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Multi-Site Fishing Models.

Pierre Auger1, Olivier Pironneau2

Abstract

Mathematical models are used to predict the long term effect of fishing on the fish biomass.
The simplest models involve ordinary differential equations and functions of time only.
Some more complex models have an array of functions of time only whose index represent
the spatial position of each site. In this article we build on these and propose extensions
using partial differential equations to account for the monodimensionality of the coast or
the bidimensionality of the sea. We investigate the capacity of these models to validate
non-fishing zones to fight over fishing.

French title: Modèle de pêche multi-sites.
Pour la pêche les modèles mathématiques servent à prédire la biomasse des poissons sur
des temps longs. Les modèles les plus simples utilisent des équations différentielles pour
des fonctions du temps seulement. Quelques modèles plus complexes généralisent les
modèles précédents à un ensemble fini de sites avec des équations différentielles pour un
vecteur de fonctions du temps où les indices sont associés aux sites. Nous proposons de
généraliser cette approche en passant à la limite sur le nombre de sites afin d’obtenir des
équations aux dérivées partielles à une variable d’espace si l’on considère seulement la
côte ou 2 variables d’espaces si l’on considère la mer. Nous nous intéressons à la capacité
de ces modèles a valider les zones de non-pêches pour combattre la surpêche.

Keywords: Fishery modelling, Marine Protected Area, Partial differential equations.

1. Introduction

The logistic model introduced by Verhulst [7] for population dynamics and controlling
the fish biomass B(t) has been extended by Schaefer [6] to fisheries with an effort function
E(t) – conveniently representing the number of fishing boats at sea– and a catchability
coefficient q. In [2] an extension relating the fishing effort to the market price p of fish
is analysed. It applies to a coastal area with a single fishing zone; the fish biomass is
a function of the fish reproduction rate r (which includes natural death) and the fish
mortality due to fishing; in absence of fishing, there is a natural limit to B(t∞) which we
denote by k (the carrying capacity of the site). Mortality due to fishing is proportional
to fish biomass and fishing effort:

1

B

dB

dt
= r(1− B

k
)− qE (1)
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2olivier.pironneau@sorbonne-universite.fr, LJLL, Sorbonne Université, Paris, France.
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The fishing effort is a function of the price of fish at time t, p(t):

1

E

dE

dt
= pqB − c. (2)

This says that the rate of the fishing effort is proportional to the difference between the
revenue and the cost c of fishing per unit of fishing effort.
When the market is liquid the price adjusts daily to balance supply qBE and demand
D(p). The demand is a monotone decreasing function of price, for example D(p) = A

1+βp
.

Hence p = max{pmin, (A − qBE)/(βqBE)}; it is necessary to introduce pmin beyond
which selling of fish cannot happen, but it may be convenient to take pmin = 0.
This model has 2 nonlinear ODE; the long limit solution can either be B(t∞) = 0 or
B∞ > 0 depending on the parameters and the initial conditions B0, E0.

Extension of this model to multiple adjacent sites have been proposed in [2] among
others. It uses the following notations

Notations.

• Bi(t) the biomass at site i at time t.

• Ei(t) the fishing effort at site i at time t.

• βij is the rate of migration of boats from site i to site j. Assume βij = βji .

• ki the carrying capacity of zone i.

• mi
j is the rate of migration of fish from site i to site j. Assume : mi

j = mj
i .

• q is the catchability.

• ε, φ time scales for population dynamics of fish and price adjustment respectively.

• r is the fish population growth rate.

• c is the cost per unit fishing effort.

• p market price of fish.

• A, β coefficients in the demand curve D(p).

• Ii = 1 if i is a fishing site and 0 otherwise.

The coast is divided in adjacent sites where fishing is allowed or forbidden. Ii is defined
accordingly. The generalisation of the previous model, proposed in [2], is

dBi

dt
−εrBi(1−

Bi

ki
− Ii

q

r
Ei) = mi

i−1Bi−1 +mi
i+1Bi+1 − (mi

i−1 +mi
i+1)Bi,

dEi
dt

−ε(pqBi − ci)Ei = βii−1Ei−1 + βii+1Ei+1 − (βii−1 + βii+1)Ei,

dp

dt
= (

A

1 + βp
−
∑
i

qiIiBiEi)φ, i = 1.., I. (3)

In this article we look at these models from 4 angles:
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1. What are the partial differential equations, limit of the model when the number of
sites tends to infinity?

2. Can they assert the efficiency of marine protected zones?

3. Can it be generalised to two dimensions, i.e. not just the coast?

4. Conversely, starting from the PDE can we recover the above discrete model?

We will take these four questions one by one and simulate numerically all the derived
models and make interesting conclusions at the end.

