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The con�nement of energetic particles in nuclear fusion devices is studied in the presence
of an oscillating radial electric �eld and an axi-symmetric magnetic equilibrium. It is
shown that, despite the poloidal and toroidal symmetries, initially integrable orbits turn
into chaotic regions that can potentially intercept the wall of the tokamak, leading to
particle losses. It is observed that the losses exhibit algebraic time decay di�erent from
the expected exponential decay characteristic of radial di�usive transport. A dynamical
explanation of this behaviour is presented, within the Continuous Time Random Walk
theory. The central point of the analysis is based on the fact that, contrary to the
radial displacement, the poloidal angle is not bounded and proper statistical analysis
can therefore be made, showing for the �rst time that energetic particle transport can
be super-di�usive in the poloidal direction and characterised by asymmetric poloidal
displacement. The connection between poloidal and radial positions ensured by the
conservation of the toroidal canonical momentum, implies that energetic particles spend
statistically more time in the inner region of the tokamak than in the outer one, which
explains the observed algebraic decay. This indicates that energetic particles might be
e�ciently slowed down by the thermal population before leaving the system. Also, the
asymmetric transport reveals a new possible mechanism of self-generation of momentum.

1. Introduction and motivation

Energetic particles (EP) are ubiquitous in both laboratory and astrophysical plasmas.
By de�nition, they exhibit velocities much larger than the thermal velocity of the bulk
plasma, which is characterised by a Maxwellian distribution function. EP, such as the
alpha particles, must be su�ciently well con�ned in order to transfer their energy to
the bulk plasma through Coulomb collisions or to ensure the current drive e�ciency
(Heidbrink & Sadler 1994; Pinches et al. 2004; Sharapov et al. 2000). Nevertheless, due
to the curvature of the magnetic �eld lines, the trajectories of particles depart from
the magnetic �ux surfaces. This departure (called magnetic drift) is more pronounced
when the energy of particles increases. Therefore, the magnetic drift of EP can be intense
enough so that their trajectories intercept the wall even with circular concentric magnetic
surfaces, leading to losses and limiting the performance of the machine. In addition, the
presence of a substantial population of particles at high energies leads to gradients in
phase space, which may result in instabilities called energetic particle modes (EPM) (see
for instance (Chen & Zonca 2007, 2016; Heidbrink 2008; Lauber 2013) and references
therein). EPM tend to increase the transport of energetic particles, reducing inevitably
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the tokamak performance. Therefore, understanding and controlling the EPMs is also
of prime importance for the future of ITER. In the presence of �uctuations driven
by EP, such as for Toroidal Alfvén Eigenmodes, zonal structures can be nonlinearly
generated (Chen & Zonca 2012). Direct excitation of zonal structures by EP is also
possible, which occurs in the context of a special class of EPMs called energetic geodesic
acoustic modes (EGAMs), dominated by a zonal structure (m,n) = (0, 0) oscillating
roughly at the acoustic frequency (Fu 2008; Nazikian et al. 2008; Qiu et al. 2010; Zarzoso
et al. 2012). Because EGAMs are axi-symmetric modes, they were initially believed not
to play a signi�cant role in the transport of particles. Nonetheless, it was experimentally
and numerically evidenced that losses can occur in the presence of these axi-symmetric
large scale modes (Fisher et al. 2012; Nazikian et al. 2008). It was in particular shown
that most of these losses are due to chaotic transport in phase-space (Zarzoso et al.

2018), but so far so systematic studies of the nature of transport in the presence of
EGAMs have been carried out. Similarly, zonal structures can be driven by drift-wave
turbulence in magnetized plasmas (Hasegawa et al. 1979) and play a major role in the
regulation of micro-turbulence induced transport in tokamaks (Lin et al. 1998). Although
studies of the EP transport in the presence of micro-turbulence have been performed in
the past (Angioni et al. 2009; Bovet et al. 2015; Hau� et al. 2009; Pace et al. 2013;
Zhang et al. 2008, 2011), the direct impact of zonal structures on the EP transport
remains unexplored. Therefore, we aim in this work to shed light on the fundamental
mechanisms responsible for the EP transport in the presence of zonal structures. For this
purpose, statistical analyses can be performed to determine some characteristic properties
of the transport and the anomalous losses of EP. By anomalous losses we mean losses
that do not follow the loss rate of a di�usive process. As we will explain, one of the
main contributions of this work is to show that these anomalous losses are due to the
presence of super-di�usive poloidal transport. In this paper, we focus our analyses on
the transport induced by zonal structures in the context of EGAMs, but the results
can be extended without any loss of generality to situations where zonal structures are
nonlinearly generated by small amplitude perturbations. The remainder of the paper is
structured as follows. Section 2 presents the model we use for the statistical analysis. In
section 3 we present the observations of fractal-like behaviour and algebraic decay of the
exit time of EP using relevant tokamak parameters. This naturally leads to section 4,
where we give, for the �rst time, evidence that zonal structures can lead to anomalous
di�usion of energetic particles. Conclusions and future work are presented in section 5.

