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Abstract	
	
It	 is	well	known	that	GNSS	permanent	station	coordinate	time	series	exhibit	 time-correlated	noise.	
Spatial	correlations	between	coordinate	time	series	of	nearby	stations	are	also	long-established	and	
generally	 handled	 by	means	 of	 spatial	 filtering	 techniques.	 Accounting	 for	 both	 the	 temporal	 and	
spatial	correlations	of	the	noise	via	a	spatiotemporal	covariance	model	is	however	not	yet	a	common	
practice.	We	demonstrate	in	this	paper	the	interest	of	using	such	a	spatiotemporal	covariance	model	
of	 the	 stochastic	 variations	 in	GNSS	 time	 series	 in	order	 to	estimate	 long-term	station	 coordinates	
and	especially	velocities.	
	
We	 provide	 a	 methodology	 to	 rigorously	 assess	 the	 covariances	 between	 horizontal	 coordinate	
variations	 and	 use	 it	 to	 derive	 a	 simple	 exponential	 spatiotemporal	 covariance	 model	 for	 the	
stochastic	 variations	 in	 the	 IGS	 repro2	 station	 coordinate	 time	 series.	We	 then	 use	 this	model	 to	
estimate	station	velocities	for	two	selected	datasets	of	10	time	series	in	Europe	and	11	time	series	in	
the	USA.	We	show	that	coordinate	prediction	as	well	as	velocity	determination	from	short	time	series	
are	 improved	 when	 using	 this	 spatiotemporal	 model,	 as	 compared	 with	 the	 case	 where	
spatiotemporal	correlations	are	ignored.		
	
	
1	Introduction	
	
Global	 Navigation	 Satellite	 Systems	 (GNSS)	 are	 today	 widely	 used	 to	 study	 the	 kinematics	 of	 the	
Earth’s	 surface	 and	 also	 provide	 a	 fundamental	 contribution	 to	 the	 establishment	 of	 terrestrial	
reference	 frames	 (Altamimi	et	al.,	 2016).	 For	 these	purposes,	GNSS	permanent	 stations	have	been	
deployed	all	over	the	world	since	the	1990s.	From	their	data,	coordinate	time	series	are	computed	by	
GNSS	analysis	experts,	in	particular	the	International	GNSS	Service	(IGS;	Dow	et	al.,	2009).	Although	
they	are	obtained	 from	a	 robust	 combination	of	 independent	data	analysis	 results,	 the	 IGS	 station	
coordinate	time	series	are	still	affected	by	random	and	systematic	errors	(e.g.,	Ray	et	al.,	2013).	
	
Time-correlated	noise	processes	have	been	alreadyreported	in	GNSS	coordinate	time	series	(Zhang	et	
al.,	1997).	While	various	noise	models	have	been	experimented,	a	flicker	noise	model	turns	out	to	be	
best	 suited	 for	most	GNSS	 coordinate	 time	 series	 (Williams	 et	 al.,	 2004;	 Santamaría-Gómez	 et	 al.,	
2011).	Accounting	for	the	presence	of	time-correlated	noise	in	GNSS	time	series	has	an	impact	on	the	
estimation	of	 station	velocities	and	more	particularly	on	 their	uncertainties	 (Williams	et	al.,	 2003).	
GNSS	time	series	contain	not	only	time-correlated	noise,	but	also	uncorrelated	(white)	noise.	Among	
three	different	types	of	uncorrelated	noise,	the	“variable	white	noise”	(VW)	model	was	shown	to	be	
generally	best	suited	to	GNSS	time	series	by	Santamaría-Gómez	et	al.	(2011).	The	successive	values	of	
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such	a	variable	white	noise	process	are	independently	and	normally	distributed,	with	zero	means	and	
standard	deviations	proportional	to	the	formal	errors	provided	with	the	coordinate	time	series.	
	
Spatial	 correlations	 between	 coordinate	 time	 series	 of	 nearby	 stations	 have	 also	 been	 early	
evidenced	by	Wdowinski	et	al.	 (1997).	 In	 this	 study,	 this	 spatial	dependency	was	accounted	 for	by	
removing	the	mean	of	nearby	coordinate	time	series	(common	mode)	from	each	of	the	series.	Such	
filtered	 time	 series	 were	 shown	 to	 exhibit	 clearer	 tectonic	 signals	 and	 a	 reduced	 noise	 level	
(Wdowinski	et	al.	1997;	Williams	et	al.,	2004).	Dong	et	al.	(2006)	later	proposed	an	enhanced	method	
to	better	estimate	and	filter	common	mode	errors	using	principal	component	analysis.	
	
Various	 studies	 have	 examined	 the	 dependency	 of	 spatial	 correlations	 on	 inter-station	 distances	
(Williams	 et	 al.,	 2004;	 Amiri-Simkooei,	 2009,	 2013;	 Amiri-Simkooei	 et	 al.,	 2017).	 They	 report	 the	
existence	 of	 positive	 correlations	 up	 to	 distances	 of	 about	 3000	 km	 in	 each	 East,	 North	 and	 Up	
components	 of	 GNSS	 time	 series,	 but	 the	 absence	 of	 cross-correlations	 between	 components.	
However,	 no	 covariance	model	has	been	 supplied	by	 these	authors.	Moreover,	 the	use	of	 station-
specific	topocentric	(East,	North,	Up)	frames	to	evaluate	spatial	correlations	is	questionable.	Indeed,	
the	East	and	North	directions	are	undefined	at	 the	poles,	and	the	 (East,	North)	 frames	of	a	pair	of	
stations	at	high	latitudes	may	be	relatively	oriented	in	any	way.	
	
A	part	of	 these	spatial	correlations	 is	due	to	displacements	of	 the	ground	 induced	by	surface	mass	
transport	(loading	deformation;	Farrell,	1972).	The	properties	of	the	Green’s	functions	that	describe	
the	deformation	caused	by	a	mass	point	but	also	the	spatial	distribution	of	 the	masses	themselves	
make	 the	 loading	displacements	 spatially	 correlated.	For	example,	Petrov	and	Boy	 (2004)	 reported	
correlations	 up	 to	 0.9	 between	 the	 vertical	 displacements	 due	 to	 atmospheric	 mass	 transport	 at	
distances	 smaller	 than	 1000	 km.	 The	 time	 series	 of	 surface	 mass	 maps	 provided	 by	 the	 GRACE	
mission	also	illustrate	these	spatial	correlations	(Tapley	et	al.,	2010).	Correlations	of	GRACE-inferred	
loading	displacements	with	GNSS	coordinate	time	series	have	long	been	reported	(Davis	et	al.,	2004;	
King	 et	 al.,	 2006)	 even	 at	 the	 inter-annual	 time	 scale	 (Valty	 et	 al.,	 2015).	 However,	 loading	
displacements	 derived	 from	 either	 GRACE	 or	 atmosphere,	 ocean	 and	 hydrology	 models	 do	 not	
explain	all	spatially	correlated	variations	observed	in	GNSS	time	series	(Collilieux	et	al.,	2012;	Chanard	
et	al.,	2018).	A	part	may	be	due	to	smaller	wavelength	hydrological	signals	unseen	by	GRACE	(spatial	
resolution	~300km)	or	 imperfect	direct	 loading	models.	Other	physical	sources	of	deformation	may	
also	contribute:	thermoelastic	or	poroelastic	deformation	of	soils	(Xu	el	al.,	2017;	Silverii	et	al.,	2019),	
accumulation	of	uncorrected	co-seismic	or	post-seismic	deformations	(Métivier	et	al.,	2014)	as	well	
as	 transient	 tectonic	 signals	 such	as	 slow	slip	events	 (Michel	et	al.,	2018).	The	 remaining	observed	
spatially	 correlated	 variations	 are	 suspected	 to	 be	 due	 to	 errors	 in	 GNSS	 analyses	 such	 as	 orbit	
modeling	errors.	
	
