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Abstract

A nonlinear control system is said to be weakly contractive in the control if the flow that
it generates is non-expanding (in the sense that the distance between two trajectories is a non-
increasing function of time) for some fixed Riemannian metric independent of the control. We
prove in this paper that for such systems, local asymptotic stabilizability implies global asymptotic
stabilizability by means of a dynamic state feedback. We link this result and the so-called Jurdjevic
and Quinn approach.
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1 Main result

1.1 Statement of the result

Consider the following nonlinear continuous-time control system:

ẋ = f(x, u) = fu(x), f(0, 0) = 0, (1)

where x lives in R
n and u is the control input taking values in an open subset U of Rm containing zero.

We assume that fu ∈ C1(Rn,Rn) for all u ∈ U , ∂f
∂x

∈ C0(Rn ×U ,Rn) and f(x, ·) is locally Lipschitz for
all x ∈ R

n.

Definition 1 (Static stabilizability). System (1) is said to be locally (resp. globally) asymptotically
stabilizable by a static state feedback if there exists a locally Lipschitz mapping λ : Rn → U such that

ẋ = f(x, λ(x)) (2)

is locally (resp. globally) asymptotically stable at the origin.

Local asymptotic stabilizability is usually obtained by investigating first order or homogeneous
approximations of the dynamical system around the origin. Yet obtaining global stabilizability from
local stabilizability is not an easy task and may fail in general.

However, there are classes of system for which we know how to bridge the gap between local and
global asymptotic stabilizability. This is obviously the case if the feedback law λ is such that x 7→
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f(x, λ(x)) is a linear vector field. More generally, it still holds for homogeneous systems admitting a
homogeneous feedback law (see e.g. [7, 12]). Note also that it is shown in [5] that when the locally
stabilizing state feedback fails to share the same homogeneity property than the vector field, global (or
semi-global) property can still be achieved by a dynamic state feedback.

Definition 2 (Dynamic stabilizability). System (1) is said to be locally (resp. globally) asymptotically

stabilizable by a dynamic state feedback if there exist f̂ : Rn × R
n × U → R

n such that f̂(·, ·, u) ∈
C1(Rn × R

n,Rn) for all u ∈ U ,
∂f̂

∂(x,x̂) ∈ C0(Rn × R
n × U ,Rn)

and f̂(x, x̂, ·) is locally Lipschitz for all (x, x̂) ∈ R
n×R

n and a locally Lipschitz mapping λ : R
n → U

such that
ẋ = f(x, λ(x̂)), ˙̂x = f̂(x, x̂, λ(x̂)) (3)

is locally (resp. globally) asymptotically stable at the origin.

In this paper, we give another class of dynamical systems which share the same property that
static local asymptotic stabilizability implies dynamic global asymptotic stabilizability: namely, weakly
contractive control systems.

Definition 3 (Weakly contractive). Let g be a C1 Riemannian metric on R
n. System (1) is said to be

weakly contractive with respect to g if

∀u ∈ U , Lfug 6 0, (4)

where Lfug denotes the Lie derivative of the metric g with respect to the vector field fu.

A vector field F over R
n is usually said to be contractive with respect to a metric g if LF g is

negative. Here we insist on the fact that the vector fields fu are only weakly contractive with respect
to the metric g, in the sense that Lfug is only non-positive.

For all pair of vectors (ϕ, ψ) ∈ R
n ×R

n, we denote by 〈ϕ, ψ〉 and |ϕ| the canonical Euclidean inner
product and induced norm over Rn. For all point x ∈ R

n, let 〈ϕ, ψ〉g(x) = g(x)(ϕ, ψ) denote the inner
product between the two vectors ϕ and ψ at the point x for the metric g, and set |ϕ|g(x) = 〈ϕ, ϕ〉g(x).

Recall that associated to the metric g we can define a distance dg between a pair of points of Rn in
the following way. The length of any piecewise C1 path γ : [s1, s2] → R

n between two arbitrary points
x1 = γ(s1) and x2 = γ(s2) in R

n is defined as:

ℓ(γ) =

∫ s2

s1

|γ′(s)|g(γ(s))ds (5)

The distance dg(x1, x2) is defined as the infimum of the length over all such paths. We denote d2g the
square of the distance function.

