N

N

Parallelisation of the Wide-Band Wide-Field Spectral
Deconvolution Framework DDFacet on Distributed
Memory HPC System
Nicolas Monnier, Erwan Raffin, Cyril Tasse, Oleg Smirnov, Jean-Francois

Nezan

» To cite this version:

Nicolas Monnier, Erwan Raffin, Cyril Tasse, Oleg Smirnov, Jean-Frangois Nezan. Parallelisation of
the Wide-Band Wide-Field Spectral Deconvolution Framework DDFacet on Distributed Memory HPC
System. 2020. hal-02611036v1

HAL Id: hal-02611036
https://hal.science/hal-02611036v1

Preprint submitted on 18 May 2020 (v1), last revised 1 Dec 2020 (v3)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-02611036v1
https://hal.archives-ouvertes.fr

PARALLELISATION OF THE WIDE-BAND WIDE-FIELD SPECTRAL DECONVOLUTION
FRAMEWORK DDFACET ON DISTRIBUTED MEMORY HPC SYSTEM

Nicolas Monnier*!, Erwan Raffin*, Cyril Tasse’, Oleg M. Smirnovs, Jean-Francois Nezant

*CEPP, Bull Atos, 35700 Rennes, France
TGEPI, Observatoire de Paris, CNRS, Univ Paris Diderot, 92190 Meudon, France
SSKA South Africa, Pinelands, 7405 South Africa
1Univ Rennes, INSA Rennes, IETR, CNRS UMRG6164, 35700 Rennes
1 Univ Paris-Saclay, Centralesupelec, L2S

ABSTRACT

The next generation of radio telescopes, such as the Square
Kilometer Array (SKA), will need to process an incredi-
ble amount of data in real-time. In addition, the sensitivity
of SKA will require a new generation of calibration and
imaging software to exploit its full potential. The wide-
field direction-dependent spectral deconvolution framework,
called DDFacet, has already been successfully used in sev-
eral existing SKA pathfinders like MeerKAT. DDFacet has
been developed and optimized for single node HPC systems.
DDFacet is a good candidate for being integrated in the SKA
computing pipeline and should therefore be run on a massive
multi-node HPC system for real-time performances. The
objective of this work is to study the potential parallelism of
DDFacet on multi-node HPC systems. This paper presents
a new parallelization level for multi-node HPC based on fre-
quency domains. Experimental results with a real data set
from LOFAR show an optimal parallelisation of the calcu-
lations in the frequency domain allowing to generate a sky
image more than 4 times faster. This paper analyses the
results and draws perspectives for the SKA use case.

Index Terms— High Performance Computing, Square
Kilometer Array, DDFacet, Parallelization

1. INTRODUCTION

The Square Kilometer Array (SKA) is the World’s largest
mega-science project [1]. Besides building a radio telescope
observatory to make fundamental discoveries about the uni-
verse over the next 50 years with the broadest range of sci-
ence of any facility worldwide, it is also the World’s largest
Big Data project and the largest international computing col-
laboration. Thousands dishes and the million antennas of the
SKA equipment will generate unprecedented scale of data
to compute in order to convert them into science for the as-
tronomers. The equipment will be built in South Africa’s Ka-
roo region and Western Australia’s Murchison Shire for many

scientific and technical reasons. Processing the vast quan-
tities of data produced by the SKA will require very high-
performance central supercomputers capable of in excess of
100 petaflops of raw processing power. The data computa-
tions will start on site and distributed all over the world.

As an intermediate step towards SKA, MeerKAT is a
radiotelescope already operational develering real data to
process [2]. First images of the sky have been provided by
MeerKAT in March 2017 from 16 dishes and in July 2018
from 64 dishes. It develivered unprecedant resolution and
image quality. The raw data provided by MeerKAT in a few
hours involves computations on 101 x 10° data to process.
Compared with previous telescopes, MeerKAT shows that
this new generation of radiotelecopes must take into account
direction dependant signal distortions in the computing of
data in order to benefit from the telescope sensitivity. A new
generation of calibration and imaging algorithms are studied
by astronomers and implemented in the DDFacet (Direction
Dependent Facet) library. As data from MeerKAT can be
stored, previous work on DDFacet aims to reduce the compu-
tation time but real-time is not mandatory. Computations are
shared inside a single HPC node with a shared memory.

