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Abstract

Learning from imbalanced data, where the positive examples are very scarce, remains a challenging
task from both a theoretical and algorithmic perspective. In this paper, we address this problem using a
metric learning strategy. Unlike the state-of-the-art methods, our algorithm MLFP, for Metric Learning
from Few Positives, learns a new representation that is used only when a test query is compared to a
minority training example. From a geometric perspective, it artificially brings positive examples closer
to the query without changing the distances to the negative (majority class) data. This strategy allows us
to expand the decision boundaries around the positives, yielding a better F'-Measure, a criterion which
is suited to deal with imbalanced scenarios. Beyond the algorithmic contribution provided by MLFP,
our paper presents generalization guarantees on the false positive and false negative rates. Extensive
experiments conducted on several imbalanced datasets show the effectiveness of our method.

1 Introduction

Fraud detection in bank or insurance applications Abdallah ef al. [2016]; Schiller [2006], and anomaly
identification for medical diagnosis Aggarwal [2017] are some societal challenges requiring to address the
problem of learning from highly imbalanced data. When dealing with such a setting, one has to face two
major issues: (i) the scarcity of the class of interest, only composed of a few positive data, which limits
the efficiency of standard margin-based loss functions; (ii) the scattering of positive examples in the total
mass of the training data, which makes the estimation of local densities much more complicated than in
balanced scenarios. Several solutions have been proposed in the literature to address these two problems.
Most of them consist in applying sampling strategies which aim to balance the dataset by reducing the
number of negative examples and/or creating new synthetic positive data Sharma et al. [2018]; Pérez-Ortiz
et al. [2019]. On the other hand, one can resort to cost-sensitive algorithms Khan et al. [2017] which assign
a weight to each class (or even to each example) so that the classifier can focus better on the minority class.
Other strategies include the use of ensemble methods Wu et al. [2017]; Frery et al. [2018] or the specific
adaptation of existing approaches such as deep learning Huang et al. [2016]; Dumpala et al. [2018] or kernel
methods Mathew et al. [2015]; Ding et al. [2018]; Zhang et al. [2019].

In this paper, we address the problem of learning from imbalanced data from a metric learning perspec-
tive Bellet ef al. [2013]; Kulis and others [2013]. Learning a metric specifically designed for the application
at hand may present several advantages in the context of imbalanced datasets: (i) the metric can be learned
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Figure 1: Intuition behind our method MLFP: a PSD matrix M is optimized under constraints, and is used only when
a test query is compared to a positive example. The distance to the negative examples is kept unchanged. This allows
the learned metric to expand the decision boundaries around the positives and thus to capture more examples of the
class of interest.

under semantic constraints allowing us to expand the decision boundaries around the positives; (ii) this
framework enables to design optimization problems based on the geometry of the data without suffering
from the issues of standard accuracy-based loss functions (e.g., hinge loss for SVMs, exponential loss for
boosting, logistic loss for logistic regression); (iii) metric learning is a nice setting to derive theoretical guar-
antees on the learned transformation Bellet ef al. [2015]. Surprisingly, despite these interesting features,
metric learning has not received much attention to address the problem of learning from imbalanced data
(see, e.g., the recent papers Feng et al. [2018], Wang et al. [2018] and Gautheron et al. [2019]). The goal
of this paper is to bridge this gap from both an algorithmic and a theoretical perspective. As illustrated
in Figure 1, we propose the algorithm MLFP that optimizes a linear transformation (via a Positive Semi
Definite (PSD) matrix M of a Mahalanobis distance) only when a test query is compared to a minority
training example. A single metric M is learned for the whole space taking the geometry of the data into
account. Unlike the standard metric learning algorithms (see, e.g., LMINN Weinberger and Saul [2009] or
ITML Davis et al. [2007]), our method boils down to artificially bringing positive examples closer to the
query without challenging the features of the negatives. This has a direct impact on the decision bound-
aries around the positives allowing us to capture more examples of the class of interest yielding a better
F'-Measure (see Section 3 for a formal definition). By using the uniform stability framework, we derive
theoretical guarantees on the learned matrix M showing the actual capability of MLFP to control the false
positive and false negative rates.

The paper is organized as follows. In Section 2, we report some related work on metric learning for imbal-
anced data classification. Section 3 is dedicated to the presentation of our metric learning algorithm MLFP.
Section 4 presents a theoretical analysis using the uniform stability framework and Section 5 illustrates the
performance of MLFP compared to state-of-the-art algorithms.



2 Related Work

Most of the metric learning algorithms (see Bellet et al. [2013]; Kulis and others [2013] for a survey) are
based on the optimization of the Mahalanobis distance between two points x; and x; € R%:

dM(Xiaxj)2 = (x; — Xj)TM(Xi - Xj),

where M is a ¢ x q Positive Semi Definite matrix. One can express M as L7L where L is a r x ¢ matrix
where r is the rank of M. Thus, this distance can be seen as the Euclidean distance in a new feature space
Lx.

A well-known representative of this family of algorithms is the Large Margin Nearest Neighbor (LMNN) Wein-
berger and Saul [2009]. For each example of a training set of size m, the learned metric M aims to bring
closer the neighbors of the same class (called target neighbors) while pushing away the examples of other
classes (the impostors). This algorithm has been shown to be very efficient and to scale well with large
datasets. However, it is worth noticing that LMNN is not designed to take into account some imbalance in
the data. Indeed, the similarity constraints constructed from pairs of examples of the same class do not make
any difference between the positive and negative examples. Therefore, in imbalanced scenarios, LMNN,
as the other state-of-the-art methods, is prone to focus on the majority class and thus is subject to miss the
positive examples.

The first attempts to address the problem of learning a metric from imbalanced datasets have been proposed
very recently. Wang et al. [2018] introduce an iterative metric learning algorithm (IML) that aims to define
a stable neighborhood used to predict the label of a new test data. The method repeats two main steps: (i)
the learning of a linear transformation, e.g., by using LMNN, and (ii) a training sample selection given a
test example. The procedure is repeated until stabilization of the neighborhood. By repeating the process
several times, IML is able to locally separate positives from negatives. However, the main issue comes from
the algorithmic complexity of the method, which requires to apply LMINN and to update the pairs used for
the training process at each iteration. Another approach to learn metrics from imbalanced datasets has been
recently proposed Gautheron et al. [2019]. In their Imbalanced Metric Learning algorithm (ImbML), the
authors take into account the nature of the pairwise constraints by using two different sub-losses, one for
each label, weighted according to the number of positive and negative examples respectively. This intuitive
and natural way to proceed prevents the algorithm from favoring the majority class. However, we will see
that applying the learned metric M to all examples is not necessary, focusing only on the minority class
appears to be much more efficient and allows us notably to better control the false negatives. Finally, Feng
et al. [2018] introduce DMBK for Distance Metric by Balancing KL-divergence. This algorithm resorts to
the KL-divergence to represent normalized between-class divergences. Combined with a geometric mean,
DMBK is able to make these divergences balanced. Note that this method makes sense in the multi-class
setting, but is meaningless for addressing binary problems, due to the use of the normalization while com-
puting the KL-divergence.

