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Abstract
Determinantal point processes (DPPs) are probabilistic models of configurations that
favour diversity or repulsion. They have recently gained influence in the machine learning
community, mainly because of their ability to elegantly and efficiently subsample large sets
of data. In this paper, we consider DPPs from an image processing perspective, meaning
that the data we want to subsample are pixels or patches of a given image. To this end, our
framework is discrete and finite. First, we adapt their basic definition and properties to
DPPs defined on the pixels of an image, that we call determinantal pixel processes (DPixPs).
We are mainly interested in the repulsion properties of such a process and we apply DPixPs
to texture synthesis using shot noise models. Finally, we study DPPs on the set of patches
of an image. Because of their repulsive property, DPPs provide a strong tool to subsample
discrete distributions such as that of image patches.
Keywords: Determinantal point processes, repulsion, subsampling, image, pixels, patches,
stationarity, shot noise, inference

1. Introduction

Determinantal point processes (DPPs) are models of random sets of points that are currently
of great interest in several mathematical fields. They were initially studied in probability, in
particular for the modeling of fermions in quantum mechanics [42] or as a process describing
the spectrum of random matrices [55], and recently gained influence in the machine learning
community [34], mainly due to the necessity to handle high amounts of information [59],
[14] and often high-dimensional data.

The main feature of DPPs is that they provide a family of models of random configurations
that favour diversity or repulsion, in the sense that the probability of observing two points
close or similar to each other is lower than in the case of the Poisson process whose points are
independent [8]. DPPs are completely determined by their correlation function. Unlike Gibbs’
point processes, the moments of the DPPs are all known from their correlation function.
That is the reason why these processes are an elegant model to reduce the dimensionality of
data or to select representative samples from huge sets of points.
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The amount of images and video content available is overwhelming. To be handled, to
be processed, it needs to be sorted and summarized. That is the purpose of recommendation
systems. Some methods using DPPs have been developed to cope with this issue and to
enforce diverse subsets, for images selection [35], [14] or video recommendation [62]. Moreover,
images and videos are now in very high resolution, but remain intrinsically redundant. The
strategies for video summarization intend to extract meaningful and representative frames
using sequential DPPs. This is a type of DPP taking into account the temporal dependencies
of video frames [26], [43]. Besides, Chen et al. [15] prove that DPPs can be an appropriate
tool to reduce the dimensionality of hyperspectral images, to select representative pixels
from these images and be able to process such large-scale data.

In this paper, we will consider DPPs from an image processing perspective, meaning
that the data we want to subsample are pixels or patches of a given image. To this end, our
framework is discrete and finite. In this setting, the correlation function associated to a DPP
is a matrix K that will be called its kernel. First, we need to introduce some notation. The
initial data set is denoted by Y and the data items are assimilated with their index, meaning
that for a set of N elements, we consider Y = {1, . . . , N}. The cardinality of a set A is
denoted by |A|. When M is a N ×N matrix, we denote by MA×B, for all subsets A,B ⊂ Y ,
the matrix (M(x, y))(x,y)∈A×B and we use the short notation MA = MA×A. When focusing
on a specific couple of points, for instance x, y ∈ Y, we sometimes identify M(x, y) and
Mxy for clarity purpose. If A and B are subsets of Y such that |A| = |B|, the determinant
det(MA×B) is called a minor of M and in case B = A, det(MA) is called a principal minor
of M .

Let us define DPPs in the general discrete case. Consider the set Y = {1, . . . , N} and a
Hermitian matrix K of size N ×N such that

0 � K � I,

meaning that the eigenvalues of K are in [0, 1]. Then a random set X ⊂ Y is called a
determinantal point process with kernel K if it is defined by

P(A ⊂ X) = det(KA), ∀A ⊂ Y. (1)

We will denote X ∼ DPP(K). For a detailed presentation of discrete DPPs, their properties
and some applications to machine learning, we recommend the article of Kulesza and Taskar
[34].

Notice that a DPP is simple: two points of the point process can’t coincide. The diagonal
coefficients of K define the marginal probabilities of any singleton:

∀x ∈ Y, P(x ∈ X) = K(x, x), (2)

and the off-diagonal coefficients of K give the similarity between points. The repulsion
property becomes clear when observing the marginal probabilities of pairs of points. The
more similar two points are, the less likely they belong to the DPP simultaneously:

∀{x, y} ⊂ Y, P({x, y} ⊂ X) = K(x, x)K(y, y)− |K(x, y)|2. (3)

Moreover, let λ1, . . . , λN be the eigenvalues of K.
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Proposition 1 The cardinality |X| of the DPP X is distributed as the sum of N independent
Bernoulli random variables: |X| ∼

∑
x∈Y
Ber(λx), where the Bernoulli variables take the value

1 with probability λx. Then E(|X|) =
∑
x∈Y

λx = Tr(K) and Var(|X|) =
∑
x∈Y

λx(1− λx).

In this paper, we will adapt these definitions and properties to particular DPPs, defined on
the pixels of an image.

One of the key contributions of this paper is the definition and the study of this new
kind of DPP over pixels, that we present in the following three sections and that we call
determinantal pixel process (DPixP). The second section presents the setting adapted to
the pixel of an image for the use of DPPs. In the third section, we apply DPixPs to texture
synthesis through shot noise models and we present how to adapt a DPixP kernel to a given
spot function. The fourth section investigates the estimation of DPixP kernels from one or
several samples. We also gather answers to the issue of equivalence classes of DPPs. As
two different matrices may generate the same DPP, we give conditions for DPP kernels
to be equivalent, in particular the DPixP kernels. In these sections, we provide several
algorithms to use DPixPs: sampling, inference, adapted shot noise sampling. Finally in the
last section, we study DPPs over the set of patches of an image. We detail how to use DPPs
in this setting and how to define an appropriate kernel, depending on the purpose of the
subsampling.

2. Determinantal pixel processes: DPPs on pixels

2.1 Notations and definitions

In the following sections, we will consider DPPs defined on the pixels of an image. Let us
first define any image as a function u : Ω→ Rd (d = 1 for gray-scale images and d = 3 for
color images), where Ω = {0, ..., N1 − 1} × {0, ..., N2 − 1} ⊂ Z2 is a finite grid representing
the image domain. We use a common matrix convention for the notation of the indices,
meaning that u(0, 0) is in the top left corner and N1 and N2 are respectively the height and
the width of the image. The cardinality of Ω, that is the number of pixels in the image, is
denoted by N = |Ω| = N1N2. Note that, if necessary, the pixels of an image are ordered
and they are considered column by column. For any image u : Ω 7→ Rd, and y ∈ Z2, the
translation τyu of u by the vector y is defined using periodic boundary conditions by

∀ x = (x1, x2) ∈ Ω, τyu(x1, x2) := u(x1 − y1 mod N1, x2 − y2 mod N2).

In the following, we consider the Fourier domain Ω̂ =
{
−N1

2 , . . . ,
N1
2 − 1

}
×
{
−N2

2 , . . . ,
N2
2 − 1

}
if N1 and N2 are even (otherwise, we consider

{
−Ni−1

2 , . . . , Ni−1
2

}
if Ni is odd), so that the

frequency 0 is centered. We define the discrete Fourier transform of a function f : Ω 7→ C
by, for all ξ ∈ Ω̂,

f̂(ξ) = F(f)(ξ) =
∑
x∈Ω

f(x)e−2iπ〈x,ξ〉, with 〈x, ξ〉 = x1ξ1
N1

+ x2ξ2
N2

.
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This transform is inverted using the inverse discrete Fourier transform:

∀x ∈ Ω, f(x) = F−1
(
f̂
)

(x) = 1
N

∑
ξ∈Ω̂

f̂(ξ)e2iπ〈x,ξ〉.

Besides, the Parseval formula asserts that for any function f : Ω→ C,

‖f‖22 =
∑
x∈Ω
|f(x)|2 = 1

N

∑
ξ∈Ω̂

|f̂(ξ)|2 = 1
N
‖f̂‖22.

Following these conventions, note that given a function f defined on Ω, we consider it
is extended by periodicity to Z2. For any function f defined on Ω, we set f−(x) := f(−x).
The convolution of two functions f and g defined on Ω is given by

∀x ∈ Ω, f ∗ g(x) =
∑
y∈Ω

f(x− y)g(y),

where again the boundary conditions are considered periodic. Then, f ∗ g can be computed
in the Fourier domain, since

∀ξ ∈ Ω̂, f̂ ∗ g(ξ) = f̂(ξ)ĝ(ξ).

The autocorrelation of a function f is denoted by Rf . It is defined for all x ∈ Ω by
Rf (x) = f ∗ f−(x) = ∑

y∈Ω f(x− y)f(−y).
Let us consider a DPP with kernel K defined on Ω× Ω. In this work, we will focus on

the modeling of textures, which are often characterized by the repetition of a pattern, or
small objects which may be indistinguishable individually. Their homogeneous aspect can
be naturally modeled by a stationary random field. Thus we will suppose that the point
processes under study are stationary and periodic. This hypothesis amounts to consider
that the correlation between two pixels x and y only depends on the difference x− y: the
distribution is invariant by translation, while assuming periodic boundary conditions. The
pixels are ordered column by column so that the ordered index of a pixel x = (x1, x2) ∈ Ω is
x1 + 1 + x2N1. Thus the kernel matrix K is a block-circulant matrix with circulant blocks,
entirely characterized by its first column.

Definition 2 A block-circulant matrix with circulant blocks K verifies for all x = (x1, x2),
y = (y1, y2) ∈ Ω, for all τ = (τ1, τ2) ∈ Ω,

K(x+ τ, y + τ) = K(x, y),

where we still consider periodic boundary conditions.

Let us define a correlation function C : Ω → C, extended to Z2 by periodicity, such
that K(x, y) = C(x − y),∀ x, y ∈ Ω. As it entirely characterizes K, it also characterizes
the associated DPP. As circulant matrices, block-circulant matrices with circulant blocks
are diagonalized in the Fourier basis [19, 16], and the eigenvalues of K are the Fourier
coefficients of C. See Appendix A for an illustration and some details on the diagonalization
of DPixP kernels.
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In this new framework, we can define DPPs from their correlation function C, they are
now called determinantal pixel processes (DPixP). A DPixP kernel has two representations:
C defined on Ω or the initial matrix K defined on Ω× Ω which corresponds to the block-
circulant matrix with circulant blocks whose first column is C.

Definition 3 (Stationary DPixP) Let C : Ω→ C be a function defined on Ω, extended
by periodicity to Z2, such that

∀ξ ∈ Ω̂, Ĉ(ξ) is real and 0 ≤ Ĉ(ξ) ≤ 1. (4)

Such a function is called an admissible kernel. Any random subset X ⊂ Ω is called a
(stationary) DPixP with kernel C and denoted X ∼ DPixP(C) if

∀A ⊂ Ω, P(A ⊂ X) = det(KA),

where KA = (C(x− y))x,y∈A is a |A| × |A| matrix.

2.2 Properties

The next proposition is directly deduced from properties of general DPPs (Proposition 1).

Proposition 4 (Distribution of the cardinality) The cardinality |X| of a DPixP is
distributed as the sum

∑
ξ∈Ω̂

Ber(Ĉ(ξ)), where for all ξ ∈ Ω̂, Ber(Ĉ(ξ)) are independent

Bernoulli random variables with parameters Ĉ(ξ). In particular,

E(|X|) =
∑
ξ∈Ω̂

Ĉ(ξ) = NC(0) and Var(|X|) =
∑
ξ∈Ω̂

Ĉ(ξ)(1− Ĉ(ξ)).

One can notice that it is easy to know and control the expected number of points in the
point process. In the following, when comparing different DPixP kernels, we will consider a
fixed expected cardinality n, meaning that we will fix C(0) = n

N .

Proposition 5 (Separable kernel) Let C1 and C2 be two discrete kernels, of dimension
1, defined respectively on {0, ..., N1 − 1} and {0, ..., N2 − 1}, both verifying Equation (4)
(for the 1D discrete Fourier transform). Then the kernel C given by ∀x = (x1, x2) ∈ Ω,
C(x) = C(x1)C(x2) is an admissible DPixP kernel. Such a kernel C will be called separable.

Proof Notice that for all ξ = (ξ1, ξ2) ∈ Ω̂, Ĉ(ξ) =
N1−1∑
x1=0

N2−1∑
x2=0

C1(x1)C2(x2)e
−2iπ

(
x1ξ1
N1

+x2ξ2
N2

)
= Ĉ1(ξ1)Ĉ2(ξ2). Thus, clearly, for all ξ ∈ Ω̂, Ĉ(ξ) is real and 0 ≤ Ĉ(ξ) ≤ 1. C is an
admissible kernel.

Let us consider two fundamental examples of DPixPs. The first one is the Bernoulli
process. It corresponds to the discrete analogous of the Poisson point process: points are
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Figure 1: Comparison between samples (both have 148 points) of two DPixPs: a Bernoulli
process (first line) and a projection DPixP defined by the kernel C such that Ĉ is
the indicator function of a discrete circle (second line). For both DPixPs, from
left to right, the Fourier coefficients Ĉ of the kernel, the real part of the kernel
Re(C) and one associated sample.

drawn independently and following a Bernoulli distribution of parameter p ∈ [0, 1]. This
point process is the DPixP characterized by the kernel C such that C(0) = p and for all
x 6= 0, C(x) = 0, or equivalently for all ξ ∈ Ω̂, Ĉ(ξ) = p ∈ [0, 1]. The second main example
is the family of projection DPixPs, that are determinantal processes defined by a kernel C
which verifies for all ξ ∈ Ω̂, Ĉ(ξ)(1− Ĉ(ξ)) = 0. Thus, from Proposition 4, the number of
points of projection DPixPs is fixed and equal to the number of non-zero Fourier coefficients
of C.

Notice that in the general discrete case, the first example corresponds to the case where
K is diagonal and the second one corresponds to the case where the eigenvalues of K are
either equal to 0 or to 1. It is also called a projection DPP and the cardinality of the point
process is equal to the number of non-zero eigenvalues, i.e. the rank of K.

Figure 1 presents two samples of these particular cases. Clearly, the projection DPixP
enables a more “regular” distribution of the points in the square, tends to avoid both holes
and clusters.