For all point (x, x̂) ∈ R
n × R

n, we denote (if it exists) ∇g(x̂)d
2
g(x, x̂) the gradient of the function

x̂ 7→ d2g(x, x̂) at the point x̂ for the metric g.
Fix x ∈ R

n. Then ∇g(x̂)d
2
g(x, x̂) is well-defined if and only if, for all x̂ ∈ R

n, there exists a unique
length-minimizing curve γ joining x to x̂, i.e. such that ℓ(γ) = dg(x, x̂). Equivalently, the Riemannian
exponential map at the point x̂ (denoted by expx̂) is invertible

1 and we have

∇g(x̂)d
2
g(x, x̂) = −2 exp−1

x̂ (x)

for all x̂ ∈ R
n, which yields

∇g(x̂)d
2
g(x, x̂) = 0 if and only if x = x̂. (6)

Also, by definition of the Riemannian gradient, for all vectors ϕ ∈ R
n,

〈

∇g(x̂)d
2
g(x, x̂), ϕ

〉

g(x̂)
=

〈

∂d2g

∂x̂
(x, x̂), ϕ

〉

. (7)

1see e.g. [3, Chap. 7, Theorem 3.1] for sufficient geometric conditions.
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Assume that f is C1. If (1) is a weakly contractive vector field, then for all C1 control u : R+ → U
the time-varying vector field fu generates a non-expanding flow in the sense that, if x1 and x2 satisfy
ẋi = fu(xi) for i ∈ {1, 2}, then the distance dg(x1, x2) between the two trajectories is a non-increasing
function of time. We give in appendix a short proof of this well-known statement to be self-contained.

The following theorem is the main result of the paper.

Theorem 4. Let g be a C2 complete Riemannian metric on R
n such that d2g is a C2 function. Assume

that (1) is weakly contractive with respect to g, and f ∈ C1(Rn×U ,Rn). If (1) is locally asymptotically
stabilizable by a static state feedback λ ∈ C1(Rn,U), then it is also globally asymptotically stabilizable
by a dynamic state feedback given by

ẋ = f(x, λ(x̂)), ˙̂x = f(x̂, λ(x̂)) + k(x, x̂) (8)

where
k(x, x̂) = −α(x, x̂)∇g(x̂)d

2
g(x, x̂)

in which the function α has to be selected sufficiently small.

1.2 Discussion on the result

The idea of the proof is somehow counter-intuitive. Indeed, the feedback depends only on x̂. By
selecting α sufficiently small, we make sure that x̂ remains in the basin of attraction of the origin for
the vector field associated to the state feedback. On the other hand, the correction terms k acting on
˙̂x forces x to converge to x̂, which implies that x goes to zero.

An interesting aspect of our approach is that no structural constraints is imposed on the local
asymptotic stabilizer. This one can be designed for qualitative purposes and can be for instance bounded
or optimal as long as this one ensures a local asymptotic stability property. This technique offers another
approach to solve the global asymptotic stabilization with local optimal behavior as for instance studied
in [2] or [4]. The main difference with these studies being that the local optimal behavior is reproduced
asymptotically in time (as x converges to x̂).

To construct the feedback law one needs to compute ∇g(x̂)d
2
g(x, x̂) which may be difficult to obtain

analytically in general (except in some simple cases, e.g., if the metric is constant). Some ways of
constructing similar correction terms may be obtained following observer designs based on Riemannian
approaches as in [1, 13]. In particular in [13, Lemma 3.6], the authors introduced a “distance-like”
function δ, that is of crucial importance in the construction of the correction term.

1.3 Proof

Let λ be a C1 locally asymptotically stabilizing feedback law. Let D be the basin of attraction of the
origin for the vector field x 7→ f(x, λ(x)), which is a non-empty open subset of Rn.

According to the converse Lyapunov theorem [14] (based on the previous works of [8, 9, 10]) , there
exists a proper function V ∈ C∞(D,R+) such that V (0) = 0 and

∂V

∂x
(x)f(x, λ(x)) 6 −V (x), ∀x ∈ D . (9)

For all r > 0, set D(r) = {x ∈ R
n | V (x) 6 r} which is a compact subset of D. Let α : Rn × D → R+

be the positive and locally Lipschitz function given by

α(x, x̂) =
−max{V (x̂), 1}

2
(

1 +
∣

∣

∂V
∂x

(x̂)
∣

∣

) (

1 +
∣

∣∇g(x̂)d
2
g(x, x̂)

∣

∣

) . (10)

It yields

|k(x, x̂)| 6
max{V (x̂), 1}

2
(

1 +
∣

∣

∂V
∂x

(x̂)
∣

∣

) , ∀(x, x̂) ∈ R
n ×D. (11)

We prove Theorem 4 in three steps.