Modeling	 the	spatial	correlations	of	GNSS	 time	series	would	be	relevant	 for	several	applications.	A	
spatial	 correlation	 model	 could	 not	 only	 be	 used	 to	 filter	 out	 the	 spatially	 correlated	 noise	 from	
nearby	 coordinate	 time	 series,	but	 could	also	 improve	 the	estimation	of	 station	velocities.	 Indeed,	
since	the	series	of	nearby	stations	are	affected	by	similar	errors,	it	is	expected	that	the	estimation	of	
velocities	 from	 short	 time	 series	 could	 benefit	 from	nearby	 longer	 series.	 Finally,	 the	 detection	 of	
discontinuities	in	GNSS	time	series	could	also	benefit	from	using	several	series	and	modeling	of	their	
correlations	(Gazeaux	et	al.,	2015,	Collilieux	et	al.,	2018).	
	
However,	incorporating	a	realistic	spatiotemporal	correlation	model	into	the	weighted	least	squares	
adjustment	of	the	velocities	of	a	global	network	of	stations	would	be	difficult	in	practice	(see	section	
3).	 An	 alternative	 consists	 in	 using	 a	 Kalman	 filter	 as	 proposed	 by	 Dong	 et	 al.	 (1998)	 and	 more	



3	
Benoist	et	al.,	spatiotemporal	correlations	of	GNSS	coordinate	time	series,	submitted	to	Journal	of	geodynamics	

	

recently	by	Wu	et	al.	 (2015).	However,	while	 this	approach	allows	processing	 long	 time	series	of	a	
large	set	of	stations,	it	requires	the	adoption	of	a	simplified	model	for	temporal	correlations.	
	
A	Kalman	filter-based	method	was	recently	proposed	by	Liu	et	al.	(2018)	to	estimate	and	account	for	
the	 spatial	 correlations	 of	GNSS	 time	 series	 in	 order	 to	 improve	 their	 interpolation.	However,	 this	
study	 did	 not	 evaluate	 the	 impact	 of	 modeling	 spatial	 correlations	 on	 the	 estimation	 of	 station	
velocities.	 In	 the	 present	 study,	 we	 introduce	 a	 methodology,	 similar	 to	 that	 of	 Liu	 et	 al.	 (2018),	
although	developed	independently,	and	focus	on	the	impact	of	modeling	spatial	correlations	on	the	
estimation	of	station	velocities.	
	
In	section	2,	we	introduce	the	set	of	GNSS	coordinate	time	series	that	have	been	analyzed.	Section	3	
describes	our	methodology	 to	evaluate	 the	 spatial	 correlations	of	 the	 series	and	 incorporate	 them	
into	a	Kalman-filter	based	determination	of	station	velocities.	Section	4	 finally	presents	results	and	
their	 assessment	 in	 terms	 of	 interpolation	 accuracy	 (cross-validation)	 and	 accuracy	 of	 velocities	
estimated	from	short	time	series.	
	
	
2	Data		
	
Our	starting	dataset	are	the	weekly	terrestrial	frame	solutions	provided	by	the	IGS	in	the	frame	of	its	
second	reprocessing	campaign	 (repro2;	Rebischung	et	al.,	2016).	Each	weekly	solution	 includes	 the	
coordinates	of	a	global	station	network,	expressed	in	the	IGb08	reference	frame	(Rebischung,	2012),	
and	the	full	covariance	matrix	of	the	station	coordinates	in	SINEX	format	(IERS,	2006).	The	weekly	IGS	
repro2	solutions	were	obtained	by	stacking	the	daily	coordinate	solutions	provided	by	eight	different	
IGS	 Analysis	 Centers,	 then	 forming	weekly	 averages	 of	 the	 daily	 combined	 solutions.	 A	 list	 of	 the	
models	 and	 conventions	 used	 in	 the	 repro2	 campaign	 can	 be	 found	 at	
http://acc.igs.org/reprocess2.html.	 Their	 consistent	 application	 by	 the	 Analysis	 Centers	 guarantees	
the	homogeneity	of	the	combined	solutions	over	the	whole	repro2	period.	
	
Among	all	stations	available	in	the	repro2	dataset,	we	selected	a	subset	of	195	stations	(Fig.	1)	based	
on	the	following	criteria:	

- minimum	time	series	length	of	3	years,	as	recommended	by	Lavallée	and	Blewitt	(2002)	for	
the	estimation	of	reliable	velocities,	

- absence	of	inter-annual	trends	or	transient	events	(in	particular	post-seismic	displacements),	
- minimum	 time	 span	 between	 two	 successive	 discontinuities	 set	 to	 a	 few	weeks	 (segment	

with	a	few	points	are	eliminated).	
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3	Methodology	
	
The	IGS	repro2	dataset	includes	daily	3-dimensional	positions	over	more	than	20	years	for	more	than	
1000	stations.	 If	one	wants	to	form	the	covariance	matrix	of	this	whole	dataset	based	on	a	generic	
spatiotemporal	 correlation	model,	 such	 as	 in	 Amiri-Simkooei	 (2009),	 its	 size	 would	 be	 as	 large	 as	
1000x(20x365)x3	 (about	22	millions).	A	weighted	 least-squares	adjustment	of	 the	station	velocities	
would	require	inverting	such	a	matrix,	which	is	not	practically	feasible.	Using	a	Kalman	filter	instead	
avoids	 forming	 and	 inverting	 this	 full	 covariance	matrix.	 However,	 a	 Kalman	 filter	 is	 applicable	 to	
finite-order	Markov	 processes	 only.	 Flicker	 noise	 is	 not	 such	 a	 process	 and	 therefore	 needs	 to	 be	
approximated,	as	was	done	 in	previous	studies	carried	out	 in	 the	same	context	 (Dong	et	al.,	1998;	
Wu	et	al.,	2015).	 In	this	section,	we	describe	the	methodology	that	we	used	to	determine	a	spatio-
temporal	 correlation	 model	 for	 GNSS	 station	 coordinate	 variations	 adapted	 to	 the	 Kalman	 filter	
framework.	
	

3.1	Kalman	filter	
	
A	Kalman	filter	 is	an	algorithm	which	allows	estimating	parameters	that	follow	a	state-space	model	
(Kalman,	1960).	In	such	a	model,	the	vector	of	unknown	parameters	Xt	 	varies	with	time	following	a	
state	equation:	the	vector	Xt+1	at	epoch	t+1	can	be	deduced	from	the	vector	Xt	at	epoch	t	by	applying	
a	linear	operator	and	adding	a	white	process	noise:	
	
	 	 	 	 	 𝑋!!! = 𝐿!𝑋! + 𝐴!	 	 	 	 (eq	1)	

Fig.	1:	Distribution	of	the	stations	selected	for	this	study		



5	
Benoist	et	al.,	spatiotemporal	correlations	of	GNSS	coordinate	time	series,	submitted	to	Journal	of	geodynamics	

	

	
The	 uncorrelated	 noise	 term	At	 models	 the	 deviation	 from	 this	 linear	model.	 It	 is	 assumed	 to	 be	
normally	distributed	with	zero	mean	and	a	known	covariance	matrix	Tt.	
	
The	parameters	at	epoch	t	are	related	to	the	vector	of	observations	Yt	 	at	time	t	by	a	linear	operator	
and	another	additive	normally	distributed	white	noise	term	Bt	with	zero	mean	and	known	covariance	
matrix	Mt:		
	 	 	 	 	 𝑌! = 𝐻!𝑋! + 𝐵!		 	 	 (eq	2)	
	
The	 vector	 of	 parameters	 Xt	 can	 be	 estimated	 at	 every	 epoch	 t	 using	 all	 available	 observations	
following	a	first	forward	calculation	and	a	backward	smoothing.	The	details	of	the	algorithm	can	be	
found	 for	 example	 in	 Herring	 et	 al.	 (1990)	 who	 summarized	 all	 useful	 information	 from	 both	
theoretical	and	practical	aspects.		

	
	 3.1.1	Kinematic	model	for	station	coordinates	
	
For	any	East,	North	or	Up	component	k	 of	 the	coordinate	 time	series	of	 station	 l,	we	adopted	 the	
following	kinematic	model	for	station	coordinate	variations	xk,l(t):	
	

𝑥!,! 𝑡 = 𝑥!,!! + 𝑡 − 𝑡! 𝑣!,!! + 𝛿
!

𝑥!,!;!𝐻 𝑡 − 𝑡!,!;! + 𝑡 − 𝑡!
!

𝛿𝑣!,!;!𝐻 𝑡 − 𝑡!,!;!

+ 𝑎!,!;!𝑐𝑜𝑠 2𝜋𝑓𝑡 + 𝑏!,!;!𝑠𝑖𝑛 2𝜋𝑓𝑡
!

