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Daniel Wagner∗, and Didier Henrion∗†, and Martin Hromč́ık∗‡

May 18, 2020

Abstract

Occupation measures and linear matrix inequality (LMI) relax-
ations (called the moment sums of squares or Lasserre hierarchy) have
been used previously as a means for solving control law verification
and validation (VV) problems. However, these methods have been
restricted to relatively simple control laws and a limited number of
states. In this document, we extend these methods to model reference
adaptive control (MRAC) configurations typical of the aircraft indus-
try. The main contribution is a validation scheme that exploits the
specific nonlinearities and structure of MRAC. A nonlinear F-16 plant
is used for illustration. LMI relaxations solved by off-the-shelf-software
are compared to traditional Monte-Carlo simulations.

1 INTRODUCTION

Traditional verification and validation (VV) methods are costly and ineffi-
cient. A popular method is Monte-Carlo, which is widely used in VV because
it is very robust. However, it becomes intractable when there are large un-
certainties in the state space or when more sophisticated control laws are
used. It is presumed that traditional VV methods, such as Monte-Carlo,
will be insufficient for intelligent systems [1].
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Using moment and sum of square (SOS) hierarchies with available off-
the-shelf-software is a state of the art technique for VV, see e.g. [2, 3]
where the authors focus on polynomial dynamical models and polynomial
SOS Lyapunov functions. More recently, this VV methodology is used for
assessing robust stability of space launcher control laws within the SAFE-V
project [4]. However, these VV techniques have been thus far limited to
cases where there are a small number of states and/or simple controllers.

Model reference adaptive control (MRAC) has been researched exten-
sively by the aerospace community for the last five decades. Examples of
successful flight testing include the X-36 Tailless fighter [5] and the JDAM
guided munitions [6]. One of the main benefits of adaptive controllers is
their capability of handling adverse conditions and/or inherent uncertainty
in the aircraft dynamics. The main barrier to the application of adaptive
controllers is that there exists no formal procedure by the Federal Avia-
tion Administration (FAA) to validate MRACs for national air and space
[7]. One research direction is extending Monte-Carlo methods to adaptive
control systems. The current state of the art is to search for “worst case”
operating points within the flight envelope. However, there is little room for
uncertainty and complexity without leaving large areas of the state space
unexplored or rendering the VV problem intractable.

Our main goal is to validate existing model reference adaptive control
(MRAC) and state feedback architecture for a nonlinear aircraft model in
the presence of uncertainties using off-the-shelf-software. In particular, we
are interested in qualitative properties such as safety (all trajectories starting
from a set of initial conditions never reach a set of bad states), avoidance (at
least one trajectory starting from initial conditions will never reach a set of
bad states), eventuality (at least one trajectory starting from a set of initial
conditions will reach a set of good states in finite time), reachability (at
least one trajectory starting from a set of initial conditions will reach a set
of good states in finite time), and robustness (all trajectories from a set of
initial conditions guarantee acceptable performance subject to disturbances
and/or unmodeled dynamics).

The procedure follows directly from [4], see also [8] for a broader per-
spective. We first rephrase our validation problem as a robustness analy-
sis problem and then as a nonconvex nonlinear optimization problem over
admissible trajectories. Then the problem is expressed equivalently as an
infinite dimensional linear programming (LP) problem by introducing oc-
cupation measures supported over admissible trajectories. We finally relax
the infinite dimensional LP problem of measures to a finite dimensional lin-
ear matrix inequality (LMI) problem of moments. The solutions to our VV
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problem are primal in the sense that we optimize directly over the system
trajectories. The well-established Lyapunov certificates can also be retrieved
from the dual SOS LP problem.

The main contributions of this paper are as follows:

• We start with the familiar longitudinal polynomial F-16 model com-
pleted with the closed-loop dynamics of the MRAC augmentation ob-
tained by solving directly the Lyapunov equation. Then the existing
control architecture is simplified by relaxing MRAC control law. The
absolute value contained within the adaptation law is replaced with a
quadratic function. Additionally, the total number of adaptive states
is reduced to one. This is considered desirable for practical implemen-
tation. We also demonstrate the validity of this approach with our
VV framework.

