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Abstract: We address the problem of editing signals such as 2D color images or 3D colored meshes that are represented under

the general framework of graph signals. As state-of-the-art editing approaches decompose an image into several layers in order to

manipulate them, we propose a hierarchical multi-layer decomposition of graph signals that relies on morphological filtering. Since

morphological filtering operators require a complete lattice, a dedicated approach for the morphological processing of vectorial

data on graphs is used. By iterating the application of morphological filterings of decreasing sizes, the graph signal is decomposed

into several detail layers, each capturing a given detail level. Editing applications such as abstraction, sharpness enhancement

and tone mapping are shown to illustrate the benefits of the proposed approach.

1 Introduction

Image editing refers to the operations by which the content of
an image is manipulated to improve its aesthetical appeal or its
visual quality. There are a lot of possible ways to visually edit
images with computational techniques, e.g., abstraction, style trans-
fer, removal of unwanted objects, sharpening, compositing, matting,
to quote a few. As social media platforms such as Instagram have
rapidly grown, photographs are now ubiquitous. This has created a
demand for image editing applications that enable untrained users
to enhance and manipulate photos. However, developing computa-
tionally efficient approaches to produce artifact-free subjective and
qualitative enhancements is difficult. State-of-the-art approaches for
image editing have adopted the approach of Farbman et al. [1] that
has proposed to decompose an image into a base layer and several
detail layers, each capturing a given scale of details. This princi-
ple has also been explored in other image processing works [2–5].
The image decomposition aim is to break down an image into both
coarse structures and fine details. The obtained decomposition can
then facilitate the subsequent manipulation of the image for compu-
tational image editing tasks. To perform the decomposition, state-
of-the-art approaches have considered structure-preserving image
smoothing methods. They enable to eliminate unimportant fine-scale
details while maintaining the major image structures, such as salient
edges and contours. Over the past decade, many structure preserv-
ing smoothing techniques have been proposed [6–9]. Some works
rely on filtering operating within a local window. Typical approaches
are the Bilateral filter (BLF) [10] and the Rolling Guidance Filter
(RGF) [6]. Some works rely on global optimization. The smoothed
image is obtained by solving a global objective function involving
a data term and a regularization term. Typical approaches are the
Fast Global Smoother (FGS) [11], the L0 [9] or L1 smoothing [12].
Beyond these recent approaches, structure-preserving filters have a
long history, the review of which is beyond the scope of this paper.
Such works have considered different formalisms such as anisotropic
diffusion [13], PDEs [14], Empirical Mode Decomposition [15–18],
sparse representations [19, 20], etc [3, 5]. Whatever their formula-
tion, structure-preserving filters are the key element used in image
editing tasks such as detail manipulation or visual abstraction. The
design of structure preserving filters for editing tasks still is a hot
topic since there are many issues that can occur. Halos can appear
around edges due to over-smoothing. Gradient reversals can also

appear around edges if the base layer is not consistent with the origi-
nal image. Balancing the trade-off between preserving structures and
suppressing texture is not a trivial task.

In this paper, we propose to investigate the use of mathematical
morphology (denoted as MM in the sequel) operators for computa-
tional editing tasks. Contrary to the state-of-the-art approaches that
consider only images, we also consider the challenging case of 3D
meshes [21]. This is tackled within the formalism of graph signals
that enables to process in a unified manner any type of signal on a
graph. As said before, we will consider MM filtering operators. The
latter are filters that preserve input space values (i.e., no new value
is introduced), and are therefore by definition not subject to the pro-
duction of halos, which is a common problem met in computational
image editing tasks [1]. So far very few approaches have consid-
ered morphological operators for image editing. Subr et al. have
proposed [22] to consider the local extrema of images to extract
details and have combined ideas from Empirical Mode Decompo-
sition (EMD) [23] and morphological filtering [24]. As explained by
Subr et al. [22], EMD approaches [17, 18] have been little considered
in image editing as they do not well preserve edges and similarly for
morphological approaches as they do not well preserve shapes. To
overcome this, some works have designed adaptive morphological
filters [25–28] or proposed levelings [29–31] that can better preserve
shapes. Nevertheless, morphological approaches have many benefits.
First, they enable a computationally efficient nonlinear processing
that can furthermore be interpreted in terms of partial differential
equations [32, 33]. Second, the core erosion and dilation operators
can be used to form more complex operations such as closings or
openings. For instance, Alternate Sequential Filters (ASF) can be
defined from the concatenation of openings and closings with a
progressively increasing structuring element, that has been proven
effective for multi-scale analysis of shape [34]. In this paper we con-
sider such a morphological operator (the Open Close Close Open
[35]) to obtain a decomposition of graph signals.