The deployement of SKA will be done into two phases:
SKALI in 2020/2024 and SKA?2 in 2030+. SKA1-LOW will
be made up of 130 000 phase antennas in Australia and
SKA1-MID of 200 dishes in South Africa. SKA1-MID will
produce 10'3 x 10! data to compute (10 000 times more
than Meerkat). SKA2 in 2030+ will scale by a factor 10 the
number of dishes. SKA will thus provide too much data to be
stored, which means than the computations of the calibration
and imaging algorithms will have to be done in real-time.
The challenge of SKA in terms of computing is huge and a
dedicated multinode HPC system will have to be designed.

This paper presents the results obtained when distributing
DDFacet on a multinode HPC system. We show how the par-
allelization of the wideband wide-field direction-dependent
spectral deconvolution algotithms of DDFacet has been im-
plemented. The challenge is here to distribute data and com-

putations between several HPC nodes a distributed memory
architecture, especially when adressing the balanced between
data transfers between compute nodes and performance.

The Layout of this paper is as follow. After the related
work presented in section 2, an overview of the wideband
wide-field direction-dependent spectral deconvolution frame-
work DDFacet is given in section 3. The distributed memory
parallelization scheme we implemented is described in sec-
tion 4, the experiments we performed and the associated re-
sults are presented in section 5. Finally conclusion and future
work are found in section 6.

2. RELATED WORK

There is a lot of existing Imager in the world of radio-
astronomy; one would say one Imager per radio telescope,
probably more. The biggest effort and software available in
radio-astronomy is CASA (Common Astronomy Software
Applications)[3] which was developed to support data post-
processing needs of radio astronomical telescopes such as
ALMA and VLA in the 90’. CASA package is also continu-
ously updated to support the most recent scientific advances
with the third generation of radiotelescope Imaging. A new
generation of algorithm is under development to take the
most of the huge number of antennas in SKA and to take into
account real-time and energy constraints of the SKA.

The very popular Imagers as the WSClean [4] or the
ASKAPSoft [5] are widely used. Moreover, a lot of research
and engineering are done to build new Imagers that could
scale and handle the data from the radio telescope SKA and
take the Direction Dependent effects into account, such as
[6]. This lastest paper present a multi-node multi-GPU par-
allelization of wv-faceting algorithm to deal with wide-field
effects of recent radiotelescopes. However, the results of the
paper do not concern a full pipeline since they mainly focused
their efforts on the griddider and degridder. Moreover, a lot
of work has been done to optimize gridding and degridding
on CPU and GPU since they are, and they will be the most
expensive part of the Imgaging framework in the case of
SKA. Recently, Veenboer et al. presented innovative work on
Image Domain Gridding [7]. We could also cite work from
Young et al. on A-stacking framework [8] or from Sullivan et
al. about Fast Holographic Deconvolution [9].

To our knowledge, this paper presents the first 3rd gener-
ation of calibration and imaging pipeline parallelized both on
shared and distributed memory, DDFacet, which is mandatory
to handle the data deluge envisionned by the SKA.

3. DDFACET: FACET BASED IMAGER

This section presents the facet based imager DDFacet with
its main caracterisitics. A focus on its software architecture
including the shared memory parallelisation scheme already
used also given.

3.1.
3.1.1. Imaging in interferometry

An interferometer array is a network of antennas and dishes
distributed spatially on earth (or space). Each antenna’s pair
is defined as a baseline (physical distance between the an-
tennas). Each baseline, at a time ¢ and frequency v gen-
erate a sample by correlating the signals of these two an-
tennas. This measurement is called Visibility. For a non-
polarized interferometer, the number of Visibilities generated
is: M = nb_baseline x t_integ * nb_channel, where t_integ
is the number of sample for one baseline during the integra-
tion time, nb_channel is the number of frequency channel.

The Visibility function can be described by the following
equation:

V(u’ v, w) = // A(l’ m)I(l’ m) 672iﬂ(ul+vm+w(n71)dldm
oo n

€y
Where A is the Beam pattern, I is the True sky. Under
the assumption below; the Van Citter-Zernike Theorem [10]
makes a Fourier relation between the observed sky and the
visibilities measured. If the field of view is small, the Beam
pattern quickly goes to zero, the baselines are coplanar (w
small), we’re observing infinitely distant sources, the sam-
pling is continuous, and the correlation of the signals appear
on a narrow bandwidth, equation (1) becomes:

oo
V(u,v,w) = / / I(l,m)e2m@Hvm) gidm— (2)
— 00

It is here easy to recognize a 2D Fourier Transform rela-
tion. However, the cost of a Direct Fourier Transform (DFT)
becomes quickly prohibitive (cost O(M N?), where N? is the
number of pixel in the image) with the increasing number
of Visibilities generated by recent radiotelescopes. The Fast
Fourier Transform (FFT) algorithm (O(N?2logN)) is then a
better option. However, an interferometer doesn’t make mea-
surements at regular intervals, making impossible the FFT.
The Visibilites have to be resampled to fit in a regular grid.
This step is called ”gridding” (and degridding for the oppo-
site direction). Each Visibility is convolved with an oversam-
pled convolution kernel then resample onto the wv plane. The
equation below describes this resampling step:

Varidded(u, v) = (V (u,v)S(u, v) * C(u,v))I11(u,v) (3)

where S(u,v) is the sampling function (dependent of the
array configuration), C'(u,v) is the convolution kernel and
I1I(u,v) is the Shah function. The ”Dirty” image is then
obtained from the inverse Fourier Transform of the gridded
Visibilities using an FFT.

g = fﬁl{vgridded} (4)

The Dirty image can also be expressed as an ill-posed in-
verse problem:

y=PSFxx+e¢ (®)]

where PSF is the Fourier Transform of the sampling
function of the interferometer array S(u,v), x is the True
sky, and € is the noise assumed to be Gaussian. The best
approximation of the True sky = can be obtained by per-
forming a deconvolution step. Most of the time, a CLEAN
Cotton-Schwab like algorithm is used[10].

3.1.2. wideband wide-field direction-dependent spectral de-
convolution framework

The new generation of radiotelescope tends to work on a wide
field of view, using large bandwidth and high resolution (very
long baselines). The previous assumptions making possible
the equation (2) break since some terms are not insignificant
anymore. Thus, a lot of baseline-time-frequency direction
dependant effects on the observation appear and need to be
corrected(ie. Faraday rotation due to the ionosphere at low
frequency, or complex beam pattern due to the wide field of
view). To correct these Direction Dependant Effects (DDEs),
a special calibration has to be done on the observation mea-
surements (3rd generation of calibration), and the effects also
have to be taken into account during the Imaging process.

The Imager DDFacet! (Direction Dependent Face) and its
calibration framework killMS? are currently the best tools to
deal and correct the DDEs of an observation. DDFacet works
on the approximation of a wide-field image by facetting the
imagel[ref]. Each facet is considered as a narrow field that is
tangent to the celestial sphere at its phase center. One inde-
pendent grid is used per facet. The AW -projection algorithm
is used for the gridding step. Algorithm based on the work of
Bhalnagar et al.[11] and then applied for the specific case of
DDFacet from the work of Tasse et al. [12].

3.2. Software implementation
3.2.1. Multi-Core parallel processing

DDfacet is currently implemented as a functionnal software
base on python and C (for the intensive computational ker-
nels). A naive description of the Imaging framework is de-
scribed by Fig 1. In this example, we’re working with a set
of measured visibility V,, covering the frequency band v ,
where v can be divided into several frequency channels v;
(Each channel covers more or less the same bandwidth). The
Imaging framework consists, for each frequency channel, to
calculate the visibilities of the sky model 7, for that specific
frequency (F'F'T" + Degridding). Those are then subtracted
from the measured visibilities V,,,. The residual visibilities

Uhttps://github.com/saopicc/DDFacet
Zhttps://github.com/saopicc/kilIMS

are gridded onto a 2D uv-plan (a different plan for each chan-
nel). All these plans are then transformed into the time do-
main (FFT ') forming a residual image 7 which is a cube
where each slice contains information for a specific frequency
channel. Each minor cycle (represented by the Minor Loop in
the figure) of the Deconvolution task (based on CLEAN like
algorithm) aims to extract the brightness pixel of the resid-
ual image, removing also information around this pixel due
to the Point Spread Function (PSF). The position of the pixel
extracted is then added to our sky model. After few minor
cycles, depending on the threshold set by the user (usually
depending on the value of the current brightness pixel), an
updated model 7 of the sky is generated. This entire pro-
cess is repeated (and called a major cycle) until the global
stopping criteria, also set by the user, is reached.

The framework has a native single-node multiprocess ex-
ecution hand-written for an optimal asynchronous behavior
between the computational and I/O phases, based on a mimic
of the Concurrent.Futures python module. The main process
of the Imager manages a bunch of workers (depending on the
number of cores available or set by the user) and dispatches
the tasks in a dedicated queue. Thus, each worker can draw
in this queue[Add something to complete]

DDFacet is working on a facetted image (except for the
deconvolution part where all the facets are merged), where
each facet can be processed independently of the others. As
shown in Fig. 1, for each frequency channel, the F'F'T is
computed per facet. Thus, it can be computed in parallel
where one facet is computed per one core of the processor.
The gridding, degridding and F F'T~! steps use the same par-
allelization approach.