• Then we use our VV framework to provide numerical certificates for
various flight conditions of interest in Section 4, which include: Re-
duced control effectiveness, matched uncertainties, and adverse changes
in the flight dynamics. Disturbances and nonlinearities that are oth-
erwise difficult to model can be addressed explicitly. For comparison,
numerical certificates are given for an existing baseline LQR controller
without the MRAC augmentation.

• Traditional Monte-Carlo analysis is also done for all of our flight con-
ditions of interest. We also provide an example where a region of
instability caused by certain combinations of parameters may not be
detected if the state space is not sufficiently explored with simula-
tion. We also show how our VV framework can detect these unsafe
trajectories without additional computation time.

• Our new VV framework reduces a complicated control law valida-
tion problem to numerically solving a simple moment LMI relaxations
problem which is solvable directly with off-the-shelf-software (namely,
Gloptipoly 3 for MATLAB [19]) and a SDP solver (such as MOSEK
[20] or SeDuMi [21]).

The VV framework developed in [2] and [3] is restrictive. It can only
be used to solve problems that contain autonomous polynomial systems.
Convergence in finite time also cannot be guaranteed. Conversely, the use
of moments in our VV framework enables us to deal with systems that
have non-autonomous piecewise polynomials. We can further show in our
numerical examples that all states, including the reference system tracking
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errors, converge to the origin in finite time. This result is significantly better
than existing asymptotic guarantees provided by using Barbalat’s Lemma
for the closed-loop system [17].

The organization of this document is as follows: Section 2 contains
the necessary mathematical preliminaries, Section 3 discusses the nonlin-
ear polynomial F-16 model we developed for purposes of validation and the
control system architecture, and Section 4 contains the main numerical re-
sults. Lastly, Section 5 contains our conclusions with a small discussion on
future results.

2 MATHEMATICAL PRELIMINARIES

We begin by briefly stating the notation used throughout this document.
The following are standard definitions taken from [8]. If X is a compact
subset of Rn, C (X) denotes the space of continuous functions on X and
M (X) (resp., M+(X)) denotes the cone of (resp., non-negative) measures.
Since any measure µ ∈ M (X) can be viewed as an element of the dual space
C (X), the duality pairing of µ on a test function v ∈ C (X) is

∫

X

v(z)µ(z). (1)

For any measure µ ∈ M+(X), we denote its support as spt(µ). A probability
measure is a non-negative measure whose integral is exactly one.

2.1 Polynomial Dynamic Optimization

Consider the nonlinear ordinary differential equation (ODE)

ẋ(t) = f(t, x(t)) (2)

for all t ∈ [0, T ] and given terminal time T > 0, where x : [0, T ] → R
n is

a time dependent state vector, and vector field f : [0, T ] × R
n → R

n is a
smooth map.

Consider now the following polynomial dynamical optimization problem

J = inf hT (T, x(T )) +

∫ T

0
h(t, x(t))dt

s.t. ẋ(t) = f(t, x(t)), x(t) ∈ X, t ∈ [0, T ]

x(0) ∈ X0, x(T ) ∈ XT

(3)
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with given polynomial dynamics f ∈ R[t, x] and costs h, hT ∈ R[t, x], and
state trajectories x(t) constrained in the compact basic semialgebraic set
X = {x ∈ R

n : pk(x) ≥ 0, k = 1, . . . , nX} for given polynomials pk ∈
R[x]. Finally, the initial and terminal states are constrained in the compact
basic semialgebraic sets X0 = {x ∈ R

n : p0k(x) ≥ 0, k = 1, . . . , n0}, and
XT = {x ∈ R

n : pTk(x) ≥ 0, k = 1, . . . , nT } ⊂ X for given polynomials
p0k, pTk ∈ R[x].