However, the use of algebraic morphological operators is based
on the theory of complete lattices [36] that requires a total (or a
partial) ordering between all the elements to be processed. Total
orders are generally preferable to avoid the appearance of false col-
ors (particularly problematic for editing applications), even if, as
mentioned by Chevallier and Angulo [37], they can introduce irreg-
ularity issues. While MM is well defined for scalars, there is no
generally accepted way of performing morphological operations on
arbitrary vectors since there is no natural order on the latter. We
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have recently proposed [38] a framework for the construction of
complete lattices for any kind of vector data. The principle con-
sists in learning the complete lattice structure from a modeling of
the variety on which the vectors do live. In this paper, this complete
lattice learning framework is considered for the morphological edit-
ing of general graph signals. The formalism of graph signals [39] is
considered to allow an easy application of the proposed framework
to both colored images and 3D meshes. Then we propose a hier-
archical multi-layer decomposition of graph signals that relies on
morphological filtering. This decomposition can be manipulated for
computational editing applications such as sharpness enhancement
and tone mapping.

The outline of the paper is a follows: in section 2 we detail how
to build a complete lattice by learning the vectors manifold and
how this provides a graph signal representation that enables the
morphological processing of multivariate graph signals; from this,
the construction of a hierarchical decomposition of a graph signal
into layers is introduced; section 4 presents computational editing
examples with the proposed approach; last section is the conclusion.

2 Manifold-based complete lattice learning

2.1 Notations

A graph is denoted by G = (V,E) where V = {v1, . . . , vm} is a
finite set of vertices and E ⊂ V× V a finite set of edges. An edge
of E connects two vertices vi and vj of V and is denoted by (vi, vj).
Such two vertices are called two adjacent vertices and the notation
vi ∼ vj is used to describe this. Only un-directed and un-weighted
graphs will be considered in this paper. Indeed, since we will pro-
cess signals on either regular domains (images represented as grid
graphs) or triangulated domains (3D data represented as meshes), the
graphs are known beforehand and are undirected and unweighted. A
function that associates a vector to each vertex of the graph is called
a graph signal. This corresponds to the mapping f : G → F ⊂ R

n

where F is a non-empty set of vectors. Therefore, given a graph, a
vector vi = f(vi) is associated to each vertex vi ∈ G. The (multi)-
set T = {{v1, · · · , vm}} corresponds to all the vectors that are
associated to the vertices of the graph. Consequently, one has |V| =
m. For the sake of simplicity, we consider that each vertex vi of the
graph has a specific associated vector vi even if ∃vj |f(vj) = f(vi).
Therefore, there can be duplicated vectors in T and F ⊂ T . The i-th
element of this set will be denoted by T [i] = vi.

2.2 Complete lattices

Given the vertices vectors T , a vectorial ordering of the vectors
of the set T is mandatory to be able to perform morphological
operations on graph signals. This ordering relationship between the
vectors is related to the definition of a complete lattice (T ,≤), a key
item for the definition of mathematical morphology operators [36].
As mentioned before, there is no generally accepted way of ordering
vectors [40]. For specific types of vectors, such as colors, spe-
cific orderings have been proposed. Most of them use lexicographic
orderings [41, 42] with variations on the ordering of channels (often
with a color space change). Color images can also be represented
as a tensor field in the HSL color space and one can consider the
Loewner ordering to compare the symmetric matrices and perform
morphological processing [43, 44]. A more general and convenient
way to define an ordering relation between the vectors of a set T is
to use the framework of h-orderings [45]. This has been considered
in some recent works [38, 46, 47]. The principle of this approach
consists in defining a surjective transform h from T to L. The set L
has to be a complete lattice that can be equipped with the conditional
total ordering (i.e., the lexicographic ordering) [45]. We refer to ≤h

as the h-ordering given by:

h : T → L and v → h(v), ∀(vi, vj) ∈ T × T

vi ≤h vj ⇔ h(vi) ≤ h(vj) . (1)

The advantage is that the ordering of the set T can be deduced
directly from L by means of h [48], and consequently T is no longer
required to be a complete lattice. Moreover, if the projection h is
bijective, equivalences with space filling curves [49] and rank trans-
forms [50] can be exhibited. However, the projection h cannot be
linear since a distortion of the initial vector space is unavoidable
[37, 51] (space-filling curves topological preservation arguments can
be used to prove this [52]). To cope with this, we consider a nonlin-
ear approach for the construction of the mapping h and then deduce
the complete lattice (T ,≤h).

2.3 Manifold-based complete lattice

In this section, we recall the basic ingredients of the approach we
have recently proposed [38] to learn a complete lattice.

2.3.1 Complete lattice learning: The principle of our approach
is to model the manifold of the vectors of a graph signal and to define
the ordering of the vectors from the representation of this mani-
fold. To model the latter, we consider a non-linear dimensionality
reduction technique: Laplacian EigenMaps [53]. However, this tech-
nique requires to perform the eigen-decomposition of the normalized
Laplacian which is very computationally demanding. To cope with
this, we use a dictionary to represent the data. This dictionary being
small, Laplacian EigenMaps can be performed on it. The obtained
projection operator hD corresponds to construct a hD-ordering from
the dictionary D and a new representation hD(x′i) is obtained for
each element x′i of D. Since the obtained representation is valid only
for the dictionary, it is interpolated to all the vectors of the initial
lattice T with the Nyström extrapolation [54]. Algorithm 1 provides
the outline of this complete lattice learning.