2. A one dimensional continuous model for coastal fishing

Given a small mesh size δx, for any function x→ y(x) let yi denote the value at xi = iδx
of y(x). Let us interpret mj

i as m(jδx, iδx) and similarly for β. The system above can
be rewritten as

dBi

dt
−εrBi(1−

Bi

ki
− Ii

q

r
Ei)

= (miB)i+1 + (miB)i−1 − 2(miB)i −Bi(m
i
i+1 +mi

i−1 − 2mi
i)

= δxx(m(x)B)−Bδxxm(x) = δx(mδxB) + δxBδxm
(4)

dEi
dt

−ε(pqBi − ci)Ei
= δxx(β

iE)− Eδxxβi = δx(βδxE) + δxEδxβ
(5)

dp

dt
= (

A

1 + βp
−
∑
i

qiIiBiEi)φ (6)

where δx and δxx are finite difference operators:

(δxy)i =
yi+1 − yi−1

2δx
, (δxxy)i =

yi+1 − 2yi + yi−1

(δx)2
.

Let δx→ 0, then the system tends to

∂tB − ∂x(m∂xB) = ∂xB∂xm+ εrB

(
1− B

k
− I(x)

q

r
E

)
∂tE − ∂xx(β(x)E) = ∂xE∂xβ + ε(pqB − c)E, for all x such that I(x) = 1

∂tp =

(
A

1 + βp
−
∫ b

a

I(x)qBEdx

)
φ

If the price adjusts instantaneously to the market then

p =
1

β

(
A∫ b

a
I(x)qnEdx

− 1

)

and, implicitly applying ∂x(βE) = 0 at interfaces of fishing to non fishing zones. We
summarize the results in the following proposition.
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Proposition 1. When δx → 0 and fish price adjusts instantaneously, the fish biomass
B and the fishing effort E are solution of the following integro-partial-differential system:

∂tB − ∂x(m∂xB) = ∂xB∂xm+ εB r

(
1− B

k
− I

q

r
E

)
∂tE − ∂x (I∂x(βE)) = I(x)

(
∂xE∂xβ + εE

(
Bq

β

(
A∫ b

a
IqBEdx

− 1

)
− c

))
(7)

where I(x) is one if x is in a fishing zone and zero if x is in a marine protected area.

2.1. Stationary solution when m and β are small

B

k
+ I

q

r
E = 1, I

Bq

β

(
A∫ b

a
IBqEdx

− 1

)
= cI

or equivalently

BqI = cIβ
λ

A− λ
, IE =

r

q
(1− B

k
), λ =

∫ b

a

BqIE =

∫ b

a

r(B − B2

k
)

There is an autonomous equation for λ:

λ =

∫ b

a

I
rcβ

q

λ

A− λ
(1− cβ

kq

λ

A− λ
) =

∫ b

a

I
rcβ

q

λ

A− λ
(1 +

cβ

kq
− cβA

kq

1

A− λ
) ⇒

1 =
1

A− λ

∫ b

a

I
rcβ

q
(1 +

cβ

kq
)− 1

(A− λ)2

∫ b

a

I
rA

k
(
cβ

q
)2 =

βY + β2X

A− λ
− Aβ2X

(A− λ)2

with X =

∫ b

a

I
rc2

kq2
and Y =

∫ b

a

I
rc

q
. (8)

So, equation a′z2− b′z+ 1 = 0 gives z = 1/(A−λ) with b′ = βY +β2X and a′ = Aβ2X.
If the discriminant b′2 − 4a′ > 0, i.e. (Y + βX)2 > 4AX, there is a positive root,

z =
1

2a′
(b′ +

√
b′2 − 4a′), λ = A− 1

z
, B∞ =

cβ

q

λ

A− λ
, E∞ =

r

q
(1− B∞

k
).

If (7) is stable, its limit when t → ∞ is B∞, E∞. If B∞ = 0, the fish disappear; it is
possible only if A = cβ(b− a)E∞ and E∞q = r, i.e. Aq = cβ(b− a)r.

2.2. Numerical Simulations

A semi-implicite finite difference scheme is used:

1

δt
(Bj+1 −Bj) −∂x(m∂xBj+1) +Bj+1εr(

Bj

k
+ I

q

r
Ej) = ∂xB

j∂xm+Bjεr

1

δt
(Ej+1 − Ej) −∂x

(
I∂x(βEj+1)

)
+ Ej+1εI

(
Bjq

β
+ c

)
= I(x)

(
∂xE

j∂xβ + εEj

(
ABjq

β
∫ b
a
IqBjEjdx

))
. (9)

Then this time-discrete system is discretized in space by a finite element method of
degree 1.
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2.2.1. Numerical Example

When all parameters are equal to 1 and L =

∫ b

a

I > 1 the second degree equation analysed

above has two roots: X = Y = L, (Y + βX)2 = 4L2 > 4AX = 4L, b′ = L+ L2, a′ = L,

b′ +
√
b′2 − 4a′ = L+ L2 +

√
(L+ L2)2 − 4L > 2a′A−1 = 2L.