The evolution of a family of trajectories solving (2) is formalized as
follows: First consider one admissible trajectory x on t ∈ [0, T ], we define
its occupation measure (denoted µ(·|x)) ∈ M+([0, T ] ×X) as

µ(A×B|x) ,

∫ T

0
IA×B(t, x(t))dt (4)

for all subsets A × B in the Borel σ-algebra of [0, T ] × X, where IA×B(·)
is the indicator function on a set A × B and is defined as the following:
The indicator function of a set A is the function x 7→ IA(x) such that
IA(x) = 1 when x ∈ A and IA(x) = 0 when x /∈ A. The quantity µ(A×B|x)
corresponds to the amount of time the graph of its trajectory, (t, x(t)),
spends in A×B. Similarly, the initial measure can be defined as

µ0(A×B) , IA×B(0, x(0)) (5)

and its terminal measure

µT (A×B) , IA×B(T, x(T )). (6)

Although the cost function in (3) can potentially be nonlinear, it be-
comes linear when it is formulated with occupation measures. In fact, a
similar analog holds true for the dynamics of the system. In other words,
the occupation measure associated with an admissible pair satisfy a linear
equation over measures [8]. Conversely, all supported measures correspond
to the solutions of (3).

The nonconvex optimization problem (3) can be expressed as a convex
infinite dimensional LP problem of measures

J∞ = inf

∫

hT (T, x(T ))dµT +

∫

h(t, x(t))dµ

s.t.
∂µ

∂t
+ divfµ+ µT = µ0

∫

µ0 = 1

(7)
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where div is the divergence operator and the infimum is with respect to the
occupation measure µ ∈ M+([0, T ]×X), initial measure µ0 ∈ M+({0}×X0),
terminal measure µT ∈ M+({T} ×XT ), and terminal time T > 0. It may
happen that minimum in (7) is strictly less than the infimum in (3), so we
make the following critical assumption:

Assumption 2.1 There is no relaxation gap between (7) and (3). In other
words, J∞ = J .

Since we assume X0, X, and XT are compact, the infinite dimensional
LP problem (7) can be approximated by a finite dimensional moment LMI
relaxations problem, following the strategy described extensively in [16].
When relaxation order d ∈ N tends to infinity, it holds that Jd ≤ Jd+1 ≤ J∞
and limd→∞ Jd = J∞.

2.2 Piecewise Polynomial Dynamic Optimization

In this subsection we extend the results from Section 2.1 to a case where
the dynamics of the polynomial from (3) are piecewise [9]. Consider the fol-
lowing dynamic optimization problem with piecewise polynomial differential
constraints

J = inf hT (T, x(T )) +

∫ T

0
h(t, x(t))dt

s.t. ẋ(t) = fj(t, x(t)), x(t) ∈ Xj , j = 1, . . . , N

x(0) ∈ X0, x(T ) ∈ XT , t ∈ [0, T ],

(8)

with given polynomial dynamics fj ∈ R[t, x], j = 1, . . . , N and costs
h, hT ∈ R[t, x], and state trajectory x(t) constrained in compact basic semi-
algebraic sets Xj . We assume that the state space partitioning sets, or cells
Xj , are such that all of their respective intersections have zero Lebesgue
measure, and they belong to a given compact semialgebraic set X. Initial
and terminal states are constrained in a given compact basic semialgebraic
sets X0 and XT .

We then extend the LP problem framework to several measures µj, one
supported on each cell Xj , so that the global occupation measure is

µ =

N
∑

j=1

µj. (9)
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The new measure LP problem reads as

J∞ = inf

∫

hT (T, x(T ))dµT +
N
∑

j=1

∫

h(t, x(t))dµj

s.t.

N
∑

j=1

(

∂µj

∂t
+ divfjµj

)

+ µT = µ0

∫

µ0 = 1,

(10)

and it can be solved numerically with the hierarchy of LMI relaxations as
shown in Section 2.1.