+ 𝑧!,! 𝑡 + 𝛽!,!𝜀!,!!" 𝑡 	

	 	 	 	 	 	 	 	 	 	 	 (eq	3)		
	
with	the	following	parameters	to	be	estimated	and	included	in	the	state	vector:	

• xk,l0,	vk,l0	:	reference	position	and	velocity	at	epoch	t0	
• δxk,l;i,	δvk,l;j	:	offsets	to	the	reference	position	and	velocity	in	case	of	discontinuities.	
• ak,l;f	and	bk,l;f	:	amplitudes	of	a	constant	periodic	signal	at	frequency	f.	

	
The	 position	 and	 velocity	 discontinuity	 dates	 tk,l;i	 and	 tk,l;j	 are	 taken	 from	 the	 catalog	 provided	 by	
Altamimi	et	al.	(2016).	H(t)	denotes	the	Heaviside	function	which	is	zero	for	negative	arguments	and	
one	for	positive	arguments.	Finally,	the	set	of	frequencies	f	is	chosen	to	include,	for	all	stations,	the	
annual	 and	 semi-annual	 frequencies,	 but	 also	 the	 first	 seven	 harmonics	 of	 the	 GPS	 draconitic	
frequency,	which	were	found	in	a	spectral	analysis	of	the	IGS	repro2	time	series	by	Rebischung	et	al.	
(2015).	This	kinematic	model	is	valid	for	stations	far	from	earthquake	epicenters.	However,	it	 is	still	
possible	to	add	post-seismic	deformation	model	parameters	as	done	by	Altamimi	et	al.	 (2016).	The	
last	two	terms	of	equation	3	respectively	represent	the	temporally	correlated	and	uncorrelated	noise	
in	the	coordinate	time	series.		
	
εk,lVW(t)	 is	 a	 variable	 white	 noise	 term	 with	 zero	 mean	 and	 variance	 taken	 from	 the	 covariance	
matrices	of	the	IGS	repro2	weekly	solutions.	We	introduce	spatial	correlations	by	also	using	the	inter-
station	and	 inter-component	 terms	of	 the	 covariance	matrices	of	 the	 IGS	 repro2	weekly	 solutions.	
This	 noise	 term	 aims	 at	 representing	 random	 observational	 errors	 in	 the	 coordinate	 time	 series,	
whose	spatial	 structure	 is	 supposedly	well	described	by	 the	covariance	matrices	 resulting	 from	the	
adjustment	of	 the	 IGS	repro2	weekly	solutions.	We	however	keep	the	possibility	of	 rescaling	those	
covariance	matrices	by	factors	β²k,l	that	may	depend	on	the	station	and	component.	
	



6	
Benoist	et	al.,	spatiotemporal	correlations	of	GNSS	coordinate	time	series,	submitted	to	Journal	of	geodynamics	

	

Finally,	zk,l(t)	is	the	spatio-temporally	correlated	noise	that	we	aim	at	modeling	and	introduce	into	the	
adjustment	of	station	velocities.	It	is	described	in	the	next	section.	
	

3.1.2	Time-correlated	noise	
	

It	is	well	known	that	a	flicker	noise	model	generally	best	describes	the	time-correlated	noise	in	GNSS	
coordinate	 time	 series	 (Williams	 et	 al.,	 2004;	 Santamaría-Gómez	 et	 al.,	 2011).	 Flicker	 noise	 can	
however	 not	 be	 represented	 by	 a	 finite-order	 state	 model,	 hence	 in	 a	 Kalman	 filter	 framework	
(Brown,	1984).	On	the	other	hand,	simpler	time-correlated	noise	models	such	as	auto-regressive	(AR)	
processes	can	easily	be	incorporated	in	a	Kalman	filter,	as	they	can	be	represented	by	a	finite	state	
equation.	The	simplest	AR	process	 is	 the	 first-order	auto-regressive	process	 (AR(1)).	We	model	 the	
time-correlated	 noise	 zk,l(t)	 in	 component	 k	 of	 the	 coordinate	 time	 series	 of	 station	 l,	 by	 such	 an	
AR(1)	process	but	 imposing	a	positive	coefficient	𝜑k,l	 in	the	 linear	first-order	difference	equation.	 It	
satisfies	the	following	equation:	
	 	

	 	 𝑧!,! 𝑡 + 𝑑𝑡 = 𝜑!,!𝑧!,! 𝑡 + 𝑢!,! 𝑡 + 𝑑𝑡 = 𝑒
!!"
!!,!𝑧!,! 𝑡 + 𝑢!,! 𝑡 + 𝑑𝑡 	 (eq	4)	

	
where	uk,l(t),	called	innovation,	is	a	white	noise	process	the	variance	of	which	is	given	by		
	

	 	 	𝑣𝑎𝑟 𝑢!,! 𝑡 = 𝜎!,!! 1 − 𝑒
!!!"
!!,! 	 	 	 	 											 (eq	5)	

	
and	dt	the	time	interval	between	two	successive	coordinate	epochs.	This	process	zk,l(t)	has	a	variance	
σ²k,l	and	an	autocorrelation	function	which	decreases	exponentially	with	a	time	decay	τk,l.	As	opposed	
to	a	 random	walk,	 an	AR(1)	process	 is	 stationary.	Besides,	 the	expected	 value	of	 the	prediction	of	
such	AR(1)	process	 tends	 to	 zero,	which	 is	a	useful	property	 in	 the	context	of	 terrestrial	 reference	
frame	 definition,	 as	 reference	 station	 coordinates	 are	 usually	 extrapolated	 for	 operational	
applications.	
	
We	adjusted	to	each	individual	station	coordinate	time	series	and	component	xk,l(t)	the	deterministic	
coefficients	of	equation	3	as	well	as	 the	white	noise	variance	and	 the	AR(1)	parameters	 (σ²k,l,	𝜑k,l).	
The	estimation	has	been	made	by	maximum	likelihood	using	the	Hector	software	(Bos	et	al.,	2013)	
and	has	been	carried	out	on	IGS	daily	station	coordinate	time	series.	The	empirical	distribution	of	the	
𝜑k,l	coefficients,	converted	to	a	weekly	sampling	rate,	 is	shown	in	Fig.	2a.	The	corresponding	decay	
times	τk,l	are	shown	in	Fig.	2b.	To	facilitate	the	modeling	of	spatial	correlations	and	because	it	can	be	
observed	in	Fig.	2	that	this	approximation	is	not	unreasonable,	a	single	median	value	of	τ	=	19.7	days	
will	be	used	in	the	following	for	all	stations	and	components.	
	
To	 ensure	 consistency	 of	 the	 other	 parameters	 with	 this	 choice,	 we	 then	 re-estimated	 an	 AR(1)	
process	variance	σ²k,l	and	a	variable	white	noise	standard	deviation	scaling	factor	βk,l	for	each	station	
and	component,	with	the	AR(1)	decay	time	τk,l	fixed	to	19.7	days	for	all	stations	and	components.	Fig.	
2c	 shows	 the	 estimated	 variable	 white	 noise	 scaling	 factors	 βk,l.	 These	 factors	 aim	 to	 rescale	 the	
standard	deviations	of	the	coordinates	that	have	been	extracted	from	the	IGS	repro2	SINEX	files.	The	
estimated	scaling	factors	are	significantly	larger	than	one	(median	values	are	1.7,	1.5	and	2.0	in	the	
East,	North	and	Up	components).	As	a	consequence,	we	choose	in	the	following	to	rescale	the	SINEX	
file	 covariance	 matrices.	 For	 that	 purpose,	 either	 the	 station-	 and	 component-specific	 standard	
deviation	 scaling	 factors	 βk,l	 will	 be	 used,	 or	 their	 median	 value	 β	 =	 1.7	 for	 all	 stations	 and	
components.	
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a)	 	b)	 	c)	 	
Fig.	2	Histograms	of	the	a)	estimated	ϕk,l	coefficients.	b)	corresponding	decay	times	τk,l.	

c)	estimated	variable	white	noise	standard	deviation	scaling	factors	βk,l	with	AR(1)	decay	time	τk,l	fixed	
to	19.7	days.	The	parameters	estimated	for	each	component	are	shown	with	different	colors:	East	in	

red,	North	in	green,	Up	in	blue.	
	

