

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible

This is an author's version published in: https://oatao.univ-toulouse.fr/22090

Official URL :

https://doi.org/10.1145/3132847.3132897

To cite this version:

Thonet, Thibaut and Cabanac, Guillaume and Boughanem, Mohand and Pinel-Sauvagnat, Karen *Users Are Known by the Company They Keep: Topic Models for Viewpoint Discovery in Social Networks*. (2017) In: CIKM 2017 International Conference on Information and Knowledge Management, 6 November 2017 - 10 November 2017 (Singapore, Singapore).

Users Are Known by the Company They Keep: Topic Models for Viewpoint Discovery in Social Networks

Thibaut THONET Guillaume CABANAC Mohand BOUGHANEM Karen PINEL-SAUVAGNAT

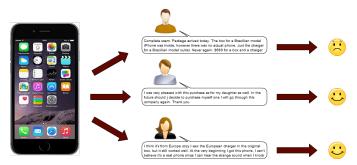
IRIT, Université de Toulouse, CNRS

7 November 2017

Motivation

Massive amount of opinions on the Web Need for automated methods to identify, classify and summarize opinions

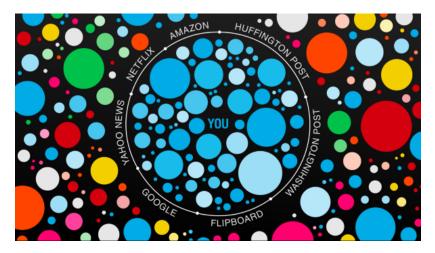
■ Traditional opinion mining research mainly focused on product/service review analysis ⇒ Identification of a review's polarity w.r.t. a target: positive/negative



Images and reviews taken from Wikipedia and Amazon.com, February 2016.

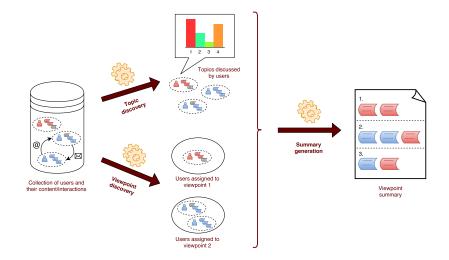
Motivation

... But **need** to go beyond plain positive/negative opinions \implies **viewpoint-based opinions** E.g., to deal with **filter bubbles** [Pariser, 2011] & **echo chambers** [Sunstein, 2009]



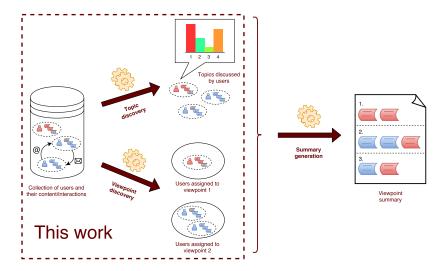
Task

How to mitigate filter bubbles & echo chambers? \implies Build unbiased viewpoint summaries

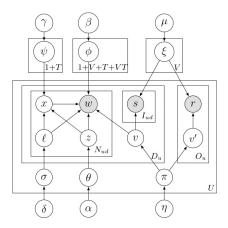


Task

This work is the first step: discover viewpoints and topics from social networking data

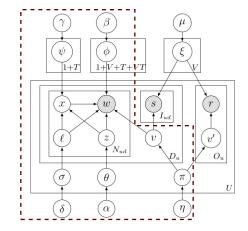


We defined the **Social Network Viewpoint Discovery Model** to jointly discover topics and viewpoints from posted **text content** and **social interactions**



We defined the **Social Network Viewpoint Discovery Model** to jointly discover topics and viewpoints from posted **text content** and **social interactions**

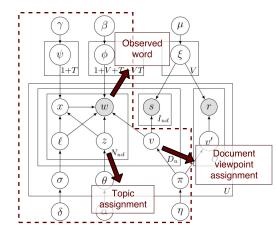
Text content component



We defined the **Social Network Viewpoint Discovery Model** to jointly discover topics and viewpoints from posted **text content** and **social interactions**

Text content component

- Observed data: tokens occurring in documents posted by users
 3 nested plates
- Latent topics assigned to each token
- Latent viewpoints assigned at document-level