Beyond the algorithmic limitations of the previous state-of-the-art algorithms, note that none of them comes
with guarantees on the classification error. In this paper, we address this problem by studying the capability
of MLFP to optimize a metric M which provides a good compromise between (i) expanding the decision
boundaries around the positives which enables to reduce the false negative rate at test time (one of the
main issues faced in imbalanced learning); (ii) controlling this expansion to prevent the algorithm from
detecting too many false alarms, represented by the false positive rate. The theoretical results take the form
of guarantees on the learned metric using the uniform stability framework Bousquet and Elisseeff [2002]
which measures the stability of the output of the algorithm when the training set is subject to slight changes.



3 Metric Learning for Imbalanced Data

In this section, we present our algorithm MLFP, for Metric Learning from Few Positives. In the following,
we denote by S = {z; = (x;,v;)}~, the set of m training examples drawn i.i.d. from an unknown joint
distribution D over X x ), where x; € X (here X = RY) is a feature vectorand y; € ) (here ) = {—1,+1})
corresponds to its associated label. The label +1 is used to denote the positive or the minority class. We
further note S = S US_ with S the set of m positive examples and S_ the set of m_ negative examples,
such that m = my +m_.

3.1 Problem Formulation

In our approach, we use the Euclidean distance when comparing a query point to a majority-class example.
The originality comes from the use of an optimized Mahalanobis distance when comparing a query to a
minority-class sample. The objective of this strategy is to formulate a metric learning problem leading to a
classifier (a kNN here) which is accurate on both classes even in an imbalanced scenario.

In order to avoid the pitfall of classic metric learning algorithms that are prone to focus on the majority
class, we propose to give more importance to the minority class composed of the positive instances. Our
algorithm MLFP tries to control the false positive (FP) and false negative (FN) rates thanks to the following
constrained optimization problem:

. 1
min — [(1-a) > ‘x(Mzizj2)+ a > lep(Mzi,25,7) [ +4p|M 1|7,

Mes+ m3
(xi,%5,XK) (xi,%5,Xk)
Yi=y;=1#yx Yi=y;=—17#yx
such that A\pax (M) < 1. (1)

where ST is the set of PSD matrices, Amax (M) is the largest eigenvalue of the PSD matrix M, /gy and /gp
are defined by:

fFN(M, Zi7Zj,Zk) = [1 —Cc+ dM(XZ',Xj)2 — d(Xi,Xk)2]+
and
tre(M, 24,25, 21) = [1 — ¢+ d(xi,%;)? — dni (%, X8) ]+,

where [a]; = max(0, a), a is the positive rate —- and y||M — I||% is a regularization term which penal-

izes a large deviation from the Euclidean distance. The hyper-parameter ¢ controls the margin we want to
preserve between pairs of dissimilar examples according to the Euclidean space and the learned one.
Problem (1) is composed of two terms where triplets are involved. Unlike standard metric learning algo-
rithms, our method takes into account both the Euclidean distance d and the metric learned dj;. More
precisely: the first term /gy aims to gather the minority class examples with respect to the learned metric
such that the distance between two positives (using M) is less than the distance to a negative example (using
the Euclidean distance). This subloss can be seen as a way to prevent the model from generating false nega-
tives (FN). The second term /pp works in a similar manner. The only difference lies in the fact that the query
x; is a negative example. Thus, we learn M such that the positive queries x;, are not bringing too close to
X;, i.e. the Euclidean distance between two negatives x; and x; (with respect to the Euclidean distance) is
lower than the distance between x; and x;, (with respect to M). This subloss can be seen as a way to prevent
the model from generating false positives (FP).



Both FN and FP are important terms to optimize measures that are more suited to deal with imbalanced
settings, such as the F'-Measure Rijsbergen [1979] defined as follows:

- 2my — FN + FP’

Minimizing the F'-Measure boils down to finding a good trade-off between FP and FN. However, in a highly
imbalanced setting, where m. is very low, missing only a few positives leads to a dramatic decrease of the
F-Measure. That is why we constrain the largest eigenvalue \pax(IM) to be lower than 1, so that the

learned matrix M aims to pay more attention to the positive class. In the next section, we provide a formal
explanation of its use.

Fy

3.2 On the Impact of the Constraint

We study the impact of the Ayax(M) value on both FN and FP and, thus the influence of the constraint of
our optimization problem.

Proposition 1. Let P[F'Nyp(x)] (resp. P[F Pyi(x)]) be the probability of a positive query (resp. a negative
query) x of being a false negative (resp. a false positive) using the 1-NN algorithm with the learned matrix
M and P[F'N (x)] (resp. P[F P(x)]) the same probability using the Euclidean distance.

Then, if Amax(M) < 1, we have:

P[FNm(x)] < P[FN(x)] and P[F P(x)] > P[FP(x)].

Sketch of proof. Let € be the distance from x to its nearest neighbor Nx. The example x is a false negative if
Ny € S_, that is, all positives x’ € S are outside an ellipsoid &, -1 (x), defined by € and M. Therefore,
we have:
P[FNm(x)] = (1 =P [x € & p-1(x)])7. 2)
When the Euclidean distance is used, we deal with a standard sphere S; of radius €, and we get:
PI[FN(x)] = (1 -P[x" € S (x)])™. 3)

Having Apax(M) < 1 implies Eq. (2) < Eq. (3). Indeed Apax(M) < 1 implies that the sphere S is
included in the ellipsoid £, -1 as illustrated in Figure 2. By this choice, we expand the decision boundaries
around positives and thus capture more minority class examples. Using a similar scheme, we can prove the
second inequality of Proposition 1. When x is negative and Ny € S, we have