The common algorithm to sample exactly general determinantal processes is the spectral
algorithm [30]. This is a two steps strategy which relies on an eigendecomposition {(λx, vx)}1≤x≤N
of the matrix K. Indeed, define (Bx)1≤x≤N , N independent random variables such that
Bx ∼ Ber(λx) and KB =

∑
x∈Ω

Bxv
∗
xvx, where v∗x denotes the conjugate transpose of the

vector vx. Such a matrix KB is a random version of K and Hough and al. [31] proved that
DPP(K) = DPP(KB). Hence, the spectral algorithm consists in first drawing N independent
Bernoulli random variables of parameters λx: these variables select n active eigenvalues
and eigenvectors, where n is distributed as

∑
1≤x≤N

Bx. Then, it samples the n points from

a projection DPP, obtained from the selected eigenvectors, thanks to a Gram-Schmidt
procedure.

Recall that in our discrete stationary periodic framework, the eigenvalues of the matrix
K are the Fourier coefficients of C and its eigenvectors are the elements of the Fourier basis
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(Appendix A). Then an eigendecomposition of a DPixP of kernel C is computed using the
2D Fast Fourier Transform (FFT2) algorithm. Algorithm 1 presents the classic spectral
algorithm [30, 38], adapted to sample a DPixP. In this algorithm, (ϕξ)ξ∈Ω̂ denotes the
columns of the unitary discrete Fourier transform matrix, the eigenvectors of K:

∀ ξ ∈ Ω̂, ∀ x ∈ Ω, ϕξ(x) = 1√
N
e−2iπ〈x,ξ〉. (5)

Algorithm 1 Spectral simulation of X ∼ DPixP(C)
• Sample a random field U = (Uξ)ξ∈Ω̂ where the Uξ are i.i.d. uniform on [0, 1].

• Define the “active frequencies” {ξ1, . . . , ξn} = {ξ ∈ Ω̂;U(ξ) ≤ Ĉ(ξ)}, and denote

∀x ∈ Ω, v(x) = (ϕξ1(x), . . . , ϕξn(x)) ∈ Cn.

• Sample X1 uniformly on Ω, and define e1 = v(X1)/‖v(X1)‖ =
√

N
n v(X1).

• For k = 2 to n do:

– Sample Xk from the probability density pk on Ω, defined by

∀x ∈ Ω, pk(x) = 1
n− k + 1

 n

N
−
k−1∑
j=1
|e∗jv(x)|2



– Define ek = wk/‖wk‖ where wk = v(Xk)−
k−1∑
j=1

e∗jv(Xk)ej .

• Return X = (X1, . . . , Xn).

Note that the first point is supposed to be sampled from the distribution with density
p(x) = ‖v(x)‖2

n ,∀x ∈ Ω. Yet, in this framework, for all x ∈ Ω, ‖v(x)‖2 = n
N , thus the first

point of the realization is chosen uniformly. This is in accordance with the stationarity
of DPixP(C). Because of the eigendecomposition of a matrix of size |Ω| × |Ω| the initial
spectral algorithm runs in O(|Ω|3), yet thanks to the use of the Fast Fourier Transform
algorithm to compute the Fourier coefficients of C, sampling DPixPs costs O(|Ω| log |Ω|).
Whereas in general the spectral algorithm is heavy when dealing with a huge data set, in
this setting, it is very efficient. This allows us to handle large images. Thus, in addition to
the explicit computation of marginals and of moments of a DPixP from its kernel, this exact
sampler is one more asset of this family of point processes with respect to Gibbs processes,
which are another common repulsive model.

In spatial statistics, the pair-correlation function (p.c.f.) gX associated to a point
process X is used to describe interactions between pairs of points. It characterizes the local
repulsiveness of X [8]. For any discrete stationary point process on Ω, it is defined for all
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x ∈ Ω by
gX(x) = P ({0, x} ⊂ X)

ρ2 ,

where ρ is the intensity of the point process, ρ = E(|X|)
|Ω| = P(0 ∈ X). It quantifies the

degree of interaction between two points separated by a gap x: the closest g is to 1, the less
correlated they are. If g(x) > 1, the points are considered to attract each other, whereas if
g(x) < 1 the points are considered to repel each other. Notice that if X ∼ DPixP(C),

gX(x) = C(0)2 − |C(x)|2
C(0)2 = 1− |C(x)|2

|C(0)|2 .

Thus, if X is a Bernoulli point process, for all x 6= 0, gX(x) = 1: there is no interaction
between the points. Note also that for any DPixP, gX ≤ 1. During the sequential step of
the sampling, each time a pixel is selected, a “repulsion zone” appears around it, where
the probability for a pixel to be selected is low and whose shape depends on the kernel
function C. This local “repulsion zone” is clearly retrieved in the pair correlation function
computation.

Lavancier et al. [38] have also studied determinantal point processes in a stationary
framework. Their work is based on a continuous setting, with kernels defined on Rd, and due
to the stationarity, it is also strongly related to the Fourier transform. They study diverse
statistics to compare several stationary isotropic kernels. Similarly to our study in the next
subsections, they are interested in the quantification of the repulsiveness of different kernels.
In particular, they obtain that the most repulsive DPP kernels are projection kernels.

2.3 Hardcore repulsion

Gibbs processes are often used as their definition enables to precisely characterize the
repulsion. Besides, they can allow us for hard core repulsion, meaning that the points are
prohibited from being closer than a certain distance. To compare with this family of point
processes, we investigate the possibility of hard core repulsion in the case of DPixPs. First,
we study a hard core repulsion for pairs of points. Specifically, if x ∈ Ω and e ∈ Ω (for
instance e = (1, 0) or (0, 1)), is there a DPixP kernel such that x and x + e can’t belong
simultaneously to the sample?

Proposition 6 Let us consider X ∼ DPixP(C) on Ω and e ∈ Ω. Then the following
propositions are equivalent:

1. For all x ∈ Ω, the probability that x and x+ e belong simultaneously to X is zero.

2. For all x ∈ Ω, the probability that x and x + λe belong simultaneously to X is zero,
for λ ∈ Q such that λe ∈ Ω.

3. There exists θ ∈ R such that the only frequencies ξ ∈ Ω̂ such that Ĉ(ξ) is non-zero are
located on the discrete line defined by 〈e, ξ〉 = θ.

4. X contains almost surely at most one point on every discrete line of direction e.

This is called directional repulsion.

8



Determinantal point processes for image processing

(a) Fourier (b) Real part of (c) Capture during (d) Resulting sample
coefficients Ĉ the kernel C the sampling

Figure 2: Example of a kernel associated with hard core repulsion in the horizontal direction.
From left to right, the Fourier coefficients of C, the real part of the kernel C,
a capture of the conditional density during the simulation, the associated final
sample.

Proof Let X be a DPixP defined on Ω with kernel C. First, let us prove that 1 ⇔ 3.
Recall that for all x ∈ Ω, P

(
{x, x+ e} ⊂ X

)
= C(0)2−|C(e)|2. We deduce from the triangle

inequality that

|C(e)| =

∣∣∣∣∣∣∣
1
|Ω|

∑
ξ∈Ω̂

Ĉ(ξ)e2iπ〈e,ξ〉

∣∣∣∣∣∣∣ ≤
1
|Ω|

∑
ξ∈Ω̂

Ĉ(ξ) = C(0),

and the equality holds if and only if all non-zero elements of the left-hand side sum have
equal argument. Thus, P

(
{x, x+ e} ⊂ X

)
= 0 if and only if there exists θ ∈ R such that for

all ξ ∈ Ω̂, either Ĉ(ξ) = 0, or 〈e, ξ〉 = θ. Hence, for all x ∈ Ω, the probability that x and
x+ e belong simultaneously to X is zero if and only if the only non-zeros Fourier coefficients
of C are aligned in the orthogonal direction of e. Second, let us prove that 2 ⇔ 3. Consider
λ ∈ Q such that λe ∈ Ω. Similarly, P

(
{x, x+ λe} ⊂ X

)
= 0 if and only if there exists θ ∈ R

such that for all ξ ∈ Ω̂, either Ĉ(ξ) = 0, or 〈λe, ξ〉 = θ, meaning that 〈e, ξ〉 = θ
λ , which

also is the equation of a discrete line orthogonal to e. Finally, suppose that X contains
almost surely at most one point on every discrete line of direction e. Then, for all x ∈ Ω,
the probability that x and x+ e belong to X is zero so 4⇒ 1⇔ 3. Now assume that the
only non-zero Fourier coefficients of C are aligned on a discrete line that is orthogonal to e.
As 2 ⇔ 3 for all λ ∈ Q such that λe ∈ Ω, P

(
{x, x + λe} ⊂ X

)
= 0. Hence, X contains at

most one point on any line of direction e, which can be described as a hard core repulsion of
direction e.

Figure 2 illustrates this proposition: all non-zero Fourier coefficients are vertically aligned.
The third figure presents a capture of the conditional density while the simulation is in
progress, after 15 pixels already sampled. In each pixel, the probability that it is the next
point selected is represented by the gray scale: the lighter a pixel is, the greater its probability
of being the next point sampled. One can see that as soon as a pixel x is sampled, all the
pixels belonging to the horizontal line passing through x have a zero probability of being
sampled next. Note that this proposition is not limited to the horizontal or vertical cases.
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Proposition 7 Let X ∼ DPixP(C) verifying the properties of Proposition 6, with e = (1, 0),
meaning that X contains at most one point on any horizontal line and all non-zero Fourier
coefficients of C are aligned on a vertical line. Then C is separable in the sense of Proposition
5. Besides, the associated vertical point process is a DPixP of dimension 1 and conditionally
to the drawn ordinates, the associated horizontal point process consists of a single point
chosen uniformly and independently from the other horizontal point processes. The same
proposition holds for e = (0, 1) and vertical hardcore repulsion (inverting the terms horizontal
and vertical).

Proof Consider an admissible DPixP kernel C such that all its Fourier coefficients are either
zero either aligned on a vertical line, positioned in c ∈

{
−N1

2 , . . . ,
N1
2 − 1

}
(here we assume

that N1 is even, the proof is similar if N1 is odd). Thus we can define two functions Ĉ1 = 1c

and Ĉ2 = Ĉ(c, .) such that for all ξ = (ξ1, ξ2) ∈ Ω̂, Ĉ(ξ) = Ĉ1(ξ1)Ĉ2(ξ2) = Ĉ2(ξ2)1c(ξ1).
Notice that C = F−1(Ĉ1)F−1(Ĉ2) = C1C2. Such a function C1 corresponds to an admissible
DPixP projection kernel defined in one dimension, drawing one point and remember that
the first point of a DPixP is drawn uniformly. Furthermore, C is a separable kernel.

Note that as soon as a pair of points configuration is prohibited, the whole direction is
prohibited. As imposing a minimum distance between points is equivalent to prohibiting
pair of points configurations in all directions, we deduce that the only DPixP imposing a
minimum distance between the points is the degenerate DPixP, consisting of a single pixel.
Hence, there is no DPixP with hard core repulsion in the broad sense, as it exists for Gibbs
processes.

3. Shot noise models based on DPPs

3.1 Shot noise models and micro-textures

In the following section, we study discrete shot noise models driven by a DPixP. Shot noise
models naturally appear to model phenomena such as the superposition of impulses occurring
at independent and random times or positions. These models have been introduced in the
computer graphics domain with the work of van Wijk [61]. Notice that van Wijk uses the
expression spot noise texture as the spatial counterpart of 1D shot noise models yet the
term shot noise is commonly employed for general models. Thus, in the rest of the section,
we use this more general expression. Shot noise models are frequently used to approximate
Gaussian textures as they are well-defined and simple mathematical models that allows us
for fast synthesis [36], [23], [24]. Here, we are interested in the discrete version of these
models on the finite grid Ω = {0, . . . , N1 − 1} × {0, . . . , N2 − 1} ⊂ Z2.

Definition 8 (Shot noise models based on a discrete point process) Consider X a
discrete point process with intensity ρ and g a (deterministic) function defined on Ω,
periodically extended to Z2. Then, the shot noise random field S based on the points
X and the spot g is defined by

∀x ∈ Ω, S(x) =
∑
xi∈X

g(x− xi).

10
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In general, discrete shot noise models are based on a set of n i.i.d. random variables: it
amounts to summing n randomly shifted versions of the spot. These models are particularly
interesting for Gaussian texture synthesis as they have a Gaussian limit [22]. Indeed, in
that case, the shot noise is the sum of n i.i.d. random images so that thanks to the Central
Limit Theorem, we obtain a Gaussian limit. We study here shot noise models based on
DPixPs. At the end of the section, we prove that there is a similar central limit theorem for
shot noise models based on DPixPs that needs a modified framework but that ensures a
Gaussian limit.

From now on, we consider an admissible kernel C and we suppose that X is the DPixP
of kernel C. We study the interactions between the kernel C and the spot function g. To
compute the moments of a shot noise model S based on X and a given spot, we need a
moment formula ([44], [4]), also known as the Campbell or Slivnyak-Mecke formula, adapted
to our discrete setting in the following proposition.

Proposition 9 (Moments formula for DPixPs) Let X be a DPixP of kernel C defined
on Ω, let us consider k ≥ 1 an integer and f a function defined on Ωk. We have

E

 6=∑
x1,...,xk∈X

f(x1, . . . , xk)

 =
∑

y1,...,yk∈Ω
f(y1, . . . , yk) det((C(yi − yj)1≤i,j≤k), (6)

where
6=∑

x1,...,xk∈X
means that the (xi) are all different. In particular, for k = 1, we have

E
(∑
x∈X

f(x)
)

= C(0)
∑
y∈Ω

f(y).

Proof By definition of the DPixP of kernel C, for any y1, . . . , yk in Ω, we have

P({y1, . . . , yk} ⊂ X) = det((C(yi − yj)1≤i,j≤k).

Therefore, by the Slivnyak-Mecke formula [4], as we have

E

 6=∑
xi1 ,...,xik∈X

f(xi1 , . . . , xik)

 =
∑

y1,...,yk∈Ω
f(y1, . . . , yk)P({y1, . . . , yk} ⊂ X),

we obtain the formula of the proposition.

Since X ∼ DPixP(C) is stationary, S as defined in 8 is also stationary, so that E(S(x)k) =
E(S(0)k) for all x ∈ Ω and for all k ≥ 1.

