
HAL Id: hal-02611833
https://hal.science/hal-02611833

Preprint submitted on 18 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Ariadne String against Covid-19 pandemic
propagation part 2: oudoor path selection after

lock-downs
Philippe Jacquet

To cite this version:
Philippe Jacquet. The Ariadne String against Covid-19 pandemic propagation part 2: oudoor path
selection after lock-downs. 2020. �hal-02611833�

https://hal.science/hal-02611833
https://hal.archives-ouvertes.fr


The Ariadne String against Covid-19 pandemic
propagation part 2: oudoor path selection after

lock-downs
Philippe Jacquet

Inria, Saclay Ile de France
France

philippe.jacquet@inria.fr

Abstract—In [1] we have presented the Ariadne String against
Covid application, whose aim was to recommend safe outdoor
path inside cities in order to limit the exposure to virus
propagation during aimless outdoor leisure excursion. The main
idea was to make a load balancing between streets via space-
time diversity via a random walk. The application was shown
to be efficient at the very first user. The present work is an
extension of this previous work and can be applied after lock-
down where outdoor excursions have a aim. We use drifted
random walks which under the condition of uniform distribution
of initial starting points and destination locations gives a perfect
load balancing of the streets, thus minimizing the exposure to
virus (by a factor around 3).

I. INTRODUCTION

The Covid-19 pandemie has forced more than half of
mankind into lock-down situation. During lock-down and in
some countries, outdoor excursion were authorized under strict
restriction; in France, no more than 1 hour less than 1km from
home. These restrictions had aim to reduce the exposure rate to
virus through outdoor contact with other persons. This problem
is of course crucial in urban places, since in country places
the distanciation are more easy to achieve. In [1] we have
described an application, called Ariadne String against Covid,
which reducte the contact rate thanks to a better load balancing
the streets while avoiding crowded areas. The fundamental tool
in Ariadne Covid is the use of random walk which naturally
load balance edges in a graph. The application is shown to
give a benefit to the first user, although to have an impact on
the pandemie, it must be used by a majority of users. The
average outdoor exposure rate reduction is around 3, but it is
difficult to verify this claim since it is based on pre lock-down
partial data on some cities.

In the present work we present Ariadne Covid2 as a
followup application whose aim is to limit outdoor exposure
to virus after lock-downs. The lock-downs aim is to "flatten
the curve" in order to limit the congestion in hospitals. It
is equivalent to the graphite bars used to slow down and
reverse the reactions in the kernel of a nuclear plant. If you
remove the graphite bars, the reaction will restart. Therefore
the social distancing and other ways to limit exposure will
need to be continued after lock-down before either a vaccine
or a herd-immunity is developed. Indeed the situation is even

more dangerous than before lock-down, since the infected
population ratio is larger. In particular there would need be
some care on our outdoor excursion.

But contrary to lock-down outdoor excursions which were
set-up for healthy consideration and therefore were aimless
(walking, jogging), the outdoor excursions after lock-down
will have a aim, most likely in order to commute between
home and work place. The public transportation is considered
to be unsafe since people will packed in small areas, and
it should be restricted in order to achieve a sufficient social
distances. The city of Paris envisions to help people to rely
on biking and other surface transportation by increasing the
number of streets with biking lanes. However the biking lanes
are narrow and sometimes very busy because people commute
around the same hours. Our work is to introduce a policy
which helps the user to find a biking route from home to work
which limit the exposure rate by achieving a load balancing
between lanes.

In this condition a simple random walk cannot work since
it will take an eternity for a random walk to connect the home
address with the work place, if the latter is a random but fixed
location in the city. The shortest path will not be good, since it
is likely to take the main streets and create a gathering on those
streets. Our approach will be based on drifted random walks
so that the penality with the shortest path will be limited, while
the aggregation of path from all users will give an optimal load
balancing over the streets and therefore minimize the exposure
rate.

II. DESCRIPTION OF THE ALGORITHM

The user sends its GPS coordinate z0 = (x0, y0) of its home
address or initial position. She/he also sends the coordinate of
the final destination zf = (xf , yf ).

