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Bounding basis risk using s-convex orders on
Beta-unimodal distributions

Claude Lefèvre1, Stéphane Loisel2, Pierre Montesinos3

Abstract

This paper is concerned with properties of Beta-unimodal distributions and their use
to assess the basis risk inherent to index-based insurance or reinsurance contracts. To this
extent, we first characterize s-convex stochastic orders for Beta-unimodal distributions in
terms of the Weyl fractional integral. We then determine s-convex extrema for such dis-
tributions, focusing in particular on the cases s = 2, 3, 4. Next, we define an Enterprise
Risk Management framework that relies on Beta-unimodality to assess these hedge im-
perfections, introducing several penalty functions and worst case scenarios. Some of the
results obtained are illustrated numerically via a representative catastrophe model.

Keywords: Risk management; Parametric index; Basis risk; Beta-unimodality; s-convex stochas-
tic orders; s-convex extrema.

1 Introduction

In catastrophe modeling applied to insurance-linked securities, so-called Beta-unimodal dis-
tributions naturally appear in the assessment of basis risks since destruction rates are often
represented by Beta random variables. This paper provides bounds of convex-type for Beta-
unimodal distributions and aims to build a framework for measuring basis risk which involves
penalty functions of different forms. Before recalling Beta-unimodal distributions, let us explain
how they appear in catastrophe modeling and how they can be useful for basis risk measurement
in index-based securitization mechanisms.

Thanks to reinsurance or risk transfers, insurers can cede parts of their risk portfolios
to other parties through some form of agreement to reduce the likelihood of paying a large
obligation resulting from an insurance claim. Insurers need to hedge and reinsurance is a well-
known risk management tool. We refer the reader to Cole and McCullough [16], Garven and
Lamm-Tennant [36] and Gron [39], for example, and to the books by Carter [11] for a general
presentation and by Albrecher et al. [1] for the actuarial aspects.
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Alternative risk transfers (ART) correspond to the part of the insurance market that allows
companies to purchase coverage and transfer risks without having to resort to traditional com-
mercial insurance. The ART market includes risk retention groups, insurance pools, captive
insurers and a number of insurance products issued on the capital market such as contingent
capital, derivatives and insurance-linked securities (ILS). In this paper we are particularly con-
cerned with a specific class of ILS, namely the parametric transactions. We refer to Cummins
and Weiss [22] and Cummins and Barrieu [21], for example, and to the books by Banks [4] and
Culp [20] for a clear presentation of the ART and by Barrieu and Albertini [5] for a complete
focus on ILS.

The securitization of insurance risk is today deeply rooted as an alternative transfer of risks;
see e.g. Golden et al. [37], Cummins and Weiss [22] and Cummins and Barrieu [21]. In fact, the
capital market provides additional capacity for insurance risk, many products offer multi-year
coverages, and trading of insurance risk on the secondary market creates price transparency.
Moreover, capital market transactions reduce the credit risk of the cedent vis-à-vis reinsurers,
since the proceeds of the transaction remain in the appropriate vehicle and are invested as
collateral. Within the ILS class, the catastrophe bond has been in the spotlight since Hurricane
Andrew in 1992.

In fact, the insurance industry was pushed to the limits of its solvency in 1992. Given the
infrequent nature of large-scale catastrophic (cat) events, actuarial and statistical methods do
not provide a complete picture. As a result, the disaster modeling industry has grown rapidly,
making cat models key input for measuring, pricing and managing cat risks. A cat model is
generally broken down into four components, namely hazard, inventory, vulnerability and loss.

The hazard component consists of a set of stochastic events, i.e. a large deterministic
number N of catastrophic event scenarios which together provide a representation of the events
that can cause losses, and an associated modeled occurrence rate for each.

The inventory component represents the exposure. It consists of the portfolio of sites subject
to catastrophic risk. The items in the inventory are classified in terms of aspects that affect the
amount of damage suffered by a structure for a given level of hazard. In the paper, we assume
that the exposure in each scenario is not perfectly known, in agreement with several works by
Ewing [33], Pinelli et al. [59], Hamid et al. [41] and Grossi [40]. This may be due to the fact
that the trajectory of the event is uncertain (spatial uncertainty) or because the buyer of the
protection does not know its exposure when the event occurs: for example, information about
the property is collected for a typical sampled study area and the results are extrapolated to
the regional level. Moreover, the sites subject to cat risks generated in each scenario may differ.
So, let Yi be a positive random variable representing the exposure of the scenario i = 1, . . . , N .
This variable is obviously bounded by the value of the entire portfolio, i.e. the loss cannot be
greater than the total portfolio m > 0, say. The hazard component generating localized events,
the portfolio is not (necessarily) fully exposed in each scenario. Consequently, we will assume
that for each scenario i, there is an interval (ai, bi) (0 ≤ ai < bi ≤ m) for which ai ≤ Yi ≤ bi
holds almost surely.

The vulnerability component assesses the degree to which structures, their contents and
other insured property are likely to be damaged by the hazard. In other words, this component
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provides the intensity exerted by the cat event on the portfolio under exposure. A common way
to represent the intensity of the event is to use the damage ratio, also called destruction ratio
or proportion of loss, and which is represented by a random variable with Beta distribution.
We refer e.g. to Sampson et al. [62], Walker [66], Cossette et al. [18], Dutang et al. [31] and to
the books by Gorge [38] and Charpentier [12]. Thus, the destruction ratio for each scenario i is
a variable Si whose distribution is Beta (αi, βi). In what follows, the effective loss in scenario i
will then be a bounded positive random variable Xi defined as Xi = SiYi.

The loss component translates the expected physical damage into monetary loss taking
into account any insurance structures. Within the loss component, the insurance structures
can be of different forms depending on the type of trigger. Three main types of trigger can
be distinguished, namely indemnity, industry loss and parametric. In indemnity transactions,
modeling is based on the insurance loss itself. Industry loss based structures are essentially
a pool-indemnity solution. A simple form is the industry loss warranties whereby the trigger
is the total industry loss in a particular region. A parametric transaction uses the measured
physical properties of a cat event as the trigger. It is typically based on an index of the event
hazard: a payment to the protection buyer depends on the values taken by an index built
from the physical parameters of a natural disaster (such as wind speed, precipitation level,
earthquake magnitude). As with any non-indemnity structure, a parametric index contains the
probability that the payment under the structure does not match the loss experience. In the
present paper, this parametric risk is called basis risk.

Basis risk is a well-established concept in insurance and finance. This corresponds to the
difference in payment between own losses incurred and a structured risk transfer mechanism to
protect against these losses (Ross and Williams [61]). In finance, basis risk is often borne by
banks managing deposits payable on demand and short-term interest rate risk, or by financial
institutions using cross-hedging techniques. In life insurance, the payoffs of most mortality
bonds are based on national populations mortality evolution, leaving the cedent (insurer or
reinsurer) with basis risk also. Insurance and financial firms are not the only ones facing basis
risk. The recent development of parametric insurance, particularly in emerging countries and
in agriculture insurance, represents a great hope for the rise of a more inclusive insurance,
provided that the basis risk to which the policyholder is exposed remains under control.

As announced above, in our cat modeling framework, the loss Xi for scenario i is represented
as the product Xi = SiYi of a random variable Yi with values in a bounded positive inteval
(ai, bi) by a random destruction ratio Si with a Beta (αi, βi) distribution independent of Yi.
This independence assumption between the destruction rate and the exposure seems to be
reasonable for any given scenario. Note however that when considering all scenarios, there can
exist some dependence since the parameters of the Beta distribution are not always identical.
For example, certain scenarios j corresponding to an extreme storm would probably imply a
more significant exposure as well as a higher destruction rate. This would lead to using a severe
distribution for Yj and Beta parameters (αj, βj) which make Sj also important.

In probability terminology, Xi is then said to have a Beta-unimodal distribution. The
relation Xi = SiYi corresponds to a Beta random scaling. Such relations with a scaling of
arbitrary distribution have been proposed to describe the effects of various factors, including an
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economic environment (Galambos and Simonelli [35], Tang and Tsitsiashvili [65], Asimit et al.
[2]), a systemic background risk (Côté and Genest [19]) or a dependence structure of claim sizes
(Hashorva [42], Hashorva and Ji [44]). Special attention has been paid to asymptotics of these
relations; see e.g. Yang and Wang [69], Cline and Samorodnitsky [15], Hashorva et al. [46]. The
case of Beta-unimodality considered here has been thoroughly investigated in the book by Bertin
et al. [7]; see also Hashorva and Pakes [45], Hashorva [43], Pakes and Navarro [58]. This concept
covers several forms of unimodality introduced in the literature: usual unimodal distributions
(Khintchine [53]), β-monotone distributions (Williamson [67]; see also McNeil and Nešlehová
[55], Lefèvre and Loisel [54] in applied probability) and α-unimodal distributions (Olshen and
Savage [57]; see Brockett et al. [9] in insurance).