Proposition 10 (First and second order moments) Let S be a shot noise model based
on X ∼ DPixP(C) and the spot g. Recall that Rg is the autocorrelation of g. We have
E(S(0)) = C(0)

∑
y∈Ω

g(y), and for all x ∈ Ω, ΓS(x) := Cov(S(0), S(x)) = C(0)Rg(x)− (Rg ∗

|C|2)(x). In particular,

Var(S(0)) = C(0)
∑
y∈Ω

g(y)2 − (Rg ∗ |C|2)(0)

11
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and ∀ξ ∈ Ω̂, Γ̂S(ξ) = |ĝ(ξ)|2(C(0)− |̂C|2(ξ)).

Proof First, let us compute the mean value of such a shot noise model S. Using the
periodicity of g,

E(S(0)) = E
(∑
x∈X

g(−x)
)

=
∑
y∈Ω

g(−y)C(0) = C(0)
∑
y∈Ω

g(y).

Second, let us compute the covariance function of S for all x ∈ Ω,
ΓS(x) = Cov (S(0), S(x)) = E ((S(0)S(x))− E (S(0))2

= E

 ∑
x1∈X

g(−x1)
∑
x2∈X

g(x− x2)

− E (S(0))2

= E

 6=∑
x1,x2∈X

g(−x1)g(x− x2)

+ E

 ∑
x1∈X

g(−x1)g(x− x1)

− E (S(0))2

=
∑

y1,y2∈Ω
g(−y1)g(x− y2)

(
C(0)2 − |C(y2 − y1)|2

)
+
∑
y∈Ω

g(−y)g(x− y)C(0)− E (S(0))2

= C(0)g ∗ g−(x)− (g ∗ g− ∗ |C|2)(x)

3.2 Extreme cases of variance

We set N = |Ω| = N1N2 ∈ N, the integer n ≤ N and Cn the set of admissible kernels such
that C(0) = n

N . If X ∼ DPixP(C), with C ∈ Cn, notice that E(|X|) = |Ω|C(0) = n. Given a
spot function g, we are looking for admissible kernels C ∈ Cn that generate shot noise models
S of maximal and minimal variance. Indeed, the value Var(S(0)) quantifies a repulsion “in
the sense of g” or the regularity of the shot noise. It is related to the superposition of the
spot and thus to a particular spatial arrangement of the points which can be adapted to the
spot g. The case of a shot noise S based on a spot function g defined as an indicator function
gives one some intuition into this idea. If Var(S(0)) is low, the values taken by S are close
to its mean value: there are few zones with no spot and few zones with many superpositions
of the spot. This means that the points sampled from DPixP(C) tend to be far from one
another, according to the shape of the function g and S appears more homogeneous. The
repulsion is maximal. On the contrary, when Var(S(0)) is high, S may take high values, so
there can be many points in the same area. In that case, the repulsion is minimal.

Proposition 11 (Extreme cases of variance) Fix g : Ω → R+ and an integer n ≤ N .
The variance of the shot noise model S is maximal if it is based on the Bernoulli DPixP that
belongs to Cn, meaning that its kernel C is such that C(0) = n

N and for all x 6= 0, C(x) = 0.
The variance of the shot noise model S is minimal when it is based on the projection DPixP
of n points, such that the n frequencies {ξ1, ..., ξn} associated with the non-zero Fourier
coefficients of its kernel maximize ∑

ξ,ξ′∈{ξ1,...,ξn}
|ĝ(ξ − ξ′)|2.

12
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Proof Given a fixed integer n ≤ N , let us consider C ∈ Cn that maximizes or minimizes

Var(S(0)) = C(0)g ∗ g−(0)− (g ∗ g− ∗ |C|2)(0)

= n

|Ω|2
∑
ξ

|ĝ(ξ)|2 − 1
|Ω|2

∑
ξ,ξ′

|ĝ(ξ − ξ′)|2Ĉ(ξ)Ĉ(ξ′).

If we identify the function Ĉ to a vector of RN , the question becomes finding C ∈ Cn that
maximizes or minimizes F : RN → R, where F (Ĉ) =

∑
ξ,ξ′

|ĝ(ξ − ξ′)|2Ĉ(ξ)Ĉ(ξ′).

Maximal variance: We define a scalar product associated to g for all v, w ∈ RN , by
〈v, w〉g =

∑
ξ,ξ′∈Ω

|ĝ(ξ − ξ′)|2vξwξ′ = vTGw where G is the N × N matrix such that G =

( |ĝ(ξ − ξ′)|2)
ξ,ξ′∈Ω̂. This scalar product is well defined as it is bilinear, symmetric and for all

v ∈ RN ,
N∑

ξ,ξ′=1
|ĝ(ξ − ξ′)|2vξvξ′ = Rg ∗ |v̂|2(0) ≥ 0, where Rg is the autocorrelation of g, and

〈v, v〉g = 0⇔ v = 0. Notice that since G is symmetric positive definite then F : Ĉ 7→ 〈Ĉ, Ĉ〉g
is strictly convex. The case of maximal variance is achieved for the vector Ĉ that minimizes
this strictly convex function on the convex set Cn: the problem has at most one solution [11].

According to the Cauchy-Schwarz inequality, we have for all v, w ∈ RN , |〈v, w〉g| ≤
‖v‖g‖w‖g. Let us pick v = Ĉ, the vector whose components are the Fourier coefficients
of a kernel C ∈ Cn and w = 1 (= (1, 1, . . . , 1) the constant vector of size N). We have
‖v‖2g = F (Ĉ) and ‖w‖2g =

∑
ξ,ξ′

|ĝ(ξ − ξ′)|2 =
∑
ξ,ξ′

R̂g(ξ − ξ′) = N2Rg(0). Hence ‖v‖g‖w‖g =√
N2F (Ĉ)(g ∗ g−)(0) and

|〈v, w〉g| =
∑
ξ,ξ′

|ĝ(ξ − ξ′)|2Ĉ(ξ) =
∑
ξ

Ĉ(ξ)
∑
ξ′

|ĝ(ξ − ξ′)|2 = nN Rg(0).

Thus, F (Ĉ) ≥ n2Rg(0) and F (Ĉ) is minimal if and only if Ĉ is proportional to w: necessarily,
for all ξ ∈ Ω̂, Ĉ(ξ) = n

N . Hence, C is a Bernoulli process. This kernel maximizes the variance
of any shot noise S, independently of the spot g. It it the least repulsive DPixP.
Minimal variance: Let us characterize the kernel C that maximizes the function F on the
convex set Cn. F is quadratic so that solutions are on the boundaries of Cn, meaning that
for all kernel Ĉ∗ ∈ Ĉ∗F := {argmax

Ĉ

(F (Ĉ))},
∑
ξ

Ĉ∗(ξ) = n and ∀ξ ∈ Ω̂, Ĉ∗(ξ)(1− Ĉ∗(ξ)) =

0. Thus, the solutions are the projection DPixP kernels C∗ with exactly n frequencies
{ξ1, ..., ξn} ⊂ Ω̂ such that Ĉ∗(ξi) = 1 chosen so that

∑
ξ,ξ′∈{ξ1,...,ξn}

|ĝ(ξ − ξ′)|2 is maximal.

In the end, to determine the maximal repulsion kernel, one needs to maximize a quadratic
function, which is NP-hard in general. In practice, it amounts to solve a combinatorial
problem. It is possible to approximate the solution thanks to a greedy algorithm: first, one
chooses two frequencies ξ1, ξ2 maximizing |ĝ(ξ1 − ξ2)|2 then, recursively, one chooses the kth
frequency ξk, 2 < k ≤ N, such that it maximizes

∑
ξ∈{ξ1,...,ξk−1}

|ĝ(ξ − ξk)|2.

13
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spot g Ĉ Re(C) DPixP(C) SDPixP SBPP

Figure 3: Realizations of the shot noise model driven by several spot functions and the
most repulsive DPixP adapted to this spot. From left to right: the spot function,
the Fourier coefficients obtained by our glutton algorithm, the real part of the
associated kernel C, a sample of this most repulsive DPixP and a sample of the
associated shot noise model and finally a Bernoulli shot noise model, both having
the same expected number of points (n = 80).
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Figure 3 presents some results of this algorithm. This figure shows that a projection
DPixP adapted to g generates shot noise models with very few spot superpositions. Recall
that in section 2, we proved that it was impossible to completely prevent superpositions.
Yet, it is possible to characterize the least and the most repulsive DPixPs according to a
specific desired repulsion. These extreme cases are coherent with the results of Biscio and
Lavancier [8] who quantified the repulsion of stationary DPPs defined on Rd and stated that
the least repulsive DPP is the Poisson point process whereas the most repulsive family of
DPP contains the kernels C such that their Fourier transform F(C) is the indicator function
of a Borel set, an analog to the projection DPixPs defined here.

3.3 Convergence to Gaussian processes

Shot noise models driven by DPixP enable more diverse types of textures than the usual shot
noise models, based on points drawn uniformly and independently. As with usual shot noise
models based on discrete Poisson processes, it is appealing to study the behavior of the model
when the density of the point process increases and tends to infinity. The model presented
here takes into account the case where the points are sampled independently, when the shot
noise is based on a Bernoulli process. Yet, usual discrete shot noise models, as defined in
[22], are based on a point process that is not simple, meaning that the points can coincide.
Hence it is possible to study the asymptotic behavior of the shot noise model when the
intensity of the point process grows. On the contrary, in this work, the DPixPs we study are
by definition simple: the points can’t coincide. Thus, the framework needs to be adapted so
that Ω expands to Z2. In spatial statistics, this study is called increasing-domain asymptotics
[17] and is commonly used when the data is defined on a lattice. In the following subsection,
we will consider a fixed DPP kernel and spot function expanding with the image domain. A
related configuration is to consider Ω as a grid in [0, 1]2 = T2, the torus of dimension 2, that
is refined. In that setting, called infill asymptotics [17], the kernel of the DPP is rescaled so
that the points are allowed to be increasingly close and the number of points inside [0, 1]2
tends to infinity. In these configurations, it is possible to characterize asymptotic behaviors
and to derive limit theorems such as a Law of Large Numbers or a Central Limit Theorem.
To this end, let us consider stationary determinantal point processes on Z2 [52, 41], that
we will also call determinantal pixel processes. This point process is defined by a discrete
bounded operator K on `2(Z2). That means that K : `2(Z2)→ `2(Z2), f 7→ Kf such that
∀ t ∈ Z2,Kf(t) = ∑

s∈Z2 K(t, s)f(s). We suppose that this DPP is stationary: we define
a kernel function C : Z2 → C, such that K(t, s) = C(s − t) and C ∈ `2(Z2). Then for all
t ∈ Z2,Kf(t) = ∑

s∈Z2 C(s− t)f(s): such a K is a convolution operator.
As C belongs to `2(Z2), there exists a function Ĉ ∈ L2(T2) such that Ĉ : T2 7→ [0, 1],

∀t ∈ Z2, C(t) =
∫
T2
Ĉ(x)e2iπt·xdx and Ĉ is equal to x 7→

∑
t∈Z2

C(t)e−2iπt·x in the sense of

L2(T2). Finally, the point process X ∼ DPixP(C) is defined by ∀A ⊂ Z2, a finite subset,

P(A ⊂ X) = det(CA), where CA = (C(xi − xj))xi,xj∈A .

This new definition of DPixPs on Z2 is an extension of the point process defined on
Ω. The main properties of DPixPs are preserved and it allows us to study the asymptotic
behavior of shot noise models driven by DPixPs, when the grid is refined or equivalently
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when the support of the spot is spread out. To do so, we need to consider spot functions
defined on R2.

Shirai and Takahashi [54] state the following limit theorems. Some guidelines for the
proofs can be found in [54] for the Z2 case and in [52] and [53] for its continuous counterpart.

Proposition 12 (Limit theorems for shot noise models and DPixPs [54]) Let f be
a bounded measurable function on R2 with compact support, and X ∼ DPixP(C) with C
some admissible kernel on Z2. Then, we have the following Law of Large Numbers

1
M2

∑
x∈X

f

(
x

M

)
−−−−→
M→∞

C(0)
∫
R2
f(x)dx, a.e and in L1.

Moreover, assume that f is continuous and
∫
R2 f(x)dx = 0. Then, ∀t ∈ R,

lim
M→∞

E
(

exp
(

i√
M2

∑
x∈X

f

(
x

M

)))
= exp

(
−1

2σ(C)2‖f‖22
)

where σ(C)2 = C(0)−
∑
x∈Z2

|C(x)|2, and consequently,

1√
M2

∑
x∈X

f

(
x

M

)
D−−−−→

M→∞
N (0, σ(C)2‖f‖22).

In the following, let g be a spot function, that we assume continuous, with compact
support, and M > 0. Denote the M -normalized shot noise SM associated to g defined for
all y ∈ Z2 by SM (y) = 1

M2

∑
x∈X

g

(
y − x

M

)
. We obtain a Law of Large Numbers for the

shot noise driven by DPixPs:

SM (0) = 1
M2

∑
x∈X

g

(
− x

M

)
−−−−→
M→∞

C(0)
∫
R2
g(x)dx, a.e and in L1. (7)

Finally, it is also possible to obtain a multidimensional central limit theorem thanks to
the previous formulations.

Proposition 13 (Central limit theorem for shot noise models) Let g be a continuous
function on R2 with zero mean and compact support, X ∼ DPixP(C) and the related shot
noise SM : SM (y) = 1

M2

∑
x∈X

g

(
y − x

M

)
,∀y ∈ Z2.

Then, ∀x1, ..., xm ∈ Z2,
√
M2 (SM (x1), · · · , SM (xm)) D−−−−→

M→∞
N (0,Σ(C))

where for all k, l ∈ {1, · · · ,m},

Σ(C)(k, l) =
(
C(0)− ‖C‖22

) ∫
R2
g(xk − t)g(xl − t)dt =

(
C(0)− ‖C‖22

)
Rg(xl − xk).
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(a) Spot (b) SM , M = 1 (c) SM , M = 2

(d) SM , M = 3 (e) SM , M = 6 (f) N (0,Σ(C))

Figure 4: Determinantal shot noise realizations SM as defined in Theorem 12 with various
M = 1, 2, 3, 6 and a comparison with their associated limit Gaussian random field
N (0,Σ(C)) (f). The shot noise is based on the spot (a) and the DPixP with kernel
C whose Fourier coefficients form an isotropic 2D Gaussian function (Figure 1,
bottom).

