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Abstract
Geoid determinations by the Remove-Compute-Restore (R-C-R) tech-

nique involve the application of Stokes’ integral on reduced gravity anoma-
lies. Numerical Stokes’ integration produces an error depending on the
choice of the integration radius, grid resolution and Stokes’ kernel func-
tion.

In this work, we aim to evaluate the accuracy of Stokes’ integral
through a study on synthetic gravitational signals derived from EGM2008
on three different landscape areas with respect to the size of the integra-
tion domain and the resolution of the anomaly grid. The influence of the
integration radius was studied earlier by several authors. Using real data,
they found that the choice of relatively small radii (less than 1◦) enables
to reach an optimal accuracy. We observe a general behaviour coherent
with these earlier studies. On the other hand, we notice that increasing
the integration radius up to 2◦ or 2.5◦ might bring significantly better
results. We also note that, unlike the smallest radius corresponding to
a local minimum of the error curve, the optimal radius in the range 0◦

to 6◦ depends on the terrain characteristics. We find also that the high
frequencies, from degree 600, improve continuously with the integration
radius in both semi-mountainous and mountain areas.

Finally, we note that the relative error of the computed geoid heights
depends weakly on the anomaly spherical harmonic degree in the range
from degree 200 to 2000. It remains greater than 10% for any integration
radii up to 6◦. This result tends to prove that a one centimetre accuracy
cannot be reached in semi-mountainous and mountainous regions with the
unmodified Stokes’ kernel.

Keywords. Geoid, Remove-Compute-Restore, Stokes’ integration, Integra-
tion radius, Gravity anomaly grid resolution, EGM2008, GRAVSOFT
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1 Introduction
Different approaches for regional geoid and quasi-geoid determination have been
proposed, such as least-squares collocation [18, 31], wavelet modeling [22] and
the remove-compute-restore (R-C-R) techniques.

In an operational context, one widely used method is the R-C-R procedure
along with the Residual Terrain Model (RTM) reduction [2, 17, 26, 31, 29].
This method was introduced by Forsberg [10] in order to combine rigorously
the information of three frequency ranges of the gravity field – the short, inter-
mediate and long wavelength signals – through three steps, including a Stokes’
integration, to obtain a geoid model.

The precision of the Stokes’ integration phase has been studied for long,
in particular to investigate the effects of the size of the integration domain, of
the computation method and of the improvement brought by modifying the
integration kernel itself.

Kearsley (1986) assessed the so-called ring integration method (discrete ap-
proximation of the integral) on free-air anomalies by comparing integration re-
sults to geoid heights measured as the difference between GPS ellipsoidal heights
and levelling on a test network in Ohio, USA [15, 14]. He found that increasing
the cap size degraded the evaluation of N, and concluded that the integration
radius to compute the contribution of gravimetric data should be in the order
of 0.5◦ for the degree and order of the reference GGM used.

A more detailed study by the same author investigated, within a R-C-R
procedure using the OSU81 geopotential model, the relation between the max-
imum degree nmax of the geopotential model and the optimal integration cap
size over two test areas in Canada [16]. A strong correlation between 180/nmax
and the optimal cap radius was found, with an optimal cap radius of about 1◦

for nmax = 180. He also observed that the choice of the optimum radius was
not critical around this value.

In 1998, Higgins et al. compared ring integration to Fourier-based computa-
tion of the Stokes’ integral in a R-C-R procedure on a data set in Queensland,
Australia. They used the EGM96 geopotential model for the removal of low
frequencies [12]. They tested for cap sizes up to 1◦ and found that the optimum
was reached for values ranging between 0.2◦ and 0.5◦.

However, some other works, including recent ones, choose larger values of
this parameter, ranging from 1◦ to 3◦ depending on the terrain characteristics
[4, 13, 30].

In this paper, we address the question of the Stokes’ integral accuracy from a
complementary point of view. Recent satellite missions dedicated to the observa-
tion of the Earth’s gravity field considerably improved the accuracy and resolu-
tion of geopotential models, in particular since the publication of the EGM2008
model complete to degree and order 2159 [23]. This new data gives us the ability
to evaluate the computational techniques on synthetic gravimetric data with a
reasonably realistic spectral content. The use of synthetic data provides indeed
a reference to control the accuracy of the computation process independently of
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the gravity data and interpolation quality. A similar approach was adopted for
instance by Featherstone [7], using the EGM96 geopotential model, in order
to compare the effect of several Stokes’ kernel modifications. However, to our
knowledge, synthetic experiments were not performed to revisit the question of
the Stokes’ integration parameters.

