherical harmonic coefficients of the used shape model of 433 EROS were computed with a reference

distance a set to the radius of the smallest sphere enclosing all the vertices of the body (a ≈ 17.5 km),
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and up to degree and order 100. In order to assess their accuracy, we ran two kinds of experiments.

First, as done previously for the simple tetrahedron, we studied the convergence of the spherical harmonic

series through comparison with analytical values of the potential. The total potential was computed from

its analytical formula on a set of 10 000 points randomly distributed on a sphere of radius a. Figure 10

presents the evolution of the root mean square relative difference for this set of points, between the total

potential and its series expansion at degree n derived from the coefficients obtained with our algorithm

— the relative difference being defined as the ratio of the absolute difference to the variance of the total

potential on this set of points. The relative differences are plotted in logarithmic scale.

The series expansion converges down to a relative accuracy (in term of representation of the total poten-

tial) of 10−4 at degree 68. Afterwards, the accuracy gets slightly worse. This increase in error for the

higher degrees shows that the error control strategy we chose for this experiment can still be improved.

Though, the results do not show any explicit divergence (at least up to degree 100), which tends to

confirm that the chosen method for estimated ill computed coefficient is adequate.

This kind of convergence test only gives a broad evaluation of the whole series of the computed potential

harmonic coefficients. In order to assess more precisely the individual coefficients, and assuming that the

computation errors are mainly due to the line integral recurrences, we computed the spherical harmonic

coefficients of the potential of the body through the same process, applying however for the computation of

the line integrals a numerical integration procedure. Figure 11 shows the evolution of the root mean square

of the relative difference between the total potential and its series expansion at degree n, evaluated for

the same 10 000 test points, similarly to Figure 10, but expressing coefficients obtained with a numerical

integration of the involved line integrals.

With the numerical integration, the series expansion converges steadily towards the analytical values as

degree n increases. This offers an additional confirmation of the previous interpretations: the failure of

the computation at high degrees is linked indeed to the recurrent scheme proposed for the computation

of the line integrals.

Figure 12 presents finally a synthetic comparison between the series expansion obtained with the recurrent

computation of the line integrals and the series expansion obtained with a numerical integration of the

line integrals. Plotted in this figure, for each degree n, is the correlation coefficient between the potential

at degree n derived from the coefficients obtained with our algorithm (recurrent computation of the

line integrals) and the potential at degree n derived from the coefficients obtained though a numerical

integration of the line integrals.

The recurrent computation appears to apply up to degree 62, with a correlation with the numerical inte-

gration method greater than 0.99. Figure 13 presents a more detailed comparison between the recurrent
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scheme and the results of the numerical integration, by showing the relative difference map (in logarith-

mic scale) between theses two computations. There is clearly a limit around degree 60, after which the

two computations differ considerably.

Concluding remarks

The linear recursive algorithm for computing potential harmonic coefficients of constant density polyhe-

dral sources has been revisited and expanded to the normalized case. It has been implemented and tested

on a simple body. The algorithm is very efficient and works nicely for high degree and order coefficients,

in contrast to the other existing recurrent algorithm known to us, which proved to be inapplicable numer-

ically for increasing degree and order. However, the linear algorithm is connected to certain numerical

instabilities emerging from the existing theoretical limitations of the linear recurrent method. Although

the approach works perfectly for horizontal tetrahedral faces, it becomes unstable for every other orien-

tation of the faces. We showed that a permanent evaluation of the appropriate rotation matrix which can

link each case to the horizontal configuration can solve this problem and thus facilitate the method to be

used for other applications, such as DEM-related potential quantities, airborne or satellite applications.
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Tables

Table 1. Comparison between analytical and series expansion solutions for varying distance of the computation

point with respect to the attracting source for two different maximum degrees of the respective expansion. Unit

is m2s−2.