PIFPu(x)] = (1-P[x €& m1(x)])™, 4)

and
P[FP(x)] = (1-P[x e8.(x)])". 5)
O

From Equations (2) and (4), we can note that they are both exponentially decreasing w.rf. to the number of
positives and negatives respectively. However, in imbalanced scenarios, the number of negatives is supposed
to be much higher than the number of positives. Thus, the probability of having a false positive is decreasing
faster than the probability of having a false negative. We then choose to learn a matrix M under the constraint
Amax(M) < 1, so that our algorithm will focus first on reducing FN. An illustration of the impact of this
constraint in terms of decision boundaries is shown in Figure 3. The experiments in Section 5 will confirm
that the use of this constraint is very relevant from an F-Measure perspective and is able to reduce the
number of FN at test time.
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Figure 2: Illustration of the constraint A, (M) < 1. Without learning the matrix M, the Euclidean distance is used
both to compare a query x to a negative Ny and to a positive x’. The isodistance curves are thus spherical and identical
(one in solid black for Ny, one in dashed red for x’). By learning the matrix M, we virtually change the distance of
the query to the positive examples. The isodistance curves for the positives are now ellipses, like the one represented
in red. In the example, the positive x’, that is outside the sphere, is inside the ellipse and will thus be considered closer,
with the constraint A, (M) < 1, than the negative Ny that lies on the black sphere. With this same constraint, we
are sure that the ellipse is enclosing the circle (i.e. )\"’;T > ¢) and so that all positives will be brought closer to the
query. In the end, this constraint ensures that we increase the influence of the positives and thus leads to the decrease
of FN.

4 Theoretical Analysis

In this section, we provide generalization guarantees about the learned metric M using the uniform stability
framework Bousquet and Elisseeff [2002] adapted to metric learning Bellet et al. [2015]. Then, we use
this result to derive classification guarantees over a 1-Nearest Neighbor (1NN) classifier making use of this
metric. Note that the whole study is conducted under the constraint A\yax(IM) < 1 as used in Problem (1).
First, we denote by ¢ the weighted combination of ¢gN and /pp as defined in Problem (1) and Fg the objective
function to optimize over the training set S = {z;}.",. We have

1 m
Fs = ﬁ .%:IE(IVL (Zivzj7zk)) + M‘|M - I”.QF
Z?J? =

Let R be the associated empirical risk over S defined as

1 m
Rs = ﬁ Z E(M, (Zia Zj, Zk))’
i7j7k:1

and R be the corresponding expected true risk defined as

1 m
R= SNEDm [RS] - SNEDM ﬁ ik 1£(M, (Zi’ Zj,Zk))
17]7 -

= E [(M,(z,7,2"))].

2,2z’ 2" ~D

The last equality is due to the i.i.d. aspect of the expectation. We also suppose that for all x, we have
x| < K.

4.1 Uniform Stability

Intuitively, an algorithm is stable if its output, in terms of loss, does not change significantly under a small
modification of the training sample. The supremum of this change must be bounded in O(1/m).
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Figure 3: Tllustration of the impact of the constraint Ayax (M) < 1 in MLFP (bottom right) compared to ANN (top
left), LMINN (top right), ImbML (bottom left) on the autompg dataset with a 1NN classifier. We perform a PCA,
keeping the two most relevant dimensions, and plot the test set on a mesh grid of the space. In light grey (resp. white),
areas classified as negative (resp. positive).

Definition 1. A learning algorithm A has a uniform stability in - with respect to a loss function { and
parameter set 0, with k a positive constant if:

)

VS, Vi, 1 <i<m, sup|l(0s,Z) —€(0qi, Z)| <
Z

3=

where S is a learning sample of size m, Z = (z1,22,23) = ((x1,41), (X2,92), (X3,¥3)) is a triplet of
labeled examples, g the model parameters learned from S, Ogi the model parameters learned from the
sample S* obtained by replacing the i example z; from S by another example z) independent from S and
drawn from D. Finally, {(0g, Z) is the loss suffered at Z.

In this definition, S? represents the notion of small modification of the training sample. The next definition
aims to study the evolution of the loss function according to the considered triplets Z and Z’.

Definition 2. A loss function { is said to be y-admissible, w.r.t. the distance metric M if (i) it is convex w.r.t.
its first argument and (ii) if the following condition holds:

VZ,Z" [¢(M,Z) — ¢, Z")| <,
where Z = (z;,2j,2x) and Z' = (z;, 2, z}) are two triplets from a sample S and drawn from D.
From the two above definitions, we can state the following generalization bound.

Theorem 1. Let § > 0 and m > 2. Let S be a sample of m randomly selected training examples. Let M
be the matrix learned from Problem (1) which has a uniform stability in ﬁ. The loss function £ as defined
m



above is vy-admissible. With probability 1 — 6, the following bound on the true risk R of ¢ holds:

In(2/0
R <Rs+25 1 (26 4 29 | B2
m 2m
where 19
= x (1—a)K?)?and vy = (1 —a)(1 —c+4K?).

The derived bound provides guarantees on the generalization performances of the learned metric on the
distribution D w.rt. to the loss £. We now make use of this bound to provide classification guarantees of a
INN making use of the learned metric M.

4.2 Classification Guarantees

We derive here generalization guarantees on the FP and FN rates for a INN classifier making use of the
metric M learned by MLFP. Let S be the learning sample of size m used by a nearest-neighbor classifier.
Let us define the empirical risks for FP and FN:

Rip(S) = Bam(ey)mDL{am(xxy)?<dlexn)?) X Ly=—1}-
where x,,, x,, € S are respectively the nearest positive and negative neighbors of x in S. Symmetrically, we
have:

Rin(5) = Es=(xy)mD L {d(exn)2<dna ()2} X L{y=1-
We consider then the expected true risks averaged over all the training samples of size m:

RFP = ESNDm'RFp(S) and RFN = ESNDWRFN(S)-
We can now introduce our main result.

Theorem 2. Let 6 > 0 and m > 0. Let S be a training sample of size m i.i.d. from a distribution D, z a
new instance i.i.d. from D, and let M be the learned matrix from Problem (1) which has a uniform stability
in = with respect to the loss (. Considering that the loss function £ is v-admissible, let us denote by Rg its
emz}rical risk. With probability 1 — §, we have the following bounds for the FP and FN rates:

1 2K In(2/6)
< — - i S
RFP_a RSU{Z}+m+1+(2/ﬁ;+2’y) Am+1) |’
1 2K In(2/9)
< o A\ )
Ren < j =Y [RSU{Z}+ m+1 (264 29) 2(m + 1)

By comparing these two bounds, one can observe that when the class imbalance becomes important, i.e.
when « takes a low value, the guarantees on the FN rate become better than the guarantees on FP. This
result provides a theoretical confirmation that our approach - thanks to the constraint Ay,ax (M) < 1 - is able
to focus more on reducing FN. An illustration of this phenomenon will be shown in the next section.