3.1.3	Kalman	filter	implementation	
	
The	 vector	 of	 parameters	Xt	 (state	 vector)	 in	 equations	 1	 and	 2	 is	 composed	 of	 the	 deterministic	
parameters	 listed	 in	 equation	 3	 and	 of	 the	 AR(1)	 process	 value	 zk,l(t)	 for	 every	 station	 and	
component.	The	vector	of	observations	includes	the	input	GNSS	positions.	
	

	 	

𝑋! = ⋯ 𝑥!,!! ⋯ ⋯ 𝑣!,!! ⋯ ⋯ 𝛿𝑥!,!:!⋯ ⋯ 𝛿𝑣!,!:!⋯    ⋯ 𝑎!,!;!⋯ ⋯ 𝑏!,!;!⋯ ⋯ 𝑧!,! 𝑡 ⋯
!
		

	 (eq	6)	
	 𝑌! = ⋯ 𝑥!,! 𝑡 ⋯ ! 	
	
In	equation	6,	the	ellipsis	stands	for	parameter	repetition	over	all	indices	k,	l	and	f	when	relevant.	It	is	
worth	 mentioning	 that	 this	 state	 representation	 is	 not	 unique.	 We	 build	 the	 observation	 design	
matrix	Ht	in	accordance	with	this	particular	representation.	The	state	transition	matrix	Lt	is	diagonal,	
with	diagonal	terms	equal	to	1	for	the	deterministic	parameters	and	to	e-dt/τ	for	the	AR(1)	processes	
with	τ	identical	for	all	stations	and	components.	
	
The	 observation	 errors	 Bt	 in	 equation	 1	 correspond	 to	 the	 variable	 white	 noise	 term	 εk,lVW(t)	 in	
equation	3.	As	already	mentioned,	its	spatial	correlations	are	accounted	for	by	using	the	full,	rescaled	
covariance	matrices	from	the	IGS	repro2	SINEX	files	as	Mt		=	var(Bt).	
	
Finally,	the	spatial	correlations	of	the	AR(1)	processes	are	accounted	for	via	the	covariance	matrix	Tt	
of	 the	 process	 noise	At.	 Several	 possible	 choices	 for	 Tt	 	 =	 var(At)	 will	 be	 tested	 and	 presented	 in	
section	3.3.	
	
In	our	model,	no	spatial	correlation	is	introduced	between	the	deterministic	parameters	of	different	
stations	such	as	trends	and	periodic	signals.	See	discussion	in	section	5.	

	
	
	 3.2	Spatial	correlation	study	
	
We	 aim	 to	 assess	 the	 spatial	 correlations	 of	 the	 time-correlated	 noise	 in	 the	 selected	 station	
coordinate	time	series,	and	thus	to	evaluate	different	models	for	Tt		=	var(At).	We	choose	to	adopt	a	
two-step	approach	for	simplicity.	Firstly,	we	derived	AR(1)	process	estimates	 from	each	time	series	
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separately.	Secondly,	we	assess	the	correlations	between	obtained	series	in	order	to	easily	fill	matrix	
Tt.		
In	 the	 first	 step,	 a	 Kalman	 filter	 and	 smoother	 based	 on	 the	 previous	 equations	 was	 applied	
independently	 to	 each	 station	 and	 component.	 The	 AR(1)	 innovation	 variance	 (eq	 5)	 previously	
estimated	 by	 maximum	 likelihood	 was	 used	 as	 the	 one-dimensional	 process	 noise	 variance	 Tt	 =	
var(At).	 The	 one-dimensional	 variance	 of	 the	 observation	 errors	 Mt	 =	 var(Bt)	 was	 obtained	 by	
multiplying	 the	 formal	 observation	 variances	 from	 the	 IGS	 repro2	 SINEX	 files	 by	 the	 previously	
estimated	factor	βk,l

2.	
	
The	innovations	of	the	AR(1)	process	estimates	obtained	from	those	station-	and	component-specific	
Kalman	filters	were	then	analyzed	and	used	to	build	different	models	of	their	spatial	correlation.	In	
section	3.2.1,	we	start	by	describing	our	approach	to	rigorously	compute	spatial	covariances	of	a	3-
dimensional	 field	 on	 a	 sphere.	 In	 Section	 3.2.2,	 we	 then	 present	 spatial	 semi-variograms	 of	 the	
estimated	AR(1)	process	normalized	innovations.	
	
3.2.1	Frame	
	
Coordinate	time	series	are	usually	studied	 in	the	topocentric	 frame	(East,	North,	Height),	hereafter	
denoted	ENH.	This	 frame	 is	however	undefined	at	the	poles.	Besides,	 the	(East,	North)	 frames	of	a	
pair	of	stations	at	high	latitudes	may	be	relatively	oriented	in	any	way:	certain	pairs	of	stations	may	
have	parallel	East	and	North	directions,	while	others	may	have	opposite	East	and	North	directions.	
Comparing	 the	 displacements	 of	 station	 pairs	 in	 their	 ENH	 frames	 has	 therefore	 no	 “absolute”	
meaning.	
	
We	introduce	a	local	frame,	hereafter	denoted	UVH,	in	which	the	displacements	of	any	station	pair	
can	be	meaningfully	compared.	Let	A	and	B	be	two	points	on	a	sphere,	see	figure	3.	At	point	A,	we	
define	 a	 direct	 orthonormal	 frame	 𝑢!, 𝑣!, ℎ! 	 where	𝑢! 	 is	 oriented	 from	A	 to	B	 along	 the	 great	
circle	linking	the	two	points,	ℎ!	is	normal	to	the	sphere	and	𝑣!	complements	the	direct	orthonormal	
frame.	Similarly,	at	point	B,	we	define	a	direct	orthonormal	frame	 𝑢! , 𝑣! , ℎ! 	where	𝑢!	 is	tangent	
to	 the	 great	 circle	 linking	 A	 and	 B,	 ℎ!	 is	 normal	 to	 the	 sphere	 and	 𝑣!	 completes	 the	 direct	
orthonormal	frame.		
	
This	UVH	 frame	has	 the	advantage	 that,	 in	 spherical	 geometry,	 the	U	and	V	directions	of	a	pair	of	
points	are	always	parallel	to	each	other.	The	U	and	V	directions	can	be	interpreted	as	the	directions	
of	dilatation/compression	and	shear	deformation	between	any	two	points.	

	

	
	

	Fig.	3:	UVH	frame	and	angle	convention.	
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Let	αA	denote	the	azimuth	(counted	from	North)	from	A	to	B	and	αB	denote	the	azimuth	from	B	to	A	
minus	π.	The	displacements	of	points	A	in	the	UVH	frame	can	be	deduced	from	the	displacements	in	
their	ENH	frames	by	the	following	relationships:	
	

	 	 	

	 	
𝑢!
𝑣!
ℎ!

= 𝑅 𝛼!
𝑒!
𝑛!
ℎ!

	 	 	 	 	 	 	 (eq	7)	

	
where	R	defines	a	rotation	in	the	tangent	plane	to	the	sphere:	

	 	 	

	 	 𝑅 𝜃 =
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 0
−𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃 0

0 0 1
	 	 	 	 	 (eq	8)	

	
The	same	equation	holds	for	B	(replace	αA	by	αB).	The	covariance	of	the	point	displacements	in	their	
UVH	frames	is	thus	related	to	the	covariance	of	their	ENH	displacements	by:	
	

	 	

	 	 𝑐𝑜𝑣

𝑢!
𝑣!
ℎ!
𝑢!
𝑣!
ℎ!

= 𝑅 𝛼! 0
0 𝑅 𝛼!

𝑐𝑜𝑣

𝑒!
𝑛!
ℎ!
𝑒!
𝑛!
ℎ!

