
HAL Id: hal-02611036
https://hal.science/hal-02611036v2

Preprint submitted on 17 Aug 2020 (v2), last revised 1 Dec 2020 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallelisation of the Wide-Band Wide-Field Spectral
Deconvolution Framework DDFacet on Distributed

Memory HPC System
Nicolas Monnier, Erwan Raffin, Cyril Tasse, Jean-François Nezan, Oleg M

Smirnov

To cite this version:
Nicolas Monnier, Erwan Raffin, Cyril Tasse, Jean-François Nezan, Oleg M Smirnov. Parallelisation
of the Wide-Band Wide-Field Spectral Deconvolution Framework DDFacet on Distributed Memory
HPC System. 2020. �hal-02611036v2�

https://hal.science/hal-02611036v2
https://hal.archives-ouvertes.fr


Parallelisation of the wide-band wide-field spectral
deconvolution framework DDFacet on distributed

memory HPC system
Nicolas Monnier∗†, Erwan Raffin∗, Cyril Tasse‡, Jean-François Nezan§, Oleg M. Smirnov¶

∗CEPP - Center for Excellence in Performance Programming, Atos Bull, 35700 Rennes, France
†Univ Paris-Saclay, CNRS, Centralesupelec, L2S, 91912 Gif sur Yvette cedex, France
‡GEPI, Observatoire de Paris, CNRS, Univ Paris Diderot, 92190 Meudon, France
§Univ Rennes, INSA Rennes, IETR, CNRS UMR6164, 35700 Rennes, France

¶SKA South Africa, Pinelands, 7405 South Africa

Abstract—The next generation of radio telescopes, such as
the Square Kilometer Array (SKA), will need to process an
incredible amount of data in real-time. In addition, the sensitivity
of SKA will require a new generation of calibration and imaging
software to exploit its full potential. The wide-field direction-
dependent spectral deconvolution framework, called DDFacet,
has already been successfully used in several existing SKA
pathfinders and precursors like MeerKAT and LOFAR. However,
DDFacet has been developed and optimized for single node HPC
systems. DDFacet is a good candidate for being integrated into
the SKA computing pipeline and should, therefore, have the
possibility to be run on a large multi-node HPC system for real-
time performance. The objective of this work is to study the
potential parallelism of DDFacet on multi-node HPC systems.
This paper presents a new parallelization strategy based on
frequency domains. Experimental results with a real data set
from LOFAR show an optimal parallelization of the calculations
in the frequency domain, allowing to generate a sky image more
than four times faster. This paper analyses the results and draws
perspectives for the SKA use case.

Index Terms—High Performance Computing, Square Kilome-
ter Array, DDFacet, Parallelization

I. INTRODUCTION

The Square Kilometer Array (SKA) is the World’s largest
mega-science project [1]. Besides building a radio telescope
observatory to make fundamental discoveries about the uni-
verse over the next 50 years with the broadest range of
science of any facility worldwide, it is also the World’s largest
Big Data project and the largest international computing
collaboration. Thousands of dishes and the million antennas
of the SKA equipment will generate unprecedented scale of
data to compute in order to convert them into science for the
astronomers. The equipment will be built in South Africa’s
Karoo region and Western Australia’s Murchison Shire for
many scientific and technical reasons. Processing the vast
quantities of data produced by the SKA will require very high-
performance central supercomputers capable of in excess of
100 petaflops of raw processing power. The data computations
will start on site and distributed all over the World.

As an intermediate step towards SKA, MeerKAT is a
radiotelescope already operational, delivering real data to
process [2]. First images of the sky have been provided by
MeerKAT in March 2017 from 16 dishes and in July 2018
from 64 dishes. It delivered unprecedented resolution and
image quality. The raw data provided by MeerKAT in a few
hours involves the computations of 1011×109 data to process.
Compared with previous telescopes, MeerKAT shows that
this new generation of radiotelescopes must take into account
direction dependant signal distortions in the computing of
data in order to benefit from the telescope sensitivity. A new
generation of calibration and imaging algorithms are studied
by astronomers and implemented in the DDFacet (Direction
Dependent Facet) library. As data from MeerKAT can be
stored, previous work on DDFacet aims to reduce the com-
putation time, but real-time is not mandatory. Computations
are shared inside a single HPC node with shared memory.