Algorithm 1 Learning a complete lattice from a manifold of vectors

A graph signal f corresponds to a set T of m vectors in R
n.

A dictionary D = {x′1, · · · , x
′
p} of p ≪ m vectors is built by

Vector Quantization [55].
The similarity matrix KD between the vectors x

′
i ∈ D is com-

puted with

KD(i, j) = exp

(

−
‖x′i − x

′
j‖

2
2

σ2

)

and σ = max
(x′

i
,x′

j
)∈D

‖x′i − x
′
j‖

2
2

Compute DD the degree diagonal matrix of KD

Compute the normalized Laplacian L = I−D
− 1

2

D
KDD

− 1

2

D
The eigen-decomposition of L provides eigenvectors ΦD =
[Φ1

D, · · · ,Φp
D
] and eigenvalues ΠD = diag[λ1, · · · , λp].

Compute the similarity matrix KDT between sets D and T and
the associated degree diagonal matrix DDT

Extrapolate the eigenvectors of D to T with

Φ̃ = D
− 1

2

DT
K
T
DT D

− 1

2

D
ΦD(diag[1]−ΠD)−1

Finally, the projection operator h : T ⊂ R
n → L ⊂ R

p is given

by h(x) = (φ̃
1
(x), · · · , φ̃

p
(x))T and the manifold-based learned

complete lattice is defined by (T ,≤h). What Figure 1 shows for
two given graph signals is: the learned dictionaries, the learned man-
ifolds from the dictionaries and the final manifolds by Nyström
extrapolation.

2.3.2 Graph signal representation: Once the complete lat-
tice (T ,≤h) is available, a new graph signal representation can be
defined from it. Indeed, from the manifold-based ordering ≤h, all the
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f1 : G1 → R
n

D1 hD1
: D1 ⊂ Rn → Rp h1 : T1 ⊂ Rn → Rp I1 : G1 → [1,m1] P1

f2 : G2 → R
n

D2 hD2
: D2 ⊂ Rn → Rp h2 : T2 ⊂ Rn → Rp I2 : G2 → [1,m2] P2

Fig. 1: Illustration showing the different steps of the manifold-based complete lattice learning. This is shown for two different graph signals:
colors on a grid graph (first line) and on a 3D mesh (second line). Given an original graph signal fi (i = 1 for the image, and i = 2 for the 3D
colored mesh), a dictionary Di is first constructed and p representative color vectors are obtained. A mapping hDi

is then obtained by manifold
learning on the dictionary Di. This mapping is presented here by showing the dictionary colors on the three first eigenvectors of the projection.
The mapping hDi

is then interpolated to all the colors of the original signal and the final mapping hi is obtained (also presented by showing
the colors of the signal on the three first eigenvectors of the interpolated projection). Finally, the index graph signals Ii and the sorted vectors
Pi obtained from the induced manifold-based ordering ≤hi

are presented.

vectors of T can be sorted and a sorted permutation P is obtained:

P = {v′1, · · · , v
′
m} with v

′
i ≤h v

′
i+1, ∀i ∈ [1, (m− 1)]. (2)

Given this ordering of the set T , a new graph signal in the form of an
index can be defined. We denote by I : G → [1,m] this index graph
signal. It is defined by:

I(vi) = {k | v′k = f(vi) = vi} . (3)

Therefore, the index graph signal associates to each vertex vi of the
graph the rank of its corresponding vector f(vi) in P , the set of
sorted vectors. The pair (I,P) defines a new representation of the
graph signal f denoted as f∗. The first element of the pair, I , is
called the index. The second element of the pair, P , is called the
palette. Recovering the original graph signal f can be easily done
since f(vi) = P[I(vi)] = T [i] = vi. Figure 1 shows examples of
obtained graph signal representations for two graph signals on two
different graphs.

3 Morphological hierarchical graph signal
multi-layer decomposition

3.1 Graph signal morphological processing

Now we present how to perform morphological processing opera-
tions with the new representation (I,P) of a graph signal f . The
index graph signal I is a scalar signal with values in the range
[1,m]. This index graph signal can be processed with any processing
operation and a processed index graph signal I ′ is obtained. How-
ever, the reconstruction of the final processed graph signal f ′ from
a processed index graph signal I ′ is not possible for any kind of
processing. Indeed, reconstructing f ′ from (I ′,P) requires that the
values of I ′ are kept within the integer range [1,m] to be able to
associate a vector of the manifold-based ordering P to each value of
I ′. This means that the processing that can be performed on an index
graph signal must be a vector-preserving signal processing method:
no new values can be created. Morphological operations are vector
preserving methods and this is the reason why we have considered
them in this paper. For a specific morphological processing g applied
to the index graph signal, the corresponding processed graph signal

can be obtained by

g(f(vi)) = P[g(I(vi))] . (4)