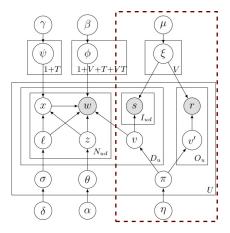


We defined the **Social Network Viewpoint Discovery Model** to jointly discover topics and viewpoints from posted **text content** and **social interactions**



We defined the **Social Network Viewpoint Discovery Model** to jointly discover topics and viewpoints from posted **text content** and **social interactions**

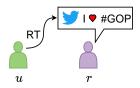
Social interaction component



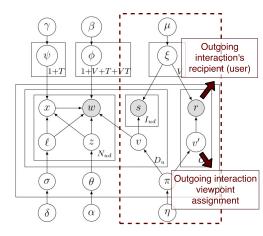
We defined the **Social Network Viewpoint Discovery Model** to jointly discover topics and viewpoints from posted **text content** and **social interactions**

Social interaction component

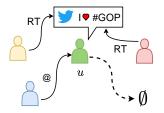
Outgoing interactions for user u =interactions initiated by u on another user (recipient r)



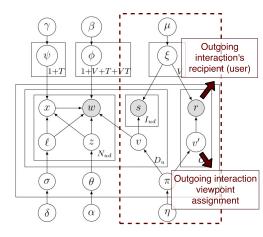
Following **SN-LDA** from [Sachan+, WSDM '14], viewpoints assigned to outgoing interactions (**homophily**)



We defined the **Social Network Viewpoint Discovery Model** to jointly discover topics and viewpoints from posted **text content** and **social interactions**



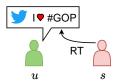
 \implies We propose to also exploit incoming interactions



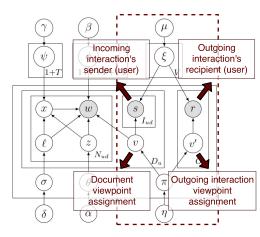
We defined the **Social Network Viewpoint Discovery Model** to jointly discover topics and viewpoints from posted **text content** and **social interactions**

Social interaction component

Incoming interactions for user u =interactions initiated by another user (sender s) on u



Viewpoint assigned to the **document** being interacted upon

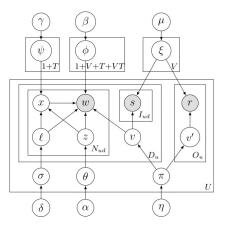


We defined the **Social Network Viewpoint Discovery Model** to jointly discover topics and viewpoints from posted **text content** and **social interactions**

Posterior inference

Approximate inference based on Collapsed Gibbs Sampling

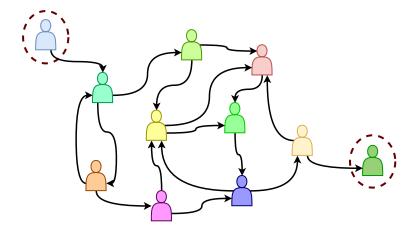
- Dirichlet/Bernoulli distributions σ, ψ, θ, π, φ, ξ integrated out
- Successively **sample** discrete latent variables *ℓ*, *x*, *z*, *v*, *v'* from their posterior distributions (i.e., given observations *w*, *s*, *r*)



Limits of SNVDM's Social Interaction Component

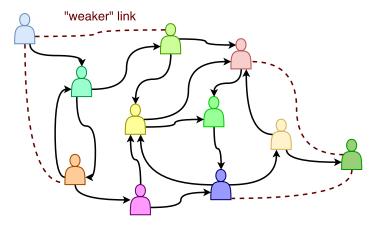
Some users have very few social interactions

⇒ Difficult to identify their viewpoints based on scarce direct interactions



Limits of SNVDM's Social Interaction Component

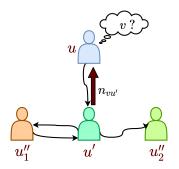
We propose to extend SNVDM to leverage "aquaintances of acquaintances" (\approx friends of friends) How? \implies Generalized Pólya Urn scheme

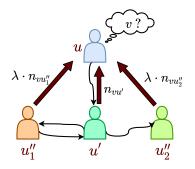


SNVDM-GPU: Extension of SNVDM based on Generalized Pólya Urn

Using **Generalized Pólya Urn** in SNVDM requires minor changes in collapsed Gibbs sampling E.g., for outgoing interaction o from user u on user u':