2. Description of the model

Within the framework of the EGAM-induced transport, we base our analysis on
previous results obtained with gyro-kinetic simulations (Zarzoso et al. 2018). However,
in order to have meaningful statistical analyses, we need to simulate a huge number
of test particles during su�ciently long gyro-kinetic simulations. Due to computational
restrictions, we avoid this approach by replacing the EGAM potential obtained from
the expensive direct gyro-kinetic simulations by an analytical model containing the main
physics of the EGAM. This strategy is the most favorable in terms of CPU time, since no
interpolation of the �eld is required. In addition, it allows us to simulate trajectories on
time scales comparable with the experimental measurements. The main characteristics
of a zonal (n = 0) structure are: (1) its frequency, (2) its spatial (radial and poloidal)
structure and (3) its amplitude. A zonal structure can therefore be modeled as

φ (r, θ, t) ≈ [φ00 (r) + φ10 (r) sin θ] cos (ωt) (2.1)
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Based on the ordering φ10 ∼ 10−1φ00, we neglect in the following the poloidal depen-
dence and focus only on the dominant component. Following gyro-kinetic simulations
(Zarzoso et al. 2012, 2013, 2017) we can model the radial dependence as

φ00 (r) = φ00

(
1− tanh

(
r − r0

δr

))
(2.2)

where φ00 is the value of the potential at r = r0 and δr controls the width of the mode.
This gives a radial electric �eld of amplitude Er,0 = φ00/δr at r = r0 and localised in a
region r0 − δr/2 < r < r0 + δr/2.
The guiding-center equations of motion to be solved in toroidal geometry in the

presence of a given electrostatic potential are (Grandgirard et al. 2016)

dxi

dt
= v‖b

∗ · ∇xi + vE · ∇xi + vD · ∇xi (2.3a)

ms

dv‖

dt
= −µb∗ · ∇B − eZsb∗ · ∇J0φ+

msv‖

B
vE · ∇B (2.3b)

where xi is the ith contravariant component of the coordinate x (x1 ≡ r in the radial
direction, x2 ≡ θ in the poloidal direction and x3 ≡ ϕ in the toroidal direction), v‖ the
parallel component of the velocity along the magnetic �eld lines, vE is the E×B drift,
vD is the magnetic drift, µ is the magnetic moment, which is an invariant within the
present model, ms is the mass of particles, e is the elementary charge, Zs is the atomic
number, B is the magnitude of the magnetic �eld, J0 is the gyro-average operator and
b∗ is de�ned as

b∗ =
B

B∗‖
+

msv‖

eZsB∗‖B
∇×B (2.4)

with

B∗‖ = B +
ms

eZs
v‖b · ∇ × b (2.5)

where b is the unit vector along the magnetic �eld. This expression 2.5 allows us to write

the volume element in guiding-centre velocity space as
2πB∗‖
ms

dv‖dµ.
To further reduce the computational time, it is important to realise that due to the

axisymmetry of the electrostatic potential, the equation for the toroidal angle does not
need to be integrated to determine the radial transport. Axysimmetry also implies the
conservation of the toroidal canonical momentum Pϕ

Pϕ = −eZsψ +msvϕ = constant. (2.6)

with vϕ = bϕv‖, where bϕ is the toroidal covariant component of the unit vector along
the magnetic �eld, R is the major radius and ψ is the poloidal �ux, which is written for
circular �ux surfaces in terms of the safety factor q, the amplitude of the magnetic �eld
at the magnetic axis B0 and the radial position r as

ψ = B0

∫ r

0

r′

q (r′)
dr′ (2.7)