In the following simulation the coast has length L = 3; it is divided into a fishing zone

(0,
L

2
) and a marine protected zone (

L

2
, L).

The other parameters are m = 0.1 and β = 0.1. At time t = 0 we assume that B = 2B∞
and E = E∞/2. At x = 0 we enforce n = 2B∞ and at x = L, E = 0.01.
The results are shown on Figures 1 and 2, with a catchability is q = 1 and a fish and
boat migration m = 0.1, β = 0.1. The biomass is decreasing in the middle of the fishing
zone but reach an equilibrium in the no-fishing zone.

0
1

2
0

20

40

1

1.1

x

t

B(x, t)

Figure 1: The fish biomass B(x, t) computed by
the continuous model (7) versus costal position x ∈
(0, 3) at time (depth on the figure) t ∈ (0, 50); x >
1.5 is a no fishing zone. The catchability is q = 1.
The fish and the boat migration are m = 0.1, β =
0.1.
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Figure 2: Fishing effort E near the coast x ∈ (0, 3)
at time (depth on the figure) t ∈ (0, 50); x > 1.5 is
a no fishing zone. The catchability is q = 1. The
fish and the boat migration are m = 0.1, β = 0.1.

To study the influence of the fish migration we ran another case with fish migration into
the no-fishing zone m = 0.1 + 0.1x2; Results are shown on Figure 3 and Figure 4. The
migration stabilises the biomass because it diminishes the catch in the fishing zone; yet
this diminution does not affect E very much.
To study the influence of boat migration we ran another case with β = 0.1+0.1x2; Results
are shown on Figure 5 and Figure 6.
To study the influence of the catchability we ran a case with q = 1+ x

2
. Results are shown

on Figure 7 and Figure 8.
These simulations show mild influence of migration coefficients and strong influence of
the catchability. Futhermore while B is affected most, E doe not change much, indicating
that the coupling between B and E is not strong enough.
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Figure 3: Number of fish n near the coast x ∈ (0, 3)
at time (depth on the figure) t ∈ (0, 50); x > 1.5 is
a no fishing zone. The catchability is q = 1. The
fish and the boat migration are m = 0.1 + 0.1x2,
β = 0.1 respecctively.
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Figure 4: Fishing effort E near the coast x ∈ (0, 3)
at time (depth on the figure) t ∈ (0, 50); x > 1.5 is
a no fishing zone. The catchability is q = 1. The
fish and the boat migration are m = 0.1 + 0.1x2,
β = 0.1 respecctively.
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Figure 5: Number of fish n near the coast x ∈ (0, 3)
at time (depth on the figure) t ∈ (0, 50); x > 1.5 is a
no fishing zone. The catchability is q = 1. The fish
and the boat migration arem = 0.1, β = 0.1+0.1x2.
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Figure 6: Number of boats E near the coast x ∈
(0, 3) at time (depth on the figure) t ∈ (0, 50); x >
1.5 is a no fishing zone. The catchability is q = 1.
The fish and the boat migration are m = 0.1, β =
0.1 + 0.1x2.

3. Extension to two dimensional domains: fishing in the open sea

Consider a domain Ω with a subdomain O where fishing is forbidden. As before let I be
the fishing zone indicator. By analogy with the one dimensional case, it is reasonable to
consider , for all x ∈ Ω and all T > 0:

∂tB −∇ · (m∇B) = ∇B · ∇m+Bεr

(
1− B

k
− I

q

r
E

)
∂tE −∇ · (β∇E) = I(x)

(
∇E · ∇β + εE

(
Bq

β

(
A∫ b

a
IqBEdx

− 1

)
− c

))
(10)
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Figure 7: Number of fish n near the coast x ∈ (0, 3)
at time (depth on the figure) t ∈ (0, 50); x > 1.5 is
a no fishing zone.The catchability is q = 1+ x

2 . The
fish and the boat migration are m = 0.1, β = 0.1.
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Figure 8: Number of boats E near the coast x ∈
(0, 3) at time (depth on the figure) t ∈ (0, 50); x >
1.5 is a no fishing zone. The catchability is q =
1 + x