3 F-16 SHORT PERIOD DYNAMICS

The various parameters used for implementing the longitudinal F-16 aircraft
can be found in Table 1:

Table 1: Properties of the Aircraft Model

Parameter Values

Mass m 636.94 slugs
Wing area S 300.0 ft2

Mean aerodynamic chord c̄ 11.32 ft
Reference center of gravity location ∆ 0.35c̄ ft
Thrust T 8000 lbf

Total velocity VT 502 ft
s

Dynamic Pressure q̄ at 0 ft 299.0027 ft

Gravitational pull of the Earth g 32.17 ft
s2

Pitch-axis moment of inertia Jy 55814 slug · ft2

For an F-16 traveling at wings-level steady-state flight, the longitudinal
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short period mode [10], with elevator input δe(t) ∈ R, can be expressed as

α̇(t) =
(

1 +
q̄Sc̄

2mV 2
T

(Czq(α(t))cos(α(t))

− Cxq(α(t))sin(α(t))
)

q(t)

+
q̄S

mVT

(

Cz(α(t), δe(t), β(t))cos(α(t))

− Cx(α(t), δe(t))sin(α(t))
)

−
T

mVT

sin(α(t)) +
g

VT

cos(θ(t)− α(t))

q̇(t) =
q̄Sc̄

2JyVT

(

c̄Cmq(α(t)) + ∆Czq(α(t))
)

q(t)

+
q̄Sc̄

Jy

(

Cm(α(t), δe(t)) +
∆

c̄
Cz(α(t), δe(t), β(t))

)

(11)

where α(t) is the angle of attack, q(t) is the pitchrate, θ(t) is the pitch angle,
and β(t) is the sideslip. We assume that the roll rate and yaw rate of the
aircraft are minimal. We also assume that for small angles (θ(t) ≈ 0) the
velocity of the aircraft remains constant and that the axis of thrust coming
from the engine is fixed.

The aerodynamic coefficients Czq(α(t)), Cxq(α(t)), Cx(α(t), δe(t)), Cmq(α(t)),
Cm(α(t), δe(t)), and Cz(α(t), δe(t), β(t)) are approximated by their polyno-
mials using aerodynamic data taken from [11].

The vehicle angle of attack was selected to represent the system con-
trolled output y(t) = α(t). Thus, the control goal is to asymptotically track
any bounded set point command r(t) = αcmd(t), in the presence of system
uncertainties. Let

ey(t) = α(t)− r(t) (12)

be the system output tracking error. Augmenting (11) with the integrated
output tracking error

ėy,int(t) = ey(t) = α(t)− r(t) (13)

yields the extended closed-loop dynamics.

3.1 Model Reference Adaptive Control with Adaptive Loop

Recovery

We make substantial use of adaptive control framework in this subsection,
and the unfamiliar reader may wish to consult [12, 13]. Consider augmented
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longitudinal flight model (11) to (13) in the form of

ẋ(t) = Ax(t) +BΛ(u(t) + d(x(t)))

+ g(x(t), δe(t), β(t)) +Brr(t), x(0) = x0 (14)

where x(t) =
[

ey,int(t) α(t) q(t)
]

, u(t) = δe(t), A ∈ R
3×3 is unknown,

B ∈ R
3×1 is known, Λ ∈ [0, 1] is an unknown control effectiveness, Br ∈ R

3×1

is a known command input matrix, r(t) is a given piecewise continuous
bounded command, g(x(t), δe(t), β(t)) ∈ R

3×1 contains all the higher or-
der polynomials, and d(x(t)) ∈ R represents additional unknown matched
disturbances.

Next, consider the reference system capturing the desired, ideal closed-
loop dynamical performance given by

ẋr(t) = Arxr(t) +Brr(t), xr(0) = xr0, (15)

where xr(t) ∈ R
3 is the reference state vector and Ar ∈ R

3×3 is the reference
system matrix (we shall assume that it is Hurwitz).