Proof Consider the M -normalized shot noise SM associated to g: ∀y ∈ Z2, SM (y) =
1
M2

∑
x∈X

g

(
y − x

M

)
. By setting ∀u ∈ Rm, ∀x1, ..., xm ∈ Z2,∀x ∈ R2,

f(x) = u1g(x1 − x) + u2g(x2 − x) + · · ·+ umg(xm − x),

f is continuous on R2, with compact support such that
∫
R2 f(x)dx = 0 so it is possible to

apply the limit theorem 12 and the Levy’s continuity theorem.

Thus, shot noise models driven by a DPixP also converge to a Gaussian limit whose
covariance is related to the spot and to the kernel C of the point process. Note that, in the
previous proposition, the limit variance Σ(C) is equal to the product of a constant depending
on the kernel C and the autocorrelation of the spot g. Similarly, a normalized Poisson shot
noise associated to the spot g converges towards the distribution N (0, Rg), where Rg is the
autocorrelation of g [22]. As the Bernoulli case corresponds to the kernel function C = δ0,
we retrieve the same result here.

Notice the similar work in a continuous framework of Poinas et al. on the limit distribution
of sums of functionals of DPPs defined on Rd [48]. Figure 4 presents the asymptotic behavior
of shot noise models driven by the continuous spot function shown in (a), whose integral is
zero, and a DPixP on Z2 with a kernel whose Fourier coefficients are given by an isotropic
2D Gaussian function. When the grid is refined, the shot noise as defined in this section
tends to a Gaussian texture associated to the spot and the kernel of the DPixP.

There are several perspectives to extend these results. Note that there is no more
interaction between the spot and the kernel in the limit and the higher the repulsion is, in
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the sense of high kernel coefficients, the lower the variance is. In particular, for projection
kernels C, the asymptotic variance Σ(K) vanishes, as ‖C‖22 =

∫
T2 |Ĉ(x)|2dx =

∫
T2 Ĉ(x)dx =

C(0). This suggests that the convergence rate must be faster for projection DPixPs. The
convergence of determinantal shot noise models towards a Gaussian process has also been
proven by Soshnikov [56], with some relaxed assumptions. In his work, the spot function g
does not need to be continuous or to have a zero mean but it needs to be bounded with
precompact support and the expectation and variance of the shot noise are constrained.
We plan to adapt these results to our framework to lighten the assumptions on the spot
function.

4. Identifiability and Inference for Determinantal Pixel processes

One of the purposes of statistical inference is to fit a predetermined model to data that
can be represented by points, using information on their global or local behaviour. When
the data are assumed independent and well represented by a homogeneous point process,
one can use Poisson point processes. Yet, some data may present attraction or repulsion,
they may also have an anisotropic structure. DPixP models can be suitable for representing
2-dimensional discrete data points with repulsion. For instance, the positions of plant seeds
[44] or trees in a forest [38] often exhibit repulsion because of limited shared supply, but also
anisotropy due to environmental factors as wind orientation or ground steepness. In [47],
Perrin et al. study statistical inference on repulsive point processes, Strauss processes, to
detect tree crowns on aerial images of forests. Similarly, Descamps et al. [20] use Gibbs point
processes to automatically detect flamingos on images of colonies. Once one has inferred
the parameters of an appropriate model, it is possible to reproduce similar data, to detect
objects or distinguish different regions by statistical testing.

Learning the parameters of a determinantal point process, either the whole underlying
kernel K as in [32, 1] or a few parameters encoding the kernel as in [5, 9], is still considered
as a difficult task, first because the likelihood is often non-convex, and most of all because it
is complex to compute as it uses the determinant of a huge matrix. Most papers studying
inference for DPPs overcome this difficult computation by using restrictive hypothesis on
the kernel such as in the papers [33] or [1]. Bardenet and Titsias [5] develop bounds on the
likelihood and use Markov Chain Monte Carlo methods to infer the parameters of the kernel.
On the other hand, using descriptive statistics to fit the models to the data enables to cope
with this difficult computation and to obtain more efficient inference algorithm. It is the
approach that we choose in this paper. Some authors try to infer first order characteristics
such as the intensity of the point process [10], which provides the average number of points
in a given area. In our finite and discrete setting, we can obtain a direct estimation of the
intensity, as the ratio between the number of points and the size of the domain. Several
second order characteristics are used to describe a sample, for example the empty space
distance, the cumulative nearest-neighbor function, the pair correlation function (p.c.f. in
short), presented above, or the Ripley’s K function, closely related to the p.c.f (see [44] for
a detailed presentation). These statistics provide information on the interactions between
points. Møller and Waagepetersen [44] present these different statistics and state that higher
order characteristics may be less stable if the number of points is low. In the following, we
choose to focus on a quantity related to the p.c.f. It has several advantages: it is easy to
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Ĉ1 Ĉ2 Ĉ3

Figure 5: Three DPixP kernel functions, defined by their Fourier coefficients, generating the
same DPixP.

interpret, it is easy to compute and it provides insights on local interactions. Biscio and
Lavancier [9] also use the p.c.f for a minimum contrast estimation in continuous settings.

The purpose of this section is to derive a DPixP kernel function C from one or several
samples of points on a finite and discrete domain. This estimation is non-parametric as
we focus on general DPixP even though it can be seen as a parametric estimation of a
DPP kernel matrix K of size |Ω| × |Ω| that we suppose block-circulant and determined
by |Ω| parameters, the values of C. Before we investigate this question, it is necessary to
characterize the identifiability of DPixP models.

4.1 Equivalence classes of DPP and DPixP kernels

A model is not identifiable if two different parametrizations are equivalent. Here, it would
correspond to several different kernel functions generating the same DPixP. Lavancier et
al. [39] proved that in a continuous setting, assuming that its intensity function is positive,
a DPP kernel is uniquely defined. Yet, in the discrete case, DPPs and DPixP are not
identifiable, as illustrates Figure 5. It is crucial, in particular for estimation purposes, to
characterize these equivalence classes of kernels. Of course this question is also decisive in
more general cases, when the kernel matrix K is Hermitian, with real or complex coefficients.
We propose here a brief synthesis of what is known on this question, and we add a study on
DPixP kernels.

The distribution of a DPP is entirely defined by all its principal minors (see Equation
1), thus characterizing DPP kernel equivalences classes is equivalent to understanding the
consequences of equal principal minors on matrices, in the symmetric or Hermitian cases,
and in the DPixP framework where the matrix is Hermitian circulant.

Notice that the characteristic polynomial of a matrix can be written as a function of its

principal minors: det(tI + K) =
N∑
k=0

(−1)k
 ∑
A⊆Y,|A|=k

detKA

 tn−k. Hence, two matrices

with equal principal minors have equal characteristic polynomial so they have the same
eigenvalues, with the same algebraic multiplicity. Thus, two kernel matrices generating the
same DPP have the same spectrum. A key notion here is the diagonal similarity between two
matrices: two square matrices M1,M2 are called diagonally similar if there exists a diagonal
matrix D such thatM2 = D−1M1D. In the following, we also need the notion of the directed
graph associated to a matrix ([21], [27], [32]). Consider a matrix M of size N × N . Its
associated directed graph GM contains the N vertices Y = {1, . . . , N} and an edge between
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the vertices x and y if and only if M(x, y) 6= 0. The matrix M is called irreducible if GM
is strongly connected, meaning that there exists a sequence a path from any vertex to any
other one. In the opposite case, the matrix is called reducible, which is equivalent to being
permutation-similar to a block upper triangular matrix. Besides, it is called completely
reducible if it is permutation-similar to a block diagonal matrix with irreducible blocks,

meaning that there exists a permutation matrix P such that P TMP =

M1 0
. . .

0 Mr

,
M1, . . . ,Mr irreducible. Notice that a Hermitian matrix is either irreducible or completely
reducible.

Let us consider two general admissible DPP kernels K1 and K2, admissible meaning
that they are Hermitian and their eigenvalues are in [0, 1]. Thanks to basic determinant
properties, notice that if there exists a diagonal matrix D such that K2 = D−1K1D or
KT

2 = D−1K1D, then K1 and K2 have same principal minors, that is, the equivalence class
of a DPP kernel contains all the admissible matrices of which the kernel matrix itself or
its transpose is diagonally similar. In the case where the DPP kernel is real, Kulesza [32]
proved the following proposition.

Proposition 14 (Equivalence classes of real symmetric kernels [32]) Let K1 and K2
be two real positive symmetric N × N matrices with eigenvalues bounded by 1. Then
DPP(K1) = DPP(K2) if and only if there exists a N × N diagonal matrix D such that
K2 = D−1K1D, where the coefficients of D are either 1 or -1.

The proof of this proposition is in two parts. First, the author demonstrates the relation
when all coefficients of the matrices are non-zero. Then, using graph theory, Kulesza extend
this proof to matrices associated to a connected graph and finally to a disconnected graph,
when the matrix is reducible. This equivalence property for real DPP kernels has impacted
serveral learning strategies as in [49], [13], [60] or [12] which try to estimate real DPP kernels
from several i.i.d. samples. In particular, the first two papers intend to solve the so-called
principal minor assignment problem for symmetric matrices, and Brunel et al. [12] maximize
a log-likelihood depending on the equivalence class of DPP kernels. Urschel et al. [60] obtain
a bound on a distance between the estimated kernels L∗ and the equivalence class of the
original kernel: min

D
‖L∗ −D−1LD‖F , on diagonal matrices D with coefficients only equal

to 1 or -1.
In the paper [57], Stevens characterizes equivalence classes of real or complex symmetric

DPP kernels. We would like to characterize DPP equivalence classes in a more general
setting, where the DPP kernels are no longer real or symmetric but complex and Hermitian.
Schneider, Saunders and Engel ([51],[21]) worked on the relation between equal principal
minors and diagonal similarity through graph theory: see for instance [51] for links between
equality of cyclic products and diagonal similarity, or [21] where they deal with real symmetric
matrices. In 1986, Loewy [40] gives several sufficient conditions ensuring that if two square
matrices have equal principal minors, one is diagonally similar to the other one or to the
conjugate of the other one. We adapt these conditions to Hermitian DPP kernels in Theorem
16. In the following, we define DN ⊂MN (C) as the set of diagonal matrices of size N ×N
such that its coefficients are of modulus one.
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Lemma 15 Let K1 and K2 be two irreducible Hermitian matrices and assume that there
exists an invertible diagonal matrix D such that K2 = D−1K1D or KT

2 = D−1K1D. Then
all the coefficients of D have the same modulus so one can choose D in DN .

Proof Assume that K1 and K2 are two irreducible Hermitian matrices and there exists a
diagonal matrix D such that K2 = D−1K1D or KT

2 = D−1K1D. First, let us suppose that
K2 = D−1K1D. For all x, y ∈ Y such that K1(x, y) 6= 0, we have also K2(x, y) 6= 0 and

K2(x, y) = 1
dx
K1(x, y)dy.

As K2 is Hermitian, K2(x, y) = K2(y, x) = 1
dy
K1(y, x)dx = dx

dy
K1(x, y). Then dy

dx
= dx

dy
,

hence for all x, y ∈ Y such that K1(x, y) 6= 0, |dx| = |dy|. Now recall that K1 is irreducible.
Its associated graph is connected and every node is reachable from any other node so it is
possible to propagate this equality so that for all x, y ∈ Y, |dx| = |dy| = λ. Then without
loss of generality, changing if necessary to 1

λD, we can choose D as the matrix such that
K2 = D−1K1D with diagonal coefficients of modulus equal to 1. The proof is similar if
KT

2 = D−1K1D.

Now we can prove the following theorem on the equivalence classes of Hermitian DPP
kernels.

Theorem 16 (Identifiability for Hermitian DPP kernels) Let N be a positive integer
and let Y = {1, . . . , N}. Suppose that K1,K2 ∈MN (C) are two Hermitian admissible DPP
kernels and that K1 is irreducible. If N ≥ 4, suppose furthermore that, for every partition
of Y into subsets α, β such that |α| ≥ 2, |β| ≥ 2, rank (K1)α×β ≥ 2. Then, the following
propositions are equivalent:

(i) DPP(K1) = DPP(K2),

(ii) There exists a diagonal matrix D such that K2 = D−1K1D or KT
2 = D−1K1D,

(iii) There exists a diagonal matrix D ∈ DN such that K2 = D−1K1D or KT
2 = D−1K1D.

Proof Define K1 and K2 two admissible DPP kernels, such that K1 verifies the hypothesis of
Theorem 16. By definition, DPP(K1) = DPP(K2) is equivalent to K1 and K2 having equal
principal minors. In the papers [27] (Theorem 7) and [40] (Theorem 1), Hartfiel and Loewy
prove that if K1 is irreducible and for every partition of Y into two subsets, α and β such that
|α| ≥ 2 and |β| ≥ 2, rank (K1)α×β ≥ 2, then K1 and K2 have equal principal minors if and
only if there exists a diagonal matrix D such that K2 = D−1K1D or KT

2 = D−1K1D. Notice
that these two theorems, making the distinction between rank(K1)α×β and rank(K1)β×α,
are equivalent in this Hermitian setting. Then (i) is equivalent to (ii). Besides, clearly (iii)
implies (ii) and under these assumptions, by Lemma 15, (ii) implies (iii).

In this general setting, assuming that K1 is irreducible is crucial. Indeed, Hartfiel and
Loewy [27] provide counterexamples of two admissible kernels generating the same DPP
distribution without being diagonally similar.
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We now turn to the special case of DPixP defined on Ω, the image domain of size
N1 ×N2. Their kernel matrices are Hermitian block-circulant with circulant blocks. Recall
that matrices generating DPixPs have all the same eigenvectors, the vectors of the Fourier
basis. We also know that two matrices generating the same DPixP distribution have the
same eigenvalues, so there is at most (N1N2)! different kernels associated to one DPixP
model. In the following proposition and remark, we prove that in most cases, the class of
equivalence is much more constrained.