The SKA deployment will be done into two phases: SKA1
in 2020/2024 and SKA2 in 2030+. SKA1-LOW will be made
up of 130 000 phase antennas in Australia and SKA1-MID
of 200 dishes in South Africa. SKA1-MID will produce
1013×1011 data to compute (10 000 times more than Meerkat).
SKA2 in 2030+ will scale by a factor 10 the number of dishes.
SKA will thus provide too much data to be stored, which
means than the computations of the calibration and imaging
algorithms will have to be done in real-time. The challenge of
SKA in terms of computing is huge, and a dedicated multi-
node HPC system will have to be designed.

This paper presents the results obtained when distributing
DDFacet on a multi-node HPC system. We show how the
parallelization of the wideband wide-field direction-dependent
spectral deconvolution algorithms of DDFacet has been imple-
mented. The challenge is here to distribute data and computa-
tions on the distributed memory architecture of a multi-node
HPC system, especially when addressing the balance between
data transfers between compute nodes and performance.

The Layout of this paper is as follows. After the related
work presented in section II, an overview of DDFacet is given



in section III. The distributed memory parallelization scheme
we implemented is described in section IV, the experiments we
performed, and the associated results are presented in section
V. Finally, conclusion and future work are found in section
VI.

II. RELATED WORK

Many different imager exist in radio-astronomy. Each has
specific specifications depending on the targeted radiotele-
scope or the targeted hardware to compute on. The main
reference in the domain is CASA (Common Astronomy
Software Applications) [3], which was developed to support
data post-processing needs of radio astronomical telescopes
such as ALMA and VLA in the 90’. CASA package is also
continuously updated to support the most recent scientific
advances with the third generation of radiotelescope Imaging.
A new generation of algorithms is under development to take
the most of the considerable number of antennas in SKA and
to take into account real-time and energy constraints of the
SKA.

The very popular imagers as the WSClean [4] or the
ASKAPSoft [5] are widely used. Moreover, a lot of research
and engineering is done to build new imagers that could scale
and handle the data from the SKA radio telescope and take the
Direction Dependent effects (DDE) into account. For instance,
in [6], an uv-faceting algorithm allows a multi-node multi-
GPU parallelization to deal with wide-field effects of recent
radiotelescopes. Recently, Veenboer et al. presented innovative
work with Image Domain Gridding algorithm on GPU [7]
and FPGA [8]. The work from Young et al. on A-stacking
framework [9] or from Sullivan et al. about Fast Holographic
Deconvolution [10] are also alternative ways to deal with these
effects. Most of the effort in the domain do not consider a full
pipeline but is focused on the gridding/degridding algorithms,
which are the most computing demanding algorithms of the
Imaging framework in the case of SKA.

This paper presents the first 3rd generation of calibration
and imaging pipeline parallelized on shared and distributed
memory, DDFacet, which is mandatory to handle the data
deluge envisioned by the SKA.

III. DDFACET: FACET BASED IMAGER

This section presents the facet based imager DDFacet with
its main characteristics. A focus on its software architecture,
including the shared memory parallelization scheme already
used, is also given.

A. Imaging in radio interferometry

An interferometer array is a network of antennas and
dishes distributed spatially on earth (or space). Each antenna’s
pair is defined as a baseline (physical distance between the
antennas). Each baseline, at a time t and frequency ν generate
a sample by correlating the signals of these two antennas.
This measurement is called visibility. For a non-polarized
interferometer, the number of visibilities generated is:
Nvis = nb baseline x t integ x nb channel, where t integ

is the number of sample for one baseline during the integration
time, nb channel is the number of frequency channel.