 $\begin{aligned} p(v'_{uo} = v | r_{uo} = u', \text{rest}) & p(v'_{uo} = v | r_{uo} = u', \text{rest}) \\ \propto \frac{n_{uv} + \eta \frac{1}{V}}{n_{u.} + \eta} \cdot \frac{n_{vu'} + \mu \frac{1}{U}}{n_{v.} + \mu} & \propto \frac{n_{uv} + \eta \frac{1}{V}}{n_{u.} + \eta} \cdot \frac{\sum_{u''=1}^{U} \mathbb{A}_{u''u'} n_{vu''} + \mu \frac{1}{U}}{\sum_{u''=1}^{U} \mathbb{A}_{u''} n_{vu''} + \mu} \end{aligned}$





Experimental Setup: Datasets & Evaluated Models

■ Twitter datasets from [Brigadir+, WebSci '15] on the 2014 Scottish Independence Referendum (v = Yes/No) and the 2014 US Midterm Elections (v = Democrat/Republican)

Dataset	#Users		#Tweets	#Tokens	Vocabularv	#Interactions
Palabol	Yes/Dem.	No/Rep.			,	
Indyref	589	575	270,075	2,043,204	38,942	696,654
Midterms	767	778	113,545	975,199	25,312	241,741

Experimental Setup: Datasets & Evaluated Models

■ Twitter datasets from [Brigadir+, WebSci '15] on the 2014 Scottish Independence Referendum (v = Yes/No) and the 2014 US Midterm Elections (v = Democrat/Republican)

Dataset	#Users		#Tweets #Tok	#Tokens	Vocabularv	#Interactions
	Yes/Dem.	No/Rep.			, , , , , , , , , , , , , , , , , , , ,	
Indyref	589	575	270,075	2,043,204	38,942	696,654
Midterms	767	778	113,545	975,199	25,312	241,741

State-of-the-art baselines:

- Topic-Aspect Model (TAM) from [Paul+, AAAI '10]
 - \implies Only text content to discover viewpoints and topics
- Social Network Latent Dirichlet Allocation (SN-LDA) from [Sachan+, WSDM '14]
 - \implies Text content and outgoing interactions to discover communities (\approx viewpoints) and topics
- Viewpoint and Opinion Discovery Unification Model (VODUM) from [Thonet+, ECIR '16] Text content to discover viewpoints and topics, and parts of speech to distinguish between topic words and viewpoint-topic words

Experimental Setup: Datasets & Evaluated Models

■ Twitter datasets from [Brigadir+, WebSci '15] on the 2014 Scottish Independence Referendum (v = Yes/No) and the 2014 US Midterm Elections (v = Democrat/Republican)

Dataset	#Users		#Tweets #Tok	#Tokens	Vocabularv	#Interactions
	Yes/Dem.	No/Rep.			, , , , , , , , , , , , , , , , , , , ,	
Indyref	589	575	270,075	2,043,204	38,942	696,654
Midterms	767	778	113,545	975,199	25,312	241,741

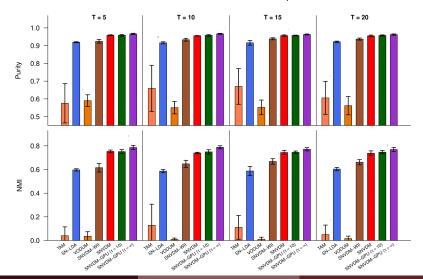
State-of-the-art baselines:

- Topic-Aspect Model (TAM) from [Paul+, AAAI '10]
- Social Network Latent Dirichlet Allocation (SN-LDA) from [Sachan+, WSDM '14]
- Viewpoint and Opinion Discovery Unification Model (VODUM) from [Thonet+, ECIR '16]

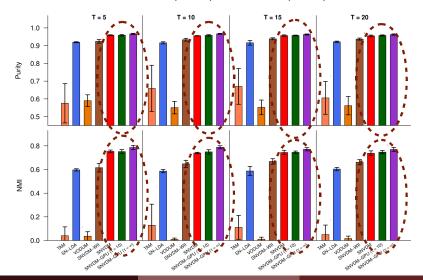
Proposed models:

- SNVDM
- **SNVDM-GPU** ($\tau = 10$): only **10 most interacting acquaintances** used in Generalized Pólya Urns
- **SNVDM-GPU** ($\tau = \infty$): all acquaintances used in Generalized Pólya Urns

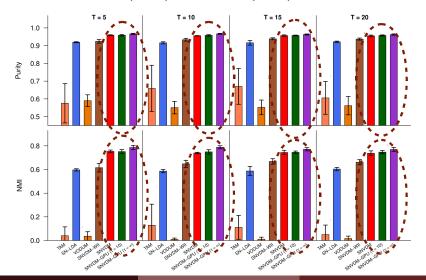
Clustering of users' viewpoints on **Indyref** in terms of **Purity** and **NMI** (error bars = 95% CI) Observation 1: consistent results across different numbers of topics



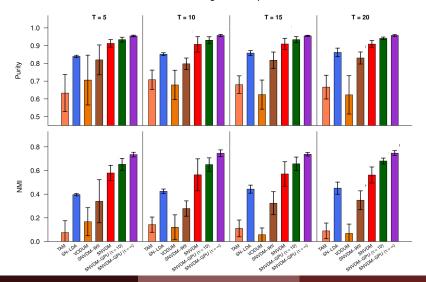
Clustering of users' viewpoints on **Indyref** in terms of **Purity** and **NMI** (error bars = 95% CI) Observation 2: **SNVDM**, **SNVDM-GPU** ($\tau = 10$), **SNVDM-GPU** ($\tau = \infty$) > all baselines



Clustering of users' viewpoints on **Indyref** in terms of **Purity** and **NMI** (error bars = 95% CI) Observation 3: **SNVDM-GPU** ($\tau = \infty$) > **SNVDM-GPU** ($\tau = 10$) > **SNVDM** \implies GPU beneficial

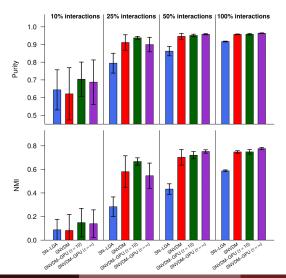


Clustering of users' viewpoints on **Midterms** in terms of **Purity** and **NMI** (error bars = 95% CI) Observation 4: similar trends on **Midterms** but greater improvement for our models over baselines



Evaluation: Impact of Social Network Sparsity

Clustering of users' viewpoints on **Indyref** for different degrees of network sparsity (T = 10) Observation: performance degraded for **lower percentage of interactions**



Evaluation: Qualitative Analysis

Most probable topic words and viewpoint-topic words for topics from Indyref and Midterms

Topic: Scottish independence			Topic: Energy and resources			
Neutral	Viewpoint: Yes	Viewpoint: No	Neutral	Viewpoint: Dem.	Viewpoint: Rep.	
#indyref	#voteyes	#indyref	energy	#actonclimate	#4jobs	
scotland	yes	uk	house	climate	#obamacare	
independence	scotland	salmond	new	#p2	#jobs	
vote	independence	#bettertogether	gas	change	gop	
campaign	westminster	#scotdecides	natural	#climatechange	obama	
scottish	vote	separation	#energy	clean	bills	
uk	independent	currency	#ff	oil	jobs	
people	country	thanks	#kxl	energy	house	
future	#yes	today	support	#gop	act	
independent	#scotland	say	economic	seec	watch	

- Reasonable coherence of topic words and viewpoint-topic words
- Topic words indeed unbiased towards any viewpoints
- Use of viewpoint-specific hashtags and mention of different issues for different viewpoints

Conclusion and Research Directions

SNVDM(-GPU): models to jointly discover viewpoints and topics in social networks, leveraging both posted text content and social interactions

Take-home message: social interactions are key for viewpoint discovery in social networks!

- What's next?
 - Integrate time dimension and geolocation, e.g., to analyze candidate support during elections
 - Design a viewpoint summarization framework to provide Internet users with more diversified content and thus mitigate the filter bubble and echo chamber phenomenon

Acknowledgments & Questions

Thanks SIGIR, SIGWEB and the US NSF for providing travel grants!

Questions?