Proposition 17 (Identifiability for DPixP) Let Ω be a finite grid of size N1×N2, and
C1, C2 be two admissible DPixP kernels on Ω in the sense of Definition 3, generating
the block-circulant matrices K1 and K2 that satisfy the hypothesis of Theorem 16. Then,
DPixP(C1) = DPixP(C2) if and only if there exists a translation mapping the Fourier
coefficients of C2 to the Fourier coefficient of C1 or to their symmetry with respect to (0, 0),
meaning that

DPixP(C1) = DPixP(C2)⇐⇒ ∃ τ ∈ Ω s.t. either ∀ξ ∈ Ω, Ĉ2(ξ) = Ĉ1(ξ − τ)
or ∀ξ ∈ Ω, Ĉ2(ξ) = Ĉ1(−ξ − τ).

(8)

Proof
As K1 and K2 satisfy the hypothesis of Therorem 16, there exists an invertible diagonal

matrix D such that K2 = D−1K1D or KT
2 = D−1K1D, where D ∈ DN , meaning that D is a

diagonal matrix with coefficients of modulus equal to one. First, assume that K2 = D−1K1D.
Define for all x ∈ Ω, θx ∈ [0, 2π[ such that D(x, x) = eiθx . The goal is to prove that there
exists τ such that θx = 2π〈x, τ〉, for all x ∈ Ω. Notice that, by changing D into 1

D(0,0)D, we
can assume that θ0 = 0, that is D(0, 0) = 1. By assumption, we obtain

∀x, y ∈ Ω, K2(x, y) = C2(y − x) = e−iθxK1(x, y)eiθy = ei(θy−θx)C1(y − x),

and C2(x) = C2(x− 0) = eiθxC1(x).
Recall, thanks to Equations (2) and (3), that C1(0) = C2(0) and that, for all x ∈ Ω,
|C1(x)| = |C2(x)|. As C2(x) = 0 if and only if C1(x) = 0, for such x ∈ Ω, any value θx is
valid. Consider the set Ω∗C = {x ∈ Ω; C1(x) 6= 0}. For all z ∈ Ω, and all x ∈ Ω, we have

C2(z) = eiθzC1(z) = C2(z + x− x) = ei(θz+x−θx)C1(z + x− x) = ei(θz+x−θx)C1(z).

Denote for all x ∈ Ω, α(x) = eiθx . Thus, for all z ∈ Ω∗C , for all x ∈ Ω, α(z) = α(z + x)α(x),
meaning that α(x) = α(z + x)α(z). For all ξ ∈ Ω̂, for all z ∈ Ω∗C , we have

α̂(ξ) =
∑
x∈Ω

α(x)e−2iπ〈x,ξ〉 =
∑
x∈Ω

α(z)α(z + x)e−2iπ〈x,ξ〉 = α(z)e2iπ<z,ξ>α̂(ξ).

As α is not the zero function, consider τ ∈ Ω̂ such that α̂(τ) is non-zero. Then, for all
z ∈ Ω∗C , α(z) = e2iπ<z,τ>. Thus, for all z ∈ Ω∗C , C2(z) = e2iπ<z,τ>C1(z), which is also true
for z such that C1(z) = 0. To conclude, for all z ∈ Ω, C2(z) = e2iπ<z,τ>C1(z). In the second
case when KT

2 = D−1K1D, the proof is identical.
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Remark 18 Notice that when we consider two equivalent DPixP kernels C1 and C2,
generating the block-circulant matrices K1 and K2, there are three possible configurations.
The first one is when K1 verifies the assumptions of Theorem 16, it leads to Proposition 17.
In the second case, K1 is irreducible, but N = N1N2 ≥ 4 and there exists a partition α, β of
Y such that |α| ≥ 2, |β| ≥ 2 and rank (K1)α×β < 2. In the third case, K1 is not irreducible.
Let us characterize the second and third cases. It appears that these configurations are “rare”
in practice.

Case 2: Assume that K1 is irreducible, N = N1N2 ≥ 4 and that there exists a partition
α, β of Y such that |α| ≥ 2, |β| ≥ 2 and rank(K1)α×β < 2. If rank(K1)α×β = 0, that is
(K1)α×β = 0. There exists a permutation matrix such that K1 is permutation similar to
a block diagonal matrix, which is in contradiction with the irreducible hypothesis. Hence,
rank(K1)α×β = 1. This means that there exist two vectors u ∈ C|α| \ {0} and v ∈ C|β| \ {0}
such that (K1)α×β = uT v. In practice, as K1 is Hermitian and the Fourier coefficients of C
are real, the coefficients of the matrix K1 are tightly constrained. The matrix is determined
by a small number of modulus and arguments. Then, when assuming that K1 and K2 are
equivalent, as DPixP kernels, the matrices are even more constrained. See Appendix B.1
for a simple example of this configuration. Notice that in the 1D case of dimension 5, two
equivalent DPixP kernels K1 and K2 in this configuration still verify that there exists a
diagonal matrix D ∈ DN such that K2 = D−1K1D or KT

2 = D−1K1D. Our conjecture is
that this is always the case, whatever the dimension of Ω. Thus, this assumption on the rank
of the submatrix (K1)α×β leads to degenerate kernels that are numerically “rare”.

Case 3: K1 is not irreducible. Then, as a Hermitian or circulant matrix, K1 is
necessarily completely reducible, meaning that there exists a permutation matrix P such that
K1 is permutation similar to a block diagonal matrix with irreducible blocks. We prove in
Appendix B.2 that these blocks are copies of one Hermitian block-circulant sub-matrix, that
we can call the canonical block: they all have equal size and the coefficients are identical.
Note that restricting DPP to a subset A define also a DPP on this subset A [34, Section
2.3]. Furthermore, as each block matrix is still circulant, each one defines a sub-DPixP
defined on the associated subset of pixels. By assumption, these blocks are irreducible so
they are either in the first or in the second configuration. Let us consider K2 a DPixP
kernel equivalent to K1. Thanks to the modulus equality, K2 is similar to a block diagonal
matrix with blocks of same size, using the same permutation matrix. If the canonical block is
in the first configuration, verifying the rank hypothesis of Theorem 16, the final diagonal
matrix D is simply the concatenation and rearrangement of all the diagonal sub-matrices Di

associated to its respective i-th block. Notice that as the block submatrices are identical to
the canonical block and each one concerns a different set of pixels, all submatrices are in
the same configuration, meaning that either for all submatrices K1i of K1, K1i = DiK2iDi

or for all submatrices K1i, K1i = DiK2iDi. On the other side, if the canonical block is in
the second configuration, we can’t conclude on the similarity of both matrices K1 and K2
in the general case yet. Notice that this completely reducible hypothesis is quite degenerate.
It corresponds to a DPixP defined on an image domain that can be partitioned in groups
of pixels evenly spaced with independence from one group to the other: that means that the
pixels are independent to their immediate neighbors. A typical example of this model would
be image domain partitioned following a grid. As DPixPs deals with spatial repulsion, there
seems to be few applications of such models.
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It is important to notice that the size of the equivalence classes we characterized in
Proposition 17 is small and known: given a DPixP kernel verifying the appropriate hypothesis,
it admits at most 2|Ω| equivalent kernels, generating the same DPixP distribution. Moreover,
we have shown previously how a kernel that does not verify the hypothesis of the proposition
is quite degenerate: in practice, when dealing with kernels adapted to a given problem, these
hypothesis are always verified. In fact, we were not able to find an example of DPixP kernels
C1 and C2 such that DPixP(C1) = DPixP(C2) and which does not verify the right hand
side of Equivalence (8). We conjecture that Equivalence (8) holds for all DPixP kernels,
regardless of the hypotheses of Theorem 16. Characterizing equivalence classes of DPPs and
DPixPs is crucial for the estimation of DPixP kernels from point process samples. This is
what we investigate in the next subsection.

4.2 Learning a DPixP kernel from one realization

First, we address the question of inference from one single realization. Consider one set of
points Y on Ω, the finite and discrete grid of size N1 × N2 = N and assume that Y has
been sampled from a certain DPixP of kernel C0. Note that in general, one realization does
not provide enough information to characterize a model. Yet, due to the stationarity of the
kernels we consider, all the translations of Y can also be seen as samples drawn by the same
DPixP kernel C0.

Let n = |Y | denote the cardinality of Y . The problem is to find Ce an admissible
DPixP kernel that estimates C0, the original one. Equivalently, we want to find the Fourier
coefficients Ĉe ∈ [0, 1]N the closest to Ĉ0, in a sense defined below. In the following, we will
work in the Fourier domain.

Let C be any admissible kernel on Ω and X ∼ DPixP(C). As before, we will consider Ĉ
either as a function from Ω̂ to [0, 1], or as a vector in [0, 1]N . Recall that the intensity of the
point process is given by E(|X|)

Ω = 1
Ω
∑
ξ∈Ω̂

Ĉ(ξ) = C(0). In case of a kernel estimation from

one sample, it is natural to consider that the expected cardinality of the point process to be
estimated is the cardinality of this unique sample. Thus, a straightforward estimation of the
intensity of the point process is

Ce(0) = n

N
(9)

or equivalently
∑
ξ∈Ω̂

Ĉe(ξ) = n. Now, we want to determine the estimator Ce(x), for all

x ∈ Ω \ {0} denoted Ω∗. Let us consider

pC(x) =

P(x ∈ X| 0 ∈ X) = P({0, x} ⊂ X)
P(0 ∈ X) = C(0)− |C(x)|2

C(0) if x 6= 0,

0 if x = 0.
(10)

Now, from the realization Y , we can obtain θ(x) the empirical estimator of pC(x) by

θ(x) =


1
n

∑
y∈Ω

1Y (y)1Y (y + x) if x 6= 0

0 if x = 0.
(11)

24



Determinantal point processes for image processing

For optimization purposes, we express all the quantities in function of Ĉe. In the following
computations, we consider that the vectors are column vectors. Let us denote the set of
admissible functions by

Ĉn = {Ĉ ∈ RN such that
∑
ξ∈Ω̂

Ĉ(ξ) = n and ∀ ξ ∈ Ω̂, 0 ≤ Ĉ(ξ) ≤ 1}.

We are looking for Ĉe such that

Ĉe = argmin
Ĉ∈Ĉn

‖pC − θ‖22

= argmin
Ĉ∈Ĉn

∑
x∈Ω∗

 n

N
− N

n
|F−1(Ĉ)(x)|2 − 1

n

∑
y∈Y

1Y (y)1Y (y + x)

2

= argmin
Ĉ∈Ĉn

∑
x∈Ω∗

 n2

N2 −
1
N

∑
y∈Y

1Y (y)1Y (y + x)− |F−1(Ĉ)(x)|2
2

= argmin
Ĉ∈Ĉn

∑
x∈Ω∗

(
b(x)− g(Ĉ)(x)

)2
= argmin

Ĉ∈Ĉn
E(Ĉ),

where, for all Ĉ ∈ RN , and for all x ∈ Ω∗,

g(Ĉ)(x) = |F−1(Ĉ)(x)|2 and b(x) = n2

N2 −
1
N

∑
y∈Ω

1Y (y)1Y (y + x). (12)

We want to minimize E on Ĉn a non empty closed convex set so we can use the projected
gradient algorithm. To project on the set of constraints Ĉn, we use a classic adapted
version of the algorithm to project onto the simplex [28, p. 77-78], integrating a maximum
bound constraint, denoted “proj”. From a vector u ∈ RN , this mapping returns the vector
proj(u) ∈ RN such that proj(u)x = min(max(ux − a, 0), 1), where a is chosen such that∑N
x=1 proj(u)x = n. Let us compute the gradient of the energy E we want to minimize.
As g : RN → RN−1, Ĉ 7→

(
|F−1(Ĉ)(x)|2

)
x∈Ω∗

, we have

∀x ∈ Ω∗,∀ξ ∈ Ω̂, ∂g(Ĉ)(x)
∂Ĉ(ξ)

= 1
N
F−1(Ĉ)(x)e2iπ〈x,ξ〉 + 1

N
F−1(Ĉ)(x)e−2iπ〈x,ξ〉

= 2
N

Re
(
F−1(Ĉ)(x)e−2iπ〈x,ξ〉

)
,

and moreover ∇E(Ĉ) = Dg(Ĉ)T 2
(
g(Ĉ)− b

)
.

Notice that given a vector u = (u0, . . . , uN−1)T ∈ RΩ, we let u∗ be (u1, . . . , uN−1)T the
restriction of u to Ω∗. For all ξ ∈ Ω̂,(

Dg(Ĉ)Tu∗
)
ξ

= 2
N

∑
x∈Ω∗

uxRe
(
F−1(Ĉ)(x)e−2iπ〈x,ξ〉

)

= 2
N

Re

∑
x∈Ω

(
uxF−1(Ĉ)(x)

)
e−2iπ〈x,ξ〉 − u0C(0)

 .
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a. b. c. d. e.

Figure 6: Two examples of initialization of our estimation algorithm. From left to right: the
Fourier coefficients of the original kernel to retrieve (a), the initialization from
one realization (b), the resulting estimated kernel (c), the initialization from 10
realizations (d), the resulting estimation from 10 realizations (e).

Then Dg(Ĉ)Tu∗ = 2
N

Re
(
F
(
u�F−1(Ĉ)

))
− 2n
N2u0,

where � refers to the componentwise product of vectors. Finally we obtain

∇E(Ĉ) = 4
N

Re
(
F
((
|F−1(Ĉ)|2 − b

)
F−1(Ĉ)

))
, by setting b(0) = n2

N2 . (13)

In particular, computing ∇E(Ĉ) only requires two FFT calls. The projected gradient
descent algorithm is recalled and adapted to this problem in Algorithm 2. Note that the
energy we want to minimize is not convex and it has several local minima: the initialization
of the algorithm is crucial. Indeed, if the algorithm is initialized with a random matrix Ĉinit,
the results can be far from the original target. We propose to initialize the algorithm with

Ĉinit = proj
(
F
(√

b
))
, (14)

which is believed to be quite close to a solution of the optimization and provides good results,
as observed in the experiments. Note that b can be negative, so applying a square root to b
may produce complex coefficients to which we apply the Fourier transform. This enables the
initialization kernel Ĉinit to be asymmetric. The step of the gradient descent is chosen as a
constant depending on the order of magnitude of the gradient of the energy E. Figure 6
presents two initialization kernels computed from a given realization.