2 . The fish and the boat migration are m =
0.1, β = 0.1

3.1. A numerical test

The domain is a rectangle (−L,L)×(0, H) with a rectangular no fishing zone (−L1, L1)×
(H1, H).
Initially the number of fish is 2B∞ on the left (i.e. x < 0) and B∞ on the right. The
number of boats is E∞ on the left and 2E∞ on the right.
On the left vertical boundary we assume that n = 2B∞, i.e. many fish. On the right
vertical boundary n = B∞. On the top boundary of the no fishing rectangle we impose
E = 0.01 and for the second test m = 2B∞ and nothing for the first test.
All parameters are equal to 1, except β = 0.1 and m = 0.1 for the first test and m = 0.5
for the second. The system is simulated up to time t = 50 with 50 time steps. The mesh
has 1483 vertices. and 2884 triangles. Results are shown on Figures 9 and 10. It shows
clearly how fishermen migrate from the right (where B is low initially) to the left and
making the left zone harder to fish in. In the end there are no fish in the protected zone
as well when the fish migration coefficient is small: m = 0.1; when m = 0.5 the left zone
and the no fishing zone at the center are no longer empty at the end of the computation
.
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Figure 9: Case 1. Top 5 pictures: Evolution (one
picture ever 10 time steps) of the fishing effort. The
fish density is not prescribed at the top of the no-
fishing zone and m = 0.1. The last picture is the
fish density at the final time.

Figure 10: Case 2. Top 5 pictures: Evolution (one
picture ever 10 time steps) of the fishing effort. The
fish density is prescribed at the top of the no-fishing
zone and m = 0.5. The last picture is the fish
density at the final time.

4. A continuous model for Plankton, Fish and Fishermen

The biggest difficulty of the previous model is the mobility function m which is probably
very hard to guess in practice.
In this section we will see that if we can give a more solid ground to the previous two
dimensional model. To this end we need to introduce plankton as an incentive for the
motion of the fish. The notations are as follow:

4.1. Notations

Variables

• P (x, t) plankton density at point x and time t.
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• B(x, t) fish population at x and time t.

• Ei(t) fishing effort by fishermen i at time t

• Xi(t) position of fisherman i at time t.

• π(x, t) probability density of fishing boats at x at time t.

• p(t) price of fish at time t.

Parameters

• Ω the domain occupied by the sea. (0, T ), the time interval for the study.

• ε time scale of the dynamics of plankton

• v(x, t) sea current at point x and time t.

• µ, ν, κ diffusion constant of plankton, fish position, boat position

• a reproduction rate of plankton

• b rate at which the plankton is eaten by fish

• α, β, γ, K = αT̄ 2

β+γ
behavioral parameters of a fisherman

• r rate of reproduction of fish

• d rate of death of fish

• q catchability of fish

• c cost of operation of a boat

• A,B parameters of the demande for fish for a given price.

4.2. Plankton

The plankton density P is regenerated at rate aP and eaten by the fish at rate b times
B, the fish density. The logistic equation for P is:

ε∂tP + v · ∇P − µ∆P = aP (1− P )− bBP, P (0) = P 0 in Ω× (0, T ) (11)

where P 0(x) is the probability density function of plankton at initial time. The model
assumes that in absence of fish the long time limit of P is one. Here v is the sea current
velocity. The term −aP 2 models the natural death of the plankton. Having the rate of
change of plankton density proportional to the concentration is convenient because of the
following remark. More realistic models can be found in [1].

Remark 1. The right hand side is also aP (1 − b
a
B − P ); if B < a

b
, then P is positive

and bounded by 1 − b
a
B if it is so at time zero. Otherwise P may become negative and

the model is no longer meaningful.

Remark 2. When c′ := 1 − b
a
B is constant and v = 0 and µ = 0, the solution of

Ṗ = aP (c′ − P ) is P = c′eac
′ t
ε/(1 + eac

′ t
ε ), tends to c′ when t → ∞. When µ > 0 and Ω

is bounded there is no non-zero limit t→∞ of

ε∂tP − µ∆P = aP (c′ − P ), P (0) given in (0, c′) and P |∂Ω = 0. (12)
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4.3. Modelling of a fishing boat

A single fisherman will want to maximize its catch while keeping his cost minimum. Its
catch is proportional to the fish population B(x, t) and its cost is proportional to the
square of the modulus of the velocity of the boat to operate the engine; he may also
prefer not to go too faraway so X(T̄ ) has a cost. So over a time interval (0, T̄ ),

max
U

J(U) :=

∫ T̄

0

αB(X(t), t)dt−
∫ T̄

0

β

2
|U |2dt− γ

2
|X(T̄ )|2 : Ẋ = U(X(t)), X(0) = 0,

where α is a function of the price of the fish and β, γ include the price of fuel; they are
constant over (0, T̄ ) but vary from one day to the next.
The solution is found by a calculus of variations. Let δU be a deviation from the optimal
solution, then δẊ = δU, δX(0) = 0,

