Bounding Basis-Risk Using s-convex Orders on Beta-unimodal Distributions

Claude Lefèvre, Stéphane Loisel, Pierre Montesinos

April 2020

Framewok

Cat model $=4$ components

Framewok

Cat model $=4$ components

Hazard: consists of a large number of catastrophe event scenarios that together provide a representation of possible loss-causing events, and an associated modeled rate of occurence for each.

Let n be the number of stochastic events, and p_{i} be the occurence rate of the event $i, i=1, \ldots, n$.

Framewok

Cat model $=4$ components

Hazard: catastrophe event scenarios + occurence rate
Inventory: represents the exposure. In practice, the exposure is not perfectly known (uncertain even trajectory + uncertain exposure when the event occurs).

Let Y_{i} be a positive random variable representing the exposure of scenario $i, i=1, \ldots, n$. Assume $Y_{i} \leq m$ a.s., where for instance m stands for the total size of the portfolio.
Sometimes, $a_{i} \leq Y_{i} \leq b_{i}$ a.s.

Framewok

Cat model $=4$ components

Hazard: catastrophe event scenarios + occurence rate

Inventory: uncertain exposure
Vulnerability: provides the intensity of the catastrophe event on the exposed portfolio. We use the damage ratio (aka destruction rate or loss proportion) represented by

$$
S_{i} \sim \mathcal{B e t a}\left(\alpha_{i}, \beta_{i}\right), \quad S_{i} \perp Y_{i}
$$

The loss in scenario i is then $X_{i}=S_{i} Y_{i}$.

Framewok

Cat model $=4$ components

Hazard: catastrophe event scenarios + occurence rate
Inventory: uncertain exposure
Vulnerability: intensity $=$ destruction rate $S_{i} \sim \mathcal{B e t a}\left(\alpha_{i}, \beta_{i}\right), \quad S_{i} \perp Y_{i}$.

Loss: translates the expected physical damage into monetary loss taking into account any insurance structures.

Framewok

Cat model $=4$ components

Hazard: catastrophe event scenarios + occurence rate Inventory: uncertain exposure

Vulnerability: intensity $=$ destruction rate $S_{i} \sim \mathcal{B e t a}\left(\alpha_{i}, \beta_{i}\right), \quad S_{i} \perp Y_{i}$.

Loss: translates the expected physical damage into monetary loss taking into account any insurance structures.
Index-based transaction: the index in scenario i takes the value c_{i}.

Framewok

Cat model $=4$ components

Hazard: catastrophe event scenarios + occurence rate Inventory: uncertain exposure

Vulnerability: intensity $=$ destruction rate $S_{i} \sim \mathcal{B e t a}\left(\alpha_{i}, \beta_{i}\right), \quad S_{i} \perp Y_{i}$.

Loss: translates the expected physical damage into monetary loss taking into account any insurance structures.
Index-based transaction: the index in scenario i takes the value c_{i}.

The final flow in scenario i is given by $S_{i} Y_{i}-c_{i}$.

Framework

Basis Risk

The difference in payment between own losses incurred and a structured risk transfer mechanism to protect against these losses.

Framework

Basis Risk

The difference in payment between own losses incurred and a structured risk transfer mechanism to protect against these losses.

Way to quantify Basis Risk in Index-based transactions

Framework

Basis Risk

The difference in payment between own losses incurred and a structured risk transfer mechanism to protect against these losses.

Way to quantify Basis Risk in Index-based transactions

Identification of worst case scenarios using sconvex orders

Measurement of basis risk using penalty functions ϕ !

Framework

Basis Risk

The difference in payment between own losses incurred and a structured risk transfer mechanism to protect against these losses.

Way to quantify Basis Risk in Index-based transactions

Identification of worst case scenarios using sconvex orders

Measurement of basis risk using penalty functions ϕ !

> In a nutshell:

$$
B R^{(s)}=\sum_{i=1}^{n} p_{i} \mathbb{E}\left[\phi\left(X_{i, \max }^{(s)}-c_{i}\right)\right], \quad s=2, \ldots
$$

Beta-unimodal Distributions

Definition

An \mathbb{R}_{+}-valued rv X has a continuous Beta-unimodal distribution if it has the product representation

$$
\begin{equation*}
X={ }_{d} S Y \tag{1}
\end{equation*}
$$

where Y is a positive continuous rv, and $S \sim \mathcal{B e t a}(\alpha, \beta)$ is a random contracting factor independent of Y.