The experiments presented here thus intend to study the dependency of the
precision of the Stokes’ integration on the gravimetric anomalies grid resolution
and on the integration cap size, in the ideal situation when the gravimetric data
and the reference data are free of any error. They also intend to assess the de-
pendency of this precision to the spectral content of the gravity signal. Gridded
gravimetric data as well as reference data are derived from EGM2008 taken as
the reference gravitational field. The Stokes’ integration study is limited to the
unmodified kernel and to a common discretized space-domain integration.

2 Background
The geoid is defined as the equipotential surface of the Earth’s gravity field
corresponding to the mean sea surface. High-resolution geoid models can be
used in numerous applications such as geodesy, geophysics, oceanography, etc.
In the last decades, improving the quality of regional geoid models toward a 1
cm accuracy has become one of the major goals of various research groups and
mapping agencies [5, 8, 19].

The R-C-R method with RTM reduction [10] combines rigorously the infor-
mation of three frequency ranges of the gravity field – the short, intermediate
and long wavelength signals – through three steps to obtain a geoid model.

1. First, one computes the residual gravity anomalies (4gres) – on the
geoid in case of geoid computation and on the topography in case of quasi-geoid
computation – defined as :

4gres = 4g −4gM −4gRT (1)

where 4g is the free-air gravity anomaly, 4gM is the long wavelength part com-
puted from a global gravity model, 4gRT is the short wavelength part computed
as the attraction of the residual topography. 4gres anomalies are interpolated
into a regular grid.

2. The next step is the integration, where the Nres geoid or ζres quasi-geoid
residual heights are derived from the residual gravity anomalies through the
computation of Stokes’ integral. The original Stokes’ formula for gravimetric
geoid model is given by Stokes [27]:

Nres =
R

4πγ

x

σ

S(Ψ)∆gresdσ (2)
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where R is the mean Earth radius,γ is the normal gravity on the reference
ellipsoid, dσ is the integration surface element of the unit sphere and S(Ψ) is
Stokes’ kernel as function of the spherical distance Ψ between the computation
and data point [11].

S(Ψ) =
{

1
sin( Ψ

2 )
− 6sin

(
Ψ
2

)
+ 1− 5cosΨ

− 3cos(Ψ)ln
(
sinΨ

2 + sin2 Ψ
2

)}
(3)

3. The final step is the "restore" phase, where the long and short wave-
lengths, which have been removed earlier from the gravity signal, are restored
to compute the geoid or quasi-geoid heights.

N = NM +NRT +Nres (4)

In step 2, Stokes’ formula assumes an integration over the whole sphere.
For practical considerations, the domain of computation is usually limited to a
reduced area around the computation point, and computed on discretized data.
Thus, Equation 2 is approximated and evaluated as a limited summation, for
Ψ ≤ Ψ0, of products of Stokes’ kernel and gravity anomalies over a grid, where
Ψ0 is called the integration radius or the integration cap size according to the
authors.

Several authors have proposed to modify the Stokes’ kernel in order to reduce
the truncation error of the remote zone, either in a deterministic way [4] or
though a stochastic approach [25], but the unmodified kernel remains in wide
use.

In the following, we study the effect of the grid resolution and of the cap size
Ψ0 on the precision of the integration. In section 3, we present the methodology
and data used. In section 4 we discuss the experimental results.

3 Methodology and data

3.1 General principles
In order to evaluate the precision of the sole integration step, we use the global
gravity field model EGM2008 [23] to generate a set of synthetic data composed
of gridded gravity anomalies and reference geoid heights on selected test areas.
The low frequencies of EGM2008, up to degree nmax, play the part of the
geopotential model used in a R-C-R method. The higher frequencies, from
degree nmax to 2000, play the part of the residual gravity signal.