The motivation of the present work is to propose a simple way to quantify the basis risk
inherent to parametric risk transfers by adopting an Enterprise Risk Management (ERM) point
of view. The ERM approach typically involves the measurement of hedge imperfections and
the identification of worst case scenarios. In our method, we measure the consequences of
these hedge imperfections by introducing penalty functions. In their paper, Brockett et al.
[9] derived lower and upper bounds for expectations of the form E[φ(X)] when X has an α-
unimodal distribution and φ is a function of convex-type. In fact, this topic is important
to our risk management problem. We want to pursue its study when X has now a Beta-
unimodal distribution, using explicitly a class of convex type stochastic orders called s-convex.
The theory of s-convex orders is developed in Denuit et al. [29, 30], and associated bounding
problems were examined by e.g. De Vylder [23, 24], De Vylder and Goovaerts [25], Brockett
and Cox [8], Hürlimann [47], Kaas and Goovaerts [49, 50].

Our main contribution is twofold. First, we characterize s-convex orderings and derive
s-convex bounds for Beta-unimodal distributions. Second, we use these results and penalty
functions to estimate the consequences of basis risk inherent to parametric transactions in an
ERM framework. In particular, we will show that the knowledge of higher moments of the
random exposure is really useful to reduce the uncertainty around basis risk. More precisely,
the paper is organized as follows. In Section 2, we recall the concept of Beta-unimodality and
give some key properties in terms of the Weyl fractional integral. In Section 3, we introduce the
(known) class of s-convex stochastic orders and we use it to compare Beta-unimodal distribu-
tions. In Section 4, we continue the analysis by deriving s-convex extrema for Beta-unimodal
distributions, with particular interest on the cases s = 2, 3, 4. In Section 5, we propose a
framework that uses Beta-unimodality to assess the basis risk. We consider different penalty
functions, symmetric or not, to measure the impact of the basis risk and to deduce the worst case
scenarios. In Section 6, we numerically illustrate some of the results obtained via a simplified
but representative catastrophe model.

2 Beta-unimodal distributions

We present in this section key definitions and properties on Beta-unimodal distributions. A
detailed analysis with applications can be found in the book by Bertin et al. [7] and e.g. the
papers by Pakes and Navarro [58], Hashorva [43], Hashorva and Pakes [45].
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Definition 2.1. An IR+-valued random variable X has a continuous Beta-unimodal distribution
if it has the product representation

X =d SY, (2.1)

where Y is a positive continuous random variable, and S is a random contracting factor inde-
pendent of Y and of Beta distribution.

The Beta density function of S is

fS(x) =
xα−1(1− x)β−1

B(α, β)
, 0 ≤ x ≤ 1, (2.2)

where α and β are positive shape parameters (B(α, β) = Γ(α)Γ(β)/Γ(α+ β)). For clarity, it is
convenient to set S ∼ S(α, β). If X is Beta-unimodal, then

E[X i] = E[Si]E[Y i] =

i−1∏
j=0

α + j

α + β + j

 E[Y i], i ∈ N?. (2.3)

The relation (2.3) will play a key role in the sequel, in particular when it comes to building
convex type bounds.

2.1 Particular unimodalities

The cases where α = 1 and/or β = 1 are the subject of special attention. Let U denote a
[0, 1]-uniform random variable.

(1) If α = β = 1, fS(x) = 1, i.e., S(1, 1) =d U . Then, (2.1) becomes

X =d UY, (2.4)

and by a famous theorem of Khintchine [53], X has a unimodal distribution in the usual sense
(with a mode at 0).

(2) If α = 1, fS(x) = β(1− x)β−1, i.e., S(1, β) =d (1− U1/β). Then, (2.1) becomes

X =d (1− U1/β)Y, (2.5)

and X is often said to have a β-monotone distribution. Multiple monotonicity of functions
was analyzed in details by Williamson [67] when β is any real ≥ 1. It has various fields of
application, especially when β is a positive integer n. In statistics, the estimation problem of
n-monotone densities was examined, e.g., by Balabdaoui and Wellner [3]. As shown by McNeil
and Nešlehová [55], the generator of a n-dimensional Archimedean copula generator is a n-
monotone fonction. Applications to ruin problems were discussed by Constantinescu et al. [17].
Similarly, Chi et al. [13] pointed out that the same monotonicity holds for the generator of a
n-dimensional Schur-constant vector. Lefèvre and Loisel [54] studied properties and stochastic
orderings for n-monotone densities, with illustrations in insurance.
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(3) If β = 1, fS(x) = αxα−1, i.e., S(α, 1) =d U
1/α. Then, (2.1) becomes

X =d U
1/αY, (2.6)

and X is generally said to have an α-unimodal distribution. This concept of generalized mono-
tonicity was introduced and investigated by Olshen and Savage [57]. Recently, Brockett et al.
[9] deal with bounding problems on the expectation of such distributions.

2.2 Link between X and Y

Beta-unimodality allows us to obtain information on X or Y depending on the initial informa-
tion. As shown e.g. in Pakes and Navarro [58], the two survival functions F̄X of X and F̄Y of
Y are closely related. The result is worth proving again.

Proposition 2.1. If X is Beta-unimodal with X =d SY , then F̄X is given by

F̄X(x) =
Γ(α + β)

Γ(α)
xα(IβφY )(x), (2.7)

where the function φY depends on F̄Y by

φY (t) = F̄Y (t)t−α−β,

and the function IβφY is defined as

(IβφY )(x) =
1

Γ(β)

∫ ∞
x

(t− x)β−1φY (t)dt, (2.8)

i.e., it corresponds to the Weyl fractional integral of φY .

Proof. Since X is Beta-unimodal, we get

P(X > x) = P(Y S > x) =

∫ 1

0

P(sY > x)fS(s)ds

=
Γ(α + β)

Γ(α)
xα

1

Γ(β)

∫ ∞
x

(t− x)β−1F̄Y (t)t−α−βdt, (2.9)

using the definition (2.2) of fS, which is (2.7) in the notation of the statement.

For the Weyl integral calculus, the reader is referred e.g. to the books by Miller and Ross
[56], Debnath and Bhatta [26]. A converse to (2.7) holds too.

Proposition 2.2. If X is Beta-unimodal with X =d SY , then F̄Y is given by

F̄Y (x) = (−1)nxα+β
Γ(α)

Γ(α + β)
(IδD

nψX)(x), (2.10)

where the function ψX depends on F̄X by

ψX(t) = F̄X(t)t−α,

and Dn is the derivative of order n which is the smallest integer ≥ β, and δ = n− β ∈ [0, 1).
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Proof. From (2.7), we have

(IβφY )(x) =
Γ(α)

Γ(α + β)
ψX(x), (2.11)

where ψX is defined above. As annouced, let δ ∈ [0, 1) be such that β + δ = n ∈ N. An
important property of the fractional integral operator is that

IδIβ = Iδ+β = In.

Thus, applying Iδ to both sides of (2.11) yields

(InφY )(x) =
Γ(α)

Γ(α + β)
(IδψX)(x). (2.12)

Another well-known property of the integral operator is that

DkIn = (−1)kIn−k, 1 ≤ k ≤ n, and Dn(IδψX) = IδD
nψX .

Taking the derivative Dn in (2.12) then gives

(−1)nφY (x) =
Γ(α)

Γ(α + β)
(IδD

nψX)(x).

It remains to insert the definition of φY , and we deduce the formula (2.10).

Such a link between X and Y can be interesting in practice. Indeed, it provides us with the
distribution of X when X is known to be a Beta version of a given risk, and vice versa.

3 Orderings of convex-type

A main objective of our work is to determine bounds on the expectation E[φ(X)] for a class
of functions of convex-type and when X has a Beta-unimodal distribution. This subject is
treated by Brockett et al. [9] in the particular case where X is α-unimodal. The authors there
apply a method based on the Markov-Krein theorem and Chebychev systems (see Brockett and
Cox [8] and, for a general theory, Karlin and Studden [51]). Their method, strong enough,
requires the function φ to be differentiable, which can be restrictive for various applications
(see later). When this assumption does not hold, they follow an approach based on the results
of Kemperman [52] for the geometry of the moment problem.

The method we propose below is developed in the context of the s-convex extrema discussed
in Denuit et al. [29, 30]. An advantage is that the function φ does not have to be differentiable to
construct bounds on E[φ(X)]. Basic reminders and their applications are presented in Section
3.1 and 3.2, respectively.
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3.1 s-convex orders

Let us start by giving the definition of an s-convex function (s being a positive integer). We
use for that a strong concept that does not rely on differentiability (see e.g. Popoviciu [60],
Farwig and Zwick [34], Karlin and Studden [51]).

Consider a compact interval [a, b] with −∞ < a < b <∞. Let [x0, . . . , xs;φ] be the forward
divided difference of the function φ on the nodes x0, . . . , xs ∈ [a, b]. Specifically, [xk;φ] = φ(xk),
k = 0, . . . , s, and by recursion,

[x0, . . . , xk;φ] =
[x1, . . . , xk;φ]− [x0, . . . , xk−1;φ]

xk − x0
, k = 1, . . . , s.