The algorithm operates on an abstract data set which is a
set of street intersection linked by segment of a street. The
intersection I is given by its GPS coordinates (x(I), y(I)).
Two intersections I and J are connected if there exist a
segment of street which connect the two intersections. Let V
the set of intersections and E the set of street segments, The
pair (V,E) forms a graph. We also have the set S of streets,
A street is a set of contiguous street segments.



The neighbors of an intersection I are the list of the
intersections to which I is connected. We use a number ε > 0
fixed for the protocol.

The initial position of the user is on a segment (IU , ID) ∈
E. The path will take the intersection among IU and ID which
lies ahead of destination, i.e if 〈zf − z0|IU − ID〉 ≥ 0 then
IU is selected: z1 = IU , otherwise z1 = ID.

At step number k, let zk be the intersection were the path is
currently ending. Let d be the degree of the intersection zk. If
d = 1, then the path backtracks. If d > 1 then with probability
ε the path proceeds with the non backtracking random walk,
i.e. the path take any other neighbor edge distinct of (zk−1, zk)
with equal probability. Otherwise, with probability 1− ε, the
path take one the two the best sectored edge as defined as
follow. Assuming the angle of the edge (zk, zk−1) is θ0, and
we enumerate θ1, θ2, . . . θd−1 the angle in increasing order of
the other edges of intersection zk. Let θ be the angle of the
vector (zk, zf ) toward the destination.

Let j such that j 2πd < θ ≤ (j + 1) 2πd . Of course j + 1
must be considered modulo d. Let αd(θ) and βd(θ) such that
α+β = 1 and αe2ijπ/d+βe2i(j+1)π/d be proportional to eiθ.
Numerically we have{

αd(θ) = sin(2(j+1)π/d−θ)
sin(θ−2jπ/d)+sin(2(j+1)π/d−θ)

βd(θ) = sin(θ−2jπ/d)
sin(θ−2jπ/d)+sin(2(j+1)π/d−θ) .

(1)

The selection of the next step zk+1 is done as follow: with
probability α it selects the edge corresponding to angle θj ,
and with probability β the edge corresponding to the angle
θj+1.

We notice that there is no reason that the selected edge
actually heads toward the destination (in fact it will never do),
but in average it will do, under mild conditions on the actual
street angles distribution in the city.

Notice that when θ0 is the actual angle selected by the path
algorithm selection, then the path backtracks. In this case the
loop removal should be applied to the actual path, this will
even more reduce the actual weight of the path.

The algorithm is much simpler than the actual Dijskstra
shortest path algorithm, indeed the shortest algorithm leads
to at least an average quadratic complexity in terms of the
number of vertices, while the randomized algorithm is at most
linear, in fact proportional to the diameter of the graph. This
will greatly help the computational power required to have a
server capable of serving several millions of requests. However
we shall not expect the algorithm to provide a shortest path,
but we expect that the randomized algorithm will provide a
reasonable penalty for having non optimal path.

We can show that under the isotropic walk condition the
algorithm leads to a uniform distribution.

Definition 1 (Isotropic walk condition). A walk is isotropic
at a given intersection I , when reaching intersection I , the
difference of the angle θ toward the destination with the angle
θ0 of the arriving edge, satisfies a fixed distribution PI(θ−θ0).

Notice that the walk arriving at a destination has randomness
assuming the randomness of the initial and destination co-

ordinates. Notice that the isotropic condition does not implies
that θ − θ0 must always be close to π (most direct path) and
when θ − θ0 is small the path will most likely backtrack.

Theorem II.1. Under the isotropic walk condition, and assum-
ing same constant speed v of the travellers, the aggregation
of path leads to a uniform densities on the streets.

Proof. We use the classic proof of stationary random walks
in undirected graphs. Let assume that at time t every street
in city has the same exit rate ρ(t) on each of its end points.
We will prove that all streets have the same entrance rate.
And consequently the same exit rate on the other end. Thus
the uniform distribution is the stationary distribution of the
entrance rates.

In the following we assume that there is no loss between
entrance and exit rates, assuming for example that path initial
points and destination points exactly balance in each streets.
Or equivalently that an arrival point coincides with a departure
point like in a random way point mobility model.