Figures 7 and 8 (column 3) provide some results of this algorithm, from one realization
generated by different DPixP kernels. One realization seems enough to retrieve the Fourier
coefficients of a simple symmetric projection kernel (see Figure 7, a, b whose non-zero Fourier
coefficients form a convex set). Even though for most projection kernels a predominant
shape appears in the estimation, as soon as the kernel is more complex, one sample does not
provide enough information.

4.3 Learning the kernel of a DPixP from several realizations

A unique realization does not provide enough information for our proposed algorithm to
estimate the Fourier coefficients of a DPixP kernels but if several realizations are available,
combining them provides better results. Assume that we have J realizations, J ∈ N∗, each
of cardinality nj , that we suppose generated by the same DPixP kernel.
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a)

b)

c)

d)

e)
J = 1 J = 10 J = 100

Figure 7: Experiments on several projection kernels. From left to right: the target Fourier
coefficients of the kernel we want to recover, one realization of this DPixP, the
estimation of the Fourier coefficients from one, from 10 and from 100 realizations,
with kmax = 2000.
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Algorithm 2 Projected gradient descent algorithm used to minimize E.
Input: Y the input realization, step size t, kmax,

• Compute for all x ∈ Ω∗, b(x) = n2

N2 − 1
N

∑
y∈Y 1Y (y)1Y (y + x), b(0) = 0 (12).

• Set Ĉ0 = Ĉinit (14).

• for k = 1,. . . , kmax

– Compute ∇E(Ĉk−1) (13).

– Set Ĉk = proj
(
Ĉk−1 − t∇E(Ĉk−1)

)
.

Output: ĈK .

We propose to combine all the realizations to produce a better empirical estimator θJ of
pC . First, the expected number of points is approximated by the mean number of points in
the realizations, n = n1 + · · ·+ nJ

J
.

If we have J realizations (Yi)i∈{1,...,J}, Equation (11) is replaced by:

∀x ∈ Ω, θJ(x) =


1
nJ

J∑
i=1

∑
y∈Ω

1Yi(y)1Yi(y + x) if x 6= 0,

0 if x = 0.

The rest of the procedure remains similar as we want to minimize the function ‖pC−θJ‖22,
in particular, the initialization kernel is

Ĉinit = proj

F

√√√√√ n2

N2 −
1
NJ

J∑
i=1

∑
y∈Ω

1Yi(y)1Yi(y + x)


 .

Figures 7 and 8 present some experiments on several DPixP kernels, using the second
strategy presented here and combining all the samples in one estimation process. First, Figure
7 presents the results of this estimation procedure with projection kernels, meaning that the
Fourier coefficients of these kernels are zero or one. It shows how 10 realizations provide
enough information to retrieve a kernel close to the original one. Using 100 realizations
enables to obtain satisfying results. We have seen in the previous subsection that any
translation of the estimated Fourier coefficients or a symmetry with respect to (0, 0) of the
estimated Fourier coefficients generate the same DPixP. Thus, in Figures 7 and 8, we display
a centered version of the estimation.

Figure 8 presents some results of this algorithm for non-projection DPixP kernels. Kernel
a) is a Bernoulli kernel: all the Fourier coefficients are equal to n

N . As expected, no specific
structure appears from the estimation, regardless of the number of samples used. The
estimations b) and c) are much noisier than their projection equivalent (Figure 7(a,e)) even
if the shape formed by the Fourier coefficients (which directly impacts the local repulsion of
the point process) seems retrieved.
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a)

b)

c)
J = 1 J = 100 J = 800

Figure 8: Experiments on general DPixP kernels. From left to right: the target Fourier
coefficient of the kernel we want to recover, one realization of this DPixP, the
estimation of the Fourier coefficients from one, from 100 and from 800 realizations,
with kmax = 2000.

29



Launay, Galerne and Desolneux

To conclude, the algorithm presented in this subsection provides satisfying estimations if
the original kernel is a projection DPixP kernel, in particular when we have more than 10
samples. Indeed, as we have seen in Section 3.2 and as the authors of [8] noted, projection
determinantal processes can be seen as the most repulsive DPPs. Thus, within a sample, the
characteristics of the repulsion, and of the kernel, are more accessible. Nevertheless, if we deal
with a general complex kernel, the algorithm fails to retrieve meaningful information.This
question of DPixP kernel estimation is complex and could be the subject of its own paper.
Note that considering the quantity pC related to the pair correlation function imposes that we
have only access to |C| thus different admissible kernels may be solution to this optimization
problem. It would be necessary to study the theoretical properties of convergence, the bias
and the variance of the estimator, the influence of the initialization or the existence of local
minima, for instance.

5. Determinantal patch processes: DPPs on patches

As datasets to analyze and to process keep being larger and more complex, strategies to
subsample these sets or to reduce the dimension of data have recently flourished. DPP
subsampling is part of these approaches, as they enable to capture the structure of data
and produce a representative subset of the whole initial set, taking into account its inner
diversity. DPPs have been used in different applications such as text summarization [34],
feature selection in high dimensional data [7] or approximation of a dataset adapted to a
given learning task [58]. In image processing and computer vision, DPPs have raised interest
through video summarization ([26], [63]). The authors of [26] introduced sequential DPP
to take into account both the diversity of the frames and the chronology of the video. To
represent the diversity of the frames they use a decomposition similar to the quality-diversity
decomposition that is introduced in [34] and that we recall below. Furthermore, the paper
[63] proposes a strategy enhanced by DPPs which makes it one of the state of the art
methods for video summarization. This method also uses a decomposition similar to a
quality-diversity decomposition to describe the diversity in the video.

In this section, we focus on subsampling the set of patches P of an image. This procedure
can be useful for compression purpose for instance. It can also be necessary in order to
fit a model on the patch set using only a proportion of the set, to increase the efficiency
of the algorithm. For example, several patch-based denoising methods represent the patch
distribution as a Gaussian mixture model ([64], [29]). These methods rely on the estimation
of the parameters of such models thanks to the Expectation-Maximization (EM) algorithm.
To do so, in general, they randomly and uniformly select a subset of patches. This random
selection is fast but the subset needs to be large enough so that it captures the patches
diversity. The size of this selection impacts the running time of the estimation process, so a
smaller selection, representative of the patches of the image, would ensure a faster and more
accurate estimation. DPPs offer the opportunity to select a small subset of patches that
captures the whole image. For instance, the authors of [37] have used DPPs to subsample
the patches of an image and approximate the patch distribution to speed up their texture
synthesis algorithm.

Tremblay et al. [59] compare several k-means initializations with one using DPP sampling
in the context of coresets: the authors sample an appropriate DPP to select the initial
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centroids for the clustering strategy. Similarly, Agarwal et al. [2] propose to adapt the
k-means algorithm by using a DPP initialization and they prove that this initialization
compares favorably with k-means++, the most popular adaptation of the k-means algorithm,
whose initialization uses another negatively correlated sampling strategy, called D2 sampling.
One advantage of an algorithm using DPPs over the second is its adaptability concerning
the number of clusters. Thus, in the previous example with denoising methods, DPPs could
also provide a satisfying initialization to the EM algorithm. We investigate here the possible
choices of DPP kernels for such applications, in order to subsample the patch space of an
image.

5.1 DPP kernels to sample in the space of image patches

When considering determinantal processes on patches, the framework is more general than
before: We are no longer dealing with stationary periodic point processes. We consider a
Hermitian kernel K adapted to select diverse subsets of patches from an image, as set in
Definition 1. The definition of this diversity depends on the problem we want to solve: for
instance, compression, reconstruction of the image or initialization of the centroids of a
clustering or the EM algorithm.

First, we recall that there exists a second characterization of DPPs, using a positive
semi-definite matrix L [34].

Definition 19 We consider Y = {1, . . . , N} and L a Hermitian matrix of size N ×N such
that L � 0, then the random set X ⊂ Y defined by

∀A ⊂ Y, P(X = A) = det(LA)
det(I + L)

is a DPP with L-ensemble kernel L. We will denote X ∼ DPPL(L).

Defined in this manner, these DPPs are called L-ensembles. Recall that the initial
definition (1), using the kernel denoted by K, requires that 0 � K � I. This L-ensemble
definition doesn’t need the constraint of bounding the eigenvalues of the kernel by one. This
property is convenient to define a kernel, and a diversity model adapted to a specific problem.
So this characterization is increasingly used in the machine learning community. That is
also the definition we use in this subsection. However, note that this definition excludes the
case of projection DPPs, which have a fixed cardinality. In subsection 5.2, we consider such
a projection DPP kernel. Consider the following spectral decomposition of a DPP kernel K,
K = ∑N

k=1 λkvkv
∗
k. Note that the definitions using the kernels K and the L-ensemble kernel

L characterize the same DPP if and only if for all k ∈ {1, . . . , N}, 0 ≤ λn < 1 and if

K = L(L+ I)−1 = I − (I + L)−1 and conversely L = K(I −K)−1.

Hence, in this case, L =
N∑
k=1

λk
1− λk

vkv
∗
k. Note that if K has any eigenvalue equal to 1, the

DPP can’t be associated to an L-ensemble.
In the following, consider an image u and the initial set P = {Pi, i = 1, . . . , N}, the

set of its patches of size (2ρ+ 1)× (2ρ+ 1)× d, where ρ ∈ N and d is the number of color
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channel. Let us present some kernels that can be used to subsample the patches of this
image.

Consider an expected cardinality n, so that in average, the number of selected patches is
equal to n. In practice, this target cardinality can be imposed by normalizing the kernel
matrices with a constant so note that in the following formulas, the matrices are defined up
to a normalization constant, precised in the experiments section. A first type of L-ensembles
that are commonly used ([59],[37]) is the class of Gaussian kernels. Let us consider a
Gaussian kernel based on the intensity of the patches, that we call the intensity Gaussian
kernel, defined by

∀Pi, Pj ∈ P, Lij = exp
(
−‖Pi − Pj‖

2
2

s2

)
, (15)

where s is called the bandwidth or scale parameter. This kernel depends on the squared
Euclidean distance between the intensity values of pairs of patches. It is often used as
a similarity measure on patches. Despite its natural limitations, this similarity measure
provides good results. The value of the parameter s has an impact on how repulsive the
DPP is. Notice that if s is small, due to the exponential function, Lij converges very quickly
to zero as soon as i 6= j and the distinction between patches is not very subtle. Thus, if s
is small, L is close to the identity matrix and the DPP selection of patches is similar to a
random uniform selection. On the contrary, for the same reason, the larger s is, the more
repulsive the DPP is. However, this scale parameter should not be set too large because
this would cause high numerical instability. As noticed in [3] and [59], the median of the
distances of intensities between the patches is a satisfying choice for setting the value of s.

We propose to compare this kernel with another Gaussian kernel that we call the PCA
kernel, which depends on the squared distance between patches in the space given by keeping
only the k principal components after a Principal Component Analysis (PCA). Set A the
matrix gathering all the patches of the image reshaped in column so that the size of A is
d(2ρ + 1)2 ×N . We assume that A has been centered, by subtracting the average patch
to all the patches. It has not been reduced, meaning that patches with high variance, for
instance patches with edges, will highly influence the decomposition. Thanks to a singular
value decomposition, consider U, V two unitary matrices and Σ a diagonal matrix storing the
principal values of A such that A = UΣV T . We choose to keep only k principal components
and we obtain the matrix Ak = VkA, where we kept only the k first rows of the matrix
V in Vk of size k × d(2ρ + 1)2 and the matrix Ak = {P ki , i = 1, . . . , N} is k × N . Every
initial patch Pi ∈ A is associated with a projected vector P ki ∈ Ak. Thus, the PCA kernel is
defined by

∀Pi, Pj ∈ P, Lij = exp
(
−
‖P ki − P kj ‖22

s2

)
. (16)

This method discards principal vectors associated to small singular values and projects
the patches on a low-dimensional space associated with the large singular values. This
enables to find the components that best represent the variance of the patches and ignore
mainly noise (depending on the number of dimension discarded). Thus, comparing patches
in this low-dimensional space seems relevant to capture more precisely their dissimilarity.

A second type of common L-ensemble kernels uses a quality-diversity decomposition of
the data. Kulesza and Taskar present in [34] this decomposition that uses a given quality
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measure computed on each element of the set and a dissimilarity computed between pairs
of elements. In this paper, each patch Pi is associated with a quality measure, which is a
non-negative number qi = q(Pi,P) ∈ R+, depending on the patch itself and on the other
patches. Each patch Pi is also associated with a feature vector φi = φ(Pi) ∈ RD, such that
‖φi‖2 = 1, which depends only on the patch itself. The quality/diversity kernel L is defined
by

∀Pi, Pj ∈ P, Lij = qiφ
T
i φjqj . (17)

This class of kernels presents several advantages. The first advantage of this definition is
its interpretability. Each patch is associated with a quality measure, that one can adapt
depending on the characteristics one wants to favor. The comparison between patches is
also accessible and adjustable to obtain the most adapted kernel. This decomposition has a
second advantage: the kernel becomes a low-rank matrix, with a rank equal at most to D,
the number of features. In case of low-rank kernels, Kulesza and Taskar [33] propose a dual
representation and a dual sampling algorithm. This sampling scheme is equivalent to the
original algorithm but it takes advantage of the low-rank kernel and becomes much faster.
Note that, whatever the DPP L-ensemble kernel, the cardinality of a sample generated from
DPPL(L) will necessarily be lower than the rank of L. This low-rank definition imposes to
sample subsets of smaller size than D, the number of features computed from the patches.
Thus, this kernel is adapted when small and very small subsets of patches are needed. In
these cases, it is very important to precisely control the selection process so such kernels are
particularly relevant.

For the kernel that we call Qual-div kernel, we associate each patch with a feature
vector given by a discrete cosine transform of the patch. Thus, each feature vector is of size
d(2ρ+ 1)2. Note that in the experiments, we use color images (with 3 color channels) and
patches of size 7× 7 (meaning that ρ = 3) so the feature vectors of length 147. We define the
quality measure such that it attributes a high value to patches whose intensity is far from
that of its neighbors in the pixel grid. For each pixel, we count the number of neighboring
pixels whose intensity is further in Euclidean distance than a certain constant. This constant
is chosen equal to half the maximum Euclidean distance between the intensities in the image.
This choice gives further priority to singular patches, that can be seen as the outliers of the
set of patches. As experiences will show, it highly favors textures and edges.