3



Step 1 : the x̂-component of semi-trajectories of (8) remain in a compact subset of D. For
all (x, x̂) ∈ R

n ×D, it follows from (9) and (11) that

∂V

∂x
(x̂)[f(x̂, λ(x̂)) + k(x, x̂)] 6 −V (x̂) +

∣

∣

∣

∣

∂V

∂x
(x̂)

∣

∣

∣

∣

max{V (x̂), 1}

2
(

1 +
∣

∣

∂V
∂x

(x̂)
∣

∣

)

6 −V (x̂) +
1

2
max{V (x̂), 1}.

Hence, if x̂ ∈ D \D(1),
∂V

∂x
(x̂)(f(x̂, λ(x̂)) + k(x, x̂)) 6 −

1

2
V (x̂) . (12)

For all initial conditions (x0, x̂0) ∈ R
n ×D, the solution (x, x̂) of the closed-loop system (8) satisfies

V (x̂(t)) 6 max{V (x̂0), 1},

for all t > 0, in the time domain of existence of the solution. In other words, x̂(t) ∈ D(1) ∪D(V (x̂0))
which is a compact subset of D.
Step 2 : the distance between x̂ and x is non-increasing and has limit zero. System (8) can
be rewritten as

[

ẋ
˙̂x

]

= F (x, x̂) +K(x, x̂) (13)

by setting F (x, x̂) =

[

f(x, λ(x̂))
f(x̂, λ(x̂))

]

and K(x, x̂) =

[

0
−α(x, x̂)∇g(x̂)d

2
g(x, x̂)

]

.

Since (1) is weakly contractive with respect to g, the result proved in appendix applied to the control
u = λ(x̂) shows that

LFd
2
g(x, x̂) 6 0.

Thus, by (7),

LF+Kd
2
g(x, x̂) 6 −α(x, x̂)

∣

∣∇g(x̂)d
2
g(x, x̂)

∣

∣

2

g(x̂)
. (14)

Hence, for all (x0, x̂0) ∈ R
n × D, t 7→ dg(x(t), x̂(t)) is non-increasing and for all t > 0 on the time

domain of existence of the solution we have

(x(t), x̂(t)) ∈ Γ(x0, x̂0),

where
Γ(x0, x̂0) =

{

(ξ, ξ̂) ∈ R
n ×D | ξ̂ ∈ D(1) ∪D(V (x̂0)), dg(ξ, ξ̂) 6 dg(x0, x̂0)

}

.

Moreover, g is a complete metric. Then, according to the Hopf-Rinow theorem, Γ(x0, x̂0) is compact.
Hence, solutions of (8) are complete in positive time.

Given (x0, x̂0) ∈ R
n ×D, let κ : R+ → R+ be the function defined by

κ(s) = min
(ξ,ξ̂)∈Γ(x0,x̂0)|dg(ξ,ξ̂)=s

α(ξ, ξ̂)
∣

∣

∣
∇

g(ξ̂)d
2
g(ξ, ξ̂)

∣

∣

∣

2

g(ξ̂)
.

Note that if x0 6= x̂0, then, for all s > 0, κ(s) > 0 since α takes positive values and (6) holds. Hence,
(14) leads to

d

dt
d2g(x(t), x̂(t)) 6 −κ(d2g(x(t), x̂(t))) , ∀t > 0. (15)

Thus limt→+∞ dg(x(t), x̂(t)) = 0.
Step 3 : attractivity and local asymptotic stability of the origin. Given (x0, x̂0) in R

n × D,
let µ : R+ → R+ be the function defined by

µ(s) = max
(ξ,ξ̂)∈Γ(x0,x̂0)|dg(ξ,ξ̂)6s

∣

∣

∣

∣

∂V

∂x
(ξ̂)k(ξ, ξ̂)

∣

∣

∣

∣

.
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Then µ is non-decreasing, continuous and µ(0) = 0. Moreover, the solution (x, x̂) of (8) initialized at
(x0, x̂0) ∈ R

n ×D satisfies

d

dt
V (x̂(t)) 6 −V (x̂(t)) + µ(dg(x(t), x̂(t)). (16)

From this inequality and Step 2 we conclude that limt→+∞(x(t), x̂(t)) = (0, 0).
Inequalities (14) and (16) being true for all solutions starting in Γ(x0, x̂0), this implies also stability

of (0, 0).

2 Link with Jurdjevic and Quinn approach

2.1 Jurdjevic and Quinn result

The next result follows from the work of Jurdjevic and Quinn in [6]. The version that we state here is
a direct corollary of [11, Theorem II.1]

Theorem 5 (Jurdjevic and Quinn approach). Consider the control system

ẋ = a(x) + b(x, u)u, (17)

with a and b two C1 functions. Assume that there exists a C1 positive definite proper function V :
R

n 7→ R+ such that
LaV 6 0.