Beta-unimodal Distributions

Definition

An \mathbb{R}_{+}-valued rv X has a continuous Beta-unimodal distribution if it has the product representation

$$
\begin{equation*}
X={ }_{d} S Y \tag{1}
\end{equation*}
$$

where Y is a positive continuous rv , and $S \sim \mathcal{B e t a}(\alpha, \beta)$ is a random contracting factor independent of Y.

From Y to X : if $Y \sim F_{Y}$ and if X is Beta-unimodal

$$
\begin{equation*}
\bar{F}_{X}(x)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)} x^{\alpha}\left(I_{\beta} \phi\right)(x) \tag{2}
\end{equation*}
$$

where:
$-\left(I_{\beta} \phi\right)(x)=\int_{x}^{\infty} \frac{1}{\Gamma(\beta)}(t-x)^{\beta-1} \phi(t) d t$ is called the Weyl fractional-order integral operator,

Beta-unimodal Distributions

Definition

An \mathbb{R}_{+}-valued $\mathrm{rv} X$ has a continuous Beta-unimodal distribution if it has the product representation

$$
\begin{equation*}
X={ }_{d} S Y \tag{3}
\end{equation*}
$$

where Y is a positive continuous rv , and $S \sim \mathcal{B}(\alpha, \beta)$ is a random contracting factor independent of Y.

From X to Y : if $X \sim F_{X}$ and if X is Beta-unimodal

$$
\begin{equation*}
\bar{F}_{Y}(x)=(-1)^{n} x^{\alpha+\beta} \frac{\Gamma(\alpha)}{\Gamma(\alpha+\beta)}\left(I_{\delta} D^{n} \psi\right)(x) \tag{4}
\end{equation*}
$$

where:
$-\delta \in[0,1]$ such as $\beta+\delta=n \in \mathbb{N}$,
$-\psi(t)=\bar{F}_{X}(t) t^{-\alpha}$,

- D^{n} denotes the n-fold derivative operator.

Identification: s-convex orders

Definition: s-convexity

A function ϕ defined on \mathcal{S} is said to be s-convex if the inequality

$$
\left[x_{0}, \ldots, x_{s} ; \phi\right] \geq 0
$$

holds for any choice of distinct points x_{0}, \ldots, x_{s} in \mathcal{S}.
$\left[x_{0}, \ldots, x_{s} ; \phi\right]$ denotes a divided difference of the function ϕ at the different points x_{0}, \ldots, x_{s}.

Identification: s-convex orders

Definition: s-convexity

A function ϕ defined on \mathcal{S} is said to be s-convex if the inequality

$$
\left[x_{0}, \ldots, x_{s} ; \phi\right] \geq 0
$$

holds for any choice of distinct points x_{0}, \ldots, x_{s} in \mathcal{S}.
$\left[x_{0}, \ldots, x_{s} ; \phi\right]$ denotes a divided difference of the function ϕ at the different points x_{0}, \ldots, x_{s}.
s differentiability condition: if $\phi^{(s)}$ exists in \mathcal{S}, then ϕ is s-convex if and only if $\phi^{(s)} \geq 0$.

Identification: s-convex orders

Definition: s-convexity

Definition: s-increasing convexity

A function ϕ is said to be s-increasing convex on its domain \mathcal{S} if and only if for all choices of $k+1$ distincts points $x_{0}<x_{1}<x_{k}$ in \mathcal{S}, we have

$$
\left[x_{0}, x_{1}, \ldots, x_{k} ; \phi\right] \geq 0, k=2, \ldots, s .
$$

We denote by $\mathcal{U}_{s-i c x}^{\mathcal{S}}$ the class of the s-increasing convex functions on \mathcal{S}.

Identification: s-convex orders

Definition: s-convexity

Definition: s-increasing convexity

Definition: s-convex order
Let X_{1} and X_{2} be two random variables that take on values in \mathcal{S}.
Then X_{1} is said to be smaller than X_{2} in the s-convex order, denoted by $X_{1} \leq_{s-c x}^{\mathcal{S}} X_{2}$ if

$$
\begin{equation*}
\mathbb{E}\left[\phi\left(X_{1}\right)\right] \leq \mathbb{E}\left[\phi\left(X_{2}\right)\right] \text { for all } \phi \in \mathcal{U}_{s-c x}^{\mathcal{S}}, \tag{5}
\end{equation*}
$$

where $\mathcal{U}_{s-c x}^{\mathcal{S}}$ is the class of all the s-convex functions $\phi: \mathcal{S} \rightarrow \mathbb{R}$.