‘Tvi

| FFT |

1

FFT |
@

DeGridding DeGridding

Major
Loop

Fig. 1. DDFacet Single Node representation. Where ¢ is
a facet, 7 is the sky model, gs is the gridding result and v

P

Pn

Vo,

| Gridding | |
@1

Gridding |
P

Minor
Loop

contains the visibilies for a set of frequencies v;.

3.2.2. Profiling

We performed a profiling of DDFacet to study the distribution
of the total execution time. This profiling has been done using
24 Measurement Sets (or MS file) from the LOFAR survey
and covering the 120MHz-165MHz frequency band. Each
MS file contains Visibilities and metadata for a specific fre-
quency channel v;. The size of the sky image generated was
10.000 x 10.000 pixels. The framework DDFacet has been
run on a dual-socket node equipped with Intel Skykake gen-
eration processors (Intel Xeon Gold 6130). Each of those pro-
cessors has 16 physical cores that can be viewed as 32 logical
cores when hyperthreading is enabled. According to previous
performance evaluation, it has been shown that hyperthread-
ing offers a performance gain(see [13]), thus we enabled it for
our experiments. In total 64 processes (1 process per core)
could run in parallel on the node. The profile obtained in such
conditions is given in Fig.2.

Execution time repartition of DDFacet
for a single node execution

1% 1%

1%

0%

M Grid | Degrid WFFT Glue Facet

W Deconvolution m Save W Other

Fig. 2. Distribution of the total execution time of DDFacet
running on a single node, using logical 64 cores (hyperhtread-
ing enabled) for the intra-node parallelism.

The total execution time is divided into few main tasks:
gridding/degridding, F'F'T (also including FFT~1), Glue
Facet corresponding to the fusion of all the facets to cre-
ate a single image, Deconvolution, Save corresponding to
the intermediate and final saving of the sky models or the
final image and the last part called Other including all the
other and not significant computing time. The most critical
function is the intensive compute kernel which does the grid-
ding/degridding computation. Indeed, the execution time of
this kernel corresponds to 88% of the total execution time.
The second most important function is the deconvolution and
corresponds to 9% of the total execution time. All the other
timing are less significant regarding the two previous one,
thus, we will not discuss in this paper.

Computing result presented in [13] has shown how the ex-

isting intra-node parallelization is important and efficient to
decrease the gridding time. However, with the huge amount
of data to process in a project like SKA, this result is limited
by the number of cores in a node and will not be able to scale-
between. Thus, keeping the same algorithm architecture, a
way to reduce the time to solution to obtain a sky image is to
distribute the compute over many nodes.

4. PARALLELIZATION ON A DISTRIBUTED
MEMORY SYSTEM

This section presents the initial ideas to reduce the latency
of DDFacet, all based on using several nodes. We’ll present
three of these ideas and explain the final choice of one of
them. Then, we’ll discuss in more detail the implementation
of this solution.

4.1. Choice of the parallelization strategy

First strategy

This 15 strategy is the simplest one. Instead of work-
ing of 1 node to generate 1 image of the sky, we work on
N indépendent nodes to generate N independent images.
Each node works independently with the other using an in-
dependent data set. The advantage of this solution is to be
very simple to set up and to highly increase the throughput.
However, the latency to generate an image is still the same,
making this strategy not viable for our study case. Moreover,
it is important to note that in the case of SKA, where a lot
of data must be computed in real-time, using only 1 node
to generate an image of the sky will be a huge bottleneck.
Indeed, a significant amount of memory would be needed to
handle all the data, and nowadays memory is significantly
expensive.

Second strategy

This 2"? strategy is the extension of the existing intra-
node parallelization of DDFacet. The idea here is to extend
the facet parallelization from multi-core to multi-node and
multi-core. In this case, to generate a sky image, each node
works on specific facets of the image then all the nodes
merge their results on a single node which will do the Decon-
volution step. The advantage of this solution is to dispatch
the work of the expensive part of the framework: the Grid-
ding/Degridding (Fig. 1) making possible a potential latency
gain. However, this method requires a huge work of refac-
toring the existing code since we’re working on the same
parallelization level than the existing one. Our goal here is to
modify as less as possible the code so this solution becomes
hardly doable. Moreover, each facet needs data (visibilities)
from all the frequency channel, therefore each node shall ac-
cess to each MS file in memory and thus this solution requires
a significant amount of memory access.