If the only solution of the system

ẋ = a(x), Lb(·,0)V (x) = 0, LaV (x) = 0 (18)

is x ≡ 0, then (17) is globally asymptotically stabilizable by a static state feedback.

In the context of weakly contractive control systems, the Jurdjevic and Quinn approach leads to the
following corollary.

Corollary 6. Let g be a complete Riemannian metric on R
n. Assume that (1) is weakly contractive

with respect to g and that f ∈ C2(Rn × U ,Rn). If the only solution of the system

ẋ = f(x, 0),
(

Lb(·,0)d
2
g(·, 0)

)

(x) = 0, Lf0d
2
g(x, 0) = 0

where b(·, 0) = ∂f
∂u

(·, 0) is x ≡ 0, then (1) is globally asymptotically stabilizable by a static state feedback.

To prove this corollary, it is sufficient to apply Theorem 5 with V : x 7→ dg(x, 0)
2, a : x 7→ f(x, 0)

and b : (x, u) 7→
∫ 1

0
∂f
∂u

(x, su)ds.

2.2 Link with our result

Note that the Jurdjevic-Quinn approach guarantees the existence of a static state feedback, contrarily
to our main Theorem 4 which build a dynamic state feedback. However, the feedback obtained by their
approach is implicit, while our dynamic state feedback is explicitly given by (8).

Moreover, our feedback law differs strongly with the one given in Jurdjevic-Quinn approach. Indeed,
in their approach the feedback is designed small enough to make sure that it acts in a good direction
related to the Lyapunov function. In our framework, this is no more a small feedback approach but
more a small correction term for an observer approach.

Let us consider the particular case in which

f(x, u) = Ax+ b(x)u. (19)

where A ∈ R
n×n and b ∈ C1(Rn,Rn). Then (19) is weakly contractive with respect to some constant

metric g if and only if LAg 6 0 and Lbg = 02. Moreover, the pair (A, b(0)) is controllable if and only

2It is easy to check that it is the case if and only if b(x) = b(0) + Jx with LJg = 0.
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if (19) is locally asymptotically stabilizable by a static feedback. Then, if all these hypotheses hold, a
dynamic globally stabilizing state feedback is given by Theorem 4.

We can also show under the same hypotheses that the Jurdjevic and Quinn approach can be applied.
Indeed, the system in Corollary 6 is equivalent to

ẋ = Ax,
(

Lbd
2
g(·, 0)

)

(x) = 0, LAd
2
g(x, 0) = 0 (20)

which implies that x ≡ 0 when the pair (A, b(0)) is controllable. Then, according to Corollary 6, (19)
is globally asymptotically stabilizable by a static state feedback. However, it is not clear in general
that both contexts are equivalent, and finding an example fitting in the framework of Theorem 4 but
in which the Jurdjevic and Quinn approach of Corollary 6 remains an open question.

3 Appendix on weakly contractive vector fields

For all u : R+ → U and all x ∈ R
n, denote by t 7→ Xu(x, t) the solution of (1) with initial condition x.

Let u : R+ → U be such that Xu is well-defined and C2 on R
n × R+.

Let (x1, x2) ∈ R
n × R

n and γ : [s1, s2] → R
n be a C2 path between the points x1 = γ(s1) and

x2 = γ(s2). For all (s, t) ∈ [s1, s2]× R+, set Γ(s, t) = Xu(γ(s), t) and ρ(s, t) =
∣

∣

∂Γ
∂s

(s, t)
∣

∣

2

g(Γ(s,t))
. Then

ρ is C1 and

∂ρ

∂t
(s, t) = Lfug(Γ(s, t))

(

∂Γ

∂s
(s, t),

∂Γ

∂s
(s, t)

)

6 0,

which yields

dℓ(Γ(·, t))

dt
=

d

dt

∫ s2

s1

√

ρ(s, t)ds

=

∫ s2

s1

1

2
√

ρ(s, t)

∂ρ

∂t
(s, t)ds

6 0.

Hence dg(Xu(x1, t), Xu(x2, t)) 6 ℓ(Γ(·, t)) 6 ℓ(γ). Choosing a sequence of paths (γn)n∈N such that
ℓ(γn) → dg(x1, x2) and passing to the limit we get

dg(Xu(x1, t), Xu(x2, t)) 6 dg(x1, x2).

Since this inequality is true for any control input u, t 7→ dg(Xu(x1, t), Xu(x2, t)) is non-increasing for
all control u and all points x1, x2.
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