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Framewok

Cat model = 4 components

Hazard: consists of a large number of catastrophe
event scenarios that together provide a representation
of possible loss-causing events, and an associated mod-
eled rate of occurence for each.

Let n be the number of stochastic events, and pi be
the occurence rate of the event i , i = 1, . . . , n.
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Framewok

Cat model = 4 components

Hazard: catastrophe event scenarios + occurence rate

Inventory: represents the exposure. In practice, the
exposure is not perfectly known (uncertain even trajec-
tory + uncertain exposure when the event occurs).

Let Yi be a positive random variable representing the
exposure of scenario i , i = 1, . . . , n. Assume Yi ≤ m
a.s., where for instance m stands for the total size of
the portfolio.
Sometimes, ai ≤ Yi ≤ bi a.s.
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Framewok

Cat model = 4 components

Hazard: catastrophe event scenarios + occurence rate

Inventory: uncertain exposure

Vulnerability: provides the intensity of the catastro-
phe event on the exposed portfolio. We use the damage
ratio (aka destruction rate or loss proportion) repre-
sented by

Si ∼ Beta(αi , βi ), Si ⊥ Yi .

The loss in scenario i is then Xi = SiYi .
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Framewok

Cat model = 4 components

Hazard: catastrophe event scenarios + occurence rate

Inventory: uncertain exposure

Vulnerability: intensity = destruction rate
Si ∼ Beta(αi , βi ), Si ⊥ Yi .

Loss: translates the expected physical damage into
monetary loss taking into account any insurance struc-
tures.

Index-based transaction: the index in scenario i takes
the value ci .

The final flow in scenario i is given by SiYi − ci .
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Framework

Basis Risk
The difference in payment between own losses incurred and a
structured risk transfer mechanism to protect against these losses.

Way to quantify Basis Risk in Index-based transactions

Identification of worst case scenarios using s-
convex orders

Measurement of basis risk using penalty functions
φ!

In a nutshell:

BR(s) =
n∑

i=1

piE
[
φ
(
X

(s)
i ,max − ci

)]
, s = 2, . . .
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Beta-unimodal Distributions

Definition
An R+-valued rv X has a continuous Beta-unimodal distribution if
it has the product representation

X =d SY , (1)
where Y is a positive continuous rv, and S ∼ Beta(α, β) is a
random contracting factor independent of Y .

From Y to X : if Y ∼ FY and if X is Beta-unimodal

F̄X (x) =
Γ(α + β)

Γ(α)
xα(Iβφ)(x), (2)

where:

- (Iβφ)(x) =
∫∞
x

1
Γ(β)

(t−x)β−1φ(t)dt is called

the Weyl fractional-order integral operator,
- φ(t) = F̄Y (t)t−α−β .
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Beta-unimodal Distributions

Definition
An R+-valued rv X has a continuous Beta-unimodal distribution if
it has the product representation

X =d SY , (3)
where Y is a positive continuous rv, and S ∼ B(α, β) is a random
contracting factor independent of Y .

From X to Y : if X ∼ FX and if X is Beta-unimodal

F̄Y (x) = (−1)nxα+β
Γ(α)

Γ(α + β)
(IδD

nψ)(x), (4)

where:
- δ ∈ [0, 1] such as β + δ = n ∈ N,
- ψ(t) = F̄X (t)t−α,
- Dn denotes the n-fold derivative operator.
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Identification: s-convex orders

Definition: s-convexity
A function φ defined on S is said to be s−convex if the inequality

[x0, ..., xs ;φ] ≥ 0,
holds for any choice of distinct points x0, ..., xs in S.
[x0, ..., xs ;φ] denotes a divided difference of the function φ at the
different points x0, ..., xs .

s differentiability condition: if φ(s) exists in S, then
φ is s−convex if and only if φ(s) ≥ 0.

-
-
-
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Identification: s-convex orders

Definition: s-convexity

Definition: s-increasing convexity
A function φ is said to be s−increasing convex on its domain S if
and only if for all choices of k + 1 distincts points x0 < x1 < xk in
S, we have

[x0, x1, ..., xk ;φ] ≥ 0, k = 2, ..., s.

We denote by USs−icx the class of the s-increasing convex functions
on S.

-
-
-
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Identification: s-convex orders

Definition: s-convexity

Definition: s-increasing convexity

Definition: s-convex order
Let X1 and X2 be two random variables that take on values in S.
Then X1 is said to be smaller than X2 in the s−convex order,
denoted by X1 ≤Ss−cx X2 if

E[φ(X1)] ≤ E[φ(X2)] for all φ ∈ USs−cx , (5)

where USs−cx is the class of all the s−convex functions φ : S → R.
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Identification: s-convex extrema

Definition: moment space
We denote by Bs([a, b], µ1, µ2, ..., µs−1) the moment space of all
the random variables valued in [a, b] and with known s − 1
moments µ1, ..., µs−1.