We consider the case of a quasi-geoid computation. Free-air anomalies are
computed on the topographical surface given by a digital terrain model. Since
the geopotential model we used has a limited resolution of about10 km, and
since we can generate gridded anomalies at any resolution, we did not include,
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in our test, a removal of the high frequencies of the gravimetric signal. An error
analysis is performed on a set of points chosen within the test areas. In order to
observe the effect of the characteristics of the terrain, test areas are of limited
size (1◦ × 1◦).

3.2 Test data synthesis and evaluation
Synthesis

More precisely, let us note WM and gM respectively as the gravitational poten-
tial and acceleration computed from the degrees 0 to nmax of EGM2008 (the
geopotential model in our experiment), W and g the total potential and accel-
eration of the considered gravitationnal field given by EGM2008 up to degree
and order 2000, and γ the normal acceleration.

For a given 1◦ × 1◦ test area, let {Pi (ϕi, λi, Hi)}i=1..p be a set of p points,
where (ϕi, λi) are the geographical coordinates of the point Pi and Hi its normal
altitude. Let Qi be the corresponding point on the telluroid.

The quasi-geoid height ζi at point Pi is decomposed into

ζi = ζM,i + ζres,i (5)

where ζM,i is the contribution of the geopotential WM and ζres,i is the residual
quasi-geoid height.

At point Pi, the reference quasi-geoid residual height will be given by the
Brun’s formula [11]

ζrefres,i =
W (Qi)−WM (Qi)

γ (Qi)
(6)

The estimated quasi-geoid height ζcompres,i is obtained by Stokes’ integration
of gridded residual anomalies ∆gres, computed at each grid point, on the to-
pographical surface given by the DTM, by the spherical approximation of the
fundamental equation of geodesy [11]

∆gres = −∂ (W −WM )

∂r
− 2

W −WM

R
(7)

where R is the average radius of the Earth.

The geographical coordinates of the points Pi are randomly chosen within the
test area, while their normal altitudes are obtained by a bilinear interpolation
in a digital terrain model (DTM) of the area.

The anomaly grids were computed up to 6.5◦ from the center of each test
area. These data sets allow us to test integration radii up to 6◦. Although results
may be sensitive to larger values of this parameter, 6◦ is already far beyond the
possible values in practice, either because of the computational effort, or because
of the lack of gravity data far from the area of interest.
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Evaluation

The evaluation of the Stokes’ integration results is performed though the com-
parison between the estimated quasi-geoid heights ζcompres,i and their reference
values ζrefres,i. Knowing that Stokes’ integration over a limited spherical cap is
likely to be biased — since the convolution kernel has no longer a zero mean —,
we use the same criterion as Higgins [12] by computing the root mean square
error of the differences of quasi-geoid heights along the baselines between every
pair of points of the area. For each test area, the precision ε of the Stokes’
integration is thus evaluated as

ε =

√√√√ 2

p (p− 1)

p−1∑
i=1

p∑
j=i+1

(
∆Hcomp

i,j −∆Href
i,j

)2

(8)

where, for computed and reference values

∆Hi,j = ζres,i − ζres,j (9)

Due to the sizes of the zones tested, the baselines taken into account in the
computation of the error ε range from a few kilometers to about 100 km. We
did not separate them into several classes of distance as done in [12], considering
that, in the latter study, baselines lesser than 50 km and lesser than 100 km
showed a very similar behaviour.

We found that this criterion led to the same conclusions as an evaluation by
the standard deviation σ of the difference

(
ζcompres,i − ζ

ref
res,i

)
, and will also use the

standard deviation in the following.

3.3 Data and software
As mentioned before, synthetic data are generated using the EGM2008 model
[23]. This model can be used for different tasks concerning geoid computation
due to its relatively high frequencies and its good fit to the gravity field over
different areas [6, 23].
We used the digital model ETOPO5 [1] as a model of the topographical surface
considered conventionally as giving the normal heights over the processed areas.
We considered that the resolution of 5 arc minutes of the DTM was sufficient
with respect to the resolution of the gravity data used.
Stokes’ integrals were computed with the stokes function of the GRAVSOFT
package [28]. Synthetic data are produced by software developed by the authors.