The Radio Interferometric Measurement Equation (RIME
[11]) describes the relationship between the sky model and the
various direction-dependent and direction-independent Jones
matrices, map to the measured visibilities as a linear transfor-
mation. For a given antenna pair pq, at time t and frequency
ν, the RIME is :

Vmeas
pq,tν = Gptν

(∫
Dptν,sKp,sIsK

H
q,sD

H
qtν,sds

)
GH
qtν + ε

(1)
Where Gptν is the 2x2 direction-independent Jones matrix

for the antenna p, Dptν,s is the 2x2 direction-dependent Jones
matrix, Kp,s is the effect of the array geometry and correlator
and is purely scalar, such as

Kp,sK
H
q,s = e−2iπ(ul+vm+w(n−1))

, Is is the four-polarization sky contribution for the direction
s = (l,m, n), and ε is a 2x2 random matrix following a
normal distribution.

If Gpq = G∗
qtν ⊗ Gptν and J pq,s = D∗

qtν,s ⊗ Dptν,s

are the direction-independent and direction-dependent 4x4
Mueller matrices for the baseline pq, at time t and frequency
ν, then eq (1) can be written :

V ec(Vmeas
pq,tν ) = Gpq

∫
Dpq,sV ec(Is)e

−2iπ(ul+vm+w(n−1)+ε

(2)
Where V ec() is the vectorization operator and ⊗ the Kro-

necker product. The effects in Gpq describe the direction-
independent effects such as the individual station electronics,
or their clock drifts and offsets. The effects in Dpq,s describes
the DDE, which include the ionospheric effect such as the
Faraday rotation or phase shift, and the phased array station’s
beam that depend on time, frequency and antenna.

From eq (2), if the W -term (e−2iπw(n−1)) and the DDE
(J pq) are not taken into account, the relation between the
sky and the visibilities becomes a Direct Fourier Transform
(DFT). Since the cost of the DFT, O(NvisN

2
pix), becomes

quickly prohibitive, we rather use the Fast Fourier Transform
(FFT ) algorithm (O(N2

pixlogNpix)). However, the visibilities
are not sampled on a uniform grid, which is mandatory to use
the FFT . To generate a sky image, the visibilities are first
gridded on a uniform grid by applying a convolution, and
then a 2D inverse FFT is performed on the grid to obtain the
so-called dirty image ŷ. The w-term and the DDE from eq (2)
are taken into account during the gridding step. In a similar
way, we define degridding as the step to obtain visibilities
from the Fourier transform of the discretized sky image.

To obtain the best approximation of the true sky, a CLEAN
Cotton-Schwab algorithm is often used during the imaging
step (gridding and inverse FFT ) [12]. After the imaging
step, one or more ”bright” sources are extracted and added
to our sky model π̂ through a deconvolution step. From this



sky model, the visibilities are predicted and subtracted to the
measure visibilities. This process is then repeated until the sky
model converges to the true sky.

B. wideband wide-field direction-dependent spectral deconvo-
lution framework

It is extremely challenging to synthesize high-resolution
images with the new generation of radiotelescope like LOFAR.
This latter operates at very low frequency, observing a wide
field of view and combining short and long baselines.

The estimation of the true sky I, assuming the Jones terms
constant, from eq (2) is done by the imager DDFacet (Di-
rection Dependant Facet) [13] [15]. A specificity of DDFacet
framework is to solve the imaging problems due to the DDE
by using the faceting approach. The purpose of faceting is to
approximate a wide field of view with many small narrow-
field images. One independent grid is used per-facet and a
constant DDE Dpq,sϕ (where sϕ is the direction of the facet
ϕ) is applied to each facet. Experience says that we need to
split the sky model into a few tens of direction to be able to
describe the spatial variation of the direction-dependent Jones
matrices [16].

DDFacet also incorporates a few deconvolution algorithms
that natively incorporate and compensate for the DDE. For
the next of this paper, every mention of the deconvolution
algorithm will reference the Hybrid Matching Pursuit (HPM)
algorithm described in [15].