δJ =

∫ T̄

0

[α∇BδX − βU · δU ]− γX(T̄ ) · δX(T̄ )

=

[∫ T̄

0

α∇Bdτ − γX(T̄ )

]
· δX(T̄ )−

∫ T̄

0

[(∫ t

0

α∇Bdτ

)
δẊ + βU · δU

]
(13)

We will have δJ = 0 if∫ t

0

α∇Bdτ + βU =

∫ T̄

0

α∇Bdτ − γX(T̄ )

which implies

Ẍ(t) = − α

2β
∇B(X(t), t), X(0) = 0, βẊ(T̄ ) + γX(T̄ ) = 0.

U =
α

β

∫ T̄

t

∇Bdτ +
αγ

β + γ

∫ T̄

0

(∫ t

0

∇B(X(τ), τ)dτ −∇B(X(t), t)

)
dt (14)

As a first approximation, we assume that ∇B is constant; it gives

U =
αT̄ 2

β + γ
∇B

Interpretation. In this formula T̄ is the length of time over which the fisherman takes
a decision; it is not the whole day because only a rough knowledge of the local value
of ∇B near his boat is available to the fisherman. We retain from the above analysis
that the velocity of the boat when it moves is proportional to ∇B. The coefficient
of proportionality is a consequence of the psychology of the fisherman; it can only be
measured.

4.4. Fish

Fish move so as to optimize their food intake for a given energy expenditure. The problem
is similar to that of the fisherman who, in the previous paragraph optimized his catch
for a given effort level. Hence by the same optimisation argument the optimal swimming
velocity of the fish is proportional to the gradient of the plankton density.
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Fish die naturally at rate d and reproduce at a rate r proportional, function of the food
supply P .
Fishing depletes the fish population; let Nm(t) be the number of fish caught during the
time interval (0, T ). Let nm(t) = Ṅm(t). Then the fish population B is driven by

∂tB +∇ · (B∇P )− ν∆B = r(P )B −Bd−
M∑
1

nm(t)δXm(t) B(·, 0) = B0(·) given, (15)

where δx denote the Dirac mass at x. In the sequel we assume that r(P ) = rP .

4.5. Modelling of the number of fish caught by a fisherman

In an ideal situation one would state that nm(t) = qB(Xm(t), t), the coefficient of propor-
tionality q being the catchability. However the fishermen have an operating cost c which
must be kept less than the profit pqB where p is the market price of fish.
In [2], nm(t) = B(Xm(t), t)qEm(t), i.e. the coefficient of proportionality between nm and
B(Xm(t), t) has a new coefficient, the “fishing effort” Em of the fisherman m; it is given
by

1

E

dE

dt
= pqB − c (16)

The fishing effort is defined on the trajectory of the fisherman’s boat, given by

Ẋm = U = K∇B(Xm(t), t), X(0) given. (17)

The price of fish is given by balancing demand
A

1 +Bp
and supply qEB where EB =∑M

1 Em(t)B(Xm(t), t) is the sum of all fishing efforts: p = max{0, 1

B
(
A

qEB
− 1)}. So

(15) becomes

∂tB +∇ · (B∇P )− ν∆B = r(P )B −Bd−
M∑
1

qEm(t)B(Xm(t), t) B(·, 0) = B0(·) (18)

with (17) and

Ėm(t) = Em(t) max{0,

[(
A∑M

1 EmB(Xm, t)
− q

)
B(Xm(t), t)

B
− c

]
}. (19)

Proposition 2. A continuous model for P,B, {Em}M1 , the plankton density, the fish
biomass and the effort function of each fisherman, is given by (11),(18),(17), (19).

4.6. A large number of fishing boats

Let us assume that at t = 0 we know the distribution of fishing boats at sea. Let us add
some randomness, with a 2D Brownian motion W , E[W1W2] = 0, to the trajectories of
each boat:

dXt = K∇B(Xt, t)dt+ κdWt. (20)
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The PDF of this process is given by the Kolmogorov equation

∂tπ +∇ · (πK∇B)− κ∆π = 0, π(0) given in R2. (21)

So V := E[EB] =

∫
R2

EBπdx with E given by (16) with p = 1
B

( A
qV
− 1) and B given by

∂tB +∇ · (B∇P )− ν∆B = r(P )B −Bd− qEB B(·, 0) = B0(·) (22)

Note that this is an approximation because it is not true that
∑M

1 B(Xm(t), t)qEm(t)δXm(t)

converges to qEB when Xm is random and M →∞.

Definition 1. When the number of fishing boats M is large, a continuous model for
P,B,E, π, the plankton density, the fish biomass the global effort function and the PDF
of the boat density, is given by (11),(22),(16), (21).