This operator is a standard mathematical tool in numerical analysis. It can be expressed as a
linear combination of φ(x0), . . . , φ(xk) by

[x0, . . . , xk;φ] =
k∑
j=0

φ(xj)

(xj − x0) . . . (xj − xj−1)(xj − xj+1) . . . (xj − xk)
.

Definition 3.1. A real function φ defined on [a, b] is s-convex if

[x0, ..., xs;φ] ≥ 0,

holds for any choice of distinct points x0, ..., xs in [a, b].

Nevertheless, certain properties of differentiability are verified by s-convex functions φ on
[a, b]. So, φ(s−2), s ≥ 2, exists and is continuous, φ

(s−1)
+ exists, is right-continuous and is

increasing. If φ(s) exists, then φ is s-convex if and only if φ(s) ≥ 0.
We can now give the definition of the s-convex orders (see e.g. Denuit et al. [29, 30], Shaked

and Shanthikumar [63]). Let U [a,b]
s−cx be the class of all s-convex real functions φ on [a, b].

Definition 3.2. Let Y1 and Y2 be two random variables valued in [a, b]. Then, Y1 is smaller

than Y2 in the s-convex order (Y1 ≤[a,b]
s−cx Y2) if

E[φ(Y1)] ≤ E[φ(Y2)] for all functions φ ∈ U [a,b]
s−cx. (3.1)

Note that the 1-convex is the classic order in distribution (≤d) and the 2-convex order is the
usual convex order (≤cx). Since a polynomial of degree s− 1 (or less) is an s-convex function,
the s-convex order (3.1) implies that

E[Y i
1 ] = E[Y i

2 ], 1 ≤ i ≤ s− 1. (3.2)

Thus, only the variables that share the same first s−1 moments can be compared in the s-convex
sense. That property must be completed to provide a characterization of the s-convex order.
This can be done using the stop-loss transforms of order s− 1 (for Y : E[(Y − t)s−1+ ], t ∈ [a, b])

or the iterated survival functions of order s− 1 (for Y : F̄
[s−1]
Y (x) with F̄

[0]
Y (x) = F̄Y (x) and for

k ≥ 1, F̄
[k]
Y (x) =

∫∞
x
F̄

[k−1]
Y (t)dt, x ∈ IR).
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Characterization 3.1. Y1 ≤[a,b]
s−cx Y2 when (3.2) holds and

E[(Y1 − t)s−1+ ] ≤ E[(Y2 − t)s−1+ ], t ∈ [a, b], (3.3)

or, equivalently,
F̄

[s−1]
Y1

(x) ≤ F̄
[s−1]
Y2

(x), x ∈ IR. (3.4)

3.2 Under Beta-unimodality

Let us go back to our framework of Beta-unimodal random variables X =d SY with Y valued
in [a, b] ∈ IR+. A natural question is to know under which conditions a stochastic order on Y
can be transferred on X. The following result will often be used later.

Proposition 3.1. Let X1 =d SY1 and X2 =d SY2 be Beta-unimodal with the same S indepen-
dent of (Y1, Y2). If Y1 ≤[a,b]

s−cx Y2, then X1 ≤[0,b]
s−cx X2.

Proof. From (3.2), (3.3), it is clear that if Y1 ≤[a,b]
s−cx Y2, then xY1 ≤x[a,b]s−cx xY2 for any x ∈ [0, 1],

where

x[a, b] =

{
u ∈ R

∣∣∣∣ux ∈ [a, b]

}
= [xa, xb].

For φ ∈ U [0,b]
s−cx, then

E[φ(X1)] =

∫ 1

0

E[φ(xY1)|S = x]dFS(x)

≤
∫ 1

0

E[φ(xY2)|S = x]dFS(x) = E[φ(X2)], (3.5)

as desired.

A similar result is valid when the scaling factors S1, S2 are identically distributed.

Proposition 3.2. Let X1 =d S1Y1 and X2 =d S2Y2 be Beta-unimodal with S1, S2 identically
distributed and independent of (Y1, Y2). If Y1 ≤[a,b]

s−cx Y2, then X1 ≤[0,b]
s−cx X2.

Proof. This can be shown using a simple coupling argument. Instead, we proceed directly and
exploit the assumptions made on S1, S2 to write

E[φ(X1)] =

∫ 1

0

E[φ(xY1)|S1 = x]dFS1(x) =

∫ 1

0

E[φ(xY1)]dFS1(x)

=

∫ 1

0

E[φ(xY1)]dFS2(x)

≤
∫ 1

0

E[φ(xY2)]dFS2(x) = E[φ(X2)],

the inequality following from Y1 ≤[a,b]
s−cx Y2. This yields the announced result.
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Note that the results of Propositions 3.1 and 3.2 do not use that the scaling factors are of
Beta distribution. In fact, they remain true for any scaling distribution. Suppose now that
Y1, Y2 are not ordered and, for instance, valued in R+. Then, X1, X2 can be compared in a
convex sense through the characterization 3.1.

Proposition 3.3. Let X1 =d S1Y1 and X2 =d S2Y2 be Beta-unimodal with S1, S2 independent
of (Y1, Y2). Then, X1 ≤[0,∞)

s−cx X2 when (3.2) holds with X1 and X2 and, for x ≥ 0,

1

B(α1, β1)

∫ ∞
x

F̄Y1(t)t
s−2[(Is−1χS1)(x/t)]dt ≤

1

B(α2, β2)

∫ ∞
x

F̄Y2(t)t
s−2[(Is−1χS2)(x/t)]dt, (3.6)

where Is−1(χSi) is the Weyl fractional integral (2.8) of the function

χSi(t) = tαi(1− t)βi−1, i = 1, 2.

Proof. We will require that the condition (3.4) be satisfied. For this, we must explicitly express

the iterated survival function F̄
[s]
X (x), x ≥ 0. The proof is based on two reasoning by induction.

First, we show that for x ≥ 0,

F̄
[s]
X (x) =

α

α + β

∫ ∞
x

F̄Y (t) ts−1F̄
[s−1]
Ŝ

(x/t)dt, (3.7)

where Ŝ ∼ S(α + 1, β) is a Beta variable of parameters (α + 1, β).
For s = 1, we have from (2.9)

F̄
[1]
X (x) =

∫ ∞
t=x

P (X > t)dt =
1

B(α, β)

∫ ∞
t=x

∫ ∞
u=t

tα(u− t)β−1F̄Y (u)u−(α+β)dudt

=
1

B(α, β)

∫ ∞
u=x

F̄Y (u)u−(α+β)
∫ u

t=x

tα(u− t)β−1dtdu

=
1

B(α, β)

∫ ∞
u=x

F̄Y (u)u−(α+1)

∫ u

t=x

tα(1− t/u)β−1dtdu

=
1

B(α, β)

∫ ∞
u=x

F̄Y (u)

∫ 1

y=x/u

yα(1− y)β−1dydu

=
α

α + β

∫ ∞
u=x

F̄Y (u)F̄Ŝ(x/u)du,

using the definition above of Ŝ. This corresponds to the relation (3.7) for s = 1. Assuming
that (3.7) holds for the k-th iterated, we obtain

F̄
[k+1]
X (x) =

∫ ∞
y=x

F̄
[k]
X (y)dy =

α

α + β

∫ ∞
y=x

∫ ∞
t=y

F̄Y (t)tk−1F̄
[k−1]
Ŝ

(y/t)dtdy

=
α

α + β

∫ ∞
t=x

F̄Y (t)tk−1
∫ t

y=x

F̄
[k−1]
Ŝ

(y/t)dydt

10



=
α

α + β

∫ ∞
t=x

F̄Y (t)tk
∫ 1

u=x/t

F̄
[k−1]
Ŝ

(u)dudt

=
α

α + β

∫ ∞
t=x

F̄Y (t) tk−1F̄
[k]

Ŝ
(x/t)dt,

which gives (3.7) for the k + 1-th iterated as desired.
Second, we show that for x ∈ [0, 1],

F̄
[s]

Ŝ
(x) =

1

B(α + 1, β)

xα+1+s

s!

∫ 1

x

t−(α+β+1+s)(t− x)β−1(1− t)sdt. (3.8)

For s = 1, we have from (2.2)

F̄
[1]
S (x) =

∫ 1

x

P(S > y)dy =
1

B(α + 1, β)

∫ 1

y=x

∫ 1

u=y

uα(1− u)β−1dudy

=
1

B(α + 1, β)

∫ 1

u=x

uα(1− u)β−1(u− x)du

=
1

B(α + 1, β)

∫ 1

u=x

uα+1(1− u)β−1(1− x/u)du

=
1

B(α + 1, β)
xα+2

∫ 1

x

t−(α+β+2)(t− x)β−1(1− t)dt,

which is in accordance with (3.8). Assuming (3.8) for the k-th iterated, we get

F̄
[k+1]
S (x) =

1

B(α + 1, β)

1

k!