𝑅 𝛼! ! 0
0 𝑅 𝛼! ! 	 	 (eq	9)	

	
3.2.2.	Semi-variograms	
	
To	study	the	spatial	correlations	of	the	time-correlated	noise	in	the	selected	station	coordinate	time	
series,	we	formed	semi-variogram	clouds	of	 the	time	series	of	AR(1)	 innovations	uk,l(t)	described	 in	
the	introduction	of	section	3.2,	after	normalizing	them	by	their	standard	deviations	from	equation	5	
to	derive	normalized	innovations	𝑢k,l(t).	For	each	pair	of	components	(k’1,	k’2)	in	the	UVH	frame	and	
each	pair	 of	 stations	 (l1,	 l2),	we	 thus	 computed	 the	 sample	 variance	over	 time	 t	 of	 the	differences	
between	 the	 time	 series	 of	 normalized	AR(1)	 innovations	𝑢k’1,l1(t)	 and	𝑢k’2,l2(t).	 The	 semi-variogram	
clouds,	represented	by	black	dots	in	Fig.	4,	display	those	sample	variances	scaled	by	a	factor	1/2	as	a	
function	of	the	distance	between	each	pair	of	station,	separately	 for	each	component	pair	UU,	VV,	
HH,	UV,	UH	and	VH.	The	distance	is	computed	on	the	sphere	that	is	why	it	is	provided	in	degrees	in	
the	following.	
	
Sample	 semi-variograms	 (blue	 lines	 in	 Fig.	 4)	were	 then	obtained	by	 computing	mean	half	 sample	
variances	 over	 distance	 classes	 of	 1000	 elements.	 95%	 confidence	 intervals	 of	 the	 sample	 semi-
variograms	(green	lines	in	Fig.	4)	were	estimated	using	the	bootstrap	method.	It	is	worth	reminding	
that	 in	 case	 of	 a	 stationary	 process,	 the	 theoretical	 semi-variogram	 at	 a	 distance	 d	 equates	 the	
variance	of	 the	process	minus	 its	 covariance	 at	d	which	explains	 the	 conventional	½	 scaling	 factor	
previously	 used	 to	 compute	 the	 semi-variogram	 clouds	 and	 sample	 semi-variograms	 from	 sample	
variances.		
	
In	 the	 V	 and	 H	 components,	 the	 semi-variograms	 flatten	 out	 after	 an	 angular	 distance	 of	
approximately	60°.	The	semi-variogram	in	the	U	component	has	a	less	typical	behavior,	as	it	reaches	
a	maximum	at	around	60°,	after	which	correlation	increases	until	about	130°,	then	decreases	again.	
The	cross-semi-variograms	between	components	(i.e.,	UV,	UH	and	VH	in	Fig.	4)	are	flat,	indicating	the	
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absence	 of	 spatial	 cross-correlation	 between	 components,	 which	 was	 also	 observed	 by	 Amiri-
Simkooei	 et	 al.	 (2017).	 The	 asymptotic	 values	 of	 all	 sample	 semi-variograms	 are	 about	 0.5.	 This	
means	that	the	sample	variances	of	the	AR(1)	innovation	time	series	obtained	from	our	station-	and	
component-specific	Kalman	filters	are	 in	average	twice	smaller	than	the	AR(1)	 innovation	variances	
previously	estimated	by	maximum	 likelihood.	A	simple	simulation	was	conducted	by	generating	an	
AR(1)	plus	white	noise	time	series	with	similar	variance	 levels	as	our	series.	After	estimation	of	the	
AR(1)	time	series	using	a	Kalman	filter,	we	found	that	the	empirical	variance	of	smoothed	AR(1)	time	
series	filter	was	indeed	twice	smaller	than	the	true	level	which	explains	this	under-estimation.	
	
Simple	distance-dependent	covariance	models	were	then	adjusted	to	the	 intra-component	(UU,	VV	
and	 HH)	 sample	 semi-variograms.	We	 chose	 to	model	 them	 by	 the	 sum	 of	 nugget	 effects	 and	 of	
exponential	 functions	of	the	distance.	This	 is	a	classical	choice	 in	geostatistics,	which	fits	quite	well	
the	sample	semi-variograms	(see	Fig.	5).	For	a	given	component	k'	=	(u,v,h)	and	any	two	stations	l1,	l2	
separated	by	a	distance	d,	the	covariance	of	the	normalized	AR(1)	innovations	is	thus	modelled	by:	
	 	 	

	 	 𝑐𝑜𝑣 𝑢!!,!! 𝑡 , 𝑢!!,!! 𝑡 = 𝑣!!,!!𝛿!!,!! + 𝑟!!,!!𝑒
!!

!!!,!! 	 	 	 (eq	10)	
	
The	 parameters	 νk’,k’,	 rk’,k’,	 dk’,k’	 of	 those	 covariance	 models	 were	 adjusted	 to	 the	 sample	 intra-
component	 semi-variograms	 by	 non-linear	 least	 squares.	 Their	 values	 are	 given	 in	 Table	 1.	 They	
account	for	the	asymptotic	values	of	the	semi-variograms	which	is	not	1	for	self-consistency	with	the	
estimator	used,	 see	 the	discussion	 in	 section	5.	 The	 adjusted	models	 are	 compared	 to	 the	 sample	
semi-variograms	in	Fig.	5.	Note	that	a	single	covariance	model	was	simultaneously	adjusted	to	both	
horizontal	(UU	and	VV)	semi-variograms.	
	
We	 chose	 to	model	 cross-component	 semi-variograms	by	 constant	 values,	which	 comes	 to	 setting	
the	cross-component	covariances	to	0:	
	
	 	 𝑐𝑜𝑣 𝑢!!!,!! 𝑡 , 𝑢!!!,!! 𝑡 = 0 𝑘′! ≠ 𝑘′! 	 	 	 	 (eq	11)	
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Fig.	4		Variogram	clouds	(black	dots)	and	sample	semi-variograms	of	the	normalized	innovations	of	
the	AR(1)	process	estimates	(blue	curves)	obtained	from	station-	and	component-specific	Kalman	

filters	with	their	95%	confidence	intervals	(green	curves).		 	



12	
Benoist	et	al.,	spatiotemporal	correlations	of	GNSS	coordinate	time	series,	submitted	to	Journal	of	geodynamics	

	

	
	
Component		
pair	k’1,	k’2	

νk’1,k’2	 rk’1,k’2	 	dk’1,k’2	(°)	

U,U	and	V,V	 0.21	 0.33	 17.6	

H,H	 0.06	 0.40	 14.1	
	

Table	1	Parameters	of	the	adjusted	spatial	covariance	models	
	
We	have	now	effectively	built	a	full	spatiotemporal	covariance	model	for	the	time-correlated	noise	
zk’,l(t)	 in	 the	 selected	 station	 coordinate	 time	 series.	With	 the	 temporal	 representation	 of	 zk’,l(t)	as	
AR(1)	 processes	 and	 the	 nugget	 [+	 exponential]	 spatial	 covariance	 models	 derived	 above,	 the	
covariance	between	the	time-correlated	noise	in	any	two	components	k’1,	k’2	at	any	two	stations	l1,	l2	
separated	by	a	distance	d	and	any	two	epochs	t,	t+dt	can	indeed	be	obtained	by:	
	
	

	 𝑐𝑜𝑣 𝑧!!!,!! 𝑡 , 𝑧!!!,!! 𝑡 + 𝑑𝑡 = 0 𝑘′! ≠ 𝑘′! 	 	 	 	 	 (eq	12)	

	 𝑐𝑜𝑣 𝑧!!,!! 𝑡 , 𝑧!!,!! 𝑡 + 𝑑𝑡 = 𝜎!!,!!𝜎!!,!!𝑒
!!"
! 𝑣!!,!!𝛿!!,!! + 𝑟!!,!!𝑒

!!
!!!,!!  𝑘′! = 𝑘′! = 𝑘′ 	

	
	
	

	
	 	

	
	

Fig.	5	Red:	intra-component	sample	semi-variograms	(same	as	in	Fig.	4).	Blue:	adjusted	“nugget	+	
exponential”	models.	