The objective of the model reference adaptive control problem is to con-
struct an adaptive feedback control law u(t) such that the state vector x(t)
asymptotically follows the reference state vector xr(t). Now consider the
augmented adaptive feedback control law given by

u(t) = un(t) + ua(t), (16)

where un(t) ∈ R is control signal generated by the nominal feedback control
law and ua(t) ∈ R is related to the adaptive feedback control law. Addition-
ally, let the nominal feedback control law be given by

un(t) = −K1x(t), (17)

where K1 ∈ R
1×3 is the nominal feedback gain such that Ar = A − BK1.

Next, let the adaptive feedback control law be given by

ua(t) = −Ŵ T (t)Φ(x), (18)

where Φ(x) ∈ R
3×1 is a known basis function and Ŵ (t) ∈ R

3×1 is the
estimate of W (t) satisfying the weight update law

˙̂
W (t) = Γ

(

Φ(x)eT (t)PB + κwΦx(x)Φ
T
x (x)Ŵ (t)

− ke|e
T (t)PB|Ŵ (t)

)

, (19)
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where Γ ∈ R
3×3 is a positive definite learning rate matrix, ke > 0 is the

e modification gain, kw >> 1 is the adaptive loop recovery gain, e(t) ,

x(t) − xr(t) is the system error state vector, Φx(x) =
∂
∂x

Φ(x) ∈ R
3×1, and

positive definite P ∈ R
3×3 is the unique solution to the Lyapunov equation

0 = AT
r P + PAr +R, (20)

where R ∈ R
3×3 is positive definite and can viewed as an additional learning

rate. Note that because Ar is Hurwitz, it follows from the converse Lyapunov
theory [17] that there exists a unique P satisfying (20) for a given R.

Theorems that highlight the boundedness of the closed-loop system er-
rors e(t) and W̃ , W − Ŵ (t), for the adaptive loop recovery and error
modification, can be found in [13, 14]. In practice, Lyapunov analysis only
informs us about the ultimate stability of the closed-loop system [7]. For
non-autonomous systems in particular, the theoretical performance of the
MRAC provided by the Lyapunov analysis is strictly asymptotic. This proof
usually employs Barbalat’s Lemma with the prerequisite assumptions [17].
It is interesting to note that, for our main results in Section 4, all states
converge to the origin in finite time.

Reference matrix Ar and the corresponding baseline LQR feedback gains
K1 = [−10.0000 −10.8756 −6.0565 ] were taken from [15]. To reduce the number
of constraints for the optimization problem, we simplify the absolute value
function in (19) such that

˙̂
W (t) = Γ

(

Φ(x)eT (t)PB + κwΦx(x)Φ
T
x (x)Ŵ (t)

− ke
[

eT (t)PB
]2

Ŵ (t)
)

. (21)

We will demonstrate the validity of this approach in Section 4. To help
visualize the longitudinal controller, a block diagram is provided in Fig. 1.

∫

Nonlinear F-16 Short Period

−K1

ẋr(t) = Arxr(t) +Brr(t)

˙̂
W (t) = Γ

(

β(x)eT (t)PB + κwβx(x)β
T
x (x)Ŵ (t)

− ke
[

eT (t)PB
]2

Ŵ (t)
)

ua(t) = −Ŵ T (t)β(x)

x(t)

+

e(t)

un(t)

+

Ŵ (t)

ua(t)

+

α(t) +

q(t)
u(t)

r(t) −

xr(t) −
ẋr(t) = Arxr(t) +Brr(t)

Figure 1: Longitudinal MRAC Block Diagram
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4 NUMERICAL EXAMPLES

We now present the main numerical results. For the numerical examples
used throughout this section, we use the same MRAC configuration with
Q = diag([ 0.1 100 100 ]), Γ = diag([ 0 2000 0 ]), ke = 0.001, and kw = 12. For
sake of convenience, we also assume Ŵ (0) = 03×1.