Equation (2.6) allows us to obtain the parallel velocity v‖ at each time step without
integrating equation (2.3b). Finally, for large scale zonal structure the gyro-average is
not expected to play a major role. Therefore, we make the simpli�cation J0 · φ = φ.
This numerical scheme reduces the number of di�erential equations to be integrated
and ensures the exact conservation of the toroidal canonical momentum within machine
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Figure 1: (Left) Trajectories of two counter-passing particles: one deeply counter-
passing with (Λ = 0.4, E = 25Eth), represented by the almost circular projection, and one
barely counter-passing with (Λ = 0.8, E = 43Eth). (Right) Ensemble of all the possible
trajectories with energies within the range 25Eth 6 E 6 43Eth and pitch angle
0.4 6 Λ 6 0.8.

precision. The di�erential equations for r and θ are solved using a 4th order Runge-
Kutta explicit integration in time. Following a convergence test, the time step for all the
simulations has been set up to ∆t = 50 normalized to the cyclotron period. In all the
simulations presented in this paper, the safety factor is assumed to be �at and set to
q = 1.8, the width of the electrostatic potential is δr = 20ρth, which is larger than the
maximum Larmor radius of the energetic particles that we consider, and the frequency
is ω = 3.7 · 10−3 normalized to the cyclotron frequency, which is typical of self-consistent
gyro-kinetic simulations presented in (Zarzoso et al. 2018).

3. Fractal-like dependence of loss time on initial conditions

Motion invariants are very valuable to describe how the trajectories are modi�ed in the
presence of a perturbation. This is because in the absence of any perturbation, a particle
initialised with a given value of the invariants will explore the phase-space while keeping
the motion invariants constant, which translates into a 1D curve in the 3D real space
when two invariants exist. We know that this trajectory will correspond to the one of any
other particle initialised in such a way that at t = 0 it has the same motion invariants. The
unperturbed trajectory of a particle can for instance be described by the kinetic energy
E and the ratio between the magnetic moment and the kinetic energy, Λ = µB0/E,
providing the initial radial position is known. An example is illustrated in �gure 1, where
the left panel represents the projection onto the poloidal cross-section of the trajectories
of two particles, one deeply counter-passing and the other barely counter-passing, both
starting at the radial position r/a = 0.1 and the poloidal angle θ = 0. Of course, particles
are injected with a certain range of E and Λ. If all the particles are injected roughly at
the same position, the resulting trajectories will cover the area represented by the blue
region in the right panel of �gure 1.
One can use then the electrostatic potential model in equation (2.1) to study the

losses of particles injected in the inner region of the tokamak, at r/a ≈ 0.1 with a
certain range of E and Λ. It is to be noted that the adiabatic invariance of the magnetic
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Figure 2: (Left) Fraction of lost particles as a function of initial E and Λ in the presence
of a perturbation. The overlaid contours correspond to Pϕ = constant. (Right) Poincaré
map of an initial condition with Λ = 0.54 and E = 31.5Eth without perturbation (blue
dots) and with perturbation (red dots).

moment µ is imposed owing to the gyro-kinetic ordering. In addition, since the modes
are axisymmetric, the toroidal canonical momentum Pϕ is an exact invariant, which is
also imposed by solving equation 2.6. Regarding the kinetic energy, it remains invariant
only if the perturbed potential does not depend explicitly on time. The fact that we have
only two motion invariants of guiding-centres in a system with three degrees of freedom
makes it actually possible that the motion is chaotic, as reported in (Zarzoso et al. 2018).
We have performed a set of simulations for each couple (E,Λ) up to t = 2 · 105 cyclotron
periods. The result of this calculation is given in �gure 2. The left panel shows the fraction
of lost particles as a function of their initial kinetic energy and Λ, with iso-contours of
the toroidal canonical momentum.
When focusing on a particular point of �gure 2a, (for instance the one with initial