For a structuring element Bk ⊂ G, the erosion and dilation of a graph
signal f at vertex vi ∈ G are defined as:

ǫBk
(f)(vi) = {P[∧I(vj)], vj ∈ Bk(vi)} (5)

δBk
(f)(vi) = {P[∨I(vj)], vj ∈ Bk(vi)} . (6)

A structuring element Bk(vi) is a subgraph of the processed graph.
Given a vertex vi and a radius size k, the structuring element is
composed of all the vertices that can be reached from vi in k walks:

Bk(vi) =







{vj ∼ vi} ∪ {vi} if k = 1

Bk−1(vi) ∪
(

∪∀vl∈Bk−1(vi)B1(vl)
)

if k ≥ 2
(7)

The number of vertices in a given k-hop neighborhood Bk(vi)
depends on the vertex vi when the graph is irregular. However,
the associated erosion and dilation are symmetry preserving oper-
ators [56]. From the basic erosion and dilation operators, we
can derive all the standard morphological filters for graph signals
such as openings γBk

(f) = δBk
(ǫBk

(f)) and closings φBk
(f) =

ǫBk
(δBk

(f)). Figures 2 and 3 present examples of morphological
filtering of a 2D color image and a 3D colored mesh. As it can be
seen, the morphological filters can be useful for simplifying a graph
signal in a coarse manner with a large structuring element.

3.2 Graph signal multi-layer decomposition

State-of-the-art approaches for image editing have adopted the
approach of Farbman et al. [1] that has proposed to decompose an
image into a base layer and several detail layers, each capturing
a given scale of details. This approach takes its roots from image
decomposition works [2] the aim of which was to decompose an
image into two components. The first component contains geomet-
rical information, and the second contains oscillations, i.e., noise
and textures. By iterating this approach on the oscillating part, one
can get a hierarchical decomposition [5, 16]. We consider a similar
approach but consider the general case of graph signals and make use
of morphological filtering to decompose a graph signal into l layers,
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Original image f

ǫBk
(f) δBk

(f)

γBk
(f) = δBk

(ǫBk
(f)) φBk

(f) = ǫBk
(δBk

(f))

Fig. 2: From top to bottom, left to right: examples of morphological
processing of a color image (grid-graph signal) with k = 5.

Original mesh f

ǫBk
(f) δBk

(f)

γBk
(f) = δBk

(ǫBk
(f)) φBk

(f) = ǫBk
(δBk

(f))

Fig. 3: From top to bottom, left to right: examples of morphological
processing of a 3D colored mesh with k = 5.

Algorithm 2 Hierarchical multi-layer morphological decomposition
of a graph signal

d−1 = f , i = 0
while i < l do

Computation of the graph signal representation at level i− 1
from di−1: d∗i−1 = (Ii−1,Pi−1)
Morphological Filtering of d∗i−1:

fi = MFBl−i
(d∗i−1)

Computation of the residual (detail layer):
di = di−1 − fi
Continue to the next layer:
i = i+ 1

end while

as shown in Algorithm 2. This leads to the development of a hierar-
chical morphological graph signal multi-layer decomposition. Such
a decomposition of a graph signal into layers ranging from coarse to
fine details imposes constraints on the decomposition. The first layer
f0 must correspond to the coarsest layer of the graph signal, whereas
the other layers fi must correspond to details that are finer as one
progresses into the decomposition levels. In our proposed hierar-
chical morphological decomposition, this imposes that the scale of
filtering is decreasing along the layers. In terms of morphological fil-
tering, this means that the size of the structuring element used in the
morphological filtering (MF) has to decrease along the layers. This
can be seen in Algorithm 2 where the structuring element Bl−i has
a size that depends on the number of levels of decomposition and
that is decreasing along the levels (with i ∈ [0, l − 1]). By proceed-
ing this way, it is ensured that each level captures a specific amount
of detail corresponding to the structuring element size and the suc-
cessive layers will extract details that will become finer [35, 57]. In
addition, each detail layer di is the residual between the previous
layer di−1 and its morphological processing. Therefore, the set of
vectors that constitute graph signal di is different from the set of
vectors that constitute the previous layer di−1. This is why a graph
signal representation (Ii,Pi) has to be computed for each of the suc-
cessive layers to be decomposed. At the end of the decomposition,
the original graph signal is represented as the sum of several layers:

f =

l−2
∑

i=0

fi + dl−1 . (8)

The fi’s do represent the different decomposition layers of f that
capture details at different scales (from coarse to fine). One thing
remains to be fixed in Algorithm 2: what morphological filtering to
use ? Many choices are possible and we have chosen an Open Close
Close Open (OCCO) filter. This OCCO filter is a self-dual operator
that has been shown to have excellent signal decomposition abilities
[35]:

OCCOBk
(f) =

⌊

γBk
(φBk

(f)) + φBk
(γBk

(f))

2

⌋

. (9)

In Figures 4 and 5, we show two examples for two graph signals (a
color image and a 3D colored mesh) with five levels of decompo-
sition (l = 5) to obtain a coarse base layer f0, two medium detail
layers f1 and f2, and two fine detail layers f3 and d3 such as
f = f0 + f1 + f2 + f3 + d3. These layers can be manipulated for
editing applications and we investigate this in the next section.