S Experiments

In this section, we compare MLFP to other metric learning algorithms, focusing on (highly) imbalanced
datasets. For all experiments, we use a 3-Nearest Neighbor classifier as done in both Weinberger and Saul
[2009] and Wang et al. [2018]. Note that the source code allowing the interested reader to reproduce these
experiments is available!.

! https://github.com/RemiViola/MLFP
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DATASETS SIZE DIM IR 3NN LMNN ITML IML IMBML MLFP
(OURS)

BALANCE 625 4 1.2 0.880+0.018 0.874 +0.019 0.931 +£0.032 0.886 +0.029 0.960 + 0.019 0.874 + 0.003
AUTOMPG 392 7 1.7 0.780 + 0.054 0.792 +£0.031 0.801 +0.018 0.785+0.021 0.790 +0.044 0.805 £+ 0.021
IONOSPHERE 351 34, 1.8 0.745+0.015 0.803+£0.049 0.831 £0.054 0.823 £0.044 0.786 £0.053 0.923 £ 0.026
PIMA 768 8 1.9 0.601 £0.042 0.591 £0.037 0.583 +£0.022 0.591 £0.037 0.575 £0.026 0.635 £+ 0.032
WINE 178 13 2 0.968 +£0.016 0.992+0.016 0.992+0.016 0.992+0.016 0.992 +£0.016 0.961 £+ 0.041
GLASS 214 9 2.1 0.735+0.049 0.710+0.064 0.759 +£0.051 0.710+0.064 0.716 £0.043 0.747 £ 0.034
GERMAN 1000 23 2.3 0.407 £0.049 0.358+£0.029 0.430+0.073 0.352+£0.029 0.388 £0.043 0.511 £ 0.006
VEHICLE 846 18 3.3 0.850 £ 0.045 0.928 £0.024 0.931 £0.019 0.933 £0.026 0.937 £ 0.014 0.859 £+ 0.037
HAYES 132 4 3.4 0.581 +£0.210 0.824 +0.089 0.829 +£0.071 0.824 +£0.089 0.908 +£0.083  0.930 + 0.109
SEGMENTATION 2310 19 6 0.882+0.031 0.888+0.011 0.866+0.029 0.895+0.020 0.909 + 0.028 0.882 + 0.024
ABALONES 4177 10 6.4 0.223 +£0.025 0.220+0.040 0.213+0.025 0.228 £0.021 0.200 £ 0.023  0.336 £+ 0.018
YEAST3 1484 8 8.1 0.719 £ 0.028 0.734 +0.020 0.742+0.034 0.717 £0.032 0.723 £0.023 0.725 £ 0.022
PAGEBLOCKS 5473 10 8.8 0.855+0.027 0.844 +0.027 0.850+0.023 0.842+0.027 0.865 + 0.021 0.860 + 0.022
SATIMAGE 6435 36 9.3 0.688 +£0.034 0.707 £0.038 0.710+£0.024 0.710+£0.039 0.731 £ 0.030 0.697 £ 0.030
LIBRAS 360 90 14 0.694 +0.188 0.725+0.105 0.722+0.204 0.690+0.120 0.729 £ 0.157 0.694 £ 0.066
REDWINEQUALITY4 1599 11 29.2 || 0.062 £ 0.075 0.057 £0.114 0.027 £0.053 0.000 £ 0.000 0.031 £0.062 0.083 £+ 0.039
YEAST6 1484 8 41.4 0.560 +0.205 0.578 +£0.246 0.523 +£0.205 0.629 +0.244 0.606 +£0.148 0.527 £0.152
ABALONE17 4177 10 71 0.000 £ 0.000 0.000 £ 0.000 0.029 £ 0.057 0.000 £ 0.000 0.073 £ 0.000 0.053 £ 0.033
ABALONE20 4177 10 159.7 || 0.000 & 0.000 0.000 + 0.000 0.000 £+ 0.000 0.044 £ 0.089 0.000 £ 0.093 0.078 £ 0.029
MEAN 0.591 0.612 0.619 0.613 0.627 0.643

Table 1: Mean results (and standard deviations) in terms of F'-Measure over 5 experiments for the different Metric
Learning methods, with 3NN as final classifier, on datasets sorted by imbalance ratio (IR=m_ /m._.). The properties of
the considered datasets are given on the left hand part of the table: size, dimension and IR. The mean over all datasets
among ML methods is given and the best results are in bold, the standard deviation is indicated with the + sign.

5.1 Experimental Setup

We use several public datasets from the UCI? and KEEL? repositories. These datasets are diverse in terms of
imbalance ratio (IR, number of majority examples per positive example), dimension, number of examples,
as shown in Table 1. All the datasets are standardized by substracting the mean and dividing by the standard
deviation.

We use the F'-Measure as the performance criterion to compare the different methods.

Furthermore, 80% of the dataset is randomly selected in order to train the model and 20% to test it. The
different hyper-parameters are tuned with a 10-fold-cross-validation over the training set. The sampling of
the test set is repeated 5 times and we report the average results in terms of F'-Measure (F1).

For our MLFP method, the hyper-parameters p for the regularization and ¢ for the margin are both tuned in
the range [0, 1], using a Bayesian optimization with 400 calls. The Bayesian optimization is done with the
Scikit-Optimize library*. As the matrix M can be expressed as L7 L (Cholesky decomposition), we directly
learn a diagonal matrix L. Since we are not particularly interested, in this paper, in low rank matrices, we do
not impose any constraint on the dimension of L. At each iteration of the optimization process, the spectral
radius of the matrix L is constrained to be less than one so that M = L”L has its largest value less than
one.

We compare MLFP with several methods: The 3-Nearest Neighbor algorithm (3NN), as a baseline. LMNN,
where the hyper-parameter p, which controls the trade-off between the two parts of the loss (see Weinberger
and Saul [2009] for more details), is tuned in [0, 1] using a Bayesian optimization with 20 calls. ITML Davis
et al. [2007]. IML Wang et al. [2018] where we select 5k points for the sampling selection and we also tune
the hyper-parameter of the LMNN algorithm in [0, 1]. We used 0.8 for the ratio of matching as suggested
in the paper. ImbML Gautheron et al. [2019] where the parameter m is tuned in {1, 10, 100, 1000, 10000},
the parameter A in {0,0.01,0.1,1,10} and the parameter a in [0, 1]. We also use a Bayesian optimization
with 400 calls.