∫ 1

y=x

yα+1+k

∫ 1

t=y

t−(α+β+1+k)(t− y)β−1(1− t)kdtdy

=
1

B(α + 1, β)

1

k!

∫ 1

t=x

t−(α+β+1+k)(1− t)s
∫ t

y=x

yα+1+s(t− y)β−1dydt

=
1

B(α + 1, β)

1

k!

∫ 1

t=x

t−(α+2+k)(1− t)k
∫ t

y=x

yα+1+k(1− y/t)β−1dydt

=
1

B(α + 1, β)

1

k!

∫ 1

t=x

(1− t)k
∫ 1

u=x/t

uα+1+k(1− u)β−1dudt

=
1

B(α + 1, β)

1

k!

∫ 1

u=x

uα+1+k(1− u)β−1
∫ 1

t=x/u

(1− t)sdtdu

=
1

B(α + 1, β)

1

(k + 1)!

∫ 1

x

uα+1+k(1− u)β−1(1− x/u)k+1du,

which becomes (3.8) for s = k + 1 after the change of variable x/u = t.
It now suffices to insert (3.8) in (3.7) and we find that

F̄
[s]
X (x) =

1

B(α, β)

1

(s− 1)!

∫ ∞
t=x

F̄Y (t) ts−1(x/t)α+s

11



∫ 1

y=x/t

y−(α+β+s)(y − x/t)β−1(1− y)s−1dydt

=
1

B(α, β)

1

(s− 1)!

∫ ∞
t=x

F̄Y (t) ts−1
∫ 1

u=x/t

uα+s−1(1− x/tu)s−1(1− u)β−1dudt

=
1

B(α, β)

1

(s− 1)!

∫ ∞
t=x

F̄Y (t) ts−1
∫ 1

u=x/t

uα(1− u)β−1(u− x/t)s−1dudt

=
1

B(α, β)

1

(s− 1)!

∫ ∞
x

F̄Y (t) ts−1[(IsχS)(x/t)]dt, (3.9)

using the above notation for s. The condition (3.6) then follows from (3.4), (3.9) with F̄
[s−1]
X .

4 Bounds of convex-type

Having introduced the class of s-convex stochastic orders, we can now focus on the construction
of lower or upper s-convex bounds for a given set of risks. Remember that by virtue of (3.2),
an s-convex ordering is only possible between random variables which possess the same first
s − 1 moments. Therefore, we consider the space Bs([a, b], µ1, µ2, ..., µs−1) of all the variables
valued in [a, b] and with the s− 1 fixed moments µi = E[Y i], 1 ≤ i ≤ s− 1.

Of course, for this space to be non-empty, the µi must satisfy some constraints between
them. This question is discussed e.g. in Denuit [28]. We only mention here that the constraints
for the first three are

a < µ1 < b,

µ2
1 < µ2 < µ1(a+ b)− ab,

(µ2 − µ1a)2 + aµ2(µ1 − a)

µ1 − a
< µ3 <

bµ2(b− µ1)− (bµ1 − µ2)
2

b− µ1

.

(4.1)

4.1 s-convex extrema

The problem of bounding quantities of the form E[φ(Y )] when Y ∈ Bs([a, b], µ1, µ2, . . . , µs−1) has
been widely studied in the literature. Hereafter, we follow Denuit et al. [30] and define the ran-

dom variables Y
(s)
min and Y

(s)
max such that for all random variables Y ∈ Bs([a, b], µ1, µ2, . . . , µs−1),

Y
(s)
min ≤

[a,b]
s−cx Y ≤

[a,b]
s−cx Y

(s)
max,

meaning that for all real functions φ ∈ U [a,b]
s−cx,

E[φ(Y
(s)
min)] ≤ E[φ(Y )] ≤ E[φ(Y (s)

max)].

As pointed out earlier, φ does not need to be differentiable as is supposed in the recent paper
of Brockett and Cox [8]. Other references on this subject are e.g. De Vylder [23], De Vylder
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[24], De Vylder and Goovaerts [25], Hürlimann [47], Kaas and Goovaerts [49, 50]. We recall the
result proved by Denuit et al. [30] which distinguishes the even (2s) and odd (2s + 1) degrees
of convex ordering. For j ∈ N, x, y ∈ R, define the reals µ0 = 0 and

µj,x = µj − xµj−1 and µj,xy = µj,x − yµj−1,x.

Proposition 4.1. ([30]) In B2s([a, b], µ1, µ2, . . . , µ2s−1), Y
(2s)
min has s support points θ1 < θ2 <

... < θs inside (a, b) which are the roots of the equation∣∣∣∣∣∣∣∣∣∣∣

1 x x2 · · · xs

µ0 µ1 µ2 · · · µs
µ1 µ2 µ3 · · · µs+1
...

...
...

. . .
...

µs−1 µs µs+1 · · · µ2s−1

∣∣∣∣∣∣∣∣∣∣∣
= 0,

with positive masses q1, q2, . . . , qs which are the solution of the Vandermonde system

q1θ
k
1 + q2θ

k
2 + · · ·+ qsθ

k
s = µk, k = 0, 1, . . . , s− 1,

while Y
(2s)
max has s + 1 support points a < θ1 < θ2 < ... < θs−1 < b, the θi being the roots of the

equation ∣∣∣∣∣∣∣∣∣∣∣

1 x x2 · · · xs−1

µ2,ab µ3,ab µ4,ab · · · µs+1,ab

µ3,ab µ4,ab µ5,ab · · · µs+2,ab
...

...
...

. . .
...

µs,ab µs+1,ab µs+2,ab · · · µ2s−1,ab

∣∣∣∣∣∣∣∣∣∣∣
= 0,

with positive masses pa, q1, q2 . . . , qs−1, pb which are the solution of the Vandermonde system

paa
k + q1θ

k
1 + q2θ

k
2 + · · ·+ qs−1θ

k
s−1 + pbb

k = µk, k = 0, 1, . . . , s.

In B2s+1([a, b], µ1, µ2, . . . , µ2s), Y
(2s+1)
min has s + 1 support points a < θ1 < θ2 < ... < θs, the

θi being the roots of the equation∣∣∣∣∣∣∣∣∣∣∣

1 x x2 · · · xs

µ1,a µ2,a µ3,a · · · µs+1,a

µ2,a µ3,a µ4,a · · · µs+2,a
...

...
...

. . .
...

µs,a µs+1,a µs+2,a · · · µ2s,a

∣∣∣∣∣∣∣∣∣∣∣
= 0,

with positive masses pa, q1, q2, . . . , qs which are the solution of the Vandermonde system

paa
k + q1θ

k
1 + q2θ

k
2 + · · ·+ qs−1θ

k
s−1 + qsθ

k
s = µk, k = 0, 1, . . . , s,

13



while Y
(2s+1)
max has s + 1 support points θ1 < θ2 < ... < θs < b, the θi being the roots of the

equation ∣∣∣∣∣∣∣∣∣∣∣

1 x x2 · · · xs

µ1,b µ2,b µ3,b · · · µs+1,b

µ2,b µ3,b µ4,b · · · µs+2,b
...

...
...

. . .
...

µs,b µs+1,b µs+2,b · · · µ2s,b

∣∣∣∣∣∣∣∣∣∣∣
= 0,

with positive masses q1, q2, . . . , qs, pb which are the solution of the Vandermonde system

q1θ
k
1 + q2θ

k
2 + · · ·+ qs−1θ

k
s−1 + qsθ

k
s + pbb

k = µk, k = 0, 1, . . . , s.

4.2 Comparison of extrema

Once the bounds are obtained for a given s, a natural question is the order of the bounds
themselves. As an additional moment reduces the space of moments and improves knowledge
on the random variable, one might expect that the s-convex bound is sharper than the (s− 1)-
convex in the (s− 1) -convex sense.

Obviously, Bs([a, b], µ1, µ2, ..., µs−1) ⊂ Bs−1([a, b], µ1, µ2, ..., µs−2) given the same µi, 1 ≤ i ≤
s− 2. As Y

(s)
min, Y

(s)
max ∈ Bs([a, b], µ1, µ2, ..., µs−1), we thus have

Y
(s−1)
min ≤[a,b]

(s−1)−cx Y
(s)
min, and Y (s)

max ≤
[a,b]
(s−1)−cx Y

(s−1)
max .

However, we will show with a counterexample that the implication Y ≤[a,b]
s−cx Y

(s)
max ⇒ Y ≤[a,b]

(s−1)−cx

Y
(s)
max does not always hold.

Example. Let Y =d U , a [0, 1]-uniform random variable. Thus, µ1 = 1/2 and µ2 = 1/3 (which
satisfy the condition of (4.1)). Consider the function φ : x ∈ [0, 1] → φ(x) = exp(−λx) where
λ > 0. Then, φ(2)(x) > 0 and φ(3)(x) < 0, i.e. φ is 2-convex, but not 3-convex.

We look at the convex upper bound, for instance. From the extreme distributions obtained
by Proposition 4.1, we directly obtain for s = 2 and s = 3

Y (2)
max =


0 with probability

1

2
,

1 with probability
1

2
,

and Y (3)
max =


1

3
with probability

3

4
,

1 with probability
1

4
.