3.3 Computational complexity analysis

We analyze the computational complexity of our approach with
respect to state-of-the-art approaches. Our approach performs a
hierarchical decomposition into l levels defined recursively using
residual images. Each level involves the computation of a graph sig-
nal representation (in the form of a palette and an index) with the
morphological filtering of the index. The complexity of the graph
signal representation computation is O(pm) with m the number
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of pixels and p ≪ m the size of the dictionary. The complexity of
the filtering is O(2× k ×m) since each morphological operator for
erosion or dilation has a complexity of O(k ×m) with k the size of
the structuring element. The complexity of the whole decomposition
is therefore O(l × (p+ 2k)×m). State-of-the art approaches only
require a filtering the complexity of which usually is O(n× k ×m)
with n the number of iterations of the filtering. The complexity of
the induced whole decomposition is therefore O(l × n× k ×m).
As can be seen, our approach is competitive with these ones only
if (p+ 2k) ≤ n× k which implies to consider only dictionaries of
relatively small sizes.

f f0

f1 f2

f3 d3

Fig. 4: First part: from top to bottom, left to right: an original
image f , and its decomposition into five layers f0, f1, f2, f3,and
d3. Second part: cropped and zoomed part of the layers to show the
increasing level of detail extraction along the layers.

4 Graph signal editing applications

In this section we provide several examples of graph signal editing
applications that make use of the proposed hierarchical morpholog-
ical multi-layer decomposition. To show the benefit of using the
formalism of graph signals, we will consider two different types of
graph signals [58]. The first graph signal type corresponds to 2D
color images that are modeled as color vectors assigned to the ver-
tices of a 8-adjacency regular grid graph. The second graph signal
type corresponds to 3D colored meshes that are modeled as color
vectors assigned to the vertices of a 3D mesh (it is an irregular
graph). This last type of graph signal is much less common than ordi-
nary 2D color images. It is now possible to obtain graph signal of this
type with specific 3D color scanners that enable to simultaneously
acquire the spectral (R, G, B colors) and spatial (X, Y, Z coordinates)

f f0 f1

f2 f3 d3

Fig. 5: From top to bottom, left to right: an original mesh f , and its
decomposition into five layers f0, f1, f2, f3,and d3.

values of the points of an object. Very few works have addressed the
problem of editing such a graph signal type [57, 59, 60].

4.1 Abstraction

First, we consider the typical application of smoothing filters: pro-
ducing a simplified version of the image to generate an abstract
illustration of it. The goal of image smoothing is therefore to elimi-
nate unimportant fine-scale details while maintaining primary image
structures. With our approach, named MF (for Morphological Filter-
ing), the image is decomposed in two layers, and the first layer is the
result of image smoothing. Figures 6 and 7 compare the smoothing
results of our method to ten existing methods: SUL [61], SGF [62],
SDF [63], L1 [12], BTLF [7], FGS [11], RGF [6], RTV [64], L0
[9], BLF [10]. In these figures, the results were obtained by consid-
ering only the first layer f0 of the decomposition. Figures 6 and 7
also show the resultant brightness values on a 1D image slice indi-
cated by the red line on the original image: the curve should be
flattened while preserving the important transitions. As can be seen,
our approach produces visual results competitive with the state-of-
the-art, close to the results of RGF [6], RTV [64] and BTLF [7].
With our approach, most of the high contrast structures have been
preserved and fine scale details (e.g., the rope of the paraglider) have
been removed. Moreover, flat regions are obtained in areas where
similar colors do appear but the important object edges are preserved
without any blurring. As previously mentioned, this is a property
that is critical for any structure-preserving filtering. However, as in
state-of-the-art literature, this comparison is only visual. Indeed, up
to now, there is no established method or dataset to quantitatively
evaluate the performance of image smoothing methods. In our exper-
iments, in order to ease the comparison with other approaches, we
consider several quality measures to compare the results: two full-
reference quality metrics PSNR (Peak Signal to Noise Ratio [65])
and SSIM (Structural SIMilarity [66]), and one no-reference quality
metric BRISQUE (Blind/Referenceless Image Spatial Quality Eval-
uator [67]). For all these metrics, we have normalized their values
between 0 and 1. The PSNR estimates the fidelity to the original
image (the higher the better). The SSIM estimates the perceived
change in structural information with respect to the original image
(the higher the better).
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Original Our MF SUL SGF SDF L1

BTLF FGS RGF RTV L0 BLF

Fig. 6: Visual comparison on the Paragliding image between our method (named MF) and previous image smoothing methods, abbreviated as
SUL [61], SGF [62], SDF [63], L1 [12], BTLF [7], FGS [11], RGF [6], RTV [64], L0 [9], BLF [10]. The brightness values on a 1D image slice
(indicated by the red line on the original image) are shown under each image.

