Bounding Basis-Risk Using s-convex Orders on Beta-unimodal Distributions

Claude Lefèvre, Stéphane Loisel, Pierre Montesinos

April 2020

Cat model = 4 components

OICA - Pierre Montesinos - April 2020

2 / 21

Cat model = 4 components

Hazard: consists of a large number of catastrophe event scenarios that together provide a representation of possible loss-causing events, and an associated modeled rate of occurence for each.

Let *n* be the number of stochastic events, and p_i be the occurrence rate of the event *i*, i = 1, ..., n.

< ロ > < 同 > < 三 > < 三 > <

Cat model = 4 components

Hazard: catastrophe event scenarios + occurence rate

Inventory: represents the exposure. In practice, the exposure is not perfectly known (uncertain even trajectory + uncertain exposure when the event occurs).

Let Y_i be a positive random variable representing the exposure of scenario i, i = 1, ..., n. Assume $Y_i \leq m$ a.s., where for instance m stands for the total size of the portfolio. Sometimes, $a_i \leq Y_i \leq b_i$ a.s.

< ロ > < 同 > < 三 > < 三 > <

Cat model = 4 components

Hazard: catastrophe event scenarios + occurence rate Inventory: uncertain exposure

Vulnerability: provides the intensity of the catastrophe event on the exposed portfolio. We use the damage ratio (aka destruction rate or loss proportion) represented by

 $S_i \sim \mathcal{B}eta(\alpha_i, \beta_i), \quad S_i \perp Y_i.$

The loss in scenario *i* is then $X_i = S_i Y_i$.

OICA - Pierre Montesinos - April 2020

< ロ > < 同 > < 三 > < 三 > <

Cat model = 4 components

Hazard: catastrophe event scenarios + occurence rate Inventory: uncertain exposure Vulnerability: intensity = destruction rate

S_i ~ $\mathcal{B}eta(\alpha_i, \beta_i), \quad S_i \perp Y_i.$

Loss: translates the expected physical damage into monetary loss taking into account any insurance structures.

Cat model = 4 components

Hazard: catastrophe event scenarios + occurence rate Inventory: uncertain exposure

Loss: translates the expected physical damage into monetary loss taking into account any insurance structures. Index-based transaction: the index in scenario i takes the value c_i .

Cat model = 4 components

Hazard: catastrophe event scenarios + occurence rate Inventory: uncertain exposure

Vulnerability: intensity = destruction rate $S_i \sim Beta(\alpha_i, \beta_i), \quad S_i \perp Y_i.$

Loss: translates the expected physical damage into monetary loss taking into account any insurance structures. Index-based transaction: the index in scenario i takes the value c_i .

The final flow in scenario *i* is given by $S_i Y_i - c_i$.

OICA - Pierre Montesinos - April 2020

Basis Risk

The difference in payment between own losses incurred and a structured risk transfer mechanism to protect against these losses.

イロト イヨト イヨト イヨト

Basis Risk

The difference in payment between own losses incurred and a structured risk transfer mechanism to protect against these losses.

Way to quantify Basis Risk in Index-based transactions

(日) (同) (日) (日) (日)

Basis Risk

The difference in payment between own losses incurred and a structured risk transfer mechanism to protect against these losses.

Way to quantify Basis Risk in Index-based transactions

Measurement of basis risk using penalty functions ϕ !

Basis Risk

The difference in payment between own losses incurred and a structured risk transfer mechanism to protect against these losses.

Way to quantify Basis Risk in Index-based transactions

Identification of worst case scenarios using *s*-convex orders

Measurement of basis risk using penalty functions ϕ !

6 / 21

In a nutshell:

OICA - Pierre Montesinos - April 2020

$$BR^{(s)} = \sum_{i=1}^{n} p_i \mathbb{E} \left[\phi \left(X_{i, \max}^{(s)} - c_i \right) \right], \quad s = 2, \dots$$

Beta-unimodal Distributions

Definition An \mathbb{R}_+ -valued rv X has a continuous Beta-unimodal distribution if it has the product representation

$$X =_d SY, \tag{1}$$

where Y is a positive continuous rv, and $S \sim Beta(\alpha, \beta)$ is a random contracting factor independent of Y.

Beta-unimodal Distributions

Definition An \mathbb{R}_+ -valued rv X has a continuous Beta-unimodal distribution if it has the product representation

$$X =_d SY, \tag{1}$$

where Y is a positive continuous rv, and $S \sim Beta(\alpha, \beta)$ is a random contracting factor independent of Y.

From *Y* **to** *X*: if $Y \sim F_Y$ and if *X* is Beta-unimodal

$$\bar{F}_X(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)} x^{\alpha} (I_{\beta} \phi)(x), \qquad (2)$$

where:

- $(I_{\beta}\phi)(x) = \int_{x}^{\infty} \frac{1}{\Gamma(\beta)} (t-x)^{\beta-1} \phi(t) dt$ is called the Weyl fractional-order integral operator, - $\phi(t) = \bar{F}_{Y}(t)t^{-\alpha-\beta}$.