All states, including the time domain, must be normalized on the interval
[−1, 1]. For this we use normalizing matrix D = diag([ 1

10

1

30

1

50

1

30
]) and

given terminal time T . We write all of normalized our state equations,
complete with our augmented feedback (16) and weight update laws (21),
in the compact form

ẋopt(t) = TDf
(

t,D−1xopt(t),Λ(u(t) + d(x(t))), β(t)
)

, (22)

where xopt(t) =
[

ey,int(t) α(t) q(t) Ŵ T (t)
]

. We can interpret (22) as the
collection of all admissible trajectories we wish to optimize over.

Our objective is to find the initial state maximizing the norm of the
terminal state. A concave quadratic term J = −[r(t)−α(T )]2 is used. If we
can certify that for every chosen initial state xopt(0) ∈ X0, where X0 is the
box X0 ,

[

−ǫ, ǫ
]

×
[

−10, 10
]

π
180 ×

[

−10, 10
]

π
180 ×

[

−ǫ, ǫ
]

, ǫ << 1,

such that all trajectories remain bounded in the box X ,
[

−10, 10
]

π
180 ×

[

−30, 30
]

π
180 ×

[

−50, 50
]

π
180 ×

[

−30, 30
]

, until they reach final state

belonging to a set XT , {J ≤ 3 · 10−3} ⊂ X, then the control law is
validated.

Three cases are considered for control validation:

• r(t) = 0, Λ = 1, d(x(t)) = 0, β(t) = 0

• r(t) = 0, Λ = 0.4, d(x(t)) = d(α(t)), β(t) = 0

• r(t) = 5, Λ = 0.4, d(x(t)) = 0, β(t) = 15α(t) + 0.1

where d(x(t)) ∈ R can be viewed as unknown nonlinearities in the aerody-
namic Z-force and pitching moments, and β(t) is the sideslip.

We evaluate each case using LQR feedback with and without (ua(t) = 0)
the MRAC augmentation. The main results are compared with upper
bounds for J obtained directly using Monte-Carlo on the same F-16 poly-
nomial mode. For the setup, we used Newtons Method (step time 0.0001 s)
and evenly spaced initial conditions for the nested loops.
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4.1 First Case

For this case, we use command signal r(t) = 0, reference signal xr(t) = 03×1,
final time T = 10, and the control effectiveness Λ = 1. Under normal flight
conditions we also assume d(x(t)) = 0, β(t) = 0. The polynomial dynamical
optimization problem (3) becomes

J = inf
α(T )

− [r(t)− α(T )]2

s.t. ẋopt(t) = TDf
(

t,D−1xopt(t), u(t)
)

xopt(t) ∈ X, t ∈ [0, 1]

xr(t) = 03×1

xopt(0) ∈ X0, xopt(T ) ∈ XT ,

(23)

with given polynomial dynamics f ∈ R[t, x]. The primal problem on mea-
sures (7) and finite dimensional moment LMI relaxations problem are mod-
ified accordingly.

Fig. 2 compares the simulations of the LQR with and without the MRAC
augmentation. The maximum upper bounds were obtained by taking the
maximum absolute value of all the trajectories at α(10). For the LQR
with and without MRAC, they were determined as J = 2.37 × 10−6 and
J = 3.92 × 10−16, respectively.

With Gloptipoly 3 and the SDP solver MOSEK, we obtained the fol-
lowing sequence of upper bounds in Table 2 using the cost function from
(23). Both control laws are validated since all initial conditions reach the
pre-specified set within finite time.

4.2 Second Case

For this case, we use command signal r(t) = 0, reference signal xr(t) = 03×1,
final time T = 10, and the reduced control effectiveness Λ = 0.4. We also
let β(t) = 0 and d(x(t)) = d(α(t)) is a step function centered at α(t) = 0
with the width |α(t)| ≤ 0.0233.