3.4 Test areas
Three different areas were selected in France: a plain, a semi-mountainous and
a mountainous area (Figure 1), in order to investigate the effect of the land-
scape on the choice of the parameters, especially in the case of the mountainous
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regions. The accuracy of one centimetre is known to be hard to reach in moun-
tainous areas because of the insufficient gravity data coverage and strong topog-
raphy signal at short wavelengths [9, 31]. Topography and gravity anomalies
are illustrated in Figure 2 and Figure 3. Statistical information on the test areas
are displayed in Table 1 and Table 2.

4 Results

4.1 Grid resolution
Since we use the EGM2008 up to degree 2000, a resolution of about 0.1◦ should
be sufficient to represent the content of the gravimetric signal to perform the
integration. Therefore, it is expected that the grid resolution will not have much
influence over the precision if it is smaller than 0.1◦.

This conclusion is confirmed by the experiments. We tested resolutions from
0.005◦ to 0.5◦ at a fixed integration radius of 2◦ and for residual anomalies in sev-
eral frequency ranges. The value of 2◦ was chosen in accordance with the results
of other experiments (see section 4.2). We decomposed the residual anomalies
into frequency ranges in order to test sparse grids fulfilling the requirements of
the signal theory.

Figure 4 shows the evolution of the standard deviation of Stoke’s integral
errors as a function of the grid resolution, averaged on the 3 test areas, and for
spherical harmonic degrees from 200 to 2000. Each curve corresponds to a given
frequency range and is drawn in the resolution interval allowed by the sampling
theory.

For all the frequency ranges, one can observe that choosing a resolution
fulfilling strictly the sampling theory (the right extremity of each curve in Figure
4 is not sufficient to ensure an optimal precision. The precision loss at raw
grid resolution is likely to come from the numerical accuracy of the integration
algorithm. As expected, after a small precision improvement when going toward
finer resolutions, the error reaches its minimal value.

All degrees being considered, the degradation of the resolution from 0.005◦

to 0.075◦ does not significantly alter the precision. Experiments with other
integration radii confirmed these results.

4.2 Integration radius
Findings

Figure 5 shows the error ε defined by Equation 8 as a function of the integration
radius Ψ0 for nmax = 199, (a) for Ψ0 varying from 0 to 6◦, and (b) with a focus
on the range 0 to 3◦. Our choice to focus the study on the integration of the
200-2000 spherical harmonic degree range was driven by the RCR-RTM context:
due to the limits of spatial gravity models and of the residual terrain effect re-
moval, we suppose that the residual anomalies will keep a significant energy
in these frequencies. Ψ0 was sampled at resolution 0.1◦, with an oversampling
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at resolution 0.01◦ in the neighbourhood of the first local minimum of the curves.

When averaged on the 3 test areas (Figure 5, continuous curve) the evolu-
tion of the error with respect to Ψ0 shows a general behaviour coherent with
previous studies. Kearsley, for instance, already noticed the steep decreasing
of the error for small values of Ψ0, followed by large oscillations [16]. The first
minimum of the error occurs for Ψ0 = 0.24◦. The absolute minimum of the
error is reached for Ψ0 = 1.9◦, but with a value of the error smaller than the
first minimum by only 7%.

However, this behaviour shows a significant variability according to the area.
In the flatter region (Figure 5, Zone 1, dotted curve with the symbol ×), the
difference between the minimal error (ε = 0.022 at Ψ0 = 2◦) and the first mini-
mum (ε = 0.025 at Ψ0 = 0.25◦) is weak. In the semi-mountainous area (Figure
5, Zone 2, dashed line with the symbol +), the curve shows a much poorer pre-
cision at Ψ0 = 0.25◦ and a real gain to process the integral with an integration
radius of 2◦ (error nearly divided by 3). In mountain (Figure 5, Zone 3, finely
dotted line with the symbol N), the first minimum is the best choice if one can-
not use integration radii larger than 1.5◦. However, a much better minimum of ε
is reached for Ψ0 = 2.6◦, with an error decrease of more than 40%. Another fact
that must be underlined is that, for all the 3 areas, the error of the integration
appears to be very sensitive to the choice of Ψ0 around the value yielding the
best results. Such a behaviour was observed with geopotential models of low
degree (up to degree 90) [16], but not at all with models of higher degree.