Original Our MF SUL SGF SDF L1

BTLF FGS RGF RTV L0 BLF

Fig. 7: Visual comparison on the Climber image between our method (named MF) and previous image smoothing methods, abbreviated as
SUL [61], SGF [62], SDF [63], L1 [12], BTLF [7], FGS [11], RGF [6], RTV [64], L0 [9], BLF [10]. The brightness values on a 1D image slice
(indicated by the red line on the original image) are shown under each image.
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The BRISQUE exploits spatial natural scene statistics to assess
the visual quality of an image without the need of the original image
(the lower the better). Each quality indicator measures an objective
that an image abstraction should attain: colors close to the origi-
nal (assessed by the PSNR), the main edges should be preserved
(assessed by the SSIM), and the global result should be of good
visual quality (assessed by the BRISQUE). Since an abstraction
approach should fulfill all these requirements, we also consider the
value SSIM*PSNR/BRISQUE as a global quality indicator. Figure
9 presents the results for the considered images (called Climber for
Figure 7 and Paragliding and for Figure 6). As it can be seen, our
approach is competitive with all the other approaches with respect
to all the metrics and is among the fourth best ones with respect
to the global quality indicator. Figure 8 presents smoothing results
for 3D colored meshes with a comparison with graph TV filtering
[4, 57] (the sole other state-of-the-art approach to compare with).
As for images, our approach can produce pleasant smoothing results
with less blurry effect and a more piecewise constant result. In par-
ticular, the fire hydrant 3D colored mesh has been obtained using
photogrammetry and the stitching defects appearing have been sup-
pressed by our approach (see the zoomed parts in Figure 8). Again,
to complement these visual results, we consider quality indicators
(different from the ones for images, since SSIM and BRISQUE are
defined only for images). We provide the values of the PSNR, of the
smoothing level (the ratio ‖f − f0‖/‖f‖, the higher the smoother)
and the product of both as a global quality indicator. Figure 9
shows these results for the four considered meshes (called Street,
Vase, Firehydrant and AltarPiece). The results are very close for
the meshes Vase and AltarPiece and for the meshes Street and Fire-
Hydrant the global quality is in favor of our approach. To assess
the blurry effect, we consider the Tenengrad criterion [68, 69]. It
has been shown [69] that a high value of this criterion means a
sharper signal and that this value is correlated with perceived sharp-
ness. The values are shown in Figure 8 and are clearly in benefit of
our approach. All these results show the interest of morphological
operators for abstraction editing applications.

A smoothed graph signal can also be used to produce a non-
photorealistic abstraction. The principle consists in: extracting edges
from the smoothed image, emphasizing them, adding them back
to the smoothed graph signal to enhance the differences between
the different regions composing the image. Figure 10 presents two
examples of such non-photorealistic abstraction results along with a
comparison of the result obtained with SUL [61]. As can be seen, our
result is visually much less blurry than SUL [61]. This is confirmed
by the Tenengrad sharpness measure [69] (the higher, the sharper).

4.2 Detail manipulation

The second typical application of smoothing filters we consider
is detail magnification, which is also commonly called sharpness
enhancement. Their aim is to manipulate the signal to sharpen its
prominent edges. Existing techniques for sharpness enhancement
of images use structure-preserving smoothing filters [6–9] within a
hierarchical decomposition framework. The image is decomposed
into several layers containing from coarse to fine scale details. The
layers are then individually manipulated (by boosting them by a mul-
tiplicative factor) to perform detail manipulation and enhancement.
Similar approaches have been proposed for the specific case of 3D
mesh vertices coordinates manipulation [21] or 3D colored mesh
color manipulation [60]. With our approach, the multi-layer mor-
phological decomposition of the graph signal gradually decomposes
an input graph signal into coarse to fine scales layers. These lay-
ers are then manipulated by non-linear boosting curves and blended
together with the use of a structure mask to produce an enhanced
graph signal. We detail this in the sequel.

4.2.1 Proposed approach: For a given graph signal f =
(I,P), its multi-layer decomposition into l levels is constructed
first. The obtained layers are manipulated individually with spe-
cific boosting coefficients. The manipulated layers are then added

Original Our MF GTV

(33.99) (8.13) (4.00)

(24.33) (6.75) (4.25)

(25.39) (4.85) (3.91)

(17.60) (8.13) (4.51)

Fig. 8: Visual comparison between our method (named MF) and
another 3D colored mesh smoothing method, abbreviated as GTV
[57]. For each mesh (called Street, Vase, Firehydrant and Altar-
Piece), two lines present the results. First line shows original
and filtered versions. Second line presents zoomed parts of the
meshes to show the specific smoothing differences between the
two approaches. Tenengrad values are provided into brackets for a
quantitative comparison of sharpness.
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Fig. 9: Quantitative measures between methods for image and mesh
smoothing. First line: results for Figure 6. Second line: results for
Figure 7. Third line: results for Figure 8.

altogether. This is expressed by the following proposed scheme:

f̂(vk) = S0(f0(vk)) +M(vk) ·

l−1
∑

i=1

Si(fi(vk)). (10)

with fl−1 = dl−1. Each layer is manipulated by a nonlinear s-curve
function Si that enables to perform both detail enhancement and tone
manipulation. To avoid boosting noise and artefacts while enhancing
the main structures of the original graph signal f , the layers are com-
bined with the use of a structure mask M to enable a more focused
detail manipulation. Let us now provide details on Si and M .