Identification: s-convex extrema

Definition: moment space

We denote by $\mathcal{B}_{s}\left([a, b], \mu_{1}, \mu_{2}, \ldots, \mu_{s-1}\right)$ the moment space of all the random variables valued in $[a, b]$ and with known $s-1$ moments $\mu_{1}, \ldots, \mu_{s-1}$.

Identification: s-convex extrema

Definition: moment space

We denote by $\mathcal{B}_{s}\left([a, b], \mu_{1}, \mu_{2}, \ldots, \mu_{s-1}\right)$ the moment space of all the random variables valued in $[a, b]$ and with known $s-1$ moments $\mu_{1}, \ldots, \mu_{s-1}$.

Theorem: s-convex extrema
Let $Y \in \mathcal{B}_{s}\left([a, b], \mu_{1}, \mu_{2}, \ldots, \mu_{s-1}\right)$.
Within $\mathcal{B}_{s}\left([a, b], \mu_{1}, \mu_{2}, \ldots, \mu_{s-1}\right)$, there exist two unique random variables $Y_{\text {min }}^{(s)}$ and $Y_{\text {max }}^{(s)}$ such that

$$
Y_{\text {min }}^{(s)} \leq_{s-c x} Y \leq_{s-c x} Y_{\text {max }}^{(s)} .
$$

Proof. See Denuit et al. (1999).
s-convex extrema are actually extremal distributions built from the s-1 first moments of Y.

Identification: s-convex extrema

3-convex extremal distributions

Let $Y \in \mathcal{B}_{3}\left([a, b], \mu_{1}, \mu_{2}\right)$.

$$
Y_{\text {min }}^{(3)}=\left\{\begin{array}{l}
a \text { with proba } \frac{\mu_{2}-\mu_{1}^{2}}{\left(a-\mu_{1}\right)^{2}+\mu_{2}-\mu_{1}^{2}}, \\
b \text { with proba } \frac{\left(a-\mu_{1}\right)^{2}}{\left(a-\mu_{1}\right)^{2}+\mu_{2}-\mu_{1}^{2}},
\end{array}\right.
$$

and

$$
Y_{\max }^{(3)}=\left\{\begin{array}{l}
\mu_{1}-\frac{\mu_{2}-\mu_{1}^{2}}{b-\mu_{1}} \text { with proba } \frac{\left(b-\mu_{1}\right)^{2}}{\left(b-\mu_{1}\right)^{2}+\mu_{2}-\mu_{1}^{2}}, \\
b \text { with proba } \frac{\mu_{2}-\mu_{1}^{2}}{\left(b-\mu_{1}\right)^{2}+\mu_{2}-\mu_{1}^{2}} .
\end{array}\right.
$$

Generalization to Beta-unimodal distributions

Proposition (Beta-unimodal s-convex extrema)

Let $Y \in \mathcal{B}_{s}\left(\mathcal{S}, \mu_{1}, \mu_{2}, \ldots, \mu_{s-1}\right)$, and let $\phi \in \mathcal{U}_{s-c x}^{\mathcal{S}}$. If X is
Beta-unimodal, then $X \in \mathcal{B}_{s}\left(\mathcal{S}, v_{1}, v_{2}, \ldots, v_{s-1}\right)$ and the s-convex extrema in this set are

$$
X_{\min }^{(s)}=S Y_{\min }^{(s)}, \quad \text { and } \quad X_{\max }^{(s)}=S Y_{\max }^{(s)}
$$

Besides, if $\phi \in \mathcal{U}_{s-i c x}^{\mathcal{S}}$, then

$$
\mathbb{E}[\phi(X)] \leq \mathbb{E}\left[\phi\left(S Y_{\max }^{(s)}\right)\right] \leq \mathbb{E}\left[\phi\left(S Y_{\max }^{(s-1)}\right)\right] \leq \ldots \leq \mathbb{E}\left[\phi\left(S Y_{\max }^{(2)}\right)\right]
$$

which can be written as,
$\forall k \in \llbracket 2, s \rrbracket, X \leq_{k-c x} X_{\max }^{(s)} \leq_{k-c x} X_{\max }^{(s-1)} \leq_{k-c x} \ldots \leq_{k-c x} X_{\max }^{(2)}$.
When $\phi \in \mathcal{U}_{s-i c x}^{\mathcal{S}}$, the more moments, the sharper the bounds !

Measure

Penalty functions

A penalty function g allows us to represent the consequences of a positive or negative difference between the Loss and the Index.