C. Multi-Core parallel processing

DDfacet is currently implemented as a functional software
based on python and C for the intensive computational kernels.
A naive description of the imaging framework is described
by Fig 1. In this example, we are working with a set of
measured visibility Vν covering the frequency band ν , where
ν can be divided into several frequency channels νi, each
channel covering more or less the same bandwidth. The
imaging framework consists of calculating through an FFT
and degridding the visibilities for a specific frequency channel
from the sky model π̂νi for that specific frequency. Those are
then subtracted from the measured visibilities Vνi producing
residual visibilities. The residual visibilities are then gridded,
for each channel, onto a 2D uv-plan with a different plan for
each channel. All these plans are then transformed into the
time domain through an FFT−1, forming a residual image
δŷ which is a cube made up of slices containing information
for a specific frequency channel. Each Minor Cycle of the
deconvolution task aims to extract the brightness pixel of the
residual image and to remove information around this pixel
due to the Point Spread Function (PSF). The position of the
pixel extracted is then added to the sky model. The number
of Minor Cycles depends on a threshold set by the user and
usually also on the value of the current brightness pixel. After
the execution of Minor Cycles, an updated model π̂+1 of the
sky is generated. This entire process is repeated in a Major
Cycle until the global stopping criteria, also set by the user,
is reached.

The framework has a native single-node multiprocess ex-
ecution hand-written for an optimal asynchronous behaviour
between the computational and I/O phases, based on a mimic
of the Concurrent Futures python module1. The main process
of the imager manages a bunch of workers, where each worker
is a process, depending on the number of cores available or set
by the user. The main process then dispatches the different jobs
in a dedicated queue, a compute queue for the computational
jobs, or an I/O queue for the I/O relative jobs. Thus, each
available worker takes and executes a job from these queues
when they are not empty.

DDFacet is working on a facetted image except for the
deconvolution part where all the facets are merged. Each
facet ϕ can be processed independently of the others. As
shown in Fig. 1, for each frequency channel, the FFT ,
FFT−1, gridding and degridding are computed per facet.
Thus, these algorithms can be computed in parallel on the
available processor cores.

.

Fig. 1. DDFacet Single Node representation. Where ϕ is a facet, π is the
sky model, gs is the gridding result and ν contains the visibilies for a set of
frequencies νi.

D. Profiling

We performed a profiling of DDFacet to study the distribu-
tion of the total execution time. This profiling has been done
using 24 Measurement Sets (or MS file) from the LOFAR
survey and covering the 120MHz-165MHz frequency band.
Each MS file contains Visibilities and metadata for a specific
frequency channel νi. The size of the sky image generated was
10.000 x 10.000 pixels. The framework DDFacet has been run
on an Atos Bull dual-socket compute node equipped with Intel
Skykake processors (Intel Xeon Gold 6130) and 192GB RAM
DDR4 memory at 3200 MT/s. Each of those processors has
16 physical cores that can be viewed as 32 logical cores when
hyperthreading is enabled, so 64 logical cores per compute
node. According to previous performance evaluations, it has

1https://docs.python.org/3/library/concurrent.futures.html



been shown that hyperthreading offers a performance gain
[15]. Thus we enabled it for our experiments. In total 64
processes (1 process per core) could run in parallel on the
node. The profile obtained in such conditions is given in Fig.2.

Fig. 2. Distribution of the total execution time of DDFacet running on a
single node, using logical 64 cores (hyperhtreading enabled) for the intra-
node parallelism.

The total execution time is divided into few main tasks:
gridding/degridding, FFT (also including FFT−1), Glue
Facet corresponding to the fusion of all the facets to cre-
ate a single image, Deconvolution, Save corresponding to
the intermediate and final saving of the sky models or the
final image and the last part called Other including all the
other and not significant computing time. The most critical
function is the intensive compute kernel, which does the
gridding/degridding computation. Indeed, the execution time
of this kernel corresponds to 88% of the total execution time.
The second most important function is the deconvolution and
corresponds to 9% of the total execution time. All the other
times are less significant and will not be discussed in this
paper.