OICA - Pierre Montesinos - April 2020

7 / 21

Beta-unimodal Distributions

Definition An \mathbb{R}_+ -valued rv X has a continuous Beta-unimodal distribution if it has the product representation

$$X =_d SY, \tag{3}$$

where Y is a positive continuous rv, and $S \sim \mathcal{B}(\alpha, \beta)$ is a random contracting factor independent of Y.

From X to Y: if $X \sim F_X$ and if X is Beta-unimodal

$$\bar{F}_{Y}(x) = (-1)^{n} x^{\alpha+\beta} \frac{\Gamma(\alpha)}{\Gamma(\alpha+\beta)} (I_{\delta} D^{n} \psi)(x), \qquad (4)$$

where:

- $\delta \in [0,1]$ such as $\beta + \delta = n \in \mathbb{N}$,
- $-\psi(t)=\bar{F}_X(t)t^{-\alpha},$
- D^n denotes the *n*-fold derivative operator.

8 / 21

Definition: s-convexity A function ϕ defined on S is said to be s-convex if the inequality $[x_0, ..., x_s; \phi] \ge 0$, holds for any choice of distinct points $x_0, ..., x_s$ in S. $[x_0, ..., x_s; \phi]$ denotes a divided difference of the function ϕ at the different points $x_0, ..., x_s$.

Definition: s-convexity A function ϕ defined on S is said to be *s*-convex if the inequality $[x_0, ..., x_s; \phi] \ge 0$, holds for any choice of distinct points $x_0, ..., x_s$ in S. $[x_0, ..., x_s; \phi]$ denotes a divided difference of the function ϕ at the different points $x_0, ..., x_s$.

s differentiability condition: if $\phi^{(s)}$ exists in S, then ϕ is *s*-convex if and only if $\phi^{(s)} \ge 0$.

Definition: s-convexity

Definition: s-increasing convexity

A function ϕ is said to be *s*-increasing convex on its domain S if and only if for all choices of k + 1 distincts points $x_0 < x_1 < x_k$ in S, we have

$$[x_0, x_1, ..., x_k; \phi] \ge 0, \ k = 2, ..., s.$$

We denote by $\mathcal{U}_{s-icx}^{\mathcal{S}}$ the class of the s-increasing convex functions on $\mathcal{S}.$

Definition: s-convexity

Definition: s-increasing convexity

Definition: s-convex order

Let X_1 and X_2 be two random variables that take on values in S. Then X_1 is said to be smaller than X_2 in the *s*-convex order, denoted by $X_1 \leq_{s-cx}^{S} X_2$ if

$$\mathbb{E}[\phi(X_1)] \le \mathbb{E}[\phi(X_2)] \text{ for all } \phi \in \mathcal{U}_{s-cx}^{\mathcal{S}},$$
(5)

where $\mathcal{U}_{s-cx}^{\mathcal{S}}$ is the class of all the *s*-convex functions $\phi : \mathcal{S} \to \mathbb{R}$.

Definition: moment space

We denote by $\mathcal{B}_s([a, b], \mu_1, \mu_2, ..., \mu_{s-1})$ the moment space of all the random variables valued in [a, b] and with known s - 1 moments $\mu_1, ..., \mu_{s-1}$.

Definition: moment space

We denote by $\mathcal{B}_s([a, b], \mu_1, \mu_2, ..., \mu_{s-1})$ the moment space of all the random variables valued in [a, b] and with known s - 1 moments $\mu_1, ..., \mu_{s-1}$.

Theorem: s-convex extrema Let $Y \in \mathcal{B}_{s}([a, b], \mu_{1}, \mu_{2}, ..., \mu_{s-1})$. Within $\mathcal{B}_{s}([a, b], \mu_{1}, \mu_{2}, ..., \mu_{s-1})$, there exist two unique random variables $Y_{min}^{(s)}$ and $Y_{max}^{(s)}$ such that $Y_{min}^{(s)} \leq_{s-cx} Y \leq_{s-cx} Y_{max}^{(s)}$.

Proof. See Denuit et al. (1999).

s-convex extrema are actually extremal distributions built from the s-1 first moments of Y.

コト (四) (ヨト (ヨト

Identification: s-convex extrema

3-convex extremal distributions Let $Y \in \mathcal{B}_3([a, b], \mu_1, \mu_2)$.

$$\mathbf{Y}_{min}^{(3)} = \begin{cases} a \text{ with proba} & \frac{\mu_2 - \mu_1^2}{(a - \mu_1)^2 + \mu_2 - \mu_1^2}, \\ b \text{ with proba} & \frac{(a - \mu_1)^2}{(a - \mu_1)^2 + \mu_2 - \mu_1^2}, \end{cases}$$

and

$$Y_{max}^{(3)} = \begin{cases} \mu_1 - \frac{\mu_2 - \mu_1^2}{b - \mu_1} & \text{with proba } \frac{(b - \mu_1)^2}{(b - \mu_1)^2 + \mu_2 - \mu_1^2}, \\ b & \text{with proba } \frac{\mu_2 - \mu_1^2}{(b - \mu_1)^2 + \mu_2 - \mu_1^2}. \end{cases}$$