Figure 4.1 gives the differences E[φ(Y
(2)
max)] − E[φ(Y )] (solid red curve) and E[φ(Y

(3)
max)] −

E[φ(Y )] (dashed black curve) as a function of λ > 0. We see that E[φ(Y
(2)
max)] ≥ E[φ(Y )] while

E[φ(Y )] ≥ E[φ(Y
(3)
max)]. The first inequality was expected since the function φ is 2-convex. The

second inequality means that the 3-convex maximum is a lower, and not upper, 2-convex bound.
When does knowing more moments than the degree of convexity allow for sharper bounds?

Suppose that λ may be negative. Figure 4.2 gives the same differences as Figure 4.1 but this

14



Figure 4.1: Differences E[φ(Y
(2)
max)]−E[φ(Y )] (solid red curve) and E[φ(Y

(3)
max)]−E[φ(Y )] (dashed

black curve) when φ(x) = exp(−λx), x ∈ [0, 1], and with λ > 0.

time with λ ∈ R. When λ < 0, we observe that both curves of differences are positive. Besides,
as the dashed black curve is always under the solid red one, we deduce that E[φ(Y

(2)
max)] ≥

E[φ(Y
(3)
max)] ≥ E[φ(Y )]. Thus, knowing the moment µ2 implies a decrease of the upper bound.

This is not surprising since the function φ is both 2 and 3-convex when λ < 0.

In general, the convex bounds are ordered as follows: for k ≤ s,

Y
(k)
min ≤

[a,b]
k−cx . . . ≤

[a,b]
(s−2)−cx Y

(s−1)
min ≤[a,b]

(s−1)−cx Y
(s)
min ≤

[a,b]
s−cx Y,

Y ≤[a,b]
s−cx Y

(s)
max ≤[a,b]

(s−1)−cx Y
(s−1)
max ≤[a,b]

(s−2)−cx . . . ≤
[a,b]
k−cx Y

(k)
max.

Since each ordering is for a different convexity degree, the extremal distributions cannot be
compared with the same function φ. However, when the function φ is both (s − 1) and s-

convex, then Y ≤[a,b]
(s−1)−cx Y

(s)
max ≤[a,b]

(s−1)−cx Y
(s−1)
max , i.e. knowing the (s − 1)-th moment reduces

the (s−1)-convex upper bound. This result can be formalized by using the notion of s-increasing
convex order (see e.g. Shaked and Shanthikumar [63]). A standard example is with the moment
generating function considered by e.g. Denuit [27] and Brockett and Cox [8], Brockett et al.
[9]. This point is not detailed for the sake of brevity.
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Figure 4.2: Differences E[φ(Y
(2)
max)]−E[φ(Y )] (solid red curve) and E[φ(Y

(3)
max)]−E[φ(Y )] (dashed

black curve) when φ(x) = exp(−λx), x ∈ [0, 1], and with λ ∈ R.

4.3 Under Beta-unimodality

A simple way to construct convex extrema for Beta-unimodal variables is to apply the scaling
factor S to the convex extrema of the starting variable.

Proposition 4.2. If X is Beta-unimodal with X =d SY , and Y ∈ Bs([a, b], µ1, µ2, . . . , µs−1),
then X ∈ Bs([0, b], ν1, ν2, . . . , νs−1) where

νi =

i−1∏
j=0

α + j

α + β + j

 µi, 1 ≤ i ≤ s− 1, (4.2)

and the s-convex extrema for X are

X
(s)
min =d SY

(s)
min, and X(s)

max =d SY
(s)
max, (4.3)

where Y
(s)
min and Y

(s)
max are provided by the extreme distributions given in Proposition 4.1.

Proof. The relation (4.2) between the moments µi = E[Y i] and νi = E[X i] comes from (2.3).
The distributional identity (4.3) is a direct consequence of Proposition 3.1 and the one-to-one
correspondence between X and Y for S given (see Section 2.2).
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From Propositions 4.1 and 4.2, we obtain the s-convex extrema for Beta-unimodal random
variables. This is done below for s = 2, 3, 4. Denote by Bs(α, β; [0, b]; ν1, . . . , νs−1) the space of
all the random variables which are Beta-unimodal with scaling factor S(α, β), are valued in the
interval [0, b] and have the first s− 1 fixed moments νi = E[X i].

Corollary 4.1. Let Y ∈ Bs([a, b], µ1, . . . , µs−1).

In B2(α, β; [0, b]; ν1), X
(2)
min ≤

[0,b]
2−cx X ≤

[0,b]
2−cx X

(2)
max, where

X
(2)
min = Sµ1,

X(2)
max =


Sa with probability p(2)max =

b− µ1

b− a
,

Sb with probability q(2)max =
µ1 − a
b− a

.

In B3(α, β; [0, b]; ν1, ν2), X
(3)
min ≤

[0,b]
3−cx X ≤

[0,b]
3−cx X

(3)
max, where

X
(3)
min =


Sa with probability p

(3)
min =

µ2 − µ2
1

µ2 − µ2
1 + (µ1 − a)2

,

S
µ2 − aµ1

µ1 − a
with probability q

(3)
min =

(µ1 − a)2

µ2 − µ2
1 + (µ1 − a)2

,

X(3)
max =


S
bµ1 − µ2

b− µ1

with probability p(3)max =
(b− µ1)

2

µ2 − µ2
1 + (b− µ1)2

,

Sb with probability q(3)max =
µ2 − µ2

1

µ2 − µ2
1 + (b− µ1)2

.

In B4(α, β; [0, b]; ν1, ν2, ν3), X
(4)
min ≤

[0,b]
4−cx X ≤

[0,b]
4−cx X

(4)
max, where

X
(4)
min =


Sr− with probability p

(4)
min =

r+ − µ1

r+ − r−
,

Sr+ with probability q
(4)
min =

µ1 − r−
r+ − r−

,

where 
r− =

µ3 − µ1µ2 −
√

(µ3 − µ1µ2)2 − 4(µ2 − µ1)2(µ1µ3 − µ2
2)

2(µ2 − µ2
1)

,

r+ =
µ3 − µ1µ2 +

√
(µ3 − µ1µ2)2 − 4(µ2 − µ1)2(µ1µ3 − µ2

2)

2(µ2 − µ2
1)

,

and

X(4)
max =


Sa with probability 1− p(4)max − q(4)max,

Sx(4)max with probability p(4)max,

Sb with probability q(4)max,
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where 

x(4)max =
µ3 − (a+ b)µ2 + abµ1

µ2 − (a+ b)µ1 + ab
,

p(4)max =
bµ1 − µ2 + a(µ1 − b)
(x

(4)
max − a)(b− x(4)max)

,

q(4)max =
µ2 − x(4)maxµ1 + a(x

(4)
max − µ1)

(b− a)(b− x(4)max)
.

Obviously, the extrema have been improved when we know that X is Beta-unimodal. If the
extrema in Bs([0, b]; ν1, . . . , νs−1) without knowing the Beta-unimodality of X are denoted by

X̃
(s)
min, X̃

(s)
max, then

X̃
(s)
min ≤

[0,b]
s−cx X

(s)
min, and X(s)

max ≤
[0,b]
s−cx X̃

(s)
max.

5 Basis risk assessment

As explained in the Introduction, the objective of this article is to provide a means of quantifying
the basis risk inherent in an index-based transaction. This type of transaction involves using a
catastrophe modeling software to generate stochastic events. Let N be the number of stochastic
events and pi be the occurence rate of the scenario i = 1, . . . , N . In each of them, the event
trajectory is uncertain, which leads to an uncertain exposure (see e.g. Ewing [33], Pinelli et al.
[59], Hamid et al. [41] or Grossi [40]). Therefore, the exposure is represented by a positive
bounded random variable Yi depending on the event i. This random variable is bounded, of
course, by the value m (> 0) of the whole portfolio. Moreover, the hazard component generates
localized events so that the portfolio is not necessarily fully exposed. Thus, we assume that
each Yi takes values almost surely in some interval (ai, bi) where 0 ≤ ai < bi ≤ m.

Following a common practice (see e.g. Sampson et al. [62], Walker [66], Cossette et al. [18],
Dutang et al. [31], Gorge [38], Charpentier [12]), the destruction ratio in scenario i is modeled
by a random variable Si with Beta distribution of parameters (αi, βi) and which is independent
of the exposure Yi. This assumption of independence is reasonable since the destruction ratio
depends on the event rather than the exposure. Of course, the two variables Si and Yi depend on
i, so that the parameters (αi, βi) can be adapted to have a relationship between the destruction
ratio and the exposure level. The effective loss Xi on scenario i is then given by Xi = SiYi.

