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Abstract.  The next generation of radio telescopes, such as the Square Kilometer Ar-
ray (SKA), will need to process an incredible amount of data in real-time. In addition,
the sensitivity of SKA will require a new generation of calibration and imaging software
to exploit its full potential. The wide-field direction-dependent spectral deconvolution
framework, called DDFacet, has already been successfully used in several existing SKA
pathfinders and precursors like MeerKAT and LOFAR. However, DDFacet has been de-
veloped and optimized for single node HPC systems. DDFacet is a good candidate for
being integrated into the SKA computing pipeline and should, therefore, have the pos-
sibility to be run on a large multi-node HPC system for real-time performance. The
objective of this work is to study the potential parallelism of DDFacet on multi-node
HPC systems. This paper presents a new parallelization strategy based on frequency
domains. Experimental results with a real data set from LOFAR show an optimal paral-
lelization of the calculations in the frequency domain, allowing to generate a sky image
more than four times faster. This paper analyses the results and draws perspectives for
the SKA use case.

1. Introduction

The Square Kilometer Array (SKA) is the World’s largest mega-science project , and
also the World’s largest Big Data project and the largest international computing col-
laboration. Thousands of dishes and the million antennas of the SKA equipment will
generate unprecedented scale of data to compute in order to convert them into science
for the astronomers. As an intermediate step towards SKA, LOFAR and MeerKAT
are radiotelescopes already operational, delivering real data to process. Compared with
previous telescopes, such instruments shows that this new generation of radiotelescopes
must take into account direction dependant signal distortions in the computing of data
in order to benefit from the telescope sensitivity. A new generation of calibration and
imaging algorithms are studied by astronomers and implemented in the DDFacet (Di-
rection Dependent Facet) library. This paper presents the results obtained when dis-
tributing DDFacet on a multi-node HPC system. We show how the parallelization
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of the wideband wide-field direction dependent spectral deconvolution algorithms of
DDFacet has been implemented. The challenge is to distribute data and computations
on the distributed memory architecture of a multi-node HPC system.

2. DDFacet: facet based imager

2.1. Wideband widefield direction-dependent spectral deconvolution framework

It is extremely challenging to synthesize high-resolution images with the new genera-
tion of radiotelescope like LOFAR. This latter operates at very low frequency, observ-
ing a wide field of view and combining short and long baselines. The estimation of
the true sky, assuming the Jones terms constant, is done by the imager DDFacet (Di-
rection Dependant Facet)(Tasse & al.). A specificity of DDFacet framework is to solve
the imaging problems due to the DDE by using the faceting approach. The purpose
of faceting is to approximate a wide field of view with many small narrow-field im-
ages. One independent grid is used per-facet and a constant DDE is applied to each
facet. Experience says that we need to split the sky model into a few tens of direction
to describe the spatial variation of the direction-dependent Jones matrices (Shimwell
et al.). DDFacet also incorporates a few deconvolution algorithms that natively incor-
porate and compensate for the DDE. For the next of this paper, every mention of the
deconvolution algorithm will reference the Hybrid Matching Pursuit (HPM) algorithm
described in (Tasse & al.).

2.2. Multi-Core parallel processing and profiling

DDfacet is currently implemented as a functional software based on python and C. A
naive description of the imaging framework is described by Fig la. In this example,
we are working with a set of measured visibility V, covering the frequency band v,
where v can be divided into several frequency channels v;. The imaging framework
consists of calculating through an FFT and degridding the predicted visibilities for a
specific frequency channel from the sky model 7,,. Those are then subtracted from
the measured visibilities V,, producing residual visibilities. The residual visibilities
are then gridded onto a 2D uv-plan with a different plan for each channel. All these
plans are then transformed into the time domain through an FFT~!, forming a residual
image dy. The deconvolution aims to reconstruct the sky iteratively (minor cycle) from
the residual image. After this step, an updated sky model, 771, is generated. This entire
process is repeated in a Major Cycle until the global stopping criteria is reached.

The framework has a native singlenode multiprocess, based on DDFacet’s faceting
image processing, except for the deconvolution part where all the facets are merged.
Each facet ¢ can be processed independently of the others. As shown in Fig. 1, the dif-
ferent facets are computed in parallel on the available processor cores. We performed
a profiling of DDFacet to study the distribution of the total execution time. This pro-
filing has been done using 24 Measurement Sets (or MS file) from the LOFAR survey.
Each MS file contains Visibilities and metadata for a specific frequency channel v;. The
size of the sky image generated was 10.000 x 10.000 pixels. The framework DDFacet
has been run on an Atos Bull dual-socket compute node equipped with Intel Skylake
processors (Intel Xeon Gold 6130) and 192GB RAM DDR4 memory at 3200 MT/s. A
total of 64 cores (1 process per core) could run in parallel on the node. The profile ob-
tained in such conditions is given in figure 1b. This profile shows that the gridding and
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Figure 1.  a-DDFacet single node representation. b-Distribution of the total exe-
cution time of DDFacet running on a single node.

degridding are the most compute-intensive part of the execution, even with the efficient
intra-node multicore parallelization (Tasse & al.).

3. Parallelization on a distributed memory system

We decided to use the natural frequency channel-independent computation as the base
of our distributed memory parallelization scheme. Indeed, since visibilities are stored in
specific MS files for specific frequency channels, MS files are computed independently.
Fig.2 represents the multi-node strategy parallelization. This figure shows an example
where DDFacet is parallelized on k nodes, and visibilities for the frequency band v are
subdivided into N, frequency channels. Each node computes its specific visibilities,
from the frequency channels v;, where v; C v, v; may be composed by one or several
frequency channels, to generate a sub-residual image dy;_; specific to the node. These
sub-residual images are then collected and summed by a single node to create a single
residual image &y. This residual image is identical to the one generated by the single-
node version of DDFacet. The node is also in charge of the deconvolution step to
update the sky model. The model is then broadcasted to all the nodes. It is important
to note that the "per facet" intra-node parallelization is still the same. The software
implementation of this level of parallelism has been done using MPI through mpi4py
on python (Gonzalez 2019).

4. Experimental results

The experiments have been performed on the same type of nodes as for the profiling
presented in subsection 2.2 with dual-socket Intel Xeon Gold 6130. The nodes were
interconnected using a Mellanox EDR interconnect. The performance tests have been
done on a number of nodes multiple of the number of MS files used, which corresponds
in our case to 2, 3, 4, 6, 8, 12, and 24 nodes, representing a total of 1536 logical cores.
The profiling of one node depending on the number of nodes used for the experiment is
shown by 3a. This result shows that gridding/degridding steps are efficiently distributed
over nodes since on 24 nodes. This result is confirmed observing the speedup of only
the gridding/degridding over nodes in figure 3b.
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Figure 2.  Multi-node parallelization on independent frequency channels.
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Figure 3.  a- Profiling of DDFacet depending on the number of nodes. b- Grid-
ding/Degridding speedup of the distributed version of DDFacet.

5. Conclusion and Future Work

The results of our MPI parallelization over several nodes on the existing shared memory
parallel implementation with a real data set from LOFAR have been analyzed. The
hybrid parallelization has speedup the image generation of the radio sky up to a factor
of 4.2 for the whole program and up to 16 for the Gridding/Degridding kernel on 24
compute nodes. The acceleration of the whole program is limited by the size of the data
set used for this study, which won’t be the case with the large data sets of SKA. We
showed in this paper that the parallelization potential of DDFacet on multi-node HPC
systems is very high. This potential is a crucial feature for the selection of DDFacet in
the SKA final computing system. Futur work will aim to distribute intensive kernels on
co-processors like GPUs.
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