These findings have some significance regarding operational applications.
The precision of the 1st order of the French levelling network is estimated to be
2 mm/

√
km, meaning that one will expect the rms value of the height differences

to be in the order of 2 cm for baselines of 100 km. This value is barely achieved
by the best minima on the 3 zones.

Interpretation

Several facts may explain the differences observed with previously published
results. The main ones probably concern the data used. Our experiments rely
on error-free sets of data. Previous works used real data, with the consequence
that both gravimetric data and reference data may be biased. We do not be-
lieve that the errors of the reference data play a great part: Kearsley uses for
instance an evaluation criterion that eliminates the effects of biases and drifts
in the levelling, and more importantly, systematic errors in the GPS heighting
[16] . On the contrary, the quality of the gridded anomalies is likely to play a
major part. Previous studies rely on gravity measurements with a spacing in
the order of 10 km, and an interpolation of this data over a grid – after the
removal of the residual terrain contribution for some works.

However, other factors may have to be taken into consideration. First, in
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our synthesis of the gravimetric anomalies, we used the spherical approxima-
tion of the fundamental equation of geodesy (Equation 7), for which the Stokes’
integration is the theoretical solution. With real measurements, anomalies are
computed as the difference between the module of the measured acceleration
on the topography and the module of the normal acceleration on the telluroid.
We verified that the synthetic anomalies from Equation 7 were not biased with
respect to anomalies computed from the acceleration modules (rms ' 0.06 mGal
on a 7◦ × 7◦ area around our second test area). We thus do not think that this
choice influences our results.

Secondly, the results in Figure 5 correspond to nmax = 199, while other
works used different values (180 in [16], and 360 in [12]). The dependency of
the optimal radius to the degree of the geopotential model has been well docu-
mented as mentioned in section 1. However, this dependency was supposed to
be more or less independent of the landscape, and to be characterised by smaller
optimal integration radii as the degree of the geopotential model increase. Fig-
ure 6 shows the evolution of the error ε as function of the integration radius,
for the semi-mountainous area and for a few values of nmax. The dependency
of the location of the first minimum of the curve conforms to the one observed
in previous works. One also observes that, as nmax increases, the oscillations
of the curves become smaller, and nearly fade out for nmax = 360 (Figure 5,
continuous curve with the symbol  ). However, even for this latter value, the
integration over a larger domain, up to Ψ0 ' 2◦, brings some precision improve-
ment.

Finally, the accuracy of the geopotential model itself may be a cause. In our
tests, the geopotential model is chosen as the low frequencies of the model used
for synthesising the gravity data, which corresponds to an unrealistic situation
of perfect removal of the low frequencies. In order to evaluate the possible in-
duced bias, we compared the use of the geopotential models OSU81 [24] and
EGM96 [20] at degree and order 180 in place of the low degrees of EGM2008
for the values of WM in the computation of the residual anomalies (Equation
7). Figure 7 shows this comparison for the three areas. In the plains, and with
the OSU81 model (Figure 7, left, dotted curve with the symbol ×), we find a
behaviour similar to the one observed by Kearsley [16]. The first minimum is
reached for Ψ0 ' 0.3. Then the error oscillates and grows with the integration
radius. However, with EMG96 and EGM2008 (dashed curve with the symbol
+ and continuous curve with the symbol N), while one observes the same os-
cillations and location of the minima, the error decreases with the radius. This
example is interesting since Kearsley’s data correspond also to a rather flat area.
It tends to show that the improvement of the geopotential models has changed
the conditions of use of Stokes’ integral in the plain. On the other test areas
(Figure 7, center and right), even when using OSU81, there is a significant gain
in choosing a larger integration radius, especially in the semi-mountainous area
(center). The quality of the geopotential model seems less of a determining
factor in those cases.
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4.3 Dependency on the spectral content
While the previous experiments bring some information about the behaviour
of Stokes’ integration, the very error values observed may not be significant.
Indeed, the spectral content of the signals we processed corresponds to the
full gravity signal in the corresponding spectral bands. In real contexts, this
spectral content will vary according to the quality of the geopotential model in
the locality of the test areas, and according to the choice made for the removal
of the residual terrain effect.