To include the disturbance, we reformulate the optimization problem
with the system dynamics defined as locally affine functions in three cells Xj ,
j = 1, 2, 3 corresponding respectively to the regimes of the disturbance X1 ,

{xopt ∈ R
4 : |α(t)| ≤ 0.0233}, ẋopt(t) = TDf1

(

t,D−1xopt(t),Λ(u(t) + 1)
)

,

X2 , {xopt ∈ R
4 : α(t) ≤ −0.0233}, ẋopt(t) = TDf2

(

t,D−1xopt(t),Λu(t)
)

,

andX3 , {xopt ∈ R
4 : α(t) ≥ 0.0233}, ẋopt(t) = TDf3

(

t,D−1xopt(t),Λu(t)
)

.
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The polynomial dynamical optimization problem (3) becomes

J = inf
α(T )

− [r(t)− α(T )]2

s.t. ẋopt(t) = TDfj
(

t,D−1xopt(t),

Λ(u(t) + d(α(t)))
)

xopt(t) ∈ Xj , j = 1, . . . , 3, t ∈ [0, 1]

xr(t) = 03×1

xopt(0) ∈ X0, xopt(T ) ∈ XT ,

(24)

with given polynomial dynamics fj ∈ R[t, x]. The primal problem on mea-
sures (7) and the finite dimensional moment LMI relaxations problem are
modified accordingly.

Numerical simulations can be found in Fig. 3. The maximum upper
bounds were found by taking the maximum absolute value of all the trajecto-
ries at α(10). For the LQR with and without MRAC, they were determined
as J = 1.50 × 10−3 and J = 1.64 × 10−16, respectively.

We obtained the following sequence of monotonically decreasing upper
bounds Jd, d = 1, . . . , 5 in Table 3. The LQR with MRAC achieves a con-
sistent lower maximum bound and reaches the set by the fourth relaxation
order.

4.3 Third Case

For the final case we use final time T = 30 and the reduced control effective-
ness Λ = 0.4. We also assume d(x(t)) = 0. For command signal r(t) = 5, we
have to build a reference signal xr(t). Since the dynamics of xr(t) are purely
linear, we can approximate their states via piecewise polynomials over a par-
titioned time domain. We also include sideslip buildup β(t) = 15α(t) + 0.1
as it appears in Cz(α(t), δe(t), β(t)).

To include the reference trajectory dynamics xr(t), we reformulate the
optimization problem with the system dynamics defined as locally affine
functions in three cells Xj , j = 1, 2, 3 corresponding to the first time par-
tition X1 , {t ∈ R : 0 ≤ t ≤ 3}, xr(t) = P1(t), withtrajectoriesẋopt(t) =
TDf1

(

t,D−1xopt(t),Λu(t), β(t)
)

, the second time partition X2 , {t ∈ R :
3 ≤ t ≤ 9}, xr(t) = P2(t), ẋopt(t) = TDf2

(

t,D−1xopt(t),Λu(t), β(t)
)

, and

the final time partition X3 , {t ∈ R : 9 ≤ t ≤ T}, xr(t) = P3(t), ẋopt(t) =
TDf3

(

t,D−1xopt(t),Λu(t), β(t)
)

. The polynomial dynamical optimization
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Table 2: GLoptipoly 3 + MOSEK Upper Bounds for Case 1
LQR LQR + MRAC

Rel Ord Upper Bnd J CPU [s] Upper Bnd J CPU [s]

1 2.74 × 10
−1

2.54 2.74 × 10
−1

2.29

2 1.59 × 10
−1

2.13 7.61 × 10
−2

7.06

3 6.67 × 10
−5

6.71 3.25 × 10
−5

5.31 × 10
1

4 3.72 × 10
−6

2.34 × 10
1

4.96 × 10
−6

3.53 × 10
2

5 1.25 × 10
−6

1.01 × 10
2

1.47 × 10
−6

2.58 × 10
3

Table 3: GLoptipoly 3 + MOSEK Upper Bounds for Case 2
LQR LQR + MRAC

Rel Ord Upper Bnd J CPU [s] Upper Bnd J CPU [s]