OICA - Pierre Montesinos - April 2020

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proposition (Beta-unimodal s-convex extrema) Let $Y \in \mathcal{B}_{s}(\mathcal{S}, \mu_{1}, \mu_{2}, ..., \mu_{s-1})$, and let $\phi \in \mathcal{U}_{s-cx}^{\mathcal{S}}$. If X is Beta-unimodal, then $X \in \mathcal{B}_{s}(\mathcal{S}, v_{1}, v_{2}, ..., v_{s-1})$ and the s-convex extrema in this set are $X_{min}^{(s)} = SY_{min}^{(s)}$, and $X_{max}^{(s)} = SY_{max}^{(s)}$. Besides, if $\phi \in \mathcal{U}_{s-icx}^{\mathcal{S}}$, then $\mathbb{E}[\phi(X)] < \mathbb{E}[\phi(SY_{max}^{(s)})] \le \mathbb{E}[\phi(SY_{max}^{(s-1)})] \le \dots \le \mathbb{E}[\phi(SY_{max}^{(2)})],$ which can be written as, $\forall k \in [\![2,s]\!], X \leq_{k-cx} X_{max}^{(s)} \leq_{k-cx} X_{max}^{(s-1)} \leq_{k-cx} \dots \leq_{k-cx} X_{max}^{(2)}.$ When $\phi \in \mathcal{U}_{s-icx}^{\mathcal{S}}$, the more moments, the sharper the bounds !

14 / 21

Measure

Penalty functions

A penalty function g allows us to represent the consequences of a positive or negative difference between the Loss and the Index.

Measure

Example

$$g(x-c) = f_1(x) + f_2(x) + \phi_n(x), \quad x \in \mathbb{R}$$

where

$$f_1(x) = \eta(c-x)_+, \quad f_2(x) = \gamma(x-c)_+, \quad \phi_n(x) = \gamma(x-(c+d))_+^n.$$

OICA - Pierre Montesinos - April 2020

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Measure

Example

$$g(x-c) = f_1(x) + f_2(x) + \phi_n(x), \quad x \in \mathbb{R}$$

where

$$f_1(x) = \eta(c-x)_+, \quad f_2(x) = \gamma(x-c)_+, \quad \phi_n(x) = \gamma(x-(c+d))_+^n.$$

 f_1 and f_2 are only 2-cx whereas ϕ_n is *n*-icx. Consequently,

$$\begin{split} \mathbb{E}[f_{1}(X_{min}^{(2)}) + f_{2}(X_{min}^{(2)})] + \mathbb{E}[\phi_{n}(X_{min}^{(n-1)})] \\ &\leq \mathbb{E}[f_{1}(X_{min}^{(2)}) + f_{2}(X_{min}^{(2)})] + \mathbb{E}[\phi_{n}(X_{min}^{(n)})] \\ &\leq \mathbb{E}[g(X)] \\ &\leq \mathbb{E}[f_{1}(X_{max}^{(2)}) + f_{2}(X_{max}^{(2)})] + \mathbb{E}[\phi_{n}(X_{max}^{(n)})] \\ &\leq \mathbb{E}[f_{1}(X_{max}^{(2)}) + f_{2}(X_{max}^{(2)})] + \mathbb{E}[\phi_{n}(X_{max}^{(n-1)})] \end{split}$$

イロト イヨト イヨト イヨト

Numerical illustrations with ϕ_4

Ex 1: $Y \sim Beta([60, 80], 0.5, 0.5), c + d = 69.6, S \sim Beta(7, 2)$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

Ex 1: $Y \sim Beta([60, 80], 0.5, 0.5), c + d = 69.6, S \sim Beta(7, 2)$

Convex order used	Values
2,min	1.8470e-06
3,min	5.8227
4,min	27.8081
$\mathbb{E}[\phi_4(X)]$	58.3232
4,max	88.8281
3,max	118.4375
2,max	177.6562

Table: Values of $\mathbb{E}[\phi_4(X_{\min/\max}^{(s)})]$ for s = 2, 3, 4.

OICA - Pierre Montesinos - April 2020

17 / 21

<ロ> <四> <四> <四> <四> <四> <四</p>

Numerical illustrations with ϕ_4

Ex 2: $Y \sim Beta([60, 80], 2, 2), c + d = 63.036, S \sim Beta(2, 2)$

Convex order used	Values
2,min	5.4281
3,min	19.3039
4,min	46.2856
$\mathbb{E}[\phi_4(X)]$	58.0398

Table: Values of $\mathbb{E}[\phi_4(X_{min}^{(s)})]$ for s = 2, 3, 4.

OICA - Pierre Montesinos - April 2020

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Numerical illustrations with ϕ_4

Y - Beta([60,80],2,2)

Promise kept ?

Identification of s-convex extrema for Beta-Unimodal random variables,

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Promise kept ?

Identification of s-convex extrema for Beta-Unimodal random variables,

Measurement of basis risk, and show the impact of information (in terms of moments) on basis risk assessment,

Is basis risk always bounded ? $S \perp Y$?

OICA - Pierre Montesinos - April 2020