5.2 Minimizing the selection error

The question is to choose the best kernel, such that the sampled DPP on the patches
minimizes an error computed as a distance between the selected patches and the initial set
of patches P. This last kernel will be called the optimized kernel. This problem is similar
to discrete optimal quantization problems [46] where the aim is to find the best subset of
patches Q such that EQ∼µ(d(Q,P)) is minimal, for a given distance d. Yet, this computation
is often costly and hardly tractable. In the following, we suppose that the patches are of size
(2ρ+ 1)× (2ρ+ 1) for some positive integer ρ and we denote by ω ⊂ Z2 the patch domain
{−ρ, . . . , ρ}2.

First, the error, or the distance between the sample and the initial set of points, we
want to minimize depends on the application. The mean square error (MSE in short) is
commonly used to compare an image and its reconstruction. Here, we use a similar distance,
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the squared L2 norm between the patches of the image and their nearest neighbor in the
selection given by the DPP sampling on the patches. Consider Q a subset of patches. This
error is defined by

E1 = 1
N

N∑
i=1

dL2(Pi,Q)2 = 1
N

N∑
i=1

min
Q∈Q

∑
x∈ω

(Pi(x)−Q(x))2, (18)

where ω is the patch domain. One hopes that using a DPP to generate Q will prevent
from concentrating only on the most common patches and select singular patches. Given
an expected cardinality n ≤ N and a kernel Kn, we would consider Q ∼ DPP(Kn). The
following error can be useful to verify this property:

E2 = max
i∈{1,...,N}

dL2(Pi,Q)2 = max
i∈{1,...,N}

min
Q∈Q

∑
x∈ω

(Pi(x)−Q(x))2 . (19)

A low error value asserts that the outlier patches (non redundant) are selected.
Given an expected cardinality n ≤ N and a kernel Kn, we will consider Q ∼ DPP(Kn).

We would like to find the DPP kernel minimizing the expectation of the errors: EQ∼DPP(Kn)(E1)
and EQ∼DPP(Kn)(E2). Yet, this optimization problem depending on a DPP matrix Kn is
intractable. As in the papers by Kulesza and Taskar [34] and Affandi [1], we would like to
have a closed-form minimization problem to obtain optimal parameters. These strategies
are based on the quality-diversity decomposition of an L-ensemble kernel described in the
previous section. Given predetermined features vectors, they determine an appropriate
quality measures from the data. Here, we use a similar parametrization, using the first
definition of DPPs, with a kernel matrix K. We suppose that its eigenvectors are fixed
(given by features computed from the patches of the image) and we want to determine the
optimal spectrum so that the associated matrix K minimizes a tractable error. Furthermore,
thanks to the Campbell Formula (6), we know that the expectation of some functionals
defined on point processes are tractable. That is what we use in the following.

Suppose we select a subset of patches using a DPP of kernel K: Q ∼ DPP(K). We
would like to study the following measure:

R(Q) =
∑
P∈P

∑
Q∈Q

fP (Q). (20)

It can be seen as a reconstruction evaluation, if the function fP involves a distance between
the input patch and the patch P . With the appropriate function fP , R can represent how
well a patch P ∈ P is represented by the selection Q. For instance, by considering the
functions fα,P (Q) = 1‖P−Q‖2≤α or fP (Q) = e−‖P−Q‖

2 , R will return a high value if the
selection Q encompasses the set of patches. Notice that if we use a function fp which depends
on the L2 distance between patches, maximizing R will favor selections similar to the ones
minimizing the MSE. Thus, contrary to the previous error quantities, E1 and E2, we want
to generate a subset Q such that R is large. From the Campbell Formula (6) adapted to
general discrete DPPs, we have

E(R(Q)) = E

∑
P∈P

∑
Q∈Q

fP (Q)

 =
N∑
j=1

E

∑
Q∈Q

fPj (Q)

 =
N∑
j=1

N∑
i=1

fPj (Pi)K(Pi, Pi).
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Assume that K admits the eigendecomposition

K(Pi, Pj) =
D∑
k=1

λkφk(Pi)φ∗k(Pj), (21)

with D ≤ N , and unknown eigenvalues (λk)k∈{1,··· ,D}. We suppose that the eigenvectors
are fixed. In the experiments, (φk)k∈{1,··· ,D} are the same feature vectors as defined in the
previous subsection, given by the discrete cosine transform of each patch. Then the previous
expectation becomes

E(R(Q)) =
D∑
k=1

λk

N∑
i=1
|φk(Pi)|2

N∑
j=1

fPj (Pi) (22)

The maximization of this quantity with respect to (λ1, . . . , λD) is a linear problem, under

the linear constraints:
∑
P∈P

K(P, P ) =
D∑
k=1

λk = n, and for all k ∈ {1, . . . , D}, 0 ≤ λk ≤ 1.

The advantage of solving such a problem is that the solution (λ∗k)k∈{1,··· ,D} is explicit. It
is on the boundary of the constraints, meaning that is a kernel K with only n non-zero
eigenvalues, each one equal to 1: K is a projection DPP. Given any function fp, any integer
n ≤ D, let us consider In the set of the indices associated to the n largest coefficients of
the vector ψ of size D defined by ψk = ∑N

i=1 |φk(Pi)|2
∑N
j=1 fPj (Pi). The solution of the

problem

argmax
(λk)

E (R(Q)) such that
D∑
k=1

λk = n and ∀k, 0 ≤ λk ≤ 1, (23)

is the set of eigenvalues (λ∗k)k=1,...,D defined by

λ∗k =
{

1 if k ∈ In
0 otherwise

. (24)

For instance, if we choose fα,Pi(Pj) = 1‖Pi−Pj‖2≤α, then we need to maximize the function

E(R(Q)) =
D∑
k=1

λk

N∑
i=1
|φk(Pi)|2

N∑
j=1

1‖Pi−Pj‖≤α =
D∑
k=1

λk

N∑
i=1
|φk(Pi)|2|B(Pi, α)|, (25)

where B(P, α) is the ball with center P and radius α for the Euclidean distance between patch
intensities, and |A| is the cardinality of the subset A. Thus, |B(Pi, α)| denotes the number of
patches in the image that are within a distance of Pi smaller than α. In the experiments, we
use this function and we choose α to be half the median of interdistances between patches.
Note that this maximization problem generates a kernel called the optimized kernel that
will favor patches similar to many others. This creates an interesting compromise: the DPP
will tend to select diverse subsets of redundant patches. As anticipated, we will see in the
experiments that this method tends to miss singular patches.
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Figure 9: Original images considered in Figures 10 to 12.

5.3 Experiments

The following figures present some results of subsampling in the space of image patches,
for different cardinality. First notice that the cardinality is fixed for the uniform sampling.
It is also fixed for the last optimized kernel, as we obtain a projection kernel from the
maximization problem. Concerning the three other kernels, they are defined using the
L-ensemble definition in Equations (15), (16) and (17). We used a common normalization
strategy, formalized in [6], using a L-ensemble kernel L whose eigenvalues are denoted
(λk)k∈{1,...,N}. Given a desired expected cardinality n, we normalize L to obtain a kernel

Lc = cL, where c is chosen such that
N∑
k=1

cλk
1 + cλk

= n. Note also that the Qual-div kernel

and the optimized kernel are low-rank, with a rank equal at most to the number of features
that we use to defined the kernels. In these experiments, the feature vector associated to
each patch (φ in Equations (17) and (5.2)) is obtained from the discrete cosine transform of
the patch. Note that a DPP kernel can’t generate samples with more items than its rank
and in the following experiments, we use patches of size 7× 7× 3. Thus, the rank of the two
previous kernels is 147 and we can observe the results, with a step of 50, up to a cardinality
equal to 100 in Figure 12.

Figures 10 and 11 show images reconstructed using the associated selected patches
presented below the reconstruction. Each patch in the initial image is replaced by its nearest
neighbor in the DPP selection. The final image is obtained by average: given a pixel, all
the overlapping patches containing this pixel are averaged. This is a common strategy to
aggregate the patches. Several other methods are proposed in the literature, such as using a
weighted average [18, 50] or implicitly including the reconstruction in a global variational
problem [64]. An average considering uniform weights on all the patches is often used as it
does not require any other computation or information to store. Thus, after subsampling
the set of patches, the initial image can be represented by its size N1 ×N2 = N , the small
set of patches of size (2ρ+ 1)× (2ρ+ 1)× d and a vector of indices of length N , associating
each initial patch to its nearest neighbor in the selection. Figure 12 compares the errors
E1 (18), E2 (19) and the peak signal-to-noise ratio (PSNR) of the reconstruction images
generated from samples given by the different kernels. The PSNR is a metric commonly
used to evaluate the quality of the reconstruction of an image. Consider an initial image I0
and a reconstruction I1, both having d color channels and N pixels with a value between 0
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Card Unif. sample Intens. kernel PCA kernel Qual-div. kern. Optim. kern.

5

25

100

Figure 10: Image reconstruction comparing different expected cardinality and the DPP
kernels presented in the previous subsections. For each cardinality, the first row
presents the reconstruction of the image using only the patches selected by the
corresponding kernel, given in the second row.
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Card Unif. sample Intens. kernel PCA kernel Qual-div. kern. Optim. kern.

5

25

100

Figure 11: Same as Figure 10 for the Parrot image.
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(c) PSNR

Figure 12: Reconstruction errors E1 and E2 and the PSNR for the Pool image (top) and the
Parrot image (bottom), comparing several DPP kernels and a uniform selection
(Bernoulli kernel) in function of different expected cardinality, from 5 to 250.
Note that the curves associated to the “Qual/div” and the optimized kernels
stop at an expected cardinality equal to 100 selected patches since, for these two
kernels, the number of features chosen to describe the patches (equal to 147 in
the experiments) determines the maximal size of the generated subset of patches.
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and 1. Then,

PSNR = 10 log10
Nd

d∑
c=1

N∑
i=1

(I0(i, c)− I1(i, c))2
.

First, as expected, a uniform sampling can produce samples which contains many similar
patches. The first image (Pool) has several large and regular regions that could be represented
by a few patches and these regions are often over-represented in the results. Note that when
we compare the kernels using the error E1, in particular for the second image (Parrot), the
uniform selection provides satisfying results. On the contrary, small and rare details are often
missed by the uniform sampling, and the second graph of Figure 12 shows that this sampling
strategy compares badly with the others when considering this criteria. Furthermore, the
graph presenting the PSNR results illustrates how this uniform strategy provides overall
poorer reconstructed images.

Note that the optimized kernel, making a compromise between the diversity induced
by DPPs and the redundancy imposed by maximizing the chosen reconstruction error (20),
produces quantitative results similar to a uniform sampling. When observing the patches
selected by this kernel in Figures 10 and 11, one can see that this kernel tends to select
slightly more diverse patches than a uniform sampling.

Second, the PCA kernel and the Qual-div kernel behave rather similarly. They tend to
favor singular patches and patches containing edges, even sometimes over-representing them.
Thus, they provide good results when looking at the second error measuring the distance
between the selection and the furthest patch, especially the PCA kernel. Yet, they can
provide even worst results than the uniform selection when we look at the average distance
between the selection and the initial set of patches (Error E1 (18)).

Finally, the Intensity kernel, using only the squared Euclidean distance between intensities,
seems to be the most stable kernel. It provides small average error and tends to include
singular patches in the selection. For both images, whatever the expected cardinality, the
samples generated by this kernel produce visually satisfying reconstructions.

Thus, the choice of subsampling strategy in the patch space of an image highly depends
on the purpose of the generated selection. The most stable strategy seems to be using the
Intensity kernel (15), which provides a selection close in average to the initial patches and
which selects also singular patches. If the priority of the application is efficiency, the best
strategy may remain to use a uniform selection with a high number of selected patches.
Yet, if the size of the selection needs to be low or if the selection needs to contain mainly
structure and texture information, the good choice may be to use a PCA kernel or a kernel
using the quality-diversity decomposition. Moreover, note that when the kernel is low-rank,
it is also possible to use a dual representation of the kernel and to speed up the simulation of
the process [34, 25]. In this paper, we present several low-rank kernels: the quality-diversity
kernel and the optimized kernel. In these cases, the computational time can be reduced.

6. Conclusion

In this paper, we presented several applications of determinantal point processes to image
processing. We defined these models on the pixels of an image and we call such point
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processes determinantal pixel processes (DPixP). In this setting, we showed that the only
possible hard core repulsion for DPixP is directional. Given a direction, it is possible to
impose to select at most one pixel on any discrete line in the image, but any further hard
core constraint leads to a degenerate kernel. We studied shot noise models based on DPixP
as a method to sample homogeneous micro-textures and adapted the choice of DPixP kernel
in function of a given spot function of the shot noise and of the homogeneity we look for.
We also developed an algorithm to infer the Fourier coefficients of a DPixP kernel from a
sample or from a set of samples. As a future work, we plan to investigate the estimation,
from a texture image, of the spot function and of the DPixP kernel associated to a shot
noise that could have generated the texture. We also considered DPPs defined on the set of
patches of an image, in order to subsample this set while retaining the information necessary
to appreciate the image. It would be interesting to use more features to describe the patches
of an image, in order to improve the results of the Quality-diversity kernel and nuance the
selection it generates, which for now tends to over-represent patches with textures or edges.
We also would like to explore different functions used in the minimization of the selection
error, depending on the purpose of the subsampling of the set of patches. At last, we intend
to apply these selection strategies to patch-based methods and evaluate the gain in quality
and computation time generated by the use of DPPs.

Appendix A. DPixP kernels as block-circulant matrices with circulant
blocks

Recall that a N ×N circulant matrix K is entirely characterized by its generating elements
c0, . . . , cN−1 such that K = circ(c0, . . . , cN−1), in the sense that K(x, y) = c(x−y mod N):

K = circ(c0, . . . , cN−1) =


c0 cN−1 . . . c1
c1 c0 . . . cN−2
... . . . ...

cN−1 cN−2 . . . c0

 . (26)

Similarly, a N1N2 × N1N2 block-circulant matrix K is entirely characterized by its N2
generating matrices of size N1 ×N1, K = circ(K1,K2, . . . ,KN2). If each generating matrix
Ki is circulant, K is called a block-circulant matrix with circulant blocks. In that case, the
matrix K can be characterized by the generating elements of all the generating matrices.