Λ = 0.54 and E = 31.5Eth, characterised by a lost fraction of roughly 0.8), we can plot
the invariant surface in the absence of the perturbation (blue circle) and the Poincaré map
in the presence of the perturbation of the particles initialized on that blue circle. This is
what �gure 2b shows. This is a clear example of how an initially con�ned counter-passing
particle can be lost due to the perturbation. The escape region is given by the intersection
of the chaotic sea (red dots) with the tokamak wall (black circle), and depends on the
initial conditions of the lost particle.
Figure 2b seems to indicate that all particles initialized on the blue circle should

leave the domain, but �gure 2a shows that only 80% of the particles are lost. There are
two complementary explanations for this issue, one numerical and another theoretical.
Numerically, it should be kept in mind that all results pertain �nite-time dynamics,
which for the simulations reported in �gure 2a is 2 ·105 cyclotron periods. That is, �gure
2a is the fraction of particles lost at or before 2 · 105 cyclotron periods. There is also a
theoretical aspect to this issue related to the fact that the red region in �gure 2b does
not have a trivial topology because (as it is common in Hamiltonian chaos) the Poincaré
map of an orbit does not necessarily �ll ergodically a simple 2-D manifold Indeed, even
if we were able to run a simulation for arbitrarily long time, we might �nd particles
initialized in the blue circle that do not intercept the wall, despite the fact that the blue
circle seems to be sort of embedded in the chaotic red region. There are also boundaries
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between the non-chaotic regions (e.g., the white islands where the red point did not enter)
and the chaotic region (i.e., the region that contains the red points in the Poincaré map)
separated by Cantor sets known as Cantori (see e.g. (Meiss 1992)) that trap particles
and preclude them from escaping.

The observed chaotic motion implies that the trajectories of particles exhibit sensitive
dependence on initial conditions. It is thus expected that the exit time of the lost particles
also exhibits sensitive dependence on initial conditions. Analysing this dependence is
especially relevant, since it allows to identify the existence of patterns or structures. This
cannot be done with diagrams of lost particles as those reported in (Zarzoso et al. 2018),
because the quantity plotted there was binary (either the particle is lost or it remains
con�ned). Of course, since the exit time of particles that are never lost is in�nite, the
best way to represent the exit time is by plotting its inverse, i.e. t−1

exit. Figure 3 shows
the inverse of the exit time as a function of the initial parallel velocity and magnetic
moment. The top panel shows t−1

exit for all the simulated initial conditions. A clear pattern
of structures aligned with the trapping cone is observed. To unveil the detailed structure
of the dependence of t−1

exit on v‖ and µ, the middle and bottom panels show succesive
zooms, revealing similar structures at smaller scales when focusing on the region of lost
particles. It is to be noted that, although the successive zooms do not exhibit exact self-
similarity, it is clear that there is a non-trivial dependence of the exit time on initial
conditions at all scales, what we refer to as fractal-like behaviour. The observed property
of scale invariance imply similarity properties that can be uncovered when performing
statistical analysis of the particle dynamics.

We can now focus the analysis on a more restricted region in velocity space, selecting
almost mono-energetic EP injected in a localised region of the tokamak and determining
the probability distribution function (PDF) of their exit time. We assume experiment-
relevant parameters, taking the minor radius of the tokamak (a) and the thermal ion
Larmor radius (ρth) such that ρ? = 1/150, with ρ? = ρth/a, and we calculate the exit
time of an ensemble of counter-passing EP. Such EP are characteristic of NBI heating
in medium-size tokamaks like DIII-D. For this purpose, we follow ∼ 4 · 105 deuterium
tracers initialised at the position r = 0.4a, θ = 0, ϕ = 0, with energy E ≈ 20Eth and
magnetic moment such that µB0/Ti = 14. These particles are con�ned in the absence
of any perturbation. We use Gysela normalizations (Grandgirard et al. 2016), but one
can recover the units by choosing parameters for standard tokamaks. For instance, with
Ti ≈ 4 keV and B0 ≈ 2T, one gets a ≈ 0.67m, which is typical of medium-size tokamaks.
Using the amplitude of the EGAM in nonlinear Gysela simulations (φ00 = 1.5), and
using the electron temperature Te ≈ 3 keV, the amplitude of the radial electric �eld is
Er,0 ≈ 14 kV ·m−1, which is of the same order as the one obtained in (Fisher et al.

2012). Despite the simple structure of φ, its time dependence leads to radial transport
and losses. The PDF of the exit time, Pexit, is plotted in Fig. 4 in log− log scale, showing
an algebraic decay Pexit ∼ t−µe , in contrast with the exponential decay one would expect
in the case of a di�usive transport (Gardiner 2004). For the parameters chosen here, the
tail of the PDF is developed from 1 − 100 ms. It is to be noted that a long time decay
was mentioned in (Fisher et al. 2012), although no scaling was provided.