4.7. Long time solution

Fishing allowed everywhere. Let us assume that the time scale of the dynamics of P is
small: ε << 1. Then P̄∞ := limt→∞w = 1− b

a
B. Let B̄∞ = limt→∞

∫
Ω
Bdx and similarly

for Ē∞. Integrating the equation of B over Ω and the equation of E gives

B̄∞(rP̄∞ − d− qĒ∞) = 0, pqB̄∞ − c = 0, Bp =
A

qĒ∞B̄∞
− 1.

This leads to an equation for B̄∞; with B′ = B/q and b′ = b/a it is

rb′B̄2
∞ − (r − d−B′cb′)B̄∞ − (r − d)B′c+ A = 0. (23)

With a marine protected zone. The interesting case is when parameters are such that the
above equation has no solution (fish going extinct); in the no fishing zone the equations
for P and B give an stationary average B̄∞ = (1− d

r
)a
b
, P̄∞ = d

r
.

4.8. Numerical Simulations

4.8.1. Plankton-Fish and no fishing boats

∂tP − µ∆P = aP (1− P )− bBP, P (0) = P 0(x) given, positive, bounded.
∂tB +∇ · (B∇P )− ν∆B = r(P )B − dB B(·, 0) = B0(·) given. (24)

The long time limit is B̄∞ = (1− d
r
)a
b
, P̄∞ = d

r
. Hence it is important that d < r.

The domain is a rectangle Ω = (−L,L) × (0, H) with L = 3, H = 2. Define II =
Ω\(−L1, L1) × (H1, H) with L1 = 1, H1 = 0.15. Starting from P 0 = 1x<L1 and B0 =
0.01 + 0.51−L1<x<L1 , we obtained figure 11 at T = 2, when r = 1, a = 2, b = 1, d = 0.5.
All diffusions, µ, κ, ν are set to 0.1. Results are shown on figure 11. The computation
shows that most fish swim slightly to the left because that is where the plankton is. The
long time limit is P̄∞ = 0.5, B̄∞ = 1.
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Figure 11: P B

4.8.2. Plankton-Fish-Fishing boats

On Figure 12 we present the result of a simulation of the system of Proposition 2
(11),(18),(20),(16) with K = 80, q = 20, A = 10, B = 1, c = 1; P 0 and B0 as above and
50 boats randomly distributed with a Gaussian distribution centered at x = −1 on the
coast.
Three Simulations are performed. One with fishing restriction in a rectangle in the middle
of the domain, not touching its base, in which it is seen that the fish population does not
go to zero near the fishing zone.
In the second simulation fishing is allowed everywhere. Then it is seen that the fish
population tends rapidly to zero everywhere.
In the third simulation d = 2, forcing P̄∞ = 0. Even with a no fishing zone the fish
population goes to zero everywhere.
The fish do as above and a strip swims to the left; the fishermen hunt them and fish
almost all the fish nearer to the coast. Finally figure 13 shows the fish price variation for
the first 2 cases.

4.8.3. Plankton - Fish - Fishing Effort - Fishermen density

We assume that there is a density of fishermen spread uniformly on the coast initially
and spreading according to (21). As above when fishing is allowed everywhere, the fish
density tends to zero everywhere. If fishing is not allowed in a rectangle then the fish
density does not go to zero in the rectangle. The long time limit is B̄∞ = 0 because
(23) is B̄2

∞ − 79
80
B̄∞ + 9.925 = 0 which has no real root. Results are shown on figure 14.

The conclusion of this section is that the two models are capable of asserting the benefit
of a marine protected area. The model of Proposition 2 is more rigorous but harder to
simulate. When the number of fishermen is large enough one may use the model defined
in Definition 1, with some caution.
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Figure 12: Top 2 figures: Level lines of the fish population function and the boats positions at T = 2.
Top: fishing is allowed everywhere. Below, fishing is not allowed in the rectangle. On the top image
all fish have disappeared. On the second image the dynamics in the rectangle is sufficient to keep the
fish population from extinction. The third image corresponds to d = 0; even with a no fishing zone fish
disappear everywhere. Bottom: color map of the fishing effort without (left) and with (right) a non
fishing zone
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Figure 13: Variation of fish price versus time. The crisis at t = 0.7 in the case of a no fishing zone is due
to the fact that fishermen who where glued on the right side of the no fishing zone randomly pass on the
left side of it. It happens when the gradient of B is large.

Figure 14: Left Fish density at T=2, when fishing is allowed everywhere. Right, fishing is not allowed
in the rectangle

5. Very coarse discretization

In this section we take the opposite path: going from the continuous system to a discrete
system with a few fishing or no fishing zones.