*https://archive.ics.uci.edu/ml/datasets.html
3https://sci2s.ugr.es/keel/datasets.php
*https://scikit-optimize.github.io/
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Figure 4: Average percentage of false negatives for each dataset at test time (see Section 5 for more details), for kNN
and MLFP with or without the constraint on \,,,,. On 14 datasets (with x) over 19, the number of FN is lower for
the version with the constraint. Note that the number of FN is always lower with MLFP compared to kKNN.

5.2 Results

The main results are reported in Table 1. Unsurprisingly, all metric learning methods perform better than a
3NN. Furthermore, in terms of F'-Measure, those which were designed to deal with imbalanced scenarios
perform better than LMNN or ITML. However, the most competitive method is MLFP: the F-Measure
is increased on average by 1.6 points compared to the second best method (ImbML). More precisely, our
MLFP outperforms all the other methods on 8 (over 19) datasets. The fact that MLFP works better than
ImbML shows the advantage of learning a specific metric when computing distances to positive examples.
Furthermore, as shown on Figure 3, both ImbML and MLFP focuses on the minority class, but they per-
form this task in a different way. Our method tries to reduce the number of FN by increasing the decision
boundaries around each of positive. In ImbML, the possibility of having large margins in the learned space
has the disadvantage of creating larger areas of negative classification and this potentially increases the risk
of FN.

In the theoretical part of this paper, we have proved that learning a matrix IM under the constraint \pax (IM) <
1 allows our algorithm to focus first on reducing FN. An illustration of the impact of this contraint in terms
of false negatives is shown in Figure 4 on the 19 datasets. This figure reports the percentage of false neg-
atives at test time generated by the 3NN algorithm and MLFP with or without the constraint. The results
show that, compared to a 3NN algorithm, MLFP systematically reduces the number of false negatives and
thus has the desired effect. When comparing MLFP with and without the constraint, we can note that on

14 datasets out of 19, the use of the constraint Apax(IM) < 1 leads at test time to a smaller number of false
negatives.

6 Conclusion
In this paper, we have proposed a new metric learning algorithm to deal with imbalanced datasets. In this

setting, finding the good compromise between the false negative and false positive rates is still an open
problem. The original contribution of this paper comes from the optimization in our algorithm MLFP of a

10



Mahalanobis distance which is only used to compare a new query to positive examples, while the Euclidean
distance is still used when for comparing that query to negative samples. A constraint on the maximum
eigenvalue of the learned matrix is introduced and has been shown to be provably efficient to reduce the
false negative rate. Our paper is supported by a theoretical study and an extensive experimental evaluation
showing that MLFP outperforms state-of-the-art metric-learning methods.

This work opens the door to two promising lines of research. First, in MLFP we learn a linear projection of
the data. One interesting perspective would consist in kernelizing our metric learning algorithm or designing
a deep learning version allowing us to capture non linearity. A simpler solution might also consist in learning
different local metrics for different regions of the input space as done in Zantedeschi et al. [2016]. Second,
as initiated in Sharma et al. [2018], combining a Mahalanobis distance with a sampling strategy might lead
to a new family of imbalanced learning methods.
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1 Introduction and Notations

We will denote by z = (x, %) the couple features-label where x € R? and y € {—1,1} and S = {z;},
a set of m training examples drawn from an unknown distribution D. We denote by m the number

™m
of positives and m_ the number of negatives. Thus the rate of positives « is equal to —*, Suppose
m

that x’ is a test instance, we recall that:

o dyv = dyv(X,x) = /(x — x/)TM(x — x') if x is a positive instance,

o d=di(x',x) = dx',x) = y/(x — x)T(x — x) otherwise.

We are considering the following optimization problem:

. 1
Jnin g I-a) > exMzizj2) +a Y lep(M,zi,25,2;) | +
(%4,X;,Xk) (%4,%;,Xk)
Yi=y;Fyp=—1 Yi=Y; #Yr=1

plM = 1)% (1)

Our loss function can thus be seen as :

(1 — (X) X EFN(M,ZI,ZQ,ZP,) if Yi =Y; = 1, Y — —1,
UM, (21,22,23)) = § a X lpp(M, 21,22, 23)] fyy=y;=-1, yu =1,,
0 otherwise,

where fpN and fpp are defined by:



o lpn(M,z;,25,2;) = [1 — ¢+ dm(xi, x5)? — d(x4,%k)?]+,
o lpp(M,z;,2zj,2;) = [1 — c+ d(xi, %)% — dn(xi, xx)%] 1.

In the following, we will also suppose that for all x we have: ||x||2 < K. Furthermore, we will denote
by Rs and R respectively the empirical risk of £ over the training sample S and the true risk. More
precisely, the empirical risk Rg is evaluated using a training set of size m which is used to build all

the triplets and the true risk R is its expectation over all the samples of size m, i.e. R = g H% [Rs].

o d=dm(x,x) =+/(x—x)TM(x —x/) if x is a positive instance,

o d=di(x,x) =/(x —x)T(x —x).
In the following, we will also use the following constraint on M :
Amax(M) < 1, where Apax is the largest eigenvalue of M.

Finally, due to the context of our study, i.e. imbalanced setting, o < 1/2. Thus, a < 1 — a.

2 Generalization Guarantees

The aim of this section is to provide some generalization guarantees on our loss function according
to the used loss function. Note that the following results give guarantees on the learned metric M
which aims to find a good compromise between achieving a low rate of False Negatives while keeping
a reasonable rate of False Positives.

2.1 Uniform Stability

In this section, we briefly restate the definition of stability and the generalization bound based on
this notion.

Roughly speaking, an algorithm is stable if its output, in terms of difference between losses, does
not change significantly under a small modification of the training sample. This variation must be
bounded in O(1/m) in terms of infinite norm where m is the size of the training set S i.i.d. from an
unknown distribution D.

Definition 1. [Definition 6 (Bousquet and Elisseeff, 2002)] A learning algorithm A has a uniform
stability in - with respect to a loss function £ and parameter set 0, with k a positive constant if:

)

VS, Vi, 1 <i<m, sup|[l(0s,Z) —l(0gi,Z)| <
A

3=

where S is a learning sample of size m, Z = (z1,22,23) = ((X1,91), (X2,¥2), (X3,y3)) is a triplet of
labeled examples, 0g the model parameters learned from S, Ogi the model parameters learned from
the sample S* obtained by replacing the it" example z; from S by another example 2z} independent
from S and drawn from D. {(0g,x) is the loss suffered at x.