4.2.2 Nonlinear boosting curve: Traditional approaches for
detail manipulation manipulate the decomposition layers with spe-
cific linear coefficients [69, 70]:

Si(x) = αix . (11)

Unfortunately, this requires a very fine tuning of the parameters and
can sometimes over-enhance some details. Some works have pro-
posed to consider nonlinear detail manipulation coefficients [1, 71,

Original Our MF SUL

(17.17) (21.69) (8.16)

(13.08) (15.29) (6.01)

Fig. 10: Image abstraction result with our method (named MF)
and SUL [61]. Tenengrad values are provided into brackets for a
quantitative comparison of sharpness.

72]. In our proposed approach, a nonlinear function of sigmoid shape
is considered:

Si(x) =
1

1+exp(−αix)
. (12)

The parameter αi of the sigmoid is automatically determined and
decreases while i increases. Given an initial parameter α, we set
αi =

α
i+1 .

4.2.3 Structure Mask: It has recently been put forward [72]
that, for detail enhancement, it can be beneficial to selectively boost
the most important image structures while keeping unmodified the
rest of the image. For the case of graph signals, a vertex can be con-
sidered as an important structure if it is different from its neighbors.
This amounts to say that the vertex has high spectral distances with
its neighbors. In contrast, a vertex in an almost flat area will have low
spectral distances with its neighbors. This can be used to construct
a structure mask that differentiates the most salient structures in the
graph signal. We propose to consider a normalized sum of the spec-
tral distances between the vertex vi and its direct neighbors B1(vi)
to construct this structure mask. It is defined as:

ν(vi) =

∑

vj∈B1(vi)

dEMD(H(vj), H(vi))

|B1(vi)|
(13)

The considered distance dEMD is the Earth Mover Distance [73].
It compares two histogram signatures that are compact represen-
tations of local distributions. The histograms H(vi) are of size N
and are constructed on the index graph signal I . One has H(vi) =
{(wk,mk)}

N
k=1 within the set B1(vi) where mk is the index of

the k-th element and wk its appearance frequency. It is important
to note that N ≤ |B1(vi)| since two signatures can have different
sizes. Indeed, identical values can be found within the set B1(vi) and
the graph can be irregular. To compute the EMD, ground distances
are computed in the CIELAB color space. Finally, the structure mask
of a graph signal is formulated as

M(vi) = 1 +
ν(vi)− ∧ν

∨ν − ∧ν
. (14)

where ∨ν and ∧ν respectively denote the maximum and minimum
values of ν(vi). For a vertex vi, M(vi) ∈ [1, 2] and is close to 1 for
flat areas and to 2 for important structures (such as edges). In Figure
11 two structure masks examples on two colored graph signals are
presented (for an image and a 3D mesh).
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Fig. 11: Graph signal structure masks used to modulate the impor-
tance of detail enhancement (a heat color map is used to enhance
the visualization). The original graph signals can be seen in other
figures.

4.2.4 Detail manipulation examples: Now we provide some
examples of graph signal detail manipulation. With our approach, we
use 3 levels of multi-layer decomposition for detail manipulation. As
for abstraction, in the state-of-the-art, the comparison is only visual.
To ease the comparison of our approach with others, we consider
the Tenengrad criterion [68, 69]. Figure 12 presents an example of
detail manipulation with our approach without using structure mask,
just only linear specific coefficients for each layer (Equation (11) is
used). As can be seen, if our result has enhanced the original image,
the enhancement is not as good as state-of-the-art approaches such as
LLF [74]. This is mainly due to the fact that finding good coefficients
for the detail manipulation is a very difficult task that depends on
each image. However, when a structure mask is used with non-linear
coefficients (Equation (12) is used), the result is fully automatic and
with a standard tuning of the sole parameter of the method (α), a
more visually pleasant result is obtained. As opposed to the results
of LLF [74], no color aberrations and gradient reversal artefacts do
appear in the background. Figure 13 provides complimentary com-
parison results. As can be seen, by varying the α parameter with
α = 20, we obtain results similar to BTF [7] and similar to LLF
[74] with α = 30 (but again without color aberrations and gradient
reversal artefacts). Varying α results in tone manipulation. A strong
advantage of our approach is that all the detail manipulation coef-
ficients are automatically tuned whereas for the other approaches,
they have been manually tuned to achieve the sharpest result. Finally,
Figure 15 shows results for sharpness enhancement of 3D colored
meshes and compares with the sole state-of-the-art method of Afrose
et al. [60] that performs a processing similar to unsharp masking for
images. For our morphological decomposition, the applied method
is exactly the same as for images and this shows the versatility and
generality of our approach that can process any type of graph signal.
Figure 15 shows that the results of Afrose et al. [60] are often very
subtle and difficult to see (even if the mesh looks globally sharper).
In contrast, our results are sharper, as assessed by the Tenengrad
values, and show a more pronounced detail manipulation. This is
especially true for the vase and the person whereas for the two
ancient building parts, results look very close.