Computing result presented in [15] has shown how the
existing intra-node parallelization is important and efficient to
decrease the gridding time. However, with the huge amount
of data to process in a project like SKA, this result is limited
by the number of cores in a node and will not be able to scale
between. Thus, keeping the same algorithm architecture, a way
to reduce the total time to obtain a sky image is to distribute
the compute over many nodes.

IV. PARALLELIZATION ON A DISTRIBUTED MEMORY
SYSTEM

This section presents three strategies to reduce the latency
of DDFacet, thanks to multi-node parallelization. Then, we
will discuss in more detail the implementation of the chosen
one.

A. Choice of the parallelization strategy

The 1st strategy is the simplest one, based on batch
parallelization. The nodes generate each one independent sky
image. Each node works independently with the others using
an independent data set. The advantage of this solution is
to be very simple to set up and to increase the throughput
highly. However, the latency to generate an image is still
the same, making this strategy not viable for our study case.
Moreover, it is important to note that in the case of SKA,
where many data must be computed in real-time, using only
one node to generate an image of the sky will be a huge
bottleneck. Indeed, a significant amount of memory would
be needed to handle all the data, while current memory is
significantly expensive.

This 2nd strategy is the extension of the existing intra-node
parallelization of DDFacet. The idea here is to extend the facet
parallelization from multi-core to multi-node and multi-core.
In this case, to generate a sky image, each node works on
specific facets of the image, then all the nodes merge their
results on a single node to process the deconvolution step.
In that way, the gridding/degridding most, computing step,
is distributed on several nodes and makes potential latency
gain. However, this method requires a considerable work of
refactoring the existing code since we are working on the
same parallelization level than the existing one. Our goal
here is to modify the code as less as possible, so this solution
becomes hardly doable. Moreover, each facet needs visibility
data from all the frequency channels. Therefore each node
shall access each MS file in memory, and thus this solution
requires a significant amount of memory access.

The 3rd and last strategy is focused on the independence
of the computes between each frequency channel. In this case,
each node will compute visibilities from one or several specific
frequency channels of the same data set. The whole frequency
channels covering the frequency band of our data set. Then, the
result of each node will be merged into one node, which will
do the deconvolution step. The advantage of this solution is,
like the previous one, to dispatch the gridding and degridding
work onto several nodes making possible a potential latency
gain. But, unlike the previous strategy, the nodes compute
visibilities for specific frequency channels; therefore, each
node only needs to access specific MS files corresponding to
these frequencies. Thus, memory access is limited. Finally, the
parallelization is done at another level than the existing one,
making the implementation much easier.

B. Parallelization implementation

The third strategy is based on the data independence
between frequency channels as the data of each frequency
channel is stored in an MS file. Thus, MS files are computed
independently. Fig.3 represents the multi-node third strategy
parallelization. This figure shows an example where DDFacet



is parallelized on k nodes, and visibilities for the frequency
band ν are subdivided into Nν frequency channels. Nν is
set to be a factor of the number of node k. Thus, each node
computes the same number of MS files in order to balance
the workload equally over the nodes. Each node computes
its specific visibilities, from the frequency channels νi, where
νi ⊂ ν, νi may be composed by one or few frequency
channels, to generate a subresidual image δŷ1..k specific to
the node. These subresidual images δŷk are also hyperspectral
cubes containing information only for the frequencies νi
(specific to the node) and 0 for all the other frequencies of
the total frequency band ν. These subresidual images are then
collected and summed by a single node, which we call ”master
node”, to create a single residual image δŷ. This residual image
is identical to the one generated by the single-node version of
DDFacet. The master node is in charge of the deconvolution
step to update the sky model. This model is then broadcasted
to all the nodes. It is important to note that the ”per facet”
intra-node parallelization is still the same.

Fig. 3. Multi-node parallelization on independent frequency channels.