In the paper, we focus on the so-called parametric or basis risk. For each scenario, the
physical parameters corresponding to the reference index can be recovered. Thus, if the index
in scenario i takes the value ci, the basis risk in this scenario is Xi − ci with Xi = SiYi. As
the exposure Yi takes values in (ai, bi) by hypothesis (and Si ∈ (0, 1)) by definition), we almost
surely have

ai − ci ≤ Xi − ci ≤ bi − ci.
The basis risk can therefore be two-sided in practice. When the reimbursement is greater than
the actual loss, this means that additional protection has been purchased and an additional risk
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premium has been paid, which is usually suboptimal. When the refund is less than the actual
loss, the problem is clearly more serious. To some extent, we thus expect the loss component
to provide a means of measuring the impact of basis risk. The literature provides some key
indicators for measuring basis risk such as the expected conditional shortfall or the probability
of certain levels of shortfall, also known as false negative probability, expected non-negative
shortfall given loss, probability of shortfall in excess of a threshold given non-zero loss. We
refer e.g. to Brookes [10], Ross and Williams [61], Jensen et al. [48], Takahashi et al. [64] and
Elabed et al. [32].

In the spirit of these measures, we introduce below different penalty functions which allow
us to quantify the basis risk Xi − ci through measuring its effects. For this, we also assume
that certain first moments of the loss Xi = SiYi are known or can be estimated. By bounding
the expected value of the penalty functions, we are then able to determine the worst scenarios
that actually correspond to the extrema s-convex extrema. More precisely, the global impact
of the basis risks Xi − ci for the n scenarios is measured by the quantity

BRφ =
N∑
i=1

piE[φ(Xi − ci)], (5.1)

where pi is the likelihood of scenario i and φ represents some specific penalty function. We use
the s-convex extrema for each Xi, but for convenience we will limit ourselves to the cases where
s = 2, 3, 4. These extrema allow us to derive lower and upper bounds for the measurement BR.
From now on, we consider only one scenario for clarity; thus, the index i is superfluous and
deleted.

5.1 Symmetric penalty function

We start by assuming a symmetric impact of the basis risk X − c. To this end, we use the
absolute value as a penalty function g1, i.e.

g1(X − c) = |X − c|. (5.2)

The function g1 is 2-convex (only) on R. Thus, if ν1 = E[X] is known, we can reason in
the space B2(α, β; [0,m]; ν1) for which the 2-convex extrema are provided by Corollary 4.1. Set
Jα,β(x) ≡ P[S(α, β) > x], the Beta survival function. After a simple calculation of integrals,
we obtain the following bounds for E[g1(X − c)].

Proposition 5.1. In B2(α, β; [0, b]; ν1), the lower bound for E[|X − c|] is

E[|X(2)
min − c|] = c[1− 2Jα,β(c/µ1)]− ν1[1− 2Jα+1,β(c/µ1)], (5.3)

and the upper bound is

E[|X(2)
max − c|] = p(2)max[c

(
1− 2Jα,β(c/a)

)
−
(
aα/(α + β)

) (
1− 2Jα+1,β(c/a)

)
]

+ q(2)max[c
(
1− 2Jα,β(c/b)

)
−
(
bα/(α + β)

) (
1− 2Jα+1,β(c/b)

)
]. (5.4)
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Note that without the assumption of Beta-unimodality, i.e. in the space B2([0, b]; ν1), the
bounds for E[|X − c|] are

E[|X̃(2)
min − c|] = |ν1 − c|, and E[|X̃(2)

max − c|] = c+ ν1(b− 2c)/b. (5.5)

Example. Let Y =d U , a [0, b]-uniform random variable, and choose the parameters α =
4, β = 2, b = 10 and c = 2. Table 1 gives the values of E[|X − c|] and its bounds (5.3),
(5.4), (5.5). As indicated before, the assumption of Beta-unimodality allows us to get sharper

bounds. Incidentally, we note that E[|X̃(3)
min − c|] = 2.3528 and E[|X̃(3)

max − c|] = 0.3999, which
again illustrates the discussion made in Section 4.2.

Bounds Beta-unimodality Values for E[g1]

E[|X̃(2)
min − c|] No 1.3333

E[|X(2)
min − c|] Yes 1.4084

E[|X − c|] - 2.0005

E[|X(2)
max − c|] Yes 3.3361

E[|X̃(2)
max − c|] No 4.0000

Table 1: The values of E[|X − c|] and its lower and upper bounds under Beta-unimodality or
not, when Y is uniform on [0, b], b = 10, c = 2 and α = 4, β = 2.

Remark. Brockett et al. [9] derived 2-cx bounds on E[|X − c|] when X is α-unimodal, with Y
takes values over [0, b]. This situation is a particular case of Beta-unimodality that corresponds
to the case where S ∼ S(α, 1) (see Section 2.1). We are going to show that our bounds correct
a (minor) error in their result.

Under α-unimodality (i.e., when β = 1), defining a function f given by

f(y) =


c− α

α + 1
y, y ∈ [0, c],

− c+
α

α + 1
y + 2

cα+1

(α + 1)yα
, y ∈ [c, b].

(5.6)

our bounds (5.3), (5.4) take the simple form

E[|X(2)
min − c|] = f(ν1(α + 1)/α), (5.7)

E[|X(2)
max − c|] = (1− ν1(α + 1)/αb)f(0) + (ν1(α + 1)/αb)f(b). (5.8)

For their part, Brockett et al. [9] defined a function g by

g(y) =
α

yα

∫ y

0

tα−1|t− c|dt, (5.9)
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when, as here, the mode is 0 and 0 ≤ y ≤ b, and proved that the 2-convex bounds are given
by (5.7), (5.8) with g substituted for f . In addition, they claimed that the function (5.9) is
equivalent to

g(y) =


c− α

α + 1
y, y ∈ [0, c],

α

α + 1
(y − c) +

cα+1

(α + 1)yα
, y ∈ [c, b],

(5.10)

and the expression (5.10) was used in their Theorem 4, pages 776-777. In fact, an integral
calculation shows that, as axpected, g given by (5.9) is well identical to f given by (5.6).
However, (5.9) differs from (5.10) when y ∈ [c, b].

5.2 Piecewise linear penalty function

From (5.2), the function g1 similarly accounts for overestimation and underestimation of the
risk. This can be too simplistic because minimizing a risk is often very dangerous. To remedy
it, a natural generalization of g1 is to consider different slopes for the positive and negative
differences of the basis risk X − c. Thus, introducing the functions

f1(x) = η(c− x)+, and f2(x) = γ(x− c)+, x ∈ [0, b],

where η, γ > 0, we define a penalty function g2 by

g2(X − c) = f1(X) + f2(X). (5.11)

As the functions f1, f2 are 2-convex on R, we may argue exactly as for Proposition 5.1 to
get bounds for E[f1(X)],E[f2(X)]. From (5.11), bounds for E[g2(X − c)] directly follow.

Proposition 5.2. In B2(α, β; [0, b]; ν1), the lower bounds for E[f1(X)] and E[f2(X)] are

E[f1(X
(2)
min)] = η[c

(
1− Jα,β(c/µ1)

)
− ν1

(
1− Jα+1,β(c/µ1)

)
],

E[f2(X
(2)
min)] = γ[ν1Jα+1,β(c/µ1)− cJα,β(c/µ1)],

and the upper bounds are

E{f1(X(2)
max)] = η

{
p(2)max

[
c
(
1− Jα,β(c/a)

)
− (aα/(α + β))

(
1− Jα+1,β(c/a)

)]
+ q(2)max

[
c
(
1− Jα,β(c/b)

)
− (bα/(α + β))

(
1− Jα+1,β(c/b)

)]}
,

E[f2(X
(2)
max)] = γ

{
p(2)max

[
(aα/(α + β))Jα+1,β(c/a)− cJα,β(c/a)

]
+ q(2)max

[
(bα/(α + β))Jα+1,β(c/b)− cJα,β(c/b)

]}
.
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5.3 Power-type penalty function

Nevertheless, the function g2(x− c) is piecewise linear, which can still be too constraining. For
example, after the level c, when the uncertainty increases by ε, the consequences will remain
the same, regardless of the initial level. This is not particularly troublesome for small values
of ε, but this can be unrealistic for larger values of ε. It is therefore useful to have a penalty
function that impacts the basis risk in a more general non-linear way.

As a general rule, a penalty function should increase the impact of a basis risk X − c that
occurs at a higher level. To model such an effect, we introduce a power-type function

φn(x) = γ[(x− c)− d]n+, x ∈ [0, b],

which depends on two new parameters d > 0 and n ∈ N0. The parameter d can be viewed as a
critical level because the difference x− c only has a negative impact if it is greater than d. The
parameter n is used to manage the level of consequences produced by the observed difference.
Note that x− c > d+ 1 implies φn+1(x) > φn(x) for all n, i.e. the higher the n, the greater the
impact.