To compare with the expected result in the case of di�usive behavior, we can perform
a simple exercise where we consider motion of an ensemble of particles initially located
at (x, y) = (0, 0) on a 2D disk. The two physical parameters in this simple model are
the di�usivity, D, and the radius of the circle, Rc. Figure 5 shows the probability of
the exit time for di�erent values of Rc and D according to a Monte-Carlo simulation of
the di�usion equation on a disk. For all values of Rc and D the probability exhibits an
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(a)
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Figure 3: Inverse of the exit time as a function of the initial parallel velocity and magnetic
moment. The middle and bottom panels show succesive zooms of the

(
v‖, µ

)
parameter

space, illustrating the same structures at smaller scales.
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Figure 4: Probability distribution function (PDF) of the exit time for counter-passing
EP initialised at r = 0.4a, θ = 0, ϕ = 0, with E = 20Eth and µB0/Ti = 14. The dashed
line shows an algebraic �t, with µe = 2.5.

Figure 5: Monte Carlo simulation of exit time for an ensemble of particles initialized at
(x, y) = (0, 0) on a disk of radius Rc in the presence of a di�usivity D. The plot shows
the probability dependence on time rescaled by the analytical mean exit time Tmean

in Eq. (3.2) for (Rc, D) = {(0.1, 1) , (1, 0.1) , (1, 10) (2, 1) (10, 1) (1, 1)}. The dashed line
shows an exponential �t with decay rate λ = 3/2.

exponential decay of the form

Pdiff ∼ Tmean exp [−λt/Tmean] , (3.1)

where λ ≈ 3/2 and Tmean is the mean exit time (�rst moment) for particles under the
Brownian motion on a disk,

Tmean =
πR2

c

4D
. (3.2)

It is interesting to point out that, because in �gure 4 we get µe > 2, the mean exit
time does exists. However, the second moment, is in�nite and thus not de�ned. This is
in stark contrast with the di�usion problem for which all the moments of the exit time
distribution exist.



Anomalous di�usion of energetic particles 9

To understand why this algebraic decay occurs and therefore why the radial transport
is not di�usive in the presence of an oscillating radial electric �eld, we focus on the region
responsible for the chaotic transport of particles, i.e. the stochastic layer separating the
passing and trapped particles. Let us remind that, in the absence of any perturbation,
the particles in a tokamak are divided into trapped and passing and the boundary
between these two classes is called trapping cone. This cone is a well de�ned surface
in phase-space, also called separatrix, since it represents the separation between the
two classes of particles. The black lines in �gure 6 represent the Poincaré map of the
unperturbed trajectories for passing and trapped particles. The left panel represents the
projection onto the poloidal cross-section, i.e. onto the (R,Z) sub-space, and the right
panel represents the projection onto the

(
r2/2, θ

)
sub-space. The dashed blue lines with

arrows in the left panel indicate the direction of the trajectories of the particles contained
in each region. We assume that counter-passing particles are injected in the inner part
of the tokamak. Therefore, those particles rotate in the clockwise direction. When they
become trapped and eventually co-passing, they rotate in the anti-clockwise direction.
This occurs in the outer region of the tokamak, where particles can intercept the wall
and be lost. The red region represents the Poincaré map of particles located on the
separatrix in the presence of an oscillating radial electric �eld. It is clearly observed that
the separatrix is transformed into a chaotic area connecting the inner and outer parts
of the tokamak. More interestingly, it is to be noted that the separation between inner
and outer regions is done strictly speaking in the radial direction. Since the radial region
that the particle explores when going from one region to another is necessarily bounded
by the minor radius of the tokamak, the statistics might be meaningless when focusing
on the radial excursion of particles. However, due to the conservation of Pϕ, the radial
position is intrinsically linked to the parallel velocity, which is in turn linked to the time
derivative of the poloidal angle according to Eq. 2.3a applied to i = 2, corresponding to
x2 ≡ θ. Combining the conservation of Pϕ and the time derivative of the poloidal angle,
we can write

Pϕ ≈ −eZψ +m
bϕ
bθ

dθ

dt
⇒ r2 ≈ 2q

eZ

(
−Pϕ +m

bϕ
bθ

dθ

dt

)
(3.3)

with Pϕ constant and bθ the poloidal contravariant component of the unit vector along
the magnetic �eld. In other words, when the poloidal angle decreases the counter-passing
particle is con�ned in the core of the tokamak, and when the poloidal angle increases the
particle becomes co-passing in the outer region. Contrary to the behaviour of the radial
position, the poloidal angle that the particle explores can be arbitrarily large. Therefore,
the statistical analysis of the poloidal excursion can be easily done with the possibility to
be connected to the radial excursion. In the following, we study only the statistics in the
poloidal angle, which exhibits a stochastic behaviour in the presence of the oscillating
electric �eld and so does the radial position.