1 6.26 × 10
−2

2.80 2.74 × 10
−1

2.53

2 7.44 × 10
−3

3.51 4.52 × 10
−3

1.91 × 10
1

3 4.05 × 10
−3

1.96 × 10
1

8.02 × 10
−4

2.05 × 10
2

4 3.74 × 10
−3

2.64 × 10
1

7.24 × 10
−4

1.31 × 10
3

5 3.61 × 10
−3

6.41 × 10
2

7.04 × 10
−4

9.74 × 10
3

problem (3) becomes

J = inf
α(T )

− [r(t)− α(T )]2

s.t. ẋopt(t) = TDfj
(

t,D−1xopt(t),Λu(t), β(t)
)

xopt(t) ∈ Xj , j = 1, . . . , 3, t ∈ [0, 1]

xr(t) = Pj(t)

xopt(0) ∈ X0, xopt(T ) ∈ XT ,

(25)

with given polynomial dynamics fj ∈ R[t, x]. The primal problem on mea-
sures (7) and the finite dimensional moment LMI relaxations problem are
modified accordingly.

Numerical simulations can be found in Fig. 3. The maximum upper
bounds were found by taking the maximum absolute value of all the tra-
jectories at α(30). Some of the trajectories of the standalone LQR were
omitted, because they were unstable. In particular, the trajectories begin-
ning with large combinations of α(0) and q(0) values are unbounded. The
upper bound for the LQR without MRAC is J = ∞, and with the MRAC
it is J = 5.18 × 10−15.

We obtained the following sequence of monotonically decreasing upper
bounds Jd, d = 1, . . . , 5 in Table 4. The standalone LQR upper bound
remains large. Conversely, the LQR with MRAC upper bound obtains a
sufficiently small value by the fourth relaxation order.
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Figure 2: Numerical Results for Case 1

Table 4: GLoptipoly 3 + MOSEK Upper Bounds for Case 3
LQR LQR + MRAC

Rel Ord Upper Bnd J CPU [s] Upper Bnd J CPU [s]

1 3.73 × 10
−1

1.65 3.73 × 10
−1

7.57

2 1.97 × 10
−1

1.54 2.14 × 10
−1

1.07 × 10
2

3 1.90 × 10
−1

5.39 1.91 × 10
−1

9.24 × 10
2

4 1.90 × 10
−1

2.48 × 10
1

2.59 × 10
−2

1.05 × 10
4

5 1.90 × 10
−1

9.81 × 10
1

2.98 × 10
−3

5.39 × 10
4

5 CONCLUSIONS AND FUTURE WORKS

In this document, we validated both LQR and MRAC control laws using
moment LMI relaxations and off-the-shelf-software. An F-16 polynomial
model was implemented to ensure that the MRAC model matches the LMI
framework. We took steps to simplify the MRAC architecture for practical
implementation. Then the entire system (the polynomial F-16 model com-
plete with the LQR with and without the MRAC augmentation) was then
validated under various flight conditions of interest. These results were com-
pared with those obtained numerically using Monte-Carlo. The main chal-
lenge was adapting these control laws to our VV framework. Derivative-free

15



0 2 4 6 8 10
−10
−5
0
5

10

e y
,i
n
t(
t)

LQR

0 2 4 6 8 10
−10

0
10

α
(t
)

0 2 4 6 8 10
−50

0

50

t [s]

q(
t)

0 2 4 6 8 10
−10
−5
0
5

10

LQR + MRAC

0 2 4 6 8 10
−10

0
10

0 2 4 6 8 10
−50

0

50

t [s]

0 1 2 3 4 5 6 7 8 9 10
−20

0
20

t [s]

Ŵ
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Figure 3: Numerical Results for Case 2

model reference adaptive control (DF-MRAC) could yield promising results
as it does not impose additional states on the dynamics. Another topic of
interest is validating adaptive control laws in the presence of actuator dy-
namics. Their sparsity can be exploited. We also wish to consider other
types of nonlinear control laws have similar properties.
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