Distance from

the origin (A) Analytic (B) Nmax = 2 (C) Nmax = 10 (A) − (B) (A) − (C)

2.45 9.2503e-8 9.3980e-8 9.2528e-8 -1.4768e-009 -2.5253e-011

2.69 8.5082e-8 8.6111e-8 8.5092e-8 -1.0292e-009 -9.8991e-012

2.94 7.8695e-8 7.9429e-8 7.8699e-8 -7.3325e-010 -4.0011e-012

3.18 7.3156e-8 7.3690e-8 7.3158e-8 -5.3343e-010 -1.6853e-012

3.43 6.8316e-8 6.8712e-8 6.8317e-8 -3.9568e-010 -7.4149e-013

3.67 6.4056e-8 6.4355e-8 6.4056e-8 -2.9877e-010 -3.4049e-013

3.92 6.0282e-8 6.0512e-8 6.0283e-8 -2.2930e-010 -1.6282e-013

4.16 5.6919e-8 5.7097e-8 5.6919e-8 -1.7860e-010 -8.0857e-014

4.41 5.3903e-8 5.4044e-8 5.3903e-8 -1.4099e-010 -4.1581e-014

4.65 5.1186e-8 5.1299e-8 5.1186e-8 -1.1267e-010 -2.2083e-014

4.90 4.8726e-8 4.8817e-8 4.8726e-8 -9.1047e-011 -1.2081e-014

Table 2. Comparison between relative errors of truncated errors of series expansions (A,C) for the tetrahedron

(recursive algorithm) and (B,D) for a point mass (analytical expansion). Unit is m2s−2.

Distance from (A) Tetrahedron (B) Point mass (C) Tetrahedron (D) Point mass

the origin Nmax = 2 Nmax = 2 Nmax = 10 Nmax = 10

2.45 1.60 % 0.75 % 0.027 % 0.015 %

2.69 1.21 % 0.57 % 0.012 % 0.014 %

2.94 0.93 % 0.45 % 0.005 % 0.013 %

3.18 0.73 % 0.36 % 0.002 % 0.012 %

3.43 0.58 % 0.29 % 0.001 % 0.011 %

3.67 0.47 % 0.24 % 0.001 % 0.010 %

3.92 0.38 % 0.20 % 0.000 % 0.009 %

4.16 0.31 % 0.16 % 0.000 % 0.008 %

4.41 0.26 % 0.14 % 0.000 % 0.008 %

4.65 0.22 % 0.12 % 0.000 % 0.008 %

4.90 0.19 % 0.10 % 0.000 % 0.008 %
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Figure Captions

Fig. 1. Algorithmic representation of a prismatic source through a number of simple tetrahedra. The harmonic

coefficients for the potential of the prism computed at point P according to the recurrent procedure of the linear

algorithm will be obtained by partitioning the prism into the 6 tetrahedra shown here, all having the common

vertex P . The final values for the coefficients will be obtained algebraically according to U = −U1 − U2 − U3 +

U4 + U5 + U6.

Fig. 2. Coordinate systems (a) and basic geometric definitions (face and edge numbering) for the tetrahedron

representation.

Fig. 3. Assessment of the recursive algorithm for the polyhedral potential harmonic coefficients for the degree

range 1-10 for case study 1 vs the analytical solution (straight line).

Fig. 4. Assessment of the recursive algorithm for the polyhedral potential harmonic coefficients for the degree

range 1-10 for case study 2 vs the analytical solution (straight line).

Fig. 5. Assessment of the recursive algorithm for the polyhedral potential harmonic coefficients for the degree

range 10-50 for case study 2 vs the analytical solution (straight line).

Fig. 6. Effect of changing the location of the coordinate origin. The series expansion has been computed up to

degree 360.

Fig. 7. Maximum eigenvalue λ of the recurrence matrix A∞ as a function of the ratio n
m

(from 1 to 10) and the

position factor

√
d2−o2z
a

(from 0 to 1)

Fig. 8. Relative accuracy (logarithmic gray scale) of the estimates of the potential harmonic coefficients of the

test tetrahedron, expressing the comparison with values obtained after perturbating the inputs of the line integral

recurrence.