5.1. Three zones

To connect this analysis with the discrete systems proposed earlier in [2]; we consider 2
zones and an interface or, equivalently, 3 zones: fishing is allowed on the left, but may be
forbidden on the right. The PDEs are discretized using finite differences on a very coarse
mesh made of 5 × 3 points (see figure 15). On the boundary of Ω = (−L,L) × (0, H)
normal derivatives of P and B are set to zero; referring to figure 15 this means that
all quantities at vertices qn, n = 8, 7, 6 and qn, n = 11, 12, 13 are equal to the same
quantities at qn, n = 1, 2, 3 respectively. Similarly quantities at qn, n = 0, 4 are equal
to the same quantities at qn, n = 1, 3 respectively. Quantites at qn, n = 5, 9, 10, 14 do
not appear in the discretisation. It implies that there are only 3 points of interest, of
coordinates

q1 = {−L
2
,
H

2
}, q2 = {0, H

2
}, q3 = {L

2
,
H

2
}.
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Figure 15: Finite difference grid for the discretization of the domain Ω which can be viewed either as
2 zones and an interface in the center or 3 zones, left, right and the zone in red. On the right of the
vertical arrowed line in the center we may impose no fishing.

The unknowns are {Pn, Bn, En}n=1,2,3. Let h = L/4 be the mesh size, then a finite
element method of degree one gives

εṖ1 −
µ

h2
(P2 − P1) = aP1(1− P1)− bB1P1

εṖ2 −
µ

h2
(P3 + P1 − 2P2) = aP2(1− P2)− bB2P2

εṖ3 −
µ

h2
(P2 − P3) = aP3(1− P3)− bB3P3

Ḃ1 −
µ

h2
(B2 −B1)− K

2h
[(B2 +B1)(P2 − P1)] = rB1P1 − dB1 − qB1E1

Ḃ2 −
µ

h2
(B3 +B1 − 2B2) +

K

2h
[(B2 +B1)(P2 − P1)− (B2 +B3)(P3 − P2)]

= rB2P2 − dB2 − qB2E2

Ḃ3 −
µ

h2
(B2 −B3) +

K

2h
[(B2 +B3)(P3 − P2)] = rB3P3 − dB3 − qB3E3

Ėn = En max

{
0,

[(
A

E1B1 + E2B2 + E3B3

− q
)
Bn

B
− c
]}

, n = 1, 2, 3. (25)

Additionally Pn(0), Bn(0), En(0), n = 1, 2, 3 must be given. Note that if Ei(0) = 0 then
Ei(t) = 0 at all times t > 0. Hence a no-fishing zone is specified simply by putting
En(0) = 0 in the zone.

Parameters.

N = 150 # number of time step

T = 10 # final time

h = 7 # grid size

mu = 0.1 # diffusion

a = 2 # growth rate of plankton

b=0.5 # rate of plankton eaten by fish

r = 1.5 # fish reproduction rate

d = 1 # fish death rate

q = 1 # catchability

A,B = 10,1 # price constants

c = 1 # cost for fisherman

K = 3 # moving speed of fish to plankton
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Initial conditions.

w1,w2,w3 = 0.5,0.5,0.0

phi1,phi2,phi3 = 1,1,1

E1,E2,E3 = 0.01,0.,0.

Results: see Figure 16. The results are shown on figure 16 and show fish depletion on

Figure 16: Evolution in time of the fish population at points q1,q2,q3, fishing is allowed everywhere

the left where fishing occurs, and non zero limit of fish biomass in the center and on the
right.

6. A Marine Protected Area surrounded by 2 fishing zones

The previous simulation has shown that a no-fishing zone surrounded by 2 fishing zones
seems capable of keeping the fish biomass non-zero in the MPA. In this paragraph we
further validate the concept with an asymptotic analysis.
We consider a large fishing area in the middle of which a protected area where fishing is
prohibited has been installed. We therefore consider a central zone 2 which is a Marine
Protected Area (MPA) surrounded on both sides by fishing zones respectively 1 and 3.
The model takes into account the dynamics of the plankton population as well as that
of the fish that feed on it and are caught. Let P1(t), P2(t) and P3(t) be the plankton
biomass in zone 1, 2 and 3 at time t. Similarly, let B1(t), B2(t) and B3(t) be the fish
biomass in zone 1, 2 and 3 at time t in Megatons. Let E(t) be the total fishing effort at
time t. r is the growth rate of the plankton species and K its carrying capacity assumed
to be the same in the three zones. Fish feed on plankton by predation. a is a predation
rate. e is the conversion coefficient from plankton biomass to fish biomass. d is the fish
mortality rate. Fishing boats catch fish. q is the catchability. The complete model reads:
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dP1