In this definition, S? represents the notion of small modification of the training sample. The following
one aims to study the evolution of the loss function according to the label of the considered triplet.



Definition 2. A loss function £ is said to be ~v-admissible, with respect to the distance metric M if
(1) it is convex with respect to its first argument and (ii) the following condition holds:

VZ, 7' |6(M, Z) — (M, Z')| < ~,

where Z = (z;, zj, 2¢) and Z' = (2}, 2}, 2,) are two triplets of examples.

2.2 Preliminary Results
We now introduce the results we need to derive our generalization guarantees:

Proposition 1. Let Xi,..., X, be m independent random variables taking values in R and let
U= f(Xy,..., Xmm). If for each 1 < i < m, there exists a constant c; such that:

sup | f(x1, o Tm) — f(21, 2y s )| < e,
T1,...mER

then for any positive constant B, we have:

PU — E[U]| > B] < 2 ( 25 >
— >B]<2exp| =— | -

>inac
In the following, we set Dg = R — Rg. We then introduce the two following lemmas, for which
the proof can be found in (Bellet et al., 2015) (see the proofs of Lemma 8.9 and 8.10 respectively).
However, note that results have been adapted to our context, i.e. for triplet based loss function. But
the proofs can be easily adapted.

Lemma 1. For any learning method of estimation error Dg and satisfying a uniform stability in
K 2K

—, we have Eg[Dg] < —.

m m

Lemma 2. For any parameter matriz M using m training examples, and any loss function ¢
satisfying the y-admissibility, we have the following bound:

2% 2
Vi, 1 <i<m, |Ds— Dg| < 2=+ 27,
m m

Using the above Proposition and the two Lemmas, we are able to get the following generalization
bound:

Theorem 1. Let § > 0 and m > 1. Let S be a sample of m randomly selected training examples
and let M be the learned parameter matriz from an algorithm with uniform stability . Assuming

that the loss function € is k-Lipschitz and v-admissible and let us denote by Rg its empirical risk.
With probability 1 — §, we have the following bound on the true risk R of our loss function £:

In(2/6)

R <Ry + 22 + (26 + 27) .
m 2m

2.3 Generalization Bound
We first prove that our function is k-Lipschitz according to the following definition.

Definition 3. A loss function £ is k-Lipschitz with respect to its first argument if for any parameters
matrices M and M, and for any triplets of labeled examples Z = (z1,22,23), we have:

(M, Z) — (M, Z)| < k||M — M| 7.



Lemma 3. We now show that our loss function £ is k-Lipschitz with k = 4(1 — a)K?

Proof. We need to study two cases, according to the label of the triplets.

Case 1: y;=y; =1, yp = —1
(M, Z) — (M, Z)| (1= a)|[l = e+ dn(xi, %)% — d(xi, x%)*]+ — [1 = ¢+ dw (xi,%5)% = d(xi, %%)] 1,
(1 — a)ldna(xi, %5)* = dwr (xi, %),

(1—a)l(xi —x;)" (M — M) (x; — x;)],

(1= a)lllx; — x;[3I1M - M|| 7,

(M, Z) —e(M', Z)] < 4(1—a)K? M - M| £

IN

where the second line uses the fact that the hinge loss is 1-Lipschitz, the third line uses the linearity
of the difference with respect to M, M/, the fourth line uses usual properties on norms and the last
line the fact that ||x|| < K.

Case 2: y;=y; = -1, yp =1
The proof is similar to the proof given in the previous case and leads to the following result:

(M, Z) — 6V, Z)] < 4aK2|[M - M/||.
We conclude by taking the maximum of the three previous values. Thus k = 4(1 — o) K? O

Now, we have to prove that our loss function is «-admissible according to the definition

Lemma 4. The loss function £ defined by 1s y-admissible with respect to the distance metric M,
with v = (1 — a)(1 — ¢+ 4K?).

Proof. Needless to say that the loss function £ is convex with respect to M as the sum of two convex
functions. Indeed, both of them are linear w.r.t. M and the maximum of two convex functions
remains convex.

Furthermore, because our loss function can be equal to zero for some labels of our triplets, we are
looking for the greatest value than our loss function ¢ can achieve.

Using our previous result, we can bound the first part ellpy by: (1 — a)(1 — ¢+ 4K?) and the last
term ellpp by: a(l —c+ 4K?).

Finally:
VZ,Z (M, Z) —¢M, Z")| < max((1 — a)(1 — c+4K?),a(l — c +4K?)).
Thus, v = (1 — a)(1 — ¢+ 4K?).
O

Definition 4. A learning algorithm has a uniform stability in -~ where k is a positive constant, if
given any training set S we have:

9

Vi, sup [{(M, Z) — (M, Z)| <
Z

3=

4



where M is the matriz learned with a training set S* which differs from S of only one example

(xi — x}).

For the sake of clarity for the following development, let us denote by Fg the objective function to
- . : 1

optimize over the training set S, i.e. Fg = 3 > sy LML Z) 4 || M — I)%.

To compute the constant of uniform stability, we first need the following technical lemma;:

Lemma 5. Let S be a learning sample, let Fis and Fgi be two objective functions with respect to two

samples S and S and let M and M’ be their respective minimizers. We also define AM = M — M
and recall that N(M) = pu||M —I||%. For all t € [0,1], we have:

N(M) — N(M + tAM) + N(M') — N(M' — tAM)

< lfnig[3m(m —1)+1] x (4(1 — a)K?) x ||AM||£.

Proof. Since ¢ (the hinge loss) is convex, so is the empirical risk and thus for all ¢ € [0, 1] we have
the two following inequalities:

Rgi(M +tAM) — Rgi (M, R) < tRgi(M') — tRgi(M).

and
Rgi(M! — tAM) — Rgi (M) < tRgi (M) — tRg:i (M").

We get the second inequality by swapping the role of M and M. If we sum these two inequalities,
the right hand side vanishes and we obtain:

Rgi(M +tAM) — Rgi (M) + Rgi (M? — tAM) — Rgi (M?) < 0. (2)
By assumption on M and M? we have:

Fs(M, R) — Fs(M + tAM)
Fgi(M") — Fgi (M’ — tAM)

< 0
< 0
then, summing the two previous inequalities and using , we get:

Rgi(M + tAM) — Rg(M + tAM) — Rgi(M) + Rs(M)
+ M =IE + M = I)[E — M+ tAM 1|3 - [M* —tAM - I||3] < 0. (3)

We now focus on the first part of the previous inequality. For the sake of simplicity, let us set:

H =Rg(M+tAM) — Rgi(M + tAM) + Rgi (M) — Rg(M).