Fig. 9. 433 EROS — shape model consisting of 1708 faces (axes labelled in km)

Fig. 10. Evolution with degree of the relative differences (in logarithmic scale) between the spherical harmonics

expansion at degree n and the analytical value of the total potential, estimated as the root mean square of a set
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of 10000 uniformly distributed random points at distance a of the origin of the frame (recurrent computation of

the line integrals).

Fig. 11. Evolution with degree of the relative differences (in logarithmic scale) between the spherical harmonics

expansion at degree n and the analytical value of the total potential, estimated as the root mean square of a set

of 10000 uniformly distributed random points at distance a of the origin of the frame (numerical integration of

the line integrals).

Fig. 12. Correlation coefficient as a function of the degree between the potential at degree n derived from the

computed coefficients (recurrent computation of the line integrals) and the potential at degree n derived from the

coefficients computed through a numerical integration of the line integrals.

Fig. 13. Decimal logarithm of the relative differences between the coefficients computed with the complete

recurrent scheme, and the coefficients computed through a numerical integration of the involved line integrals.

(vertically: degree n; horizontally: order m, positive orders indicate the coefficients Cn,m and negative orders the

coefficients Sn,−m).
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Fig. 1. Algorithmic representation of a prismatic source through a number of simple tetrahedra. The harmonic

coefficients for the potential of the prism computed at point P according to the recurrent procedure of the linear

algorithm will be obtained by partitioning the prism into the 6 tetrahedra shown here, all having the common

vertex P . The final values for the coefficients will be obtained algebraically according to U = −U1 − U2 − U3 +

U4 + U5 + U6.
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Fig. 2. Coordinate systems (a) and basic geometric definitions (face and edge numbering) for the tetrahedron

representation.
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Fig. 3. Assessment of the recursive algorithm for the polyhedral potential harmonic coefficients for the degree

range 1-10 for case study 1 vs the analytical solution (straight line).
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Fig. 4. Assessment of the recursive algorithm for the polyhedral potential harmonic coefficients for the degree

range 1-10 for case study 2 vs the analytical solution (straight line).
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Fig. 5. Assessment of the recursive algorithm for the polyhedral potential harmonic coefficients for the degree

range 10-50 for case study 2 vs the analytical solution (straight line).
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Fig. 6. Effect of changing the location of the coordinate origin. The series expansion has been computed up to

degree 360.
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Fig. 7. Maximum eigenvalue λ of the recurrence matrix A∞ as a function of the ratio n
m

(from 1 to 10) and the

position factor

√
d2−o2z
a

(from 0 to 1)

Fig. 8. Relative accuracy (logarithmic gray scale) of the estimates of the potential harmonic coefficients of the

test tetrahedron, expressing the comparison with values obtained after perturbating the inputs of the line integral

recurrence.
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Fig. 9. 433 EROS — shape model consisting of 1708 faces (axes labelled in km)
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Fig. 10. Evolution with degree of the relative differences (in logarithmic scale) between the spherical harmonics

expansion at degree n and the analytical value of the total potential, estimated as the root mean square of a set

of 10000 uniformly distributed random points at distance a of the origin of the frame (recurrent computation of

the line integrals).
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Fig. 11. Evolution with degree of the relative differences (in logarithmic scale) between the spherical harmonics

expansion at degree n and the analytical value of the total potential, estimated as the root mean square of a set

of 10000 uniformly distributed random points at distance a of the origin of the frame (numerical integration of

the line integrals).
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Fig. 12. Correlation coefficient as a function of the degree between the potential at degree n derived from the

computed coefficients (recurrent computation of the line integrals) and the potential at degree n derived from the

coefficients computed through a numerical integration of the line integrals.
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Fig. 13. Decimal logarithm of the relative differences between the coefficients computed with the complete

recurrent scheme, and the coefficients computed through a numerical integration of the involved line integrals.

(vertically: degree n; horizontally: order m, positive orders indicate the coefficients Cn,m and negative orders the

coefficients Sn,−m).
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