	
	

3.3	Tested	covariance	models	
	
The	spatiotemporal	covariance	model	derived	in	the	previous	section	allows	to	populate	the	process	
noise	 covariance	matrix	 Tt	 	 =	 var(At)	 in	 a	multi-station	 Kalman	 filter,	 hence	 to	 account	 for	 spatial	
correlations	 of	 the	 time-correlated	 noise	 zk,l(t)	 in	 the	 determination	 of	 the	 velocities	 of	 a	 station	
network.	Results	based	on	this	covariance	model	will	be	presented	in	the	next	section	and	compared	
to	 the	 results	 obtained	with	 two	 alternative	 covariance	models	 for	 zk,l(t).	 A	 first	 alternative	model	
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where	no	spatial	 correlations	are	 introduced	 (i.e.,	 in	which	Tt	 is	diagonal)	will	be	used	as	a	control	
model.	In	the	second	alternative	model,	the	nugget	[+	exponential]	spatial	covariance	models	will	be	
replaced	 by	 covariances	 specific	 to	 each	 station	 and	 component	 pair.	 Namely,	 the	 empirical	
covariances	 between	 the	 time	 series	 of	 normalized	 AR(1)	 innovations	 previously	 derived	 for	 each	
station	 and	 component	 separately	 will	 be	 used	 in	 place	 of	 equations	 10	 and	 11.	 The	 aim	 of	 this	
second	 alternative	 model	 is	 to	 assess	 whether	 a	 complex	 station-pair-adapted	 spatial	 covariance	
model	may	provide	improvements	over	simple	distance-dependent	covariance	models.	
	
Different	 options	 will	 also	 be	 tested	 for	 the	 covariance	 matrices	Mt	 =	 var(Bt)	 of	 the	 observation	
errors.	They	will	be	taken	as	either:	
(a)	diagonal	matrices	with	diagonal	entries	equal	 to	 the	 formal	observation	variances	 from	the	 IGS	
repro2	 SINEX	 files	 multiplied	 by	 the	 previously	 estimated	 station-	 and	 component-specific	 factors	
βk,l

2.	The	spatial	correlations	of	the	variable	white	noise	εk,lVW(t)	are	in	this	case	neglected;	
(b)	the	full	SINEX	covariance	matrices	rescaled	by	a	single	median	factor	of	β2	(see	section	3.1.2);	
(c)	 the	 full	 SINEX	 covariance	matrices	 rescaled	 by	 station-	 and	 component-specific	 factors.	 In	 this	
case,	each	entry	sk1l1,k2l2	of	 the	original	SINEX	covariance	matrices	 (after	 they	have	been	 rotated	 to	
the	station	ENH	frames)	is	replaced	by	βk1,l1βk2,l2	sk1l1,k2l2.	
	
Four	 different	models	will	 be	 tested	 in	 total	 (Table	 2).	 In	 the	model	 called	WoSC	 (without	 spatial	
correlations),	 the	 spatial	 correlations	 of	 both	 zk,l(t)	 and	 εk,lVW(t)	 are	 neglected	 (i.e.,	 Tt	 and	Mt	 are	
diagonal).	 Using	 this	 model	 in	 a	 multi-station	 Kalman	 filter	 is	 equivalent	 to	 running	 independent	
Kalman	filters	 for	each	station	and	component	separately.	The	next	 two	models,	WSC-EMP-MULTI-
BETA	 and	WSC-EMP-ONE-BETA,	 use	 empirical	 covariances	 specific	 to	 each	 station	 and	 component	
pair	to	account	for	the	spatial	correlations	of	zk,l(t).	They	also	both	account	for	the	spatial	correlations	
of	the	observation	errors	by	using	full	covariance	matrices	Mt	=	var(Bt).	They	only	differ	by	the	way	
the	 SINEX	 covariance	matrices	 are	 rescaled	 to	 form	Mt:	 either	 by	 station-	 and	 component-specific	
factors	βk1,l1βk2,l2,	or	by	a	single	median	factor	β2.	Finally,	 the	 last	model	WSC-DIST	accounts	for	the	
spatial	correlations	of	zk,l(t)	via	the	nugget	[+	exponential]	spatial	covariance	models	derived	above,	
and	for	the	spatial	correlations	of	εk,lVW(t)	via	full	SINEX	covariance	matrices	rescaled	by	station-	and	
component-specific	factors	βk1,l1βk2,l2.	
	

Model	name	
Variable	white	noise	 Time-correlated	noise	
Spatial	

correlations	
Scaling	
factor(s)	

Spatial	
correlations	

Spatial	covariance	
model	

WoSC	 no	 specific	βk,l’s	 no	 -	
WSC-EMP-
MULTI-BETA	 yes	 specific	βk,l’s	 yes	 empirical	covariances	

WSC-EMP-ONE-
BETA	 yes	 median	β	 yes	 empirical	covariances	

WSC-DIST	 yes	 specific	βk,l’s	 yes	 nugget	[+exp]	
model	

Table	2:	Compared	covariance	models.	See	text	for	detailed	explanations.	

	
4	Results	
	
This	section	presents	the	results	of	multi-station	Kalman	filters	and	smoothers	for	two	test	datasets	
of	 10	 and	 11	 stations,	 using	 the	 four	 spatiotemporal	 covariance	 models	 listed	 in	 Table	 2.	 The	
different	 models	 are	 compared	 via	 two	 complementary	 approaches:	 firstly,	 by	 evaluating	 the	
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interpolation	 abilities	 of	 the	 models	 by	 cross-validation;	 secondly,	 by	 evaluating	 the	 accuracy	 of	
station	velocities	estimated	from	short	time	series.	
	
4.1	Datasets	
	
Two	 clusters	 of	 stations	 have	 been	 selected	 in	 Europe	 and	 in	 the	 USA	 to	 assess	 the	 covariance	
models	presented	in	section	3.	They	consist	of	10	or	11	nearby	stations	each,	with	long	time	series	
and	few	data	gaps.	Fig.	6a)	and	Fig.	6c)	show	the	distribution	of	the	selected	stations.	The	relaxation	
distance	of	the	semi-variogram	in	the	vertical	component	is	14.1°	according	to	Table	1.	With	such	a	
value,	 the	 covariance	 of	 the	 process	 noise	 drops	 to	 half	 its	 variance	 for	 a	 distance	 of	 9.8°.	 This	
corresponds	to	the	typical	size	of	our	network.	Thus,	due	to	the	density	of	the	network,	it	is	expected	
that	the	modelling	of	spatio-temporal	correlation	impacts	our	results.	Fig.	6b)	and	Fig.	6d)	show	the	
time	spans	of	their	time	series.	Data	gaps	are	clearly	visible	for	some	stations.	
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Fig.	6:	a)	Distribution	of	the	10	selected	stations	in	Europe	.	b)	Time	spans	of	their	repro2	coordinate	
time	series.	The	1-year	periods	used	for	cross-validation	(see	section	4.2)	are	shown	in	red.	c)	

Distribution	of	the	11	selected	stations	in	the	USA	(red	dots)	among	the	previously	selected	repro2	
stations	(black	dots).	d)	Time	spans	of	their	repro2	coordinate	time	series.	The	1-year	periods	used	for	

cross-validation	(see	section	4.2)	are	shown	in	red.	

4.2	Cross-validation	

	
Cross-validation	 consists	 in	 removing	a	 subset	of	data	 from	 the	available	dataset	while	 adjusting	a	
model.	 The	 adjusted	 model	 is	 then	 used	 to	 predict	 the	 removed	 data.	 Comparison	 of	 the	 values	
predicted	by	the	model	with	the	actual	removed	observations	allows	testing	the	predictive	capacity	
of	the	model.	
	
For	each	test	dataset,	we	thus	sequentially	removed	one	year	of	data	from	each	station	position	time	
series	 (see	 Fig.	 6b)	 and	 Fig.	 6d)).	Multi-station	 Kalman	 filters	 based	on	 the	 various	 spatiotemporal	
covariance	 models	 listed	 in	 Table	 2	 were	 then	 used	 to	 predict	 the	 removed	 observations.	 The	
purpose	 of	 this	 test	 was	 to	 verify	 that,	 when	 accounting	 for	 spatial	 correlations,	 the	 coordinate	

a)		 	b) 	

c) 		d) 	
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predictions	made	for	a	particular	station	benefit	from	the	observations	of	neighboring	stations.	Note	
that	 in	case	where	empirical	spatial	covariances	were	used	 (for	models	WSC-EMP-MULTI-BETA	and	
WSC-EMP-ONE-BETA),	those	empirical	covariances	were	estimated	without	using	the	removed	data	
period	of	the	considered	station.	
	