@tthonet thonet@irit.fr

@gcabanac cabanac@irit.fr

@MohBoughanem boughanem@irit.fr

@karenatw sauvagnat@irit.fr

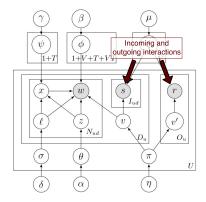
Code and data available at: https://github.com/tthonet/SNVDM

References

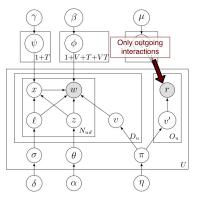
- Brigadir, I., Greene, D., & Cunningham, P. (2015). Analyzing Discourse Communities with Distributional Semantic Models. In Proc. of WebSci '15.
- Newman, D., Asuncion, A., Smyth, P., & Welling, M. (2009). Distributed Algorithms for Topic Models. J. Mach. Learn. Res., 10, 1801–1828.
- Pariser, E. (2011). The Filter Bubble: What the Internet Is Hiding from You. The Penguin Press.
- Paul, M. J., & Girju, R. (2010). A Two-Dimensional Topic-Aspect Model for Discovering Multi-Faceted Topics. In Proc. of AAAI '10 (pp. 545–550).
- Sachan, M., Dubey, A., Srivastava, S., Xing, E. P., & Hovy, E. (2014). Spatial Compactness meets Topical Consistency: Jointly Modeling Links and Content for Community Detection. In Proc. of WSDM '14 (pp. 503–512).
- Sunstein, C. R. (2009). Republic.com 2.0. Princeton University Press.
- Thonet, T., Cabanac, G., Boughanem, M., & Pinel-Sauvagnat, K. (2016). VODUM: A Topic Model Unifying Viewpoint, Topic and Opinion Discovery. In Proc. of ECIR '16 (pp. 533–545).

Appendix: Baseline SNVDM-WII

Ablated version of SNVDM: SNVDM-WII (without incoming interactions)



SNVDM vs



... SNVDM-WII

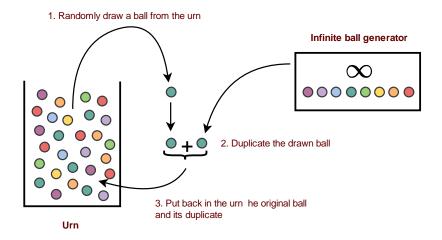
Appendix: Execution Time

Execution time (in seconds) of one Gibbs sampling iteration on Indyref (with T=10) and Midterms (with T=15)

	Indyref	Midterms
TAM	1.45	0.87
SN-LDA	1.18	0.64
VODUM	2.78	1.85
SNVDM-WII	2.08	1.08
SNVDM	2.49	1.15
SNVDM-GPU ($\tau = 10$)	3.47	1.34
SNVDM-GPU ($ au = \infty$)	14.67	2.56

Appendix: Simple Pólya Urn Scheme

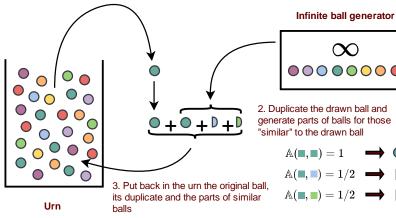
The compound **Dirichlet-Multinomial** distribution (used in LDA-based topic models) can be interpreted as an **urn sampling metaphor** with an **over-replacement** policy



Appendix: Generalized Pólya Urn Scheme

The Simple Pólya Urn scheme can be generalized by modifying the replacement rule to exploit similarities between balls' colors [Mahmoud, 2008]

1. Randomly draw a ball from the urn



→ D

D

Appendix: SNVDM-GPU

Using **Generalized Pólya Urn** in SNVDM requires minor changes in collapsed Gibbs sampling E.g., for outgoing interaction o from user u on user u':

The **addition matrix** A defines the **weight** to put on count $n_{vu''}$ for each u'':

$$\mathbb{A}_{u'u''} = \begin{cases} 1 & \text{if } u' = u'', \\ \lambda & \text{if } u'' \text{ is among top } \tau \text{ acquaintances of } u', \\ 0 & \text{otherwise} \end{cases}$$

with $0 \le \lambda \le 1$ ($\lambda = 0 \Longrightarrow$ "vanilla" SNVDM) and $\tau \in \mathbb{N}$