4. Anomalous exit time and asymmetric di�usion

Our analysis follows closely the one reported in (del Castillo-Negrete 1998) for the
transport of passive scalars in vortices in the presence of a shear �ow. We follow during
∼ 107 cyclotron periods an ensemble of ∼ 105 energetic particles initialised with E ≈
20Eth in the chaotic region. We calculate their poloidal displacement, de�ned as

∆θ (t) = θ (t)− θ (0) (4.1)
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(a) (b)

Figure 6: Poincaré map of unperturbed trajectories (black lines) and particles initialised
on the separatrix in the presence of an EGAM (red dots). The direction of rotation of
particles in the inner and outer regions of the tokamak is represented by dashed blue
lines in the left panel.

which is plotted, for a subset of these particles, in the left panel of �gure 7, where a clear
spreading is observed. The question arises whether this spreading results from a di�usion
in the poloidal direction or not. This can be analysed with the variance of the poloidal
displacement, de�ned as

σ2
θ (t) =

〈
(∆θ − 〈∆θ〉)2

〉
(4.2)

where the time dependence of the poloidal displacement has been dropped for the sake of
clarity and the brackets 〈· · · 〉 represent an ensemble average. When the variance exhibits
algebraic growth in time, i.e. σ2

θ (t) ∼ tγ , the poloidal transport can be classi�ed as

γ < 1: sub-di�usive
γ = 1: di�usive
1 < γ < 2: super-di�usive
γ = 2: ballistic

The super- and sub- di�usive regimes correspond to anomalous di�usion.
In the right panel of �gure 7 we represent by open red symbols the time trace (in

log− log scale) of the variance of the poloidal displacement as measured from our
simulations using the expressions 4.1 and 4.2. The solid red line represents the linear
�t in log− log scale. For comparison, we also show the ballistic (dotted-dashed black
line) ans di�usive (dotted blue line) scalings. It is clear that our simulations are bounded
by both processes, meaning that the spreading observed in the left panel is due to a
super-di�usion, with an exponent γ = 1.64. It is to be noted that this super-di�usion
occurs in the poloidal direction, not necessarily in the radial direction.
The existence of anomalous di�usion implies that the motion of the guiding-centres

cannot be modelled using a di�usion equation, which has important consequences when
trying to predict the transport of energetic particles by means of reduced �uid models.
As explained in (del Castillo-Negrete 1998), the anomalous di�usion is understood as
follows(Lesieur 2008). Let us consider the Lagrangian velocity

d∆θ

dt
= vθ (t) (4.3)
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Figure 7: (Left) Poloidal displacement of passive tracers showing a spreading in the
poloidal direction. (Right) Time dependence of the variance of the poloidal displacement.

and the Lagrangian di�usion coe�cient

K (t) =
1

2

d

dt

〈
(∆θ − 〈∆θ〉)2

〉
(4.4)

which can simply be expressed as K (t) =
∫ t

0

〈
vθ (τ) vθ (0)

〉
dτ =

∫ t
0
C (τ) dτ . Therefore

the time derivative of the variance is expressed in terms of the integral of the Lagrangian
velocity auto-correlation function as follows

dσ2
θ

dt
= 2

∫ t

0

C (τ) dτ (4.5)

Therefore, the scaling of the variance depends on how the Lagrangian velocity auto-
correlation function decays in time. If the auto-correlation function decays fast enough
in time, the integral 4.5 exists in the limit t → ∞, meaning that σ2

θ ∼ t and de�ning
the di�usion coe�cient K. If the auto-correlation function exhibits an algebraic decay
(for γ 6= 1) as C ∼ tγ−2, then σ2