H < ”R5<M + tAM) — RSi(M + tAM) + RSZ(M) - Rs(M)‘ ,

1
Z K(M,zf,zé,z,i)— Z UM, 2, 24, 2k)

m3
2i,25,2,ES! 24,2§,2K €S

IN

Z (M +tAM, z;, 2, 21;) — Z €(M—|—tAM,zZl»,z§~,z,l€),

Zi,Zj,ZkES Zivzjvzkesl



where S and S' differ from the I-th example, i.e. Vi, j, k # 1, z; = zﬁ, zj = zé. and z, = z,lg.

We will now focus on the first difference in the previous expression, i.e. on:

|
M, Zi’ Zj’ Zk

2.

zi,25,2,E€S!

( ) -

This difference can be decomposed into two parts acc

and when i # [:
l

Ll

7%7?p2k)_
j=1 k=1
m m m
5 3) ) B (L]
i#l j=1 k=1

The first part of the decomposition is composed of m?

Z E(M,Zi,Zj,Zk;).

2,25,2,ES

ording to the value of the index i: when ¢ =1

K(Ma Zly Zj, Zk))
l o
Zk) - K(M7 Ziy %y Zk:))

terms that are at least not equal to zero. We,

thus have to work on the second part of the decomposition has it contains some terms that are equal

to zero. We will have to do this process two times as
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Al AL k£l

All these sums are respectively composed of m?2, m(

~~

=0

m —1) and (m — 1)? terms and the last (m — 1)3
terms are all equal to zero. Furthermore: m? + m(m —

1)+ (m —1)2 =3m(m — 1) + 1, so that we



have to find a bound on the supremum of the difference:

[3m(m — 1)+ 1] sup [((M, Z) — (M, Z") + (M + tAM, Z) — {(M + tAM, Z')|.
YA

Thus, H can be upper-bounded by:

H < %(m — 1)+ 1] (sup |[4(M, Z) — 6(M+, Z') + £(M + tAM, Z) — (M + tAM, Z')|).
A

We can then write:

1
H < —5(m=1)+1] (sup (M + tAM, Z) — (M, Z)| + (sup [((M + tAM, 7" — M+, 2'))),
Z z
2t
< ﬁ[:am(m — 1)+ 1] x [AM||7 x (4(1 — a)K?),

where the last lines uses Lemma |3| and properties on norms. Finally, we have :

N(M)—N(M+tAM)+N(M') — N(M’ —tAM) < 13[3m(m— D+1]x (4(1 — @) K?) x [|AM]| £

wm
(4)
O

We are now able to prove the uniform stability of our algorithm.

Theorem 2. Let S be a learning sample of size m, the algorithm has a uniform stability in il
m

with k = ,i x (4(1 - a)K2)2.

1
Proof. Let us set t = 3 in the result of Lemma [5|and we focus on the left hand side of this result.
We have:

, 1 _ 1 A
fM) = [M-TI|%+ IM —TI||F - 15 (M + M) — IjF - I5 (M + M) — 1%,

. 1 ,

IIM—IHQFHIMZ—III%—§IIM+M’—III%,
1 .

fM) = §HM—M’II%-

Then, using Lemma |5, we get the following bound on ||AM]|£.

IAMI3 < —fm(m — 1)+ 1] % (1 - )K) x [AM]
[AM|lz < M8mg[3m(m— ) +1] x ((1 - a)K?).

To prove the uniform stability of our algorithm, it remains to find the value s such that:

VS, Vi, 1 <i<m, sup|{(M, Z) — (M, Z)| <
Z

3=



To do this, we use the fact that our loss function ¢ is k-Lipsichtz with k£ = (4(1 — a)K?) and our
upper-bound on [|[AM||£. It gives:

(M, Z) — (M, Z)| < kl|AM]| 7,

2k%(3m? — 3m + 1)
pm?

IN

Finally:
K

VS, Vi, 1 <i<m, sup |[{(M,Z) — (M, Z)| < —,
Z m

4(3m? —3m +1)
1
For the sake of simplicity, we will simplify this result in the following. Note that for all m > 1,

3m*—3m+1 _ 3 12
sm”—sm L < —. Thus, our algorithm has a uniform stability in T With k = =2 x ((1 — a)Kz)Q.
m 7

x ((1- a)K2)2. 0

with k =

m3 m
We can now apply Theorem [1| to our algorithm and get the following result:

Theorem 3. Let § > 0 and m > 1. With probability 1 — 8, we have the following bound on the true
risk R of our loss function £:

In(2/6
R < Ro+22% + (26 4 2y 20
m 2m
with: 5
r=—x((1 —a)KQ)Q.
]
and
y=(1—-a)(l—-c+4K?).
Proof. The proof is consequence of Theorem [I] and Lemma O

3 Classification Guarantees - Proof

We now give a proof of the Theorem 3 provided in the paper.

Proof. We first begin with the FP rate. We can note the hinge loss can be a surrogate for the
indicator function as follows:

L (2., ) <d(3x)} = Ldna (e, )2 <dxoen)?} < [+ A%, %0)? = dma(xi, %)°]

We can recognize one of the term of our optimization Problem with the hyper-parameter ¢ = 0.



We recall that each labeled example is denoted as z = (x,y). Then, we have:

Rrp < Eg.pmE,.p [1 + d(X, Xn)2 — dM(X’Xp)2]+ X ]l{y:—l}
< Egpmt1Ey, 25 2.c9 [1 + d(xi, Xj)2 — dmi(xq, Xk)2]+ s X L fy—y =124,
Mo
< Egpm+1Eyg, 2 zpes > [1+ d(x;,%;)* — dM(Xiaxk>2]+ X Ly =193+
1l—«
o ([1 + dM(Xi’Xj)2 - d(xi’xk)2]+ x ]l{yiyj17ﬁyk}>:| )
[1
< ES/NDm-‘rlEzi,z]-,zkeS’ a (a [1 + d(xivxj)Q - dM(Xi7xk)2]+ x ]l{yi=yj=*17éyk}+
(1—a) [1+dm(xi,x;)* — d(Xian)2]+ X ]]-{yizijI;éyk})} ,
< 1z
«

The second inequality is obtained by the i.i.d. aspect of the expectation. The third inequality is due
to the fact that the second term in the sum is positive. Finally, one can note that the right-hand
side of the last inequality corresponds to a weighted version of the true risk with respect to the loss
used in Problem with ¢ = 0 and where we take an expectation over all the samples of size m + 1.
The result is obtained by combining the results of Theorems [3 and [I] over the true risk defined above.