dτ
= ε(kP2 − kP1) + rP1(1− P1

K
)− aP1B1 (26)

dP2

dτ
= ε(kP1 + kP3 − 2kP2) + rP2(1− P2

K
)− aP2B2 (27)

dP3

dτ
= ε(kP2 − kP3) + rP3(1− P3

K
)− aP3B3 (28)

dB1

dτ
= ε(mB2 −mB1) + eaP1B1 − dB1 − qB1E (29)

dB2

dτ
= ε(mB1 +mB3 − 2mB2) + eaP2B2 − dB2 (30)

dB3

dτ
= ε(mB2 −mB3) + eaP3B3 − dB3 − qB3E (31)

dE

dτ
=
A

β
− cE − q

β
B1E −

q

β
B3E (32)

Where τ is the fast time, t = ετ is the slow time and where ε << 1 is a small dimensionless
parameter.

Remark 3. This model is identical to (25) except that notations have changed and the
transfer rate K is zero.

Hence this complete model assumes that the displacement of the plankton and the fish
between the zones is by diffusion. We assume that the three areas are large and that
the migratory flows between the zones remain small. Thus, the diffusion of plankton and
fish takes place on a slow time scale while population dynamics in each patch is fast in
comparison. It is also assumed that the price varies according to the difference between
the demand and the supply. The demand D(p) = A

(1+βp)
is assumed to be a monotone

decreasing function of price. The supply is the instantaneous catch in the two fishing
areas. We further assume that the price is fixed very rapidly.

We will now investigate whether it is possible to obtain an equilibrium corresponding
to an overfishing situation leading to the extinction of the fish stock in the two fishing
zones while the fish succeeds in surviving in the marine protected area (MPA ). There-
fore, let us look for existence of a fast equilibrium with no fish in fishing zones and fish
in MPA, (K,P ∗2 , K, 0, B

∗
2 , 0, E

∗). It is simple to check that such an equilibrium exists in
the positive quadrant with:

P ∗2 =
d

ea
, B∗2 =

r

a
(1− d

eaK
), E∗ =

A

cβ
(33)

Furthermore it is locally asymptotically stable. Now let’s look at the dynamics on the
slow timescale. The reduced model is obtained by replacing the previous fast equilibrium
in the complete model and using the slow time. The slow model is a diffusion model with
plankton and fish exchanges between the zones:
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dP1

dt
= (kP ∗2 − kK),

dP2

dt
= (2kK − 2kP ∗2 ),

dP3

dt
= (kP ∗2 − kK) (34)

dB1

dt
= mB∗2 ,

dB2

dt
= −2mB∗2 ,

dB3

dt
= mB∗2 (35)

However, these flows between the different zones are small. Fish move from the central
area to the two fishing zones and are harvested rapidly. As a consequence, there is no fish
in the fishing areas and the plankton tends to its carrying capacity. This simple model
shows that it is possible to obtain sites with fish and sites without fish in meta-population
type models. For this, it is necessary to have a small flow of plankton and fish between
the different sites. Cases of fast diffusion or going on at the same time scale as local
population dynamics do not allow it.

7. Conclusion

Starting from the multi-site model of [2] we have derived its continuous integro-differential
limit. Numerical simulations have asserted the marine protected areas as an efficient tool
for keeping a minimum fish biomass at sea, at least in simple cases. The continuous
model can be extended in 2D by analogy, but without rigorous justification.
In an attempt to build similar 2D models with more mathematical justification we have
turned to the optimisation of utility functions for the fish and the fishermen. Fish change
place to gather more food and as the food density grows its feeding effort becomes less.
It has been shown that the fish velocity is proportional to the gradient of its food density
P . This requires the modelling of plankton (or smaller fish), which, in turn, moves with
the sea currents. Similarly it is in the interest of the fishermen to move proportionally to
the gradient of the fish biomass B. Such behavioural remarks lead to a model for P,B
and the fishing effort Em of each fisherman m. The simulations have shown that it is
again possible to design marine protected areas which will prevent the disappearance of
fish. Unfortunately as the number of fishermen grows one would like to work with the
probability density of the fishermen presence at point x at time t, but the consequent
continuous model requires more mathematical studies to be asserted rigorously.
Finally, in the last section, we have discretised the continuous model on a very coarse
mesh in order to derive simpler multi-site 2D models consistent with the continuous
models and for which all parameters have a clear meaning. Again they show that it is
possible to design a marine protected zone in which the fish population has a non-zero
asymptotic limit.
Let us recall that any model needs to be confronted to data for validity, a huge task for
us for the future. Then all parameters must be guessed from the data, but we have shown
in [3] that the techniques of AI are quite efficient for such a task.
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