As	an	illustation,	Fig.	7a)	shows	the	original,	detrended	height	time	series	of	station	POTS	(Potsdam,	
Germany)	 and	 the	 predictions	 obtained	 for	 the	 test	 year	 2010	 with	 the	 various	 spatiotemporal	
covariance	models	listed	in	Table	2.	Fig.	7b)	shows	the	differences	between	those	various	predictions	
and	the	original	observations.	The	WoSC	model	(equivalent	to	a	single-station	Kalman	filter)	predicts	
the	original	 series	 based	on	 a	 purely	 kinematic	model,	 i.e.	 on	periodic	 functions	 and	on	 the	AR(1)	
forecast	which	tends	to	zero.	All	the	other	models,	which	account	for	spatial	correlations	of	the	time-
correlated	 noise,	 yield	 better	 predictions	 of	 the	 original	 data.	 This	 example	 illustrates	 that,	 when	
accounting	 for	 spatial	 correlations,	 the	 coordinate	 predictions	 made	 for	 a	 particular	 station	 can	
actually	benefit	from	the	observations	of	neighboring	stations.	
	
Tables	3	and	4	provide	the	RMS	of	the	differences	between	the	predictions	obtained	with	the	various	
spatiotemporal	covariance	models	and	the	original	observations	for	each	of	the	two	selected	subsets	
of	 stations.	 It	 can	 first	be	noticed	 that	 the	different	covariance	models	used	 for	 the	variable	white	
noise	have	little	impact	on	the	cross-validation	results	since	using	a	single	or	multiple	variable	white	
noise	 scaling	 factors	 (WSC-EMP-ONE-BETA	 vs.	 WSC-EMP-MULTI-BETA)	 leads	 to	 identical	 statistics.	
We	 could	 also	 verify	 (not	 shown	 here)	 that	 accounting	 or	 not	 for	 the	 spatial	 correlations	 of	 the	
variable	white	noise	has	no	impact	on	the	cross-validation	results.	
	
On	 the	 other	 hand,	 the	 three	models	 that	 account	 for	 spatial	 correlations	 of	 the	 time-correlated	
noise	 (WSC-EMP-ONE-BETA,	 WSC-EMP-MULTI-BETA,	 WSC-DIST)	 lead	 to	 substantially	 better	
predictions	 than	 our	 control	 model	 WoSC.	 Those	 three	 models	 perform	 quite	 similarly	 in	 both	
horizontal	components.	In	the	vertical	component	however,	the	WSC-DIST	model	(i.e.	simple		nugget	
+	exponential	spatial	covariance	models)	performs	slightly	better	than	the	one	which	makes	use	of	
empirical	 spatial	 covariances.	 This	 may	 be	 explained	 by	 the	 significantly	 higher	 number	 of	
parameters	 estimated	 for	 models	 WSC-EMP-ONE-BETA	 and	 WSC-EMP-MULTI-BETA	models.	 They	
cause	a	better	fit	of	the	model	to	used	dataset	but	a	poorer	ability	to	predict	values.		
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Fig.	7:	a)	Original	detrended	height	time	series	(black)	of	station	POTS	(Postdam,	Germany)	compared	
to	the	predictions	obtained	with	various	spatiotemporal	covariance	models.	b)	Differences	between	
the	various	predictions	and	the	original	time	series.	Note	that	in	both	plots,	the	results	of	the	two	

models	WSC-EMP-ONE-BETA	and		WSC-EMP-MULTI-BETA	are	superimposed.	
	

	 E	(mm)	 N	(mm)	 U	(mm)	

WoSC	 1.0	 1.0	 3.7	

WSC-EMP-ONE-BETA	 0.7	 0.7	 2.7	

WSC-EMP-MULTI-BETA	 0.7	 0.7	 2.7	

WSC-DIST	 0.7	 0.7	 2.5	

Table	 3:	 RMS	 of	 the	 differences	 between	 the	 predictions	 obtained	 with	 various	 spatiotemporal	
covariance	models	and	the	original	coordinate	time	series	for	the	10	selected	stations	in	Europe	
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 E	(mm)	 N	(mm)	 U	(mm)	

WoSC	 0.8	 1.0	 3.2	

WSC-EMP-ONE-BETA	 0.7	 0.9	 2.7	

WSC-EMP-MULTI-BETA	 0.7	 0.9	 2.7	

WSC-DIST	 0.7	 0.8	 2.3	

Table	 4:	 RMS	 of	 the	 differences	 between	 the	 predictions	 obtained	 with	 various	 spatiotemporal	
covariance	models	and	the	original	coordinate	time	series	for	the	11	selected	stations	in	the	USA	

	
4.3	Impact	on	velocities	estimated	from	short	time	series	
	
Time-correlated	 noise	 generates	 variations	 in	 GNSS	 station	 coordinate	 time	 series	 that	 affect	 the	
estimation	of	station	velocities.	Velocities	estimated	from	short	time	series	are	particularly	impacted.	
These	time-correlated	variations	are	however	spatially	correlated,	and	it	can	be	expected	that,	when	
accounting	 for	 these	 spatial	 correlations,	 velocities	 estimated	 from	 short	 time	 series	 may	 benefit	
from	 the	 longer	 time	 series	 of	 nearby	 stations.	 The	 experiment	 described	 in	 this	 section	
demonstrates	that	this	is	actually	the	case.	
	
To	evaluate	the	impact	of	accounting	for	spatial	correlations	on	velocities	estimated	from	short	time	
series,	a	reference	velocity	r	was	first	computed	 independently	 for	each	of	the	10	or	11	stations	 in	
each	test	dataset,	using	its	full	time	series.	Then,	for	each	station	successively,	new	velocity	estimates	
were	 obtained	 from	 different	 multi-station	 Kalman	 filters	 in	 which	 the	 full	 time	 series	 of	 the	
neighboring	stations	were	used,	but	only	the	100	first	weekly	positions	of	the	considered	station.	A	
velocity	r0̂	was	thus	derived	from	a	Kalman	filter	based	on	the	WoSC	covariance	model	(equivalent	to	
a	single-station	filter	based	on	the	truncated	time	series).	Two	other	velocity	estimates	rÊMP	and	rD̂IST	

were	 obtained	 from	 Kalman	 filters	 based	 on	 the	WSC-EMP-MULTI-BETA	 and	WSC-DIST	 covariance	
models	respectively.	It	was	expected	that,	compared	to	r0̂,	those	two	estimates	would	benefit	from	
the	long	time	series	of	the	nearby	stations	and	would	hence	be	closer	to	the	reference	velocity	r.	
	
Another	possible	approach	to	remove	spatially	correlated	errors	while	estimating	station	velocities	is	
spatial	 filtering.	For	comparison	with	our	approach,	we	compute	another	velocity	estimate	rŜF	 from	
each	 truncated	 time	 series	 using	 the	 basic	 spatial	 filtering	 technique	which	 consists	 in	 removing	 a	
mean	regional	residual	signal	from	the	considered	time	series.	
	
As	the	variance	of	noise	processes	 is	 larger	 in	the	vertical	component,	only	the	results	obtained	on	
the	vertical	component	will	be	detailed	here.	The	differences	between	the	various	velocity	estimates	
obtained	from	truncated	station	coordinate	time	series	and	the	reference	velocities	r	are	provided	in	
Table	5.	It	can	be	noticed	that	the	velocity	errors	reported	in	columns	4	are	generally	smaller	when	
spatial	 correlations	 between	 coordinate	 series	 are	 introduced	 using	 our	 nugget	 [+	 exponential]	
spatial	covariance	model.	This	is	not	the	case,	however,	when	spatial	correlations	are	modeled	using	
empirical	 covariances.	 This	 is	 likely	 because	 the	 empirical	 covariances	 estimated	 between	 the	
truncated	series,	which	has	only	100	points,	and	the	other	series	may	not	be	reliable.	
	
The	 last	 column	 of	 Table	 5	 provides	 the	 velocity	 errors	 obtained	 when	 using	 a	 spatial	 filtering	
technique.	 Compared	 to	 our	 new	method	 based	 on	 the	model	WSC-DIST,	 spatial	 filtering	 leads	 to	
similar	average	velocity	errors.	Our	conclusion	 is	 that	our	nugget	 [+	exponential]	covariance	model	
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allows	 reducing	biases	 in	 velocities	estimated	 from	short	 time	 series,	 and	 that	 it	 shows	 in	average	
similar	performance	to	standard	spatial	filtering	in	this	test.	
	