In our framework, the pixels are considered column by column so that the ordered index
x of a pixel x = (x1, x2) ∈ Ω is x = x1 + 1 + x2N1. Moreover, we suppose that the process is
stationary and periodic. Hence we can define a function C : Ω → C such that ∀x, y ∈ Ω,
K(x, y) = C(x− y), extended by periodicity to Z2. In this configuration, the matrix K is
block-circulant with circulant blocs. To simplify the notations in the paper, we chose to
identify the pixel’s position in the image and its ordering.

A.1 Illustration on a small image domain

Let us present a simple illustration.
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Example 1 Consider Ω = {0, 1}×{0, 1, 2}, with N1 = 2 and N2 = 3. The image domain is

Ω = (0,0) (0,1) (0,2)
(1,0) (1,1) (1,2) .

This image domain is associated to the following ordering of pixels

Ω = 1 3 5
2 4 6 .

A kernel matrix K defined on such image domain will be defined using the previous
ordering. Consider the function C defined on Ω and extended by periodicity to Z2 as

∀x, y ∈ Ω, K(x, y) = C(x− y).

Moreover, due to the periodicity assumption, we know for instance that C((−1,−2)) =
C((1, 1)) or C((−1,−1)) = C((1, 2)). We obtain the following kernel, which is indeed a 6× 6
circulant matrix with 2× 2 circulant blocks:

K =



C((0, 0)) C((1, 0)) C((0, 2)) C((1, 2)) C((0, 1)) C((1, 1))
C((1, 0)) C((0, 0)) C((1, 2)) C((0, 2)) C((1, 1)) C((0, 1))
C((0, 1)) C((1, 1)) C((0, 0)) C((1, 0)) C((0, 2)) C((1, 2))
C((1, 1)) C((0, 1)) C((1, 0)) C((0, 0)) C((1, 2)) C((0, 2))
C((0, 2)) C((1, 2)) C((0, 1)) C((1, 1)) C((0, 0)) C((1, 0))
C((1, 2)) C((0, 2)) C((1, 1)) C((0, 1)) C((1, 0)) C((0, 0))


.

It can be entirely characterized by its first column.

A.2 Diagonalization of a DPixP kernel

The following results on the diagonalization of circulant matrices and its generalization on
block-circulant matrices with circulant blocks can be found in the book of Davis, Circulant
matrices [19]. See [19, 45] for more details and illustrations. First, it is well known that
any circulant matrix K = circ(c0, . . . , cN−1) is diagonalized in the Fourier basis and its
eigenvalues λ0, . . . , λN−1 are given by

∀ ξ = 0, . . . , N − 1, λξ =
N−1∑
x=0

cxe
−2iπ xξ

N .

Moreover, if the matrix K is Hermitian, its eigenvalues are real and most of them are
constrained [19]: λ0 is distinct but the remaining eigenvalues are such that λξ = λN−ξ, if N
is odd. If N is even, λN/2 is also distinct.

One can obtain a similar result concerning block circulant matrices with circulant blocks.
Consider ωN = e

2iπ
N , the primitive N -th roots of unity, and the following N ×N unitary

matrix

UN = 1√
N



1 1 1 . . . 1
1 ωN ω2

N . . . ωN−1
N

1 ω2
N ω4

N . . . ω
2(N−1)
N

...
...

... . . . ...
1 ωN−1

N ω
2(N−1)
N . . . ω

(N−1)2

N


. (27)
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This matrix is associated to the inverse discrete Fourier transform.

Proposition 20 (Diagonalization of a DPixP kernel) Consider a DPixP defined on
Ω with kernel K, the block-circulant matrix with circulant blocks whose first column is
C : Ω→ C. Then, K is diagonalized in the Fourier basis, in the sense that

(U∗N2 ⊗ U
∗
N1)K(UN2 ⊗ UN1) = Λ,

where ⊗ is the Kronecker product, and where Λ is diagonal such that

∀ξ ∈ Ω, Λξ,ξ = Ĉ(ξ) =
∑
x∈Ω

C(x)e
−2iπ

(
x1ξ1
N1

+x2ξ2
N2

)
.

Proof Let us prove that we have K(UN2 ⊗ UN1) = (UN2 ⊗ UN1)Λ. Note that ∀x, ξ ∈ Ω,

(UN2 ⊗ UN1)x,ξ = 1√
N1N2

e
2iπ
(
x1ξ1
N1

+x2ξ2
N2

)
= 1√

N
e2iπ〈x,ξ〉, with the notation 〈·〉 that we use

throughout the paper. Given x, ξ ∈ Ω, we have

[
K(UN2 ⊗ UN1)

]
x,ξ

= 1√
N

∑
y∈Ω

C(x− y)e2iπ〈y,ξ〉 = 1√
N

∑
y∈Ω

C(y)e2iπ〈x−y,ξ〉

= (UN2 ⊗ UN1)x,ξ Ĉ(ξ) =
[
(UN2 ⊗ UN1)Λ

]
x,ξ
,

where Λ = diag
(
(Ĉ(ξ), ξ ∈ Ω)

)
.

A necessary and sufficient condition for the DPixP to be defined is that the eigenvalues
of the kernel are in [0, 1]. In particular, the Fourier coefficients of C are real. Thus we have

∀x ∈ Z2, C(−x) = C(x).

Example 2 Let us use the same illustration as in Example 1. We can deduce from the
previous remark and from the periodic boundaries that the kernel is of the shape

K =



C((0, 0)) C((1, 0)) C((0, 1)) C((1, 1)) C((0, 1)) C((1, 1))
C((1, 0)) C((0, 0)) C((1, 1)) C((0, 1)) C((1, 1)) C((0, 1))
C((0, 1)) C((1, 1)) C((0, 0)) C((1, 0)) C((0, 1)) C((1, 1))
C((1, 1)) C((0, 1)) C((1, 0)) C((0, 0)) C((1, 1)) C((0, 1))
C((0, 1)) C((1, 1)) C((0, 1)) C((1, 1)) C((0, 0)) C((1, 0))
C((1, 1)) C((0, 1)) C((1, 1)) C((0, 1)) C((1, 0)) C((0, 0))


.

Note that any DPixP kernel defined on a grid Ω of size 2× 3 is entirely characterized by
four coefficients.
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Appendix B. Identifiability of a DPixP

B.1 Case 2: K1 is irreducible and doesn’t verify the rank hypothesis (Theorem
16)

Let us study the equivalence class of a DPixP of kernel C1 such that its associated matrix
K1 is irreducible and there exists a partition α, β of Y such that rank(K1)α×β = 1, in the
case Ω of size 1× 5:

K1 = circ
(
C1(0), C1(1), C1(2), C1(2), C1(1)

)
Define r11, θ11, r12, θ12 the respective modulus and argument of C1(1) and C1(2). Whatever
α, β, the partition of Y such that rank(K1)α×β = 1, due to rows proportionality, one obtains
r11 = r12 and θ12 = −3θ11 mod 2π. Now, assume that C2 is an admissible DPixP kernel
such that DPixP(C2) = DPixP(C1). Then the matrices K1 and K2 have equal principal
minors. Necessarily, K2 is irreducible and there exists a partition such that rank(K2)α×β = 1,
otherwise K2 would verify the assumptions of Theorem 16 and so would K1. Then, as C1,
C2 is fully determined by C2(0), one modulus r21 and one argument θ21. Once again, we
know that C1(0) = C2(0) = C0 and thanks to the equality of principal minors of size 2, the
modulus are equal so r21 = r11 = r. One of the principal minors of size 3 for C1 is equal to

C3
0 + C1(1)C1(1)C1(2) + C1(1)C1(1)C1(2)− C0C1(2)C1(2)− 2C0C1(1)C1(1),

so by equality of principal minors, we obtain

Re
(
C1(1)C1(1)C1(2)

)
= Re

(
C2(1)C2(1)C2(2)

)
⇔ Re

(
r3e2iθ11+3iθ11

)
= Re

(
r3e2iθ21+3iθ21

)
⇔ r3cos(5θ11) = r3cos(5θ21)

⇔ ∃ k ∈ Z s.t. θ11 =
{
θ21 + 2

5kπ (case 1)
−θ21 + 2

5kπ (case 2).

Finally, let us assume we are in the first case, K1 can be written

K1 = circ
(
C0, re

i(θ21+ 2
5kπ), re−3i(θ21+ 2

5kπ), re3i(θ21+ 2
5kπ), re−i(θ21+ 2

5kπ)
)

= DK2D
−1

with D = diag
(
1, ei 2

5kπ, ei
4
5kπ, e−i

4
5kπ, e−i

2
5kπ
)
, which corresponds to a translation of the

Fourier coefficients of C of k pixels. The second case yields to K1 = DK2D
−1 which

corresponds to the symmetry and the translation of k pixels of the Fourier coefficients of C.

B.2 Case 3: K1 is not irreducible

In this appendix, we consider a Hermitian block-circulant matrix K of size N ×N that is
completely reducible, meaning that it is permutation similar to a block diagonal matrix
with irreducible blocks. We want to prove that in that case, the blocks are identical,
that is they are of equal size and they are composed of the same coefficients. Moreover,
we prove that these blocks are not only irreducible but also Hermitian and circulant.
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First, let us study the 1D case, meaning that K is a kernel defined on the points of
Y = {0, . . . , N − 1} (to be consistant with our 2D representation) and it is circulant.
Therefore, for all i, j ∈ Y, K(i, j) = cj−i = ci−j . As K is not irreducible, there exist
i, j ∈ Y, such that K(i, j) = cj−i = 0. Let us denote k = inf{l > 0 such that cl 6= 0}, hence
c1 = · · · = ck−1 = 0 = c−1 = · · · = c−k+1. Notice that k is necessarily larger or equal to 2,
otherwise by the circulant property, K would not have any zero coefficient and it would
be irreducible. Similarly, k necessarily divides N and the only non-zero coefficients cm
are multiples of k, as otherwise the non-zero elements of K would be located such that it
would be possible to access to any index from any other by traveling only through non-zero
coefficients: K would be irreducible. Then, if we define l such that N = k × l, there are
k cycles of size l in the graph associated to K, each block with the same l coefficients
{ck, c2k, . . . , clk}, or equivalently,

∀i0 = 0, . . . , N − 1, K(i0, j) =
{
ckp, if j = kp+ i0 mod N, with p = 0, . . . , l − 1,
0, otherwise.

Thus it is possible to define the permutation matrix P which gathers the cycles, and which
associates K with a block diagonal matrix:

∀p = 0, . . . , l − 1, ∀r = 0, . . . , k − 1, P (p+ lr, r + pk) = 1

meaning that P moves the coefficient Kr+pk to the coordinate p+ lr. Moreover, these blocks
(Br)r∈{0,...,k−1} are circulant: for all r = 0, . . . , k − 1, for all i, i′ = 0, . . . , l − 1,

Br(i, i′) = K(r + ik, r + i′k) = c(i−i′)k,

for all τ ∈ Y such that (i+ τ mod N) and (i′ + τ mod N) are in the r-th cycle,

Br(i+ τ, i′ + τ) = K(r + (i+ τ)k, r + (i′ + τ)k) = c(i−i′)k = Br(i, i′).

To conclude, K is permutation similar to a block-diagonal matrix, which is the repetition of
one irreducible, circulant and Hermitian block.

Now let us consider the 2D case, when K is a kernel matrix defined on Ω = {0, . . . , N1 −
1} × {0, . . . , N2 − 1} and assume that K is Hermitian, block-circulant with circulant
blocks and completely reducible. Define C the function such that for all (i, j), (i′, j′) ∈ Ω,
K ((i, j), (i′, j′)) = C(i′ − i, j′ − j). As in the 1D case, define (e1, e2) ∈ Z2 ∩ Ω the two
generating vectors such that C(r, s) = 0,∀(r, s) inside the elementary cell generated by (e1, e2).
These two vectors generate a subgroup of Z2 and it contains Z(0, N2) +Z(N1, 0), as K is not
irreducible and similarly as in the 1D case. Then e1 divides N1, e2 divides N2. As before,
the only non-zero coefficients of C belong to {Ze1 +Ze2}∩Ω. The size of the elementary cell
determines the number of cycles (and future blocks) and l = ]{Ze1 +Ze2}∩Ω defines the size
of each cycle. It is possible to define the permutation matrix that transforms K into a block-
diagonal matrix with irreducible blocks. For all (i, j) ∈ Ω, let us define (r, s) its representative
element in the elementary cell such that there exists p, q such that (i, j) = (pe1 + qe2) + (r, s)
mod (N1, N2). Thus, P associates the coefficient (i, j) = (pe1 + qe2) + (r, s) mod(N1, N2)
with the coordinate (p, q) + (r, s) (block (r, s), coefficient (p, q)). As before, the blocks
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(B(r,s)) have the same size and have an identical structure. Let us consider the block (r, s),
consider (i, j), (i′, j′) ∈ Ω,

B(r,s)((i, j), (i′, j′)) = K((pe1 + qe2) + (r, s) mod(N1, N2), (p′e1 + q′e2) + (r, s) mod(N1, N2))
= C((p′ − p)e1 + (q′ − q)e2)

Let (τ1, τ2) ∈ Ω be such that (i+ τ1, j + τ2), (i′ + τ1, j
′ + τ2) both belong to the cycle (r, s).

Then (τ1, τ2) ∈ Ze1 + Ze2, we can write (τ1, τ2) = t1e1 + t2e2.

B(r,s)((i+ τ1, j + τ2), (i′ + τ1, j
′ + τ2))

= K((pe1 + qe2) + (r, s) + (t1e1 + t2e2) mod(N1, N2),
(p′e1 + q′e2) + (r, s) + (t1e1 + t2e2) mod(N1, N2))

= C((p′ − p)e1 + (q′ − q)e2) = B(r,s)((i, j), (i′, j′)).

Thus, for all (r, s), the associated bloc B(r,s) is block circulant with circulant blocks. Similarly,
it is Hermitian. To conclude, K is permutation similar to a block diagonal matrix with one
repeated irreducible, circulant, Hermitian block.
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