Measure

Example

$$
g(x-c)=f_{1}(x)+f_{2}(x)+\phi_{n}(x), \quad x \in \mathbb{R}
$$

where

$$
f_{1}(x)=\eta(c-x)_{+}, \quad f_{2}(x)=\gamma(x-c)_{+}, \quad \phi_{n}(x)=\gamma(x-(c+d))_{+}^{n} .
$$

Measure

Example

$$
g(x-c)=f_{1}(x)+f_{2}(x)+\phi_{n}(x), \quad x \in \mathbb{R}
$$

where

$$
f_{1}(x)=\eta(c-x)_{+}, \quad f_{2}(x)=\gamma(x-c)_{+}, \quad \phi_{n}(x)=\gamma(x-(c+d))_{+}^{n} .
$$

f_{1} and f_{2} are only 2 -cx whereas ϕ_{n} is n-icx. Consequently,

$$
\begin{aligned}
& \mathbb{E}\left[f_{1}\left(X_{\min }^{(2)}\right)+f_{2}\left(X_{\min }^{(2)}\right)\right]+\mathbb{E}\left[\phi_{n}\left(X_{\min }^{(n-1)}\right)\right] \\
& \leq \leq \mathbb{E}\left[f_{1}\left(X_{\min }^{(2)}\right)+f_{2}\left(X_{\min }^{(2)}\right)\right]+\mathbb{E}\left[\phi_{n}\left(X_{\min }^{(n)}\right)\right] \\
& \leq \mathbb{E}[g(X)] \\
& \quad \leq \mathbb{E}\left[f_{1}\left(X_{\max }^{(2)}\right)+f_{2}\left(X_{\max }^{(2)}\right)\right]+\mathbb{E}\left[\phi_{n}\left(X_{\max }^{(n)}\right)\right] \\
& \quad \leq \mathbb{E}\left[f_{1}\left(X_{\max }^{(2)}\right)+f_{2}\left(X_{\max }^{(2)}\right)\right]+\mathbb{E}\left[\phi_{n}\left(X_{\max }^{(n-1)}\right)\right]
\end{aligned}
$$

Numerical illustrations with ϕ_{4}

```
Ex 1:
Y~\mathcal{Beta}([60, 80], 0.5,0.5),\quadc+d=69.6,\quadS~\mathcal{Beta}(7,2)
```


Numerical illustrations with ϕ_{4}

> Ex 1:
> $Y \sim \mathcal{B} e t a([60,80], 0.5,0.5), \quad c+d=69.6, \quad S \sim \mathcal{B e t a}(7,2)$

Convex order used	Values
$2, \min$	$1.8470 \mathrm{e}-06$
$3, \min$	5.8227
$4, \min$	27.8081
$\mathbb{E}\left[\phi_{4}(X)\right]$	58.3232
$4, \max$	88.8281
$3, \max$	118.4375
$2, \max$	177.6562

Table: Values of $\mathbb{E}\left[\phi_{4}\left(X_{\min / \max }^{(s)}\right)\right]$ for $s=2,3,4$.

Numerical illustrations with ϕ_{4}

Ex 1:

$$
Y_{\min }^{(4)}=\left\{\begin{array}{lll}
62.9289 & \text { with proba } & 0.5 \\
77.0711 \text { with proba }) \\
0.5 & \text { (blue) })
\end{array}\right.
$$

Numerical illustrations with ϕ_{4}

Ex 2:
 $Y \sim \mathcal{B e t a}([60,80], 2,2), \quad c+d=63.036, \quad S \sim \mathcal{B e t a}(2,2)$

Convex order used	Values
2, min	5.4281
$3, \min$	19.3039
$4, \min$	46.2856
$\mathbb{E}\left[\phi_{4}(X)\right]$	58.0398

Table: Values of $\mathbb{E}\left[\phi_{4}\left(X_{\min }^{(s)}\right)\right]$ for $s=2,3,4$.

Numerical illustrations with ϕ_{4}

Ex 2:

$$
Y_{\min }^{(4)}= \begin{cases}65.5279 \text { with proba } 0.5 & (\text { red }) \\ 74.4721 \text { with proba } 0.5 & \text { (blue) },\end{cases}
$$

Conclusion

Promise kept ?

Identification of s-convex extrema for Beta-Unimodal random variables,

Conclusion

Promise kept ?

Identification of s-convex extrema for Beta-Unimodal random variables,

Measurement of basis risk, and show the impact of information (in terms of moments) on basis risk assessment,

Is basis risk always bounded ? $S \perp Y$?