By combining φn with the previous g2, we define the penalty function

hn(X − c) = f1(X) + f2(X) + φn(X), (5.12)

which shows three types of possible consequences. First, a negative value for the difference
X − c means that the payout given by the index c overestimates the loss X (Zone 1 in Figure
5.3). In this case, if an insurer wishes to purchase parametric reinsurance coverage based on
the same index, the premium paid will be too high and the insurer will be over-hedged. In fact,
the more negative the difference, the more unnecessary reassurance is important. Second, a
positive value for the difference X−c means that the value taken by the index c underestimates
the loss X, and the penalty φn displays two different levels of consequences. If X − c remains
under the critical level d (Zone 2 in Figure 5.3), the amount of parametric reinsurance coverage
will be too small and the insurer will be under-hedged. Conversely, if the X − c exceeds the
critical level d (Zone 3 in Figure 5.3), the consequences get worse. One possible reason could be
that the insurer decides not to take reinsurance at all because the index is never greater than
its acceptable loss, which forces it to draw on its reserve or even to drive it to the bankruptcy.

We want to get bounds on the expected penalty E[hn(X − c)]. For that, we will deduce
bounds on E[φn(X)]. It can be checked that the function φn(x) is n-increasing convex on R,
i.e. it is k-convex for all k = 2, . . . , n. Therefore, s-convex bounds can only be considered for
s = 2, . . . , n. We assume below that n ≥ 4 and s = 2, 3, 4.

As a preliminary, we determine the expectation ln(x, y) ≡ E[(Sx− y)n+], x, y > 0, that will
serve to express the bounds.

Lemma 5.1.

ln(x, y) = 1{x>y}

n∑
k=0

(
n

k

)
(−1)kykxn−kJα+n−k,β

(
y

x

)
Γ(α + n− k)Γ(α + β)

Γ(α + β + n− k)Γ(α)
. (5.13)
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Figure 5.3: The penalty function hn(x − c) when η = 0.8, γ = 1.2, c = 5, d = 2.5, b = 10 and
n = 2. Dashed line represents |x− c|, i.e. g1(x− c).

Proof. Since S ∼ S(α, β), ln(x, y) = 0 if x ≤ y. For x > y,

ln(x, y) =

∫ 1

y/x

(sx− y)nfS(s)ds,

=
n∑
k=0

(
n

k

)
(−1)kykxn−k

Γ(α + β)

Γ(α)Γ(β)

∫ 1

y/x

sα+n−k−1(1− s)β−1ds,

hence (5.13) using again the notation Jα,β(x) = P[S(α, β) > x].

From Corollary 4.1 and using Lemma 5.1, we then find the following bounds for E[φn(X)],
n ≥ 4, in the spaces Bs(α, β; [0, b]; ν1, . . . , νs−1) for s = 2, 3, 4.

Proposition 5.3. Choose n ≥ 4. In B2(α, β; [0, b]; ν1), the lower bound for E[φn(X)] is

E[φn(X
(2)
min)] = γ ln(µ1, c+ d),

and the upper bound is

E[φn(X(2)
max)] = γ

[
p(2)maxln(a, c+ d) + q(2)maxln(b, c+ d)

]
.
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In B3(α, β; [0, b]; ν1, ν2), the lower bound for E[φn(X)] is

E[φn(X
(3)
min)] = γ

[
p
(3)
minln(a, c+ d) + q

(3)
minln(

µ2 − aµ1

µ1 − a
, c+ d)

]
,

and the upper bound is

E[φn(X(3)
max)] = γ

[
p(3)max ln(

bµ1 − µ2

b− µ1

, c+ d) + q(3)max ln(b, c+ d)

]
.

In B4(α, β; [0, b]; ν1, ν2, ν3), the lower bound for E[φn(X)] is

E[φn(X
(4)
min)] = γ

[
r+ − µ1

r+ − r−
ln(r−, c+ d) +

µ1 − r−
r+ − r−

ln(r+, c+ d)

]
,

and the upper bound is

E[φn(X(4)
max)] = γ

[
(1− p(4)max − q(4)max) ln(a, c+ d) + p(4)max ln(x(4)max, c+ d) + q(4)max ln(b, c+ d)

]
.

For the desired expectation E[hn(X − c)], we now deduce from (5.12) and Propositions 5.2,
5.3 that for n ≥ 4 and s = 2, 3, 4,

E[f1(X
(2)
min)] + E[f2(X

(2)
min)] + E[φn(X

(s)
min)] ≤ E[hn(X − c)]

≤ E[f1(X
(2)
max)] + E[f2(X

(2)
max)] + E[φn(X(s)

max)].

By the n-increasing convexity of φn, we note also that for s = 2, 3,

E[φn(X
(s)
min)] ≤ E[φn(X

(s+1)
min )] ≤ E[φn(X)], and E[φn(X)] ≤ E[φn(X(s+1)

max )] ≤ E[φn(X(s)
max)].

5.4 Exponential-type penalty function

The function φn(x) being increasing convex of finite order n, the number of usable moments
of X is necessarily limited. This motivates us to consider a function φ∞(x) which is increasing
convex of infinite order, i.e. typically of exponential form. Thus, we define φ∞(x) by

φ∞(x) = γ
{

exp
(
κ[(x− c)− d]+

)
− 1
}
, x ∈ [0, b],

in which the term −1 is introduced to guarantee φ∞(x) = 0 for x ≤ c + d as before. The new
parameter κ > 0 handles the impact of the difference x − c. The resulting penalty function is
then given by

h∞(X − c) = f1(X) + f2(X) + φ∞(X). (5.14)
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The exponential form of φ∞ has the advantage of allowing the use of all available moments
of X. For example, if the first three moments are known, it is natural to consider the function
φ4. Suppose now that the fourth moment can be estimated later. Two choices are then possible:
either ignore this new information since φ4 is not 5-convex, or replace φ4 with φ5 in order to
exploit this information, which leads to modify the model. With the function φ∞ function,
having an extra moment does not change the model, it only allows for sharper bounds.

To obtain bounds on E[h∞(X − c)], we must first derive bounds on E[φ∞(X)]. As a pre-
liminary, we determine the expectation E{exp[κ(Sx− y)+]}, x, y > 0, that is involved in these
calculations. For that, we will use the concept of partial moment generating function of a
variable X (see e.g. Winkler et al. Winkler et al. [68]). It is the integral, if it exists, defined
from y to z by

Mz
y(t) =

∫ z

y

etxdFX(x), t ∈ R. (5.15)

Lemma 5.2.

E{exp[κ(Sx− y)+]} = 1− Jα,β(y/x) + exp(−κy)M1
y/x∧1 (κx) . (5.16)

Proof. Since S ∼ S(α, β), a direct integration yields

E{exp[κ(Sx− y)+]} =
∫ y/x∧1
0

fS(s)ds+ exp(−κy)
∫ 1

y/x∧1 exp(κxs)fS(s)ds,

which becomes (5.16) using the notation Jα,β and (5.15).

From Corollary 4.1 and applying Lemma 5.2, we deduce the following bounds for E[φ∞(X)]
in the spaces Bs(α, β; [0, b]; ν1, . . . , νs−1) for s = 2, 3, 4.

Proposition 5.4. In B2(α, β; [0, b]; ν1), the lower bound for E[φ∞(X)] is

E[φ∞(X
(2)
min)] = γ

[
−Jα,β(

c+ d

µ1

) + exp(−κ(c+ d))M1
c+d
µ1
∧1(κµ1)

]
,

and the upper bound is

E[φ∞(X(2)
max)] = γq(2)max

[
−Jα,β(

c+ d

b
) + exp(−κ(c+ d))M1

c+d
b

(κb)

]
.

In B3(α, β; [0, b]; ν1, ν2), the lower bound for E[φ∞(X)] is

E[φ∞(X
(3)
min)] = γq(3)max

[
−Jα,β(

c+ d

x
(3)
min

) + exp(−κ(c+ d))M1
c+d

x
(3)
min

∧1(κx
(3)
min)

]
,

with x
(3)
min = (µ2 − aµ1)/(µ1 − a), and the upper bound is

E[φ∞(X(3)
max)] = γp(3)max

[
−Jα,β(

c+ d

x
(3)
max

) + exp(−κ(c+ d))M1
c+d

x
(3)
max

∧1(κx
(3)
max)

]
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+ γq(3)max

[
−Jα,β(

c+ d

b
) + exp(−κ(c+ d))M1

c+d
b

(κb)

]
,

with x
(3)
max = (bµ1 − µ2)/(b− µ1).

In B4(α, β; [0, b]; ν1, ν2, ν3), the lower bound for E[φ∞(X)] is

E[φ∞(X
(4)
min)] = γp

(4)
min

[
−Jα,β(

c+ d

r−
) + exp(−κ(c+ d))M1

c+d
r−
∧1 (κr−)

]
+ γq

(4)
min

[
−Jα,β(

c+ d

r+
) + exp(−κ(c+ d))M1

c+d
r+
∧1(κr+)

]
,

and the upper bound is

E[φ∞(X(4)
max)] = γp(4)max

[
−Jα,β(

c+ d

x
(4)
max

) + exp(−κ(c+ d))M1
c+d

x
(4)
max

∧1(κx
(4)
max)

]

+ γq(4)max

[
−Jα,β(

c+ d

b
) + exp(−κ(c+ d))M1

c+d
b

(κb)

]
.