θ ∼ tγ . The anomalous di�usion is therefore related to
the slow decay of the auto-correlation function. This behaviour is understood in terms
of the physics at play. Indeed, an energetic counter-passing particle is injected in the
inner region of the tokamak and will remain rotating in the clock-wise direction unless
something (the chaotic separatrix) makes it change its radial position until it becomes
magnetically trapped. Once it is trapped, the poloidal displacement vanishes on average
(there is no transport). The particle will remain trapped unless the chaotic separatrix
makes it change again its radial position. It will become either co-passing, evolving as if
the particles was �ying towards positive poloidal angles, or counter-passing, evolving as if
the particle was �ying towards negative poloidal angles. A super-di�usion can therefore
be understood as a compromise between trapping periods and short and rare events
called �ights, which tend to de-trapped the particles. More especi�cally, we interpret the
observed super-di�usive transport in the framework of the Continuous Time Random
Walk (CTRW) model. The CTRW extends the standard Brownian random walk (which
underlies di�usive transport) by allowing non-Gaussian jump distributions and/or non-
Markovian waiting time distributions (Metzler & Klafter 2000; Montroll & Weiss 1965),
caused by the presence of coherent structures (magnetically trapped and passing regions)
which make particles spend an anomalous amount of time moving slowly (trapping
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Figure 8: (Left) Poloidal displacement of two passive tracers, showing the existence of
positive and negative �ights. (Right) Poloidal displacement assuming an asymmetric
random walk.

region) or fast (passing region) (del Castillo-Negrete 1998), the bridge between both
being ensured by the chaotic separatrix. Of particular interest to this work is the case of
Lévy �ights which are jumps with diverging second moments.
The existence of the �ights is clearly visible in the left panel of �gure 8, where we plot

the poloidal displacement of two tracers during the �rst 106 cyclotron periods. It can be
observed that sometimes the particle is magnetically trapped and therefore the poloidal
displacement does not evolve on average. Sometimes, there are either positive or negative
�ights which de-trap the particles. As a comparison, we give in the right panel of the
�gure a time trace assuming an asymmetric standard random walk, in the absence of any
�ights.
Coming back to �gure 6, when an EP becomes trapped it is lost if the wall of the

tokamak intercepts the chaotic region, which is the case here since a = 150ρth. The
exit time of a counter-passing particle is related to the time a particle spends moving
towards negative poloidal angles, since the particle remains in the inner region of the
tokamak. Accordingly, the probability distribution function (PDF) of the exit time, Pexit,
corresponds to the PDF of the negative �ights of duration t, P−flight, i.e.

Pexit ≡ P (texit = t) = P−flight (t) (4.6)

To verify this connection, �gure 9 shows the probability distribution function (PDF)
of negative (left panel) and positive (right panel) �ights of duration t. As expected, the
PDF of negative �ights exhibits an algebraic decay, P−flight ∼ t−µf , with µf ≈ µe, where

as shown in Fig. 4 Pexit ∼ t−µe . The PDF of positive �ights decays faster, following
an exponential scaling (P−flight ∼ e−λt). This �nding has a physical impact in terms
of radial transport: a counter-passing particle spends, probabilistically speaking, more
time in the inner region than a co-passing particle in the outer region. This leads to an
asymmetrically poloidal (and therefore radial) transport in the presence of the chaotic
separatrix. Note that, because µf < 3, the second moment of the PDF of negative
�ights diverges,

∫∞
0
t2P−flightdt→∞. That is, the negative �ights are Lévy �ights which

invalidates the use of the central limit theorem (CLT) as it is customary done in the
Brownian random walk model of di�usive transport. On the other hand, within the
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Figure 9: PDF of negative (left) and positive (right) �ight events of duration t.

CTRW, superdi�usive behavior, γ > 1, is a natural consequence of the existence of Lévy
�ights, µf < 3. In particular, according to CTRW theory γ = 2/(µf − 1) which for the
numerically determined exponent µf ≈ 2.2 predicts γ = 1.66, a value very close to the
numerically observed γ ≈ 1.64. Let us remind that the theory of the Brownian motion
relies upon the application of the CLT, which states that the sum of N i.i.d. random
variables {xi}16i6N is described by a Gaussian distribution in the limit N → ∞, as

long as the �rst and second moments exist, i.e. 〈xi〉 < ∞ and
〈
x2
i

〉
< ∞. One can

naturally ask what happens in the case where one of the moments (or even both) does
not exist, which is our case. Fortunately, there is a generalization of the CLT for this kind
of situations, which was formulated by P. Lévy in the 1930s. The Gaussian distribution
function as limit of the sum of i.i.d. variables is replaced by the so-called Lévy or α-stable
distribution, characterised by long heavy tails and diverging moments (see for instance
(Lévy 1934, 1940) and references therein).