The software implementation of this level of parallelism
has been done using MPI through mpi4py2 on python [19].
Then, each node is seen as a specific rank from 0 to k − 1,
where rank 0 corresponds to the ”Master node”.

The multi-node parallelization has been achieved with suc-
cess. All the results are discussed in section V.

V. EXPERIMENTAL RESULTS

The experiments have been performed on the same type
of nodes as for the profiling presented in subsection III-D
with dual-socket Intel Xeon Gold 6130. The nodes were
interconnected using a Mellanox EDR interconnect. The same
parameters and stopping criteria have been set for each execu-
tion of DDFacet: a final image size of 10000x10000 pixels, an

2https://mpi4py.readthedocs.io/en/stable/

intra-node parallelization on the 64 logical cores, 24 MS files,
and stopping criterion depending on the quality of the final
image. The performance tests have been done on a number
of nodes multiple of the number of MS files used, which
corresponds in our case to 2, 3, 4, 6, 8, 12, and 24 nodes,
representing a total of 1536 logical cores. The speedup result
is shown by Fig 4.

Fig. 4. Speedup of the distributed version of DDFacet over nodes.

As shown in the above figure, the speedup increases de-
pending on the number of nodes used. However, the curve
is not linear, and the gain on 24 nodes (speedup of 4.182)
is questionable regarding the gain on 12 nodes (speedup of
3.699). To explain this global behaviour, we analyzed the
distribution of the total execution time on the master node
for each case, as shown in the Fig 5.

Fig. 5. Evolution of the normalized execution time of DDFacet depending
on the number of nodes

On Fig 5, the step on one node corresponds to the profiling
shown in Fig 2 in another shape. We can note, from two nodes,
a new MPI time (light blue in the figure) corresponding to
the time spends in MPI communication and all the waiting
time due to the synchronized communications. As the gridding
(dark blue in the figure) is the only part distributed over nodes,



the time per node to compute the gridding and degridding
operations decrease depending on the number of nodes used.
On a 24 nodes server, the gridding/degridding step represents
23% of the total executing time, while it represented 88%
on the single node implementation. Deconvolution represents
40%, MPI 17%, and the addition of all the other timings
represents 20%.

These results show that the speedup is limited by all
the timings which are not distributed over nodes. The ideal
speedup equal to the number of nodes is hardly obtained due to
data transfers. The gridding/degridding distributed over nodes
shown in Fig 6 is close to the ideal speedup being linear with
the number of nodes and being 16 for an execution onto 24
nodes. To obtain such a speedup to the whole imager, we have
to ensure that: tgrid/degrid >> tdeconv+tmpi+tother, what is
expected when working on a much bigger test case like SKA1.

Fig. 6. Gridding/Degridding speedup of the distributed version of DDFacet
over nodes.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented the parallelization of DDFa-
caet, a wideband wide-field spectral deconvolution framework
on distributed memory HPC system. DDFacet is one of the
best candidates as an imager for SKA regarding its capacities
to deal with DDEs from new generation of radiotelescope.

The results of our MPI parallelization over several nodes
on the existing shared memory parallel implementation with a
real data set from LOFAR have been analyzed. The obtained
hybrid parallelization has speedup the image generation of the
radio sky up to a factor of 4.2 for the whole program and up to
16 for the Gridding/Degridding kernel on 24 compute nodes.
The acceleration of the whole program is limited by the size
of the data set used for this study, which won’t be the case
with the large data sets of SKA. We showed in this paper that
the parallelization potential of DDFacet on multi-node HPC
systems is very high. This potential is a crucial feature for
the selection of DDFacet in the SKA final computing system.
Finally, our experiments also show the importance of the data
format for the multi-node parallelization, which is currently
discussed in the project.

For future work, we plan to explore the use of accelerators
as GPUs in perspective with this new hybrid parallelization
scheme to even more reduce the time to solution. Moreover,

we also plan to focus on the algorithmic part of the imager.
Especially on the actual partitioning of the gridding and
degridding steps that make them two independent part of the
algorithm, which could be modify to become a single step.