For the expectation E[h∞(X − c)], we now get from (5.14) and Propositions 5.2, 5.4 that
for s = 2, 3, 4,

E[f1(X
(2)
min)] + E[f2(X

(2)
min)] + E[φ∞(X

(s)
min)] ≤ E[h∞(X − c)]

≤ E[f1(X
(2)
max)] + E[f2(X

(2)
max)] + E[φ∞(X(s)

max)].

The remark made before about the comparison of the bounds when s = 2, 3 remains valid for
E(φ∞). For an appropriate penalty function, the greater the number of known moments, the
sharper the bounds on the expected penalty functions.

6 Numerical illustrations

Most licenses for cat modeling software are expensive, which has prevented us from using actual
data. However, thanks to the close links between the authors and certain reinsurance companies,
we were able to generate N = 100 scenarios of simulated data very similar to typical real-world
data sets (which often include several thousand scenarios).

Each scenario i is characterized by its occurrence rate pi, the parameters (αi, βi) of the Beta
distribution of the destruction ratio Si, and the information available on the exposure Yi, i.e.
its range (ai, bi) and several first moments. To generate this information on the moments of Yi,
we used the moments of distributions that are traditional in cat modeling. So, the event set
involves 67 scenarios where the exposure moments are obtained from a scaled Beta distribution
and 33 scenarios where the exposure moments are derived from a truncated Pareto distribution.
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These two distributions are discussed in an actuarial context in e.g. Clark [14] and Beirlant
et al. [6]; a short presentation is given in the Appendix.

We considered five types of scenarios, depending on the size of uncertainty, the intensity of
the destruction ratio and the link between the loss and the destruction ratio.

- Scenarios 1 to 5 represent cases where the exposure is limited and of Beta type, but the
intensity of the event is either small or large. Thus, ai, bi are relatively small whereas
αi, βi < 1.

- In scenarios 6 to 66, the destruction ratios are sorted according to their riskiness. In fact,
the higher αi and the lower βi, the greater the probability that the destruction ratio is
close to 1. In addition, the corresponding Yi is a scaled Beta variable and is generated so
that its mean is decreasing. In other words, a large event is linked to a huge exposure.

- Scenarios 67 to 96 look like the previous ones, except that the exposure Yi is a truncated
Pareto variable. Here too, the probability that the destruction ratio takes values close to
1 decreases from the scenario 67 to 96.

- Until now, all scenarios i = 1, . . . , 96 had the same probability of occurrence pi = 1.0%.
This time, we take p97 = 3.0%. That scenario represents the case where the event poten-
tially involves a huge exposure in the sense that Y97 is Beta([40, 80], 0.5, 0.5) with a lot
of uncertainty (which could come, for example, from the fact that a very big city can be
hit or not). To that extent, the exposure is somehow close to 40 or 80. In addition, the
destruction ratio is often close to 1.

- Finally, the scenarios 98, 99, 100 involve significant exposures as well as destruction ratios
shifted to the right. Thus, these three scenarios can be considered the most dangerous.
It seems reasonable to assume that these scenarios do not all have the same frequency,
hence the choices p98 = 0.5%, p99 = 0.4%, p100 = 0.1%.

Those 100 scenarios encompass lighter and heavier tailed risks (even if there is a finite total
exposure), and feature different levels of risk, uncertainty, and correlations between destruction
rates and exposures, like in the real world. The full description of scenarios is given in Table 6
of the Appendix.

A major objective of this illustration is to highlight the role of the penalty function, the
index and the impact of information on exposure on the sharpness of the bounds. The penalty
functions hn given by (5.12) and h∞ given by (5.14) are defined with the parameters η = 0.8,
γ = 1.2, n = 4 and κ = 0.2. Tables 2 to 5 provide the s-convex bounds for Xi when s = 2, 3, 4
and the corresponding impact of the basis risk BR

(s)
φ given by (5.1) when φ is h4 or h∞.

In Table 2, the index value is ci = E[SiYi] and the critical level is di = 0.2E[SiYi]. As
expected, the 4-convex bounds are much sharper than the 3 and 2-convex bounds. Equivalently,
the worst case scenario in the 4-convex sense is less severe than in the 3 or 2-convex sense. This
conclusion is common to the following three tables. To reduce the basis risk, the insurer must
logically refine the information on exposures, for example by knowing higher moments.
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In Tables 3 to 5, we choose ci = 0.95E[SiYi], ci = 1.05E[SiYi], ci = 1.15E[SiYi] respectively,
with the same di as before. We observe that the bounds are very sensitive to the value of ci.
This is natural since the index defines the basis risk. We draw attention to the fact that the
choice of penalty function, its form and its parameters should be driven by the risk appetite of
the protection buyer and not for a purpose of optimization. In other words, the threshold level
di should be the same whatever the retained index-based structure, while the minimization of
the basis risk measurement should be done by modifying the index value ci, and not the penalty
function nor its parameters.

s-convex bounds BR
(s)
h4

BR
(s)
h∞

2-cx lower bound 317.599 4.436
3-cx lower bound 534.484 4.581
4-cx lower bound 1 053.163 4.754

X 1 356.515 7.785
4-cx upper bound 1 863.618 26.737
3-cx upper bound 3 389.789 103.215
2-cx upper bound 18 647.031 1 577.784

Table 2: Values of BR
(s)
h4

and BR
(s)
h∞

for s = 2, 3, 4, when c = E[SY ] and d = 0.2E[SY ].

s-convex order BR
(s)
h4

BR
(s)
h∞

2-cx lower bound 487.918 4.842
3-cx lower bound 870.181 5.045
4-cx lower bound 1 603.361 5.276

X 1 956.715 8.589
4-cx upper bound 2 540.901 30.907
3-cx upper bound 4 299.803 118.657
2-cx upper bound 21 149.301 1 779.437

Table 3: Values of BR
(s)
h4

and BR
(s)
h∞

for s = 2, 3, 4, when c = 0.95E[SY ] and d = 1.05E[SY ].
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s-convex order BR
(s)
h4

BR
(s)
h∞

2-cx lower bound 215.974 4.194
3-cx lower bound 342.337 4.299
4-cx lower bound 706.460 4.431

X 959.211 7.163
4-cx upper bound 1 399.546 23.395
3-cx upper bound 2 741.775 90.257
2-cx upper bound 16 697.651 1 401.555

Table 4: Values of BR
(s)
h4

and BR
(s)
h∞

for s = 2, 3, 4, when c = 1.05E[SY ] and d = 1.05E[SY ].

s-convex order BR
(s)
h4

BR
(s)
h∞

2-cx lower bound 110.008 4.173
3-cx lower bound 164.702 4.229
4-cx lower bound 350.635 4.311

X 526.320 6.703
4-cx upper bound 860.462 18.580
3-cx upper bound 1 940.151 70.117
2-cx upper bound 13 885.964 1 111.376

Table 5: Values of BR
(s)
h4

and BR
(s)
h∞

for s = 2, 3, 4, when c = 1.15E[SY ] and d = 1.05E[SY ].

In conclusion. We started by identifying s-convex extrema for bounded random variables
obtained by a random scaling of Beta type.. Thanks to this, we were able to evaluate the basis
risk in a parametric transaction using penalty functions of different foms. We also showed the
impact of information, in terms of moments, on the assessment of the basis risk. So, within the
proposed framework, we have provided a (partial) answer to the key question: how much does
the basis risk cost? In a future paper, we will examine other situations where the basis risk is
unbounded and where the independence between the destruction ratio and the exposure level
is questionable.

Appendix. Let us recall the definition of the two distributions used to model the exposure Yi.
A scaled Beta distribution enlarges the support of the usual Beta distribution. It again

depends on two positive parameters, ui, vi say, but is now defined on an interval [ai, bi]. Specif-
ically, if Wi is a Beta(ui, vi) variable, then Yi is a Beta([ai, bi], ui, vi) variable means that

Yi = (bi − ai)Wi + ai.

The moments of a scaled Beta distribution follow directly.
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The variable Yi has a truncated Pareto distribution of real parameter ui when its distribution
function is

FYi(x) =


1− (ai/x)ui

1− (ai/bi)ui
, ai ≤ x ≤ bi, if ui 6= 0,

ln(x/ai)

ln(bi/ai)
, ai ≤ x ≤ bi, if ui = 0.

Note that for ui = −1, this is reduced to the uniform distribution over [ai, bi]. All moments of
a truncated Pareto exist and are given by

E[Y k
i ] =

uia
k
i

ui − k
1− (ai/bi)

ui−k

1− (ai/bi)ui
, k ∈ N, if ui 6= 0, k.

When ui = 0 or k, the moments become ln(bi/ai).
For reproductibility purposes, we give in detail below the parameters used for the 100

scenarios of the illustration described in Section 6. The notations S-B and T-P refer to the
scaled Beta and truncated Pareto distributions.
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Table 6: The parameters used in the 100 scenarios of the illustration given in Section 6.
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