4.3 Tone Mapping

The third typical application of smoothing filters we consider is
tone mapping. Indeed, as for detail manipulation, some state-of-the-
art tone-mapping algorithms do need a prior decomposition into a
base and a single detail layers. The approach we have proposed
for multi-layer decomposition can also be considered to design
a new morphological tone-mapping algorithm. To do so, we will
replace the bilateral filter by our morphological one in the tone-
mapping approach of Durand and Dorsey [75]. Let us recall the
principle of this state-of-the-art approach. This method computes the
log-luminance Ll = log(L(f)) from an HDR image f with

L(f) =
20fR + 40fG + fB

61
(15)

Original (13.69) LLF (25.09)

Our MF with linear coefficients Our MF with mask (α = 30)
(1, 1.25, 2.5) and without mask (24.21)

(20.19)

Fig. 12: Visual comparison between our method (named MF) and
an image sharpening method, abbreviated as LLF [74]. Tenengrad
values are provided into brackets for a quantitative comparison of
sharpness.

where fR,G,B denotes a color channel of the HDR image. The log-
luminance Ll image is then decomposed into a coarse base layer
Bl and a detail layer obtained by the difference Dl = Ll −Bl. In
the Durand and Dorsey approach [75], a bilateral filtering [10] is
used to produce the base layer Bl = BF(Ll). The latter, as for any
structure-preserving filter, is supposed to contain the main high con-
trast structures that need to be reduced. Therefore, this base layer is
then compressed using gamma correction and finally added back to
the detail layer. This is expressed by:

f ′∗ =

(

f∗
L(f)

exp (τBl + (Ll −Bl))

)
1

γ

(16)

where f ′ is the RGB tone mapped image, τ is a contrast parame-
ter and γ is a gamma correction parameter (fixed to 50 and 2.2 as
recommended by Durand and Dorsey [75]). What we propose is to
modify this tone mapping algorithm by replacing the bilateral filter
with a morphological filter. However, we proceed differently due to
our approach for morphological filtering that uses an index. Given
an HDR image f , we use our decomposition to obtain a coarse base
layer f0 = MF (f) and then compute its log-luminance. Therefore,
one has Bl = log(L(MF (f))) instead (which is directly used in the
approach of Durand and Dorsey [75]). In Figure 14, a comparison is
shown between the state-of-the-art approach of Durand and Dorsey
[75] and our morphological modification of the latter. It can be eas-
ily seen that in the base layer produced by the bilateral filter, many
details have been preserved (see the stained glass) and edges have
not always been well preserved (see the book and deck edges). In
contrast, our base layer obtained by morphological decomposition is
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Original (6.35) LLF (13.51)

BTF (14.85) RTV (15.30)

Our MF with mask (α = 20) Our MF with mask (α = 30)
(9.13) (13.97)

Fig. 13: Visual comparison between our method (named MF)
and image sharpening methods, abbreviated as LLF [74], BTF [7]
and RTV [64]. Tenengrad values are provided into brackets for a
quantitative comparison of sharpness.

coarser and more piecewise constant. This is of high importance in
the tone mapping algorithm and the final result we obtain is sharper
and more contrasted than the one of Durand and Dorsey [75], as con-
firmed by the log-PSNR values (a quality metric for HDR images
[76]∗).

5 Conclusion

In this paper, we have considered the problem of computational edit-
ing of signal on graphs such as 2D color images and 3D colored
meshes. Our approach considers morphological operators to perform
the filtering. As morphological filters do require a complete lattice
structure to be able to process vectorial data, a manifold-based com-
plete lattice learning is devised. From this ordering, a new signal
representation in the form of an index and a palette is obtained. Then,
a hierarchical morphological multi-layer decomposition is proposed.
We have shown how the latter can be used for editing applications
such as abstraction, sharpness enhancement and tone mapping. The
experimental results as well as their comparison with state-of-the-art
algorithms have shown that our approach has some benefits and is
competitive with existing approaches.
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Original Unsharp Masking [60] Our MF with mask (α = 20)

(33.99) (42.89) (43.92)

(24.33) (30.69) (32.69)

(12.49) (15.30) (17.52)

(27.99) (35.50) (34.46)

Fig. 15: Visual comparison between our method (named MF) for 3D colored mesh detail manipulation and unsharp masking [60]. Tenengrad
values are provided into brackets for a quantitative comparison of sharpness.
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