Let consider a traveller arriving at an intersection I which
has d arriving streets. According to the uniformization hypo-
thesis, the traveller has an equal probability to arrive on any of
the d intersecting edges. With probability ε it selects any of the
d−1 other streets. With probability 1−ε it select one of the best
sectored edge. Enumerating the edges in counter clockwise
way, initialising with the entrance edge, the isotropic walk
conditions leads to the following expression of the probability
pd(j) that the edge j is selected is

pd(j) =

∫ 2(j+1)π/d

2jπ/d

P (θ)αd(θ)+

∫ 2jπ/d

2(j−1)π/d
P (θ)βd(θ). (2)

Therefore the probability that a edge is selected, independently
of the entrance edge is

d− 1

d
ε+ (1− ε)

j=d∑
j=0

pd(j). (3)

Thus the exit rates are uniform, and have value ρ(t) and
consequently the stationary rate distribution is uniform with
some value ρ. Since the speed is considered to be the same
on each street the density of traveller on each street is ρ/v per
unit length.

As an intermediate step, there is the randomized geo-routing
algorithm which is very close to the isotropic walk with the
difference that instead of assuming equal angular sectors j 2πd
for the exit streets at each intersection, we take the actual angle
of the streets. The consequence is that (i) the average exit path
is now well aligned with the angle toward the destination,
but (ii) we lose the isotropic property, since the densities on
the exit street will now vary with the variation of the angles
between the streets (which are null in the grid model but tend
to be large in the Delaunay model as we will see in the next
sections).



Arriving street

Angle toward
destination

𝛼 𝛽

Average exit
heading

Figure 1: Illustration of the functioning of the randomized
georouting algorithm. The traveller enters the intersection via
the large blue arrow.

Angle toward
destination

𝛽

𝛼

Angle toward
destination

𝛼

𝛽

Average exit
heading

Figure 2: Illustration of the functioning of the randomized
isotropic walk algorithm. The traveller enters the intersection
via the large blue arrow.

III. SIMULATION OF THE ALGORITHM

A. Simulation on a grid

We have chosen an abstraction of Paris map via a 100x100
map. Each grid point is an intersection in Paris. Each segment
represents a street segment of one unit length. From North
to South the streets represents 100 length units, and the total
cumulative street length length is 20,000 length units. This
compares well with the actual diameter of Paris (8km) and its
cumulative street length of 1500 km (thus 2900 km of street
sides).

The mayor of Paris have decided to create bike lanes parallel
to the 14 subway lines, in order to foster the use of bikes
instead of public transportation after lock-down. To simulate
those bike lanes we have highlighted 14 paths (seven paths
West-East, seven paths North South) on the grid map.

We have run N0 = 8, 000 sources and destination pair
on the two algorithms. One algorithm is the randomized
algorithm, the second algorithm is the preferential path al-
gorithm. In order to simulate the attraction effect of the

highlighted path, we have artificially distorted the graph by
decreasing the segment path weight by 20% and run a shortest
path Dijskstra algorithm. This a moderate ratio but it is
sufficient to create a significant attraction effect, otherwise the
difference would be not visible due to the large diversity of
shortest paths in a grid structure. We simulate the isotropic
randomized algorithm with ε = 0.

Figure 3 and 4 show the histogram of the segment density
loads consequence of the application of the algorithms. For
each segment, we collect the traffic for both ways, but for
the figures we add the two traffic per segment to display
the histogram. We notice that the preferential path algorithm
shows that the preferential streets are drastically more busy
than the other streets. The randomized algorithm shows a
more balanced distribution of traffics. There are not perfectly
uniform since the isotropic condition fails on the borders of
the map and holds in the large central part of the map.

Figure 3: Histogram of segment traffic load in Grid Paris, in
red the preferential path algorithm, in blue the randomized
algorithm

Figure 4: Histogram of segment densities in Grid Paris, in
logarithmic scale

Figure 5 shows the map of the traffic of street segments
with the preferential path algorithm. In green are the streets
with load larger than 1 but smaller than 15, in blue, traffic



smaller than 25, in red, smaller than 50, in black, smaller than
200. The preferential paths are clearly visible and marked as
very busy (black and red) as expected. The figure 6 shows the
map of empty streets (lined in grey) which is a dense network.
Figure 7 and figure 8 show the same data for the randomized
algorithm, but the picture are now different, since the segment
load are very balanced and the empty street seldom.