The	same	analysis	has	been	carried	out	for	the	horizontal	components.	The	mean	absolute	horizontal	
velocity	errors	over	USA	are	0.33	mm/yr	 and	0.37	mm/yr	 for	 the	WSC-DIST	and	WSC-EMP-MULTI-
BETA	 covariance	models	 respectively	 against	 0.40	mm/yr	 when	 no	 spatial	 correlation	 is	 assumed.	
Over	Europe,	the	values	are	0.54	mm/yr	and	0.65	mm/yr	against	0.62	mm/yr	respectively.	While	the	
empirical	 covariance	model	 provides	 worst	mean	 statistics	 for	 Europe,	more	 than	 3	 series	 over	 4	
show	 similar	 or	 best	 performances	 compared	 to	 the	 standard	 approach.	Whatever	 the	 covariance	
model	 used,	 there	 are	 always	 more	 series	 that	 show	 improvement	 than	 degradation	 but	 the	
magnitude	of	the	improvement	is	moderate.	The	benefit	of	using	the	new	approach	is	smaller	on	the	
horizontal	components.	
	 |r0̂	-	r|	 |rÊMP	-	r|	 |rD̂IST	-	r|	 |rŜF	-	r|	

GRAS	 0.58	 0.38	 0.42	 2.06	

GRAZ	 3.55	 3.54	 2.84	 2.34	

MARS	 0.25	 0.13	 0.25	 0.11	

POTS	 5.76	 5.97	 4.14	 3.28	

WROC	 1.3	 1.22	 0.82	 1.09	

WTZA	 0.33	 0.20	 0.46	 1.92	

WTZS	 1.57	 1.49	 0.51	 0.40	

WTZZ	 1.70	 1.37	 1.38	 1.71	

ZIMJ	 0.81	 0.98	 1.14	 1.39	

ZIMM	 1.25	 1.39	 0.08	 0.01	

Europe	 2.35	 2.38	 1.73	 1.74	

ANP1	 0.25	 0.15	 0.30	 0.88	

CASL	 2.90	 2.95	 1.96	 0.33	

GLPT	 0.00	 0.45	 1.58	 1.57	

GODE	 0.75	 0.70	 1.03	 0.18	

NJI2	 0.20	 0.19	 0.09	 0.88	

SAV1	 0.30	 0.17	 0.03	 1.19	

TN22	 1.27	 1.23	 0.63	 0.51	

USN3	 2.49	 2.26	 1.06	 2.09	

VIMS	 1.11	 1.19	 1.80	 0.63	

VTSP	 2.34	 2.44	 1.27	 1.25	

WES2	 1.45	 1.44	 1.06	 0.78	

USA	 1.53	 1.52	 1.16	 1.08	

mean	 1.96	 1.97	 1.45	 1.43	
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Table	 5:	Absolute	 differences	 (mm/yr)	 between	 vertical	 velocity	 estimates	 obtained	 from	 truncated	
station	 coordinate	 time	 series	 using	 different	 strategies	 to	 account	 for	 spatial	 correlations	 and	
reference	 vertical	 velocities	 r.	 See	 text	 for	 detailed	 explanations.	 The	 rows	 “Europe”	 and	 “USA”	
contain	 quadratric	mean	 vertical	 velocity	 differences	 for	 the	 stations	 in	 each	 test	 dataset.	 The	 last	
row	 contains	 global	 averages	 for	 all	 the	 21	 stations.	 Values	 are	written	 in	 bold	when	 the	 velocity	
estimates	is	equal	or	closer	to	the	reference	velocity	r	than	the	basic	estimate	r0̂	that	ignores	spatial	
correlations.		
	

	

5	Discussion	
	
We	have	 developed	 a	methodology	 to	 account	 for	 spatiotemporally	 correlated	 noise	 in	 a	 Kalman-
filter-based	 determination	 of	 GNSS	 station	 velocities.	 A	 variable	 white	 noise	 model	 was	 used	 to	
represent	 the	 temporally	 uncorrelated	 noise	 in	 station	 coordinate	 time	 series,	 with	 a	 spatial	
structure	represented	by	the	full,	rescaled	covariance	matrices	provided	with	the	IGS	repro2	weekly	
solutions.	 Time-correlated	 noise	was	 represented	 by	 AR(1)	 processes,	 as	 an	 approximation	 to	 the	
standard	 flicker	 noise	 model.	 Two	models	 of	 the	 spatial	 covariances	 of	 the	 AR(1)	 processes	 have	
been	constructed	and	evaluated.	A	simple	distance-dependent	nugget	[+	exponential]	model	has	first	
been	 adjusted	 to	 sample	 semi-variograms	 obtained	 from	 a	 global	 network	 of	 195	 stations.	 Those	
sample	semi-variograms	have	been	derived	in	a	specific	frame	in	which	covariances	between	station	
horizontal	 displacements	 can	 be	 meaningfully	 evaluated.	While	 our	 approach	 is	 more	 rigorous,	 it	
confirms	the	findings	of	Amiri-Simkooei	et	al.	(2017):	intra-component	spatial	correlations	exist	up	to	
distances	 of	 a	 few	 thousands	 of	 kilometers,	 while	 there	 are	 no	 significant	 cross-component	
correlations.	 The	 second	 considered	 spatial	 covariance	 model	 makes	 use	 of	 station-pair-specific	
empirical	covariances.	
	
To	evaluate	those	two	spatial	covariance	models,	we	used	two	test	datasets	of	10	and	11	stations	in	
Europe	 and	 in	 the	 USA.	 Both	 models	 have	 been	 shown	 to	 perform	 better	 for	 interpolating	
coordinates	 than	 standard	 models	 that	 ignore	 spatial	 correlations.	 Moreover,	 the	 distance-
dependent	nugget	[+	exponential]	model	leads	to	better	results	for	the	vertical	component	than	the	
model	 based	 on	 empirical	 covariance	 estimates.	 Based	 on	 simulations	 conducted	 over	 the	 same	
dataset,	it	was	shown	that	vertical	velocities	estimated	from	short	time	series	generally	benefit	from	
modeling	 spatiotemporal	 correlations	 when	 using	 the	 distance-dependent	 nugget	 [+	 exponential]	
spatial	covariance	model,	with	similar	average	performance	as	standard	spatial	filtering.	
	
We	made	use	of	a	two-step	approach	to	determine	the	spatial	dependency	of	GNSS	series	modeled	
as	 AR(1)	 processes.	 In	 section	 3.2.2,	 we	 found	 that	 our	 derived	 empirical	 semi-variograms	 under-
estimate	the	variance	level	of	the	series.	This	shows	that	our	two-step	approach	to	assess	the	spatial	
dependencies	 of	 our	 series	 based	 on	 an	 AR(1)	 assumption	 is	 probably	 not	 optimal.	 However,	 the	
cross-validation	analyses	that	we	performed	showed	that	our	spatial-dependent	model,	even	 if	not	
optimal,	is	superior	to	a	model	assuming	no	spatial	correlation	of	the	time-correlated	noise.	This	first	
study	 tends	 to	 show	 that	 modeling	 spatial	 dependencies	 benefits	 to	 terrestrial	 reference	 frame	
determination.	
	
For	future	work,	we	recommend	to	 investigate	refined	models	of	temporal	correlations	that	better	
approximate	 flicker	 noise	 than	 AR(1)	 processes.	 A	 realistic	 modeling	 of	 temporal	 correlations	 is	
indeed	 crucial	 for	 assessing	 the	precision	of	 the	 estimated	 station	 velocities	 (e.g.,	Williams,	 2003).	
Besides,	 to	 further	 strengthen	 the	estimation	of	 station	velocities,	 advantage	could	additionally	be	
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taken	of	 the	spatial	correlations	of	periodic	station	motions.	Seasonal	station	motions	have	 indeed	
been	 shown	 to	 be	 spatially	 correlated	 (Dong	 et	 al.,	 2002;	 Collilieux	 et	 al.,	 2007).	 Since	 seasonal	
station	 motions	 affect	 the	 estimation	 of	 station	 velocities	 from	 short	 time	 series	 (Blewitt	 and	
Lavallée,	 2002),	 it	 can	 thus	 be	 expected	 that	 accounting	 for	 their	 spatial	 correlations	will	 improve	
even	more	velocity	estimates.	
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