Theorem: s-convex extrema
Let Y ∈ Bs([a, b], µ1, µ2, ..., µs−1).
Within Bs([a, b], µ1, µ2, ..., µs−1), there exist two unique random
variables Y (s)

min and Y
(s)
max such that

Y
(s)
min ≤s−cx Y ≤s−cx Y

(s)
max .

Proof. See Denuit et al. (1999).
s-convex extrema are actually extremal distributions built
from the s-1 first moments of Y .
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Identification: s-convex extrema

3-convex extremal distributions
Let Y ∈ B3([a, b], µ1, µ2).

Y
(3)
min =


a with proba

µ2 − µ2
1

(a− µ1)2 + µ2 − µ2
1
,−−−

b with proba
(a− µ1)2

(a− µ1)2 + µ2 − µ2
1
,

and

Y
(3)
max =


µ1 −

µ2 − µ2
1

b − µ1
with proba

(b − µ1)2

(b − µ1)2 + µ2 − µ2
1
,

b with proba
µ2 − µ2

1
(b − µ1)2 + µ2 − µ2

1
.
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Generalization to Beta-unimodal distributions

Proposition (Beta-unimodal s-convex extrema)
Let Y ∈ Bs(S, µ1, µ2, ..., µs−1), and let φ ∈ USs−cx . If X is
Beta-unimodal, then X ∈ Bs(S, υ1, υ2, ..., υs−1) and the s-convex
extrema in this set are

X
(s)
min = SY

(s)
min, and X

(s)
max = SY

(s)
max .

Besides, if φ ∈ USs−icx , then

E[φ(X )] ≤ E[φ(SY
(s)
max)] ≤ E[φ(SY

(s−1)
max )] ≤ ... ≤ E[φ(SY

(2)
max)],

which can be written as,
∀k ∈ [[2, s]],X ≤k−cx X

(s)
max ≤k−cx X

(s−1)
max ≤k−cx ... ≤k−cx X

(2)
max .

When φ ∈ USs−icx , the more moments, the sharper the bounds !
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Measure

Penalty functions
A penalty function g allows us to represent the consequences of a
positive or negative difference between the Loss and the Index.
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Measure

Example
g(x − c) = f1(x) + f2(x) + φn(x), x ∈ R

where

f1(x) = η(c−x)+, f2(x) = γ(x−c)+, φn(x) = γ(x−(c+d))n+.

f1 and f2 are only 2-cx whereas φn is n-icx. Consequently,

E[f1(X
(2)
min) + f2(X

(2)
min)] + E[φn(X

(n−1)
min )]

≤ E[f1(X
(2)
min) + f2(X

(2)
min)] + E[φn(X

(n)
min)]

≤ E[g(X )]

≤ E[f1(X
(2)
max) + f2(X

(2)
max)] + E[φn(X

(n)
max)]

≤ E[f1(X
(2)
max) + f2(X

(2)
max)] + E[φn(X

(n−1)
max )]
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Numerical illustrations with φ4

Ex 1:
Y ∼ Beta([60, 80], 0.5, 0.5), c + d = 69.6, S ∼ Beta(7, 2)

Convex order used Values
2,min 1.8470e-06
3,min 5.8227
4,min 27.8081

E[φ4(X )] 58.3232
4,max 88.8281
3,max 118.4375
2,max 177.6562

Table: Values of E[φ4(X
(s)
min/max)] for s = 2, 3, 4.
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Numerical illustrations with φ4

Ex 1:

Y
(4)
min =

{
62.9289 with proba 0.5 (red)

77.0711 with proba 0.5 (blue),
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Numerical illustrations with φ4

Ex 2:
Y ∼ Beta([60, 80], 2, 2), c + d = 63.036, S ∼ Beta(2, 2)

Convex order used Values
2,min 5.4281
3,min 19.3039
4,min 46.2856

E[φ4(X )] 58.0398

Table: Values of E[φ4(X
(s)
min)] for s = 2, 3, 4.
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Numerical illustrations with φ4

Ex 2:

Y
(4)
min =

{
65.5279 with proba 0.5 (red)

74.4721 with proba 0.5 (blue),
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Conclusion

Promise kept ?

Identification of s-convex extrema for Beta-Unimodal
random variables,

Measurement of basis risk, and show the impact of
information (in terms of moments) on basis risk assess-
ment,

Is basis risk always bounded ? S ⊥ Y ?
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