REFERENCES

[1] Acero, F. and others, “IFrench SKA White Book - The French Com-
munity towards the Square Kilometre Array,” 2017.

[2] O. Smirnov, “Modern Radio Interferometric Imaging Challenges: From
MeerKAT Towards the SKA,” 2018 IEEE International Workshop on
Signal Processing Systems (SiPS), unpublished.

[3] Jaeger, S., “The Common Astronomy Software Application (CASA),”
Astronomical Data Analysis Software and Systems XVII, vol. 394, pp
623, 2008.

[4] Offringa, A. R. and McKinley, B. and Hurley-Walker, and et al.,
“wsclean: an implementation of a fast, generic wide-field imager for
radio astronomy,” Monthly Notices of the Royal Astronomical Society,
vol. 444, pp 606–619, 2014.

[5] M. Whiting and S. M. Ord and D. Mitchell and M. Voronkov and J. C.
Guzman, “2018 2nd URSI Atlantic Radio Science Meeting (AT-RASC),
2018.

[6] Lao Bao-qiang and An Tao and Yu Ang and Guo Shao-guang, “Research
on Parallel Algorithms for uv-faceting Imaging,” Chinese Astronomy
and Astrophysics, vol. 43, pp 424–443, 2019.

[7] Veenboer, Bram and Petschow, Matthias and Romein, John W., “Image-
Domain Gridding on Graphics Processors,” 2017 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pp 545–554,
may 2017.

[8] YVeenboer, Bram and Romein, John W., “Radio-Astronomical Imaging:
FPGAs vs GPUs,” Euro-Par 2019: Parallel Processing, vol. 11725, pp
509–521, 2019.

[9] Young, A. and Wijnholds, S. J. and Carozzi, T. D. and Maaskant, R.
and Ivashina, M. V. and Davidson, D. B., “Efficient correction for both
direction-dependent and baseline-dependent effects in interferometric
imaging,” Astronomy & Astrophysics, vol. 577, pp A56, may 2015.

[10] Sullivan et al., “Fast Holographic Deconvolution: a new technique for
precision radio interferometry),” The Astrophysical Journal, vol. 759, pp
17, 2012.

[11] O.M. Smirnov, “Revisiting the radio interferometer measurement equa-
tion. I. A full-sky Jones formalism,” A&A, vol. 527, pp. A106, January
2011.

[12] A.R. Thompson, James M. Moran, and George W. Swenson, “Interfer-
ometry and synthesis in radio astronomy 3rd edition,” 2017.

[13] DDFacet, https://github.com/saopicc/DDFacet
[14] killMS, https://github.com/saopicc/killMS
[15] C. Tasse, B. Hugo, M. Mirmont, O. Smirnov, M. Atemkeng, L. Bester,

M.J. Hardcastle, R. Lakhoo, S. Perkins, and T. Shimwell, “Faceting for
direction-dependent spectral deconvolution,” A&A, vol. 611, pp. A87,
2018.

[16] Shimwell, T. W. and Tasse, C. and Hardcastle, M. J. and Mechev, A.
P. et al., “The LOFAR Two-metre Sky Survey - II. First data release,”
A&A, vol. 622, pp. A1, 2019.

[17] S. Bhatnagar, and T. J. Cornwell,and K. Golap, and Juan M. Uson,
“Correcting direction-dependent gains in the deconvolution of radio
interferometric images,” Astronomy & Astrophysics, vol. 487, pp 419–
429, 2008.

[18] C. Tasse, S. van der Tol, J. van Zwieten, G. van Diepen and S. Bhatnagar,
“Applying full polarization A-Projection to very wide field of view
instruments,” Astronomy & Astrophysics, vol. 553, pp A105, 2013.

[19] Gonzalez et al, “Python Code Parallelization, Challenges and Alterna-
tives,” Astronomical Data Analysis Software and Systems XXVI ASP
Conference Series, vol. 521, pp 515, october 2019.