In order to investigate whether general conclusion could be drawn from this
study as far as the absolute error value is concerned, we computed the in-
tegration on separated spectral bands – defined as intervals of spherical har-
monics degrees. Figure 8 shows the dependency of the standard deviation of(
ζcompres − ζrefres

)
as function of Ψ0 to these spectral bands. In the plains (Zone 1),

the error is clearly dominated by lowest degrees (200 − 359), with a minimum
for Ψ0 ' 2◦. In the semi-mountainous area (Zone 2), increasing the integration
radius from the first minimum does not improve the quality for the lowest de-
grees (200−359). However, it does improve the results for intermediate degrees
(200− 599; 200− 799). In the mountains, the behaviour in much more erratic,
but, for Ψ0 ≥ 1◦, the error is also dominated by the degrees up to 599.

These later spectral ranges are also obviously the ones that model the major
part of the energy of the signal, and would be largely modified by a terrain
effect removal. The Figure 9 presents the relative precision εrel of the Stoke’s
integration values, defined as the ratio between the standard deviation of the
error and the standard deviation of the reference signal computed on the test
points:

εrel =
σ
(
ζcompres,i − ζ

ref
res,i

)
σ
(
ζrefres,i

) (10)

where the standard deviation σ (vi) of a quantity vi at the p test points Pi is
defined by

σ (vi) =
1

p

p∑
i=1

v2
i −

(
1

p

p∑
i=1

vi

)2

One observes that, except for the plain test area, the quality of the estimate
of the high frequencies (from degree 600) of the geoid improves continuously
with the integration radius. The exception of the plain is not surprising since
the energy of the corresponding signal in this area is very low.

Secondly, we note that, from degree 600, the tested spherical harmonic fre-
quency ranges show a similar behaviour, with a relative error keeping between
10% and 20%-25% for all integration radii greater than 1◦, with the exception of
the degree range 600-799 of the semi-mountainous area. Moreover, disregarding
this exception, 10% appears to give a lower bound of the relative error for all
the frequency ranges.
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This result tends to show that independently of the spectral content of the
gravity anomalies or of the geoid, for integration radii lesser than 6◦, the pre-
cision of the Stoke’s integration cannot be better than 10% of the standard
deviation of the computed residual geoid.

This gives a basis for a rough estimate of the best achievable accuracy in
real cases. For instance, Duquenne [3] provided, in the Auvergne data set, a
geoid model covering our second test area, and based on the R-C-R technique
using a global gravity field up to 360◦. The standard deviation of residual geoid
height for this geoid model is about 11 cm. Based on our conclusion, the best
accuracy we can expect from a standard Stokes’ integration is 1.1 cm, larger
values being in fact expected due the other error sources.

5 Conclusion and Recommendations
In order to evaluate the accuracy of integration step in R-C-R procedure, we
generated a set of synthetic data based on EGM2008 to degree and order 2000.
We studied the influence of the integration radius and of the grid resolution using
a standard Stokes’ kernel, through an analysis of the accuracy of the computed
height differences and of the behaviour the results in different frequency ranges.

As expected, the grid resolution does not affect the results providing that
it is kept small enough, as suggested by the sampling theory. Considering the
overall errors, the choice of very large integration radii, up to 6◦, seems to lack
any benefit. Beyond 2◦ to 2.5◦, the precision does not improve significantly.
However, the relative precision of the high frequencies (degree > 600) seems to
improve gradually with the integration radius for the whole studied interval,
suggesting that the local variations of the geoid be potentially better repre-
sented with large integration radii. This question would deserve a deeper study
dedicated to the evaluation of the accuracy of the height differences along small
baselines.

These results partly contradict previous studies led on the basis of real data.
First, the choice of relatively small radii (lesser than 1◦) does not allow to
reach the optimal accuracy on synthetic data. A local minimum of the error is
always observed for radii around 0.5◦ as in previous works. Its very location
depends mainly on the degree of the geopotential model as noticed by other
authors. Nevertheless, this first local minimum might yield far from optimal
results. The choice of the best radius and the gain it brings with respect to
the first minimum seems to be highly dependent on the characteristics of the
terrain. In addition, the quality of the results appears to be very sensitive to
the chosen radius around the optimal location. These findings do not seem to
depend significantly on the quality of the geopotential model used to remove
the low frequencies of the gravity signal.