Back to our physical problem, �gure 10 shows the PDF of the total (summed) poloidal
displacements at di�erent times as a function of the similarity variable

χ =
∆θ − 〈∆θ〉

tγ/2
(4.7)

The de�nition of this variable is not a coincidence. Indeed, the collapse of the rescaled
PDFs at di�erent times provides numerical evidence that poloidal transport exhibits self-
similar dynamics with anomalous exponent γ which, consistent with the CTRW model,
is equal to the numerically determined super-di�usive exponent γ ≈ 1.64. Formally, the
observed self-similar evolution implies the existence of a scaling function F satisfying
P∆θ = t−γ/2F (χ).

It is observed that the scaling function departs signi�cantly from a Gaussian distribu-
tion (represented by a dashed grey line for comparison, which is representative of di�usive
processes). Also, the asymmetry in the �ights is re�ected in the asymmetry of the scaling
function. Moreover, according to the CTRW, it should exhibit an algebraic decay of the
χ < 0 tail of the form F ∼ χ−(α−+1) with α− = µf − 1, a results fully consistent with
the numerically obtained values µf ≈ 2.2 and α− ≈ 1.2. For the χ > 0 tail, within the
CTRW, the exponential decay of P+

flight implies, consistent with the numerical results,
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Figure 10: Rescaled PDF of poloidal displacements at di�erent times: ωct = 9·106 (dashed
magenta), ωct = 9.5 · 106 (dotted red) and ωct = 107 (solid black). The dotted-dashed
grey line corresponds to a Gaussian PDF. The insets represent the log-log plots of the
tails, showing the asymmetric algebraic decays.

α+ > 2. This is represented in the insets of �gure 10 showing the log-log plots of the tails
of the PDF.

5. Conclusions and future work

In this paper, we have explored the fundamental mechanism of the transport of
energetic particles in the presence of an oscillating radial electric �eld in axi-symmetric
tokamak magnetic equilibria. Such scenarios can be found in the presence of EGAMs,
for instance Fisher et al. (2012); Nazikian et al. (2008); Zarzoso et al. (2018). We show
in particular that initially integrable orbits are transformed into chaotic regions that
can intercept the wall of the tokamak, leading to losses of energetic particles. We have
provided numerical evidence of fractal-like patterns and anomalous exit time statistics
of EP, exhibiting algebraic decay in sharp contrast with the expected exponential exit
time in the case of radial di�usive transport. We have shown that the algebraic loss time
decay is the result of Lévy �ights that lead to super-di�usive poloidal transport and an
asymmetric non-Gaussian (Lévy) PDF of displacements. Since the radial displacement
is related to the sign of the time derivative of the poloidal angle, the observed poloidal
displacement asymmetry translates into a radial displacement asymmetry and energetic
particles can spend probabilistically speaking more time in the inner region of the
tokamak than in the outer one. These results might have an important impact on the
con�nement time of EP needed to achieve sustained fusion in burning plasmas, in addition
to the potential generation of a toroidal net torque resulting from the poloidal asymmetry
of the particle displacements.
The work presented in this paper opens the doors to further analyses that have not been

addressed here. First, the observed anomalous radial transport should be quanti�ed in the
presence of other mechanisms that could be responsible of di�usive transport. Second,
the dependence of the transport (di�usive, super- or sub-di�usive) on the parameters
characterizing the oscillating radial electric �eld should be studied in detail. Third,
quantifying the generation of mometum due to the radial asymmetric displacement is



Anomalous di�usion of energetic particles 15

essential in order to assess its e�ect in future plasma scenarios. Finally, it is known
that fractional di�usion results from the continuum (�uid) limit of the (kinetic) CTRW
model, see e.g. (del Castillo-Negrete et al. 2004; Metzler & Klafter 2000). Accordingly,
the observed self-similar dynamics of the PDF of poloidal displacements, along with the
consistency of the numerically determined anomalous exponents µe, γ, µf , α

− and α+

with the CTRW predictions, opens the possibility to describe EP transport using non-
local transport models based on fractional derivatives (del Castillo-Negrete 2006). These
four directions of research will be explored in a forthcoming publication.
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