Figure 5: Map of segment densities in Grid Paris for the
preferential path algorithm.

Figure 6: Map of empty streets in Grid Paris for the
preferential path algorithm.

Now our aim is to derive the average exposure time
of the travellers in Grid Paris. As in [1] we denote by
S the set of street segment, with the difference, that the
segment are directed and we differentiate a segment with its
reverse segment. We denote `(s) the segment length, thus
the cumulative length is L =

∑
s∈S `(s). We denote λ(s)

the traffic load after N0 initial-destination random pairs. The
average path length is LG = 1

N0

∑
s∈S λ(s)`(s). The average

travel time is LG/v.
If the simulated time is T , on segment s the entrance

frequency rate is λ(s)
T and the density on the segment is

λ(s)
vT , assumed to be Poisson. If the number of traveller is
N then the density on the segment is λ(s)

vT
N
N0

where N0 is
the number of travellers needed to simulate the estimate λ(s).

Figure 7: Map of segment densities in Grid Paris for the
randomized algorithm.

Figure 8: Map of empty streets in Grid Paris for the
randomized algorithm.

Given this Poisson density, the probability that a random point
at a random time on the segment does not have a traveller at
distance within R0 is exp

(
−λ(s) 2R0

vT
N
N0

)
. If R0 is the safe

distance against virus, for biking R0 = 10m, for a random
traveller the average cumulative exposure time E(N) is

E(N) =
∑
s∈S

λ(s)`(s)

vN0

(
1− exp

(
−λ(s)2R0

vT

N

N0

))
. (4)

If we want to know the exposure time E12(N) for a single
traveller of the randomized algorithm when all other travellers
use the preferential paths, we get the expression

E12(N) =
∑
s∈S

λ2(s)`(s)

vN0

(
1− exp

(
−λ1(s)

2R0

vT

N

N0

))
(5)

where λ1(s) is the density of segment s for the preferential
algorithm, and λ2(s) is for the randomized algorithm.

The figures 9 and 10 show the average cumulative exposure
time versus the travelling population, when all travellers are
on preferential path, when all travellers are on the isotropic
randomized algorithm, and the average cumulative exposure
time when a single traveller is on randomized algorithm, and



the other are on preferential paths. We display for a peak traffic
period duration of 2 hours, and for a peak duration of 4 hours.
For one day these quantities should be multiplied by two, since
the travellers commute twice a day. For the traveller speed we
have opted for v = 12km per hour, which is the average speed
of bike commuting in Paris.

Figure 9: Simulated average cumulative exposure time in Grid
Paris during a peak time of 2 hours versus total number of
travellers: red: all traveller on preferential paths, blue: all
travellers on randomized algorithm, dashed: one traveller on
randomized algorithm.

Figure 10: Simulated average Cumulative time in Grid Paris
during a peak time of 4 hours versus total number of travellers:
red: all traveller on preferential path, blue: all travellers on
randomized algorithm, dashed: one traveller on randomized
algorithm.

B. Simulation on a Voronoi triangulation

We have created a map of 4,000 random points on a
10kmx10km square and connected them through the Delaunay
triangulation. In this simulation the streets are the edges of the
triangulation and the nodes are the intersections. With 4,000
nodes we get a total street length of the order of 200 times
the diameter of the map, thus showing a similar street density
than Paris street map. As in the previous simulation we have

connected 14 pairs of points, 7 North-South, seven West-East
to simulate the subway network. The bike lane supposed to
follow the subway lines is made of the path obtained via
shortest path algorithm between the points of each pair.

We have simulated four algorithm:
1) The preferential path algorithm;
2) the shortest path algorithm;
3) the isotropic walk algorithm;
4) the geo-routing algorithm

The three last algorithms perform the same in a grid network,
this is why we did not distinguish them in the previous section.
The isotropic walk algorithm is the algorithm described in
the paper. Notice that the shortest path algorithm is the
most expensive of all three since its quadratic in the number
of nodes and therefore maybe expensive in term of server
complexity.