These differences with previous works are very likely to come from the lower
quality of the gravity anomalies available in real cases. However, this tends to
indicate that, with the improvement of the gravity surveying, one has to choose
the Stokes’ integration radius with caution, possibly by checking the process
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results on control data.
Lastly, our results tend to show that, independently of the landscape and

from the spectral content of the residual gravity anomalies, the unmodified
Stokes’ kernel cannot reach a precision better than 10% of the geoid signal to
be retrieved. The lower bound of the accuracy is probably even higher since our
study does not take into account other error sources, such as the interpolation
errors, the spherical approximation errors, the aliasing error, etc.

This work, however, poses new questions. The experiments presented here
apply the Stokes’ integral to anomalies computed on the topography. Our syn-
thetic data do not in that sense fulfil the strict requirements of the Stokes’
theory but should be processed in the frame of Molodensky’s theory [21], or at
least take into account the effect of the flattening of the ellipsoid.

Moreover, this study was limited to the evaluation of the unmodified Stokes’
kernel and on a restricted number of test areas, regardless of the accuracy of the
interpolation of the observed gravity anomalies. A similar methodology could
be used to evaluate other integration kernels and interpolation methods.
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6 Graphics

Figure 1: Location of test zones in France
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Figure 2: The topography around the test zones, red rectangles, in France

Zone(1) Zone(2) Zone(3)
Lat(◦) 47.50-48.49 45.51-46.49 44.00-44.98
Long(◦) 1.00-1.99 2.50-3.49 3.00-3.99
Hmin(m) 84.00 247.00 142.50
Hmax(m) 242.00 1379.70 1394.40
Hmean(m) 131.96 523.70 958.54
Rms(m) 134.24 576.22 989.43
Std(m) 24.47 240.43 245.39

Table 1: Statistics of heights in test areas derived from the digital model
ETOPO5 [1]
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Figure 3: Residual gravity anomaly of the test zones in France for wavelength
bands between degree 600 and 800. Radius of Stokes’ integration= 2◦. Gravity
anomaly grid resolution = 0.050◦. The black dots represent the test points in
each area.
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4gres Zone(1) Zone(2) Zone(3)
Min(mgal) -22.8 -23.33 -27.92
Max (mgal) 26.86 26.86 26.86
Mean(mgal) -0.002 -0.003 -0.074
Std (mgal) 4.63 6.12 7.34

Table 2: Statistics of Residual gravity anomaly in test areas derived from the
EGM2008 model [6]

Figure 4: Accuracy of the geoid heights in meters computed using the standard
Stokes’ kernel as a function of the gravity anomaly grid resolution averaged
on the three test areas. Integration radius=2◦. Colors correspond to different
frequency ranges(see legend)
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Figure 5: Error ε in m (Equation 8) as function of the integration radius in
angular degrees for a geopotential model at degree 199. Left (a): evolution up
to 6◦; right (b): zoom of (a) on small integration radii. Curves correspond to
different test areas (see legend)

Figure 6: Error ε in m (Equation 8) as function of the integration radius in
angular degrees for the semi-mountainous test area (Zone 2). Curves correspond
to different values of maximum degree nmax of the EGM2008 geopotential model
(see legend)
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Figure 7: Error ε in m (Equation 8) as function of the integration radius in
angular degrees for the 3 test areas. Left: plain; center: semi-mountainous;
right: mountain. Curves correspond to the use of different geopotential models
for the computation of WM as defined in section 3.2 (see legend)

Figure 8: Accuracy of the geoid heights in meters computed using the standard
Stokes’ kernel as a function of the integration radius in three test zones. Grav-
ity anomaly grid resolution =0.05◦. Colors correspond to different frequency
ranges(see legend)
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Figure 9: Relative accuracy of the geoid heights computed using the standard
Stokes’ kernel as a function of the integration radius in three test zones. Grav-
ity anomaly grid resolution =0.05◦.Colors correspond to different frequency
ranges(see legend)
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