The bound for the false negative can be obtained in a similar way. Using the same arguments, one
can show that:

1
Rrnv < —R.
l—«

Applying Theorems |3| and [1| to the above risk leads to the result. O

4 Other Results

In this section, we provide extended experiments using a Nearest-Neighbor classifier and other
experiments on real fraud detection datasets provided by the French Ministry for the Economy and
Finance.

4.1 Results for 3NN Without the Constraint

We present the results obtained with MLFP when we do not add the constraint on Ayax. The
results are shown in Table [11

Adding the constraint leads to a small impact on the F-measure on average, but adding this constraint
remains important if we want to increase the capacity of the model to capture the class of interest.

4.2 Results for INN

In Table [2] we provide the results obtained using a Nearest-Neighbor classifier and we also show
that results of MLFP when the constrain is not added.

The results show that the proposed approach gives better results than its competitors even if k = 1.
Also in with a 1-NN, we show that adding the constraint on Apax(M) has a small impact on the
F-measure of the method. It slightly increases the value of the F-measure.



Table 1: Results for MLFP with or without the constraint A;,q. < 1, with 3—NN as final classifier,
on public datasets sorted by imbalance ratio. The best results are in bold.

DATASETS MLFP + Cons MLFP - CoNs
BALANCE 0.954 0.953
AUTOMPG 0.827 0.810
IONOSPHERE 0.891 0.928
PIMA 0.537 0.524
WINE 0.851 0.884
GLASS 0.718 0.728
GERMAN 0.474 0.417
VEHICLE 0.886 0.885
HAYES 0.565 0.557
SEGMENTATION 0.861 0.853
ABALONES8 0.345 0.302
YEAST3 0.681 0.655
PAGEBLOCKS 0.842 0.842
LIBRAS 0.662 0.722
WINE4 0.093 0.095
YEASTG 0.538 0.482
ABALONEL7Y 0.071 0.113
ABALONE20 0.062 0.081
MEAN 0.603 0.602

4.3 Results on Private Datasets

This section provides the results (see Table4) obtained on eight real fraud detection datasets provided
by the General Directorate of Public Finances (DGFiP) which is part of the French central public
administration related to the French Ministry for the Economy and Finance. These private datasets
correspond to data coming from tax and VAT declarations of French companies and are used for tax
fraud detection purpose covering declaration of over-valued, fictitious or prohibited charges, wrong
turnover reduction or particular international VAT frauds such as "VAT carousels" and is described
in Table 3]

The results are obtained using a 3-NN classifier.

The reported results are obtained using a 3-NN classifier. We note, that, on most of the datasets
(7/8), MLPF reaches the highest performances in terms of F-measure, showing that the method is
also interesting for real applications.
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Table 2: Results for the different Metric Learning methods, with 1—NN as final classifier, on public
datasets sorted by imbalance ratio. The best ML results are in bold.

DATASETS INN LMNN ITML IML ImMBML MLFP + Cons MLFP — ConNs
BALANCE 0.945 0.977 0.986 0.981 0.979 0.950 0.951
AUTOMPG 0.815 0.818 0.813 0.800 0.827 0.834 0.815
IONOSPHERE 0.828 0.862 0.805 0.860 0.902 0.875 0.884
PIMA 0.415 0.413 0.475 0.435 0.449 0.533 0.535
WINE 0.893 0.901 0.878 0.902 0.883 0.893 0.871
GLASS 0.745 0.733 0.770 0.709 0.722 0.775 0.740
GERMAN 0.354 0.341 0.391 0.331 0.349 0.454 0.494
VEHICLE 0.900 0.953 0.875 0.948 0.930 0.898 0.900
HAYES 0.089 0.248 0.427 0.074 0.387 0.668 0.728
SEGMENTATION  0.881 0.900 0.873 0.910 0.906 0.881 0.881
ABALONES 0.235 0.227 0.224 0.229 0.241 0.297 0.283
YEAST3 0.622 0.621 0.643 0.639 0.666 0.630 0.621
PAGEBLOCKS 0.847 0.842 0.848 0.833 0.846 0.848 0.848
LIBRAS 0.803 0.683 0.731 0.692 0.720 0.762 0.720
WINE4 0.086 0.040 0.017 0.056 0.044 0.137 0.078
YEAST6 0.506 0.460 0.460 0.354 0.489 0.470 0.506
ABALONEL7 0.212 0.158 0.087 0.105 0.186 0.182 0.173
ABALONE20 0.000 0.000 0.031 0.000 0.000 0.011 0.031
MEAN 0.565 0.565 0.574 0.548 0.585 0.617 0.614
AVERAGE RANK 3.9 4.7 4.3 4.9 3.4 2.6 3

Table 3:

the public datasets, the second one describes the DGFiP private datasets.

Table 4: Results for the different Metric Learning methods, with 3—NN as final classifier, on private
datasets sorted by imbalance ratio. The best ML results are in bold.

DATASETS sizE DM %+ %— IR
DGFIP 9 2 440 173 24.8 752 3
DGFIP 4 2 255 82 20.8 79.2 3.8
DGFIP 8 1 1028 255 17.8 82.2 4.6
DGFIP 8 2 1031 254 17.9 82.1 4.6
DGFIP 9 1 409 171 16.4 83.6 5.1
DGFIP 4 1 240 76 16.2 83.8 5.2
DGFIP 16 1 789 162 10.3 89.7 8.7
DGFIP 16 2 786 164 9.9 90.1 9.1

DATASETS IR kNN LMNN ITML IML IMBML MLFP
DGF1P9 2 3 0.173 0.152 0.119 0.225 0.204 0.400
DGF1P4 2 3.8 0.164 0.241 0.141 0.186 0.098 0.359
DGF1P8 1 4.6 0.100 0.082 0.098 0.104 0.097 0.305
DGFIP8 2 4.6 0.140 0.220 0.122 0.254 0.240 0.304
DGF1P9 1 5.1 0.088 0.174 0.113 0.142 0.131 0.291
DGFiP4 1 5.2 0.073 0.130 0.097 0.120 0.067 0.256
DGFiP16 1 8.7 0.049 0.046 0.071 0.057 0.106 0.192
DGFiP16_2 9.1 0.210 0.142 0.176 0.172 0.153 0.199
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Information about the studied datasets sorted by imbalance ratio. The first part refers to
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