In the preferential path algorithm we still use the shortest
path algorithm but now we reduce the weight of the edges in
the preferred path by 90%. This is kind of a drastic reduction
but it simulates well the use of subway where the commuter
takes the path to the closest subway station and enlights on
the subway station closest to his/her destination location.

We have run N0 = 5, 000 pairs of initial point and
destination. Figure 11 and 12 show the histogram of the
segment density loads consequence of the application of the
algorithms. In red the preferential algorithm, in brown the
isotropic walk algorithm, in blue the geo-routing algorithm, in
green the shortest path algorithm. As expected the isotropic
walk algorithm shows the best balance (better look at the
logarithmic scale).

Figure 11: Histogram of segment traffic load in Delaunay
Paris, in red the preferential path algorithm, in blue the
randomized algorithm

Figure 13 shows the map of the traffic of street segments
with the preferential path algorithm. In green are the streets
with load larger than 1 but smaller than 15, in blue, traffic
smaller than 25, in red, smaller than 50, in black, smaller than
200. The preferential paths are clearly visible and marked as
very busy (black and red) as expected. The figure 14 shows
the map of empty streets (lined in grey) which forms a dense



Figure 12: Histogram of segment densities in Delaunay Paris,
in logarithmic scale

network. Figure 15 and figure 16 show the same data for the
shortest path algorithm, but the picture are now different, since
the segment load are better balanced and the empty street much
less dense. Figure 17 and figure 18 show the same data for the
isotropic walk path algorithm, since the segment load are very
well balanced and the empty street very seldom. As expected
the empty streets are on the border and the density balance
more in the central part. Figure 19 and figure 21 show the same
data for the geo-routing path algorithm, since the segment load
are a little less well balanced and the empty street less seldom.

Figure 13: Map of segment densities in Delaunay Paris for the
preferential path algorithm.

Figure 28 shows the cumulative exposure time experienced
by the travellers in the different routing algorithms during a
peak of 2 hours versus the commuting population size. The
shortest path algorithm provides the smallest exposure because
the average path length is shorter despite the path density is
larger. Indeed the exposure rate discrepancy diminishes when
the commuting population diminishes. But the shortest path
algorithm is too expensive in terms of complexity to answer
to millions of request. The georouting and isotropic walk
algorithms show similar performance. Although the isotropic

Figure 14: Map of empty streets in Delaunay Paris for the
preferential path algorithm.

Figure 15: Map of segment densities in Delaunay Paris for the
shortest path algorithm.

algorithm benefits from its more balanced street loads at lower
traffic. Figure 29 shows the respective average path length for
each of the algorithms.

Since the preferential algorithm shows terrible performance,
we investigate the possibility to multiply the parallel lanes to
the preferential path in order to reduce the exposure time via
a reduced density. The figure 23 shows the average exposure
time versus the multiplicative factor of the parallel lanes. It
turns out that the preferential lanes must be multiplied by
at least ten in order to get closer to the performance of the
isotropic algorithm.

C. Single pair simulation

In this section we evaluate the performance of the al-
gorithms when we consider a single pair of initial point and
destination point. We have simulated 1,000 travellers com-
muting between these two points. Of course the preferential
path and shortest path algorithm are blocked on a single path
because there a unique solution to the Dijkstra algorithm. But
for the geo-routing algorithm and the isotropic walk algorithms
have a random component and provide a diversity in the path.
That way the two later algorithms offer a lower exposure



Figure 16: Map of empty streets in Delaunay Paris for the
shortest path algorithm.

Figure 17: Map of segment densities in Delaunay Paris for the
isotropic walk path algorithm.

thanks to the path diversity. The figures 24, 25 26,and 27,
shows the traffic of the segment for the four algorithms. yellow
is for a traffic between 1 and 15 passage, green between 15 and
25, blue between 25 and 50, red between 50 and 200, black
above 200. We notice that the path network of the geo-routing
algorithm is more vascular and therefore uses less segments.
Figure 28 shows the cumulative exposure time of the four
algorithm under this situation.

Figure 29 shows the average path length for the various
algorithms under the condition of travel between a single pair.

D. Single destination point or single initial point simulation

In this section we evaluate the performance of the al-
gorithms when we consider a single destination or a single
initial point. We have simulated 4,000 travellers commuting
from or toward this point. Of course the preferential path
and shortest path algorithm show the same paths because
there a unique solution to the Dijkstra algorithm and the
solution is symmetric on both ways. But for the geo-routing
algorithm and the isotropic walk algorithms have a random
component and are asymmetric with respect to the order in

Figure 18: Map of empty streets in Delaunay Paris for the
isotropic walk path algorithm.

Figure 19: Map of segment densities in Delaunay Paris for the
geo-routing path algorithm.

the pair made by the initial point and the destination point.
The figures 30, 31, 32,and 34, shows the traffic on street
segments for the four algorithms when diverging from the
same initial point, and figures 33,and 35, shows the traffic on
street segments for the two last algorithms when converging
on the same destination point. Figure 37 shows the cumulative
exposure time of the four algorithm under this situation.

Figure 36 shows the average path length for the various
algorithms under the condition of travel diverging from a fixed
initial point.

REFERENCES

[1] Jacquet, P. (2020). The Ariadne String against Covid-19 pandemic
propagation during lock-downs. https://hal.archives-ouvertes.fr/hal-
02546347/



Figure 20: Average path length for the four algorithms, in
km, from top to bottom: preferential algorithm, shortest path
algorithm, isotropic walk algorithm, georouting algorithm.

Figure 21: Map of empty streets in Delaunay Paris for the
geo-routing path algorithm.

Figure 22: Simulated average cumulative exposure time in
Delaunay Paris during a peak time of 2 hours versus total
number of travellers: red: all traveller on preferential paths,
green: all travellers on shortest path, brown the isotropic walk
algorithm, blue the geo-routing algorithm.

Figure 23: Simulated average cumulative exposure time in
preferential path algorithm. From top to bottom: one lane,
two parallel lanes, three parallel lanes, five parallel lanes, 10
parallel lanes.

Figure 24: Map of segment densities in Delaunay Paris for the
preferential path algorithm on a single pair.

Figure 25: Map of segment densities in Delaunay Paris for the
shortest path algorithm on a single pair.



Figure 26: Map of segment densities in Delaunay Paris for the
geo-routing path algorithm on a single pair.

Figure 27: Map of segment densities in Delaunay Paris for the
isotropic walk path algorithm on a single pair.

Figure 28: Simulated average cumulative exposure time in
Delaunay Paris during a peak time of 2 hours versus total
number of travellers on a single pair initial point and
destination: red: all traveller on preferential paths, green: all
travellers on shortest path, brown the isotropic walk algorithm,
blue the geo-routing algorithm.

Figure 29: Average path length for a single pair: red: all
traveller on preferential paths, green: all travellers on shortest
path, brown the isotropic walk algorithm, blue the geo-routing
algorithm.

Figure 30: Map of segment densities in Delaunay Paris for the
preferential path algorithm diverging on a single initial point.

Figure 31: Map of segment densities in Delaunay Paris for the
preferential path algorithm diverging on a single initial point.



Figure 32: Map of segment densities in Delaunay Paris for
the geo-routing path algorithm diverging from a single initial
point.

Figure 33: Map of segment densities in Delaunay Paris for the
geo-routing path algorithm converging on a single destination
point.

Figure 34: Map of segment densities in Delaunay Paris for the
isotropic walk path algorithm diverging from a single initial
point.

Figure 35: Map of segment densities in Delaunay Paris for
the isotropic walk path algorithm converging on a single
destination point.

Figure 36: Average path length for a single initial point: red: all
traveller on preferential paths, green: all travellers on shortest
path, brown the isotropic walk algorithm, blue the geo-routing
algorithm.

Figure 37: Simulated average cumulative exposure time in
Delaunay Paris during a peak time of 2 hours versus total
number of travellers on a single initial point: red: all traveller
on preferential paths, green: all travellers on shortest path,
brown the isotropic walk algorithm, blue the geo-routing
algorithm.