Third strategy

The 3" and last strategy is centering on the indepen-
dence of the computes between each frequency channel. In
this case, each node will compute visibilities from one or
several specific frequency channels of the same data set. The
whole frequency channels covering the frequency band of
our data set. Then, the result of each node will be merged
into one node which will do the Deconvolution step. The ad-
vantage of this solution is, like the previous one, to dispatch
the gridding and degridding work onto several nodes mak-
ing possible a potential latency gain. Moreover, unlike the
previous strategy, the nodes compute visibilities for specific
frequency channels, each node only needs to access specific
MS files corresponding to these frequencies, thus, memory
access is limited. Finally, the parallelization is done at an-
other level than the existing one, making the implementation
much easier.

The implementation of the third strategy is discussed in
the next subsection.

4.2. Parallelization implementation

In the previous subsection, we discussed the different ways
to parallelize DDFacet over nodes on distributed memory ar-
chitecture. we concluded by choosing one and its implemen-
tation will be the main subject of this subsection. As said
before, the visibilities of the different frequency channels can
be computed independently of the others. Visibilities for a
specific frequency channel are contained in a MS file, thus,
these files are computed independently of the others.

Fig.3 makes a better representation of the multi-node
parallelization resulting from the independence of some com-
pute. This figure shows us an example where DDFacet is
parallelized on k nodes and is computing visibilities for the
frequency band v, subdivided into Nv frequency channels
(Nv = n * k, we want to balance the workload equally over
the nodes, so each node should compute the same number of
MS file). Each node computes its specific visibilities, from
the frequency channels v; (v; C v, v; may be composed by
one or few frequency channels), to generate a (sub)residual
image 7., specific to the node. These (sub)residual images
are also hyperspectral cubes containing information only
for the frequencies v; (specific to the node) and O for all
the other frequencies of the total frequency band ,u. these
(sub)residual images are then collected and summed by a
single node, which we call "Master node”, to create a single
residual image y. This residual image is identical to the one
generated by the single-node version of DDFacet. The master
node is in charge of the Deconvolution step to update the sky
model. This model is then broadcast to all the nodes. It is im-
portant to note that the “per facet” intra-node parallelization

Major
Loop

is still the same.

Synchronisation

Vi

Synchronisation

Minor
Loop

i
Deconvolution

D

Fig. 3. Schema multinode.

The software implementation of this level of parallelism
has been done using MPI (mpi4py* on python [14]). Then,
each node is seen as a specific rank from 0 to k¥ — 1, where
rank O corresponds to the "Master node”.

The multi-node parallelization has been achieved with
success. All the results will be discussed in section 5.

5. EXPERIMENTAL RESULTS

The experiments have been performed on the same kind
of node as the profiling presented in subsection 3.2.2 (dual
socket Intel Xeon Gold 6130). The same parameters and stop-
ping criteria have been set for each execution of DDFacet: a
final image size of 10000x10000 pixels, an intra-node paral-
lelization on the 64 logical cores, 24 MS files and a stopping
criteria depending of the quality of the final image. The per-
formance tests have been done on a number of nodes multiple
of the number of MS files used, which corresponds in our
case to 2, 3, 4, 6, 8, 12 and 24 nodes. The speedup result is
shown by Fig 4

As shown in the above figure, the speedup increase de-
pending on the number of nodes used, thus the main goal of
this study is reached. However, the curve is not linear and the
gain on 24 nodes (speedup of 4.182) is questionable regard-
ing the gain on 12 nodes (speedup of 3.699). To explain this
global behavior, we analyzed the distribution of the total exe-
cution time on the master node for each case as shown in the
Fig 5 below.

On his figure, the step on 1 node corresponds to the pro-
filing shown in Fig 2 in another shape. We can note, from 2

3https://mpidpy.readthedocs.io/en/stable/

Speed Up factor obtained by running DDFacet on
multiple nodes.

Speed Up

0 2 4 6 8 10 12

Number of nodes

=
S

Fig. 4. Time to solution speedup of the distributed version of
DDFacet over nodes.

Execution time repartition of DDFacet
as a fonction of the number of nodes

1200

1000

800

600

400

200

Normalized Execution Time

o
-
~
w
I
o
o
=
~

Number of nodes

m Grid | Degrid m FFT m Glue Facet m Deconvolution m MPI (Transfert + operations)

Fig. 5. Evolution of the normalized execution time of
DDFacet depending of the number of nodes

nodes, a new MPI time (light blue in the figure) corresponding
to the time spends in MPI communication and all the waiting
time due to the synchronized communications. As the grid-
ding (dark blue in the figure) is the only part distributed over
nodes, the time per node to compute decreases depending on
the number of nodes used. All the other timings are constant.
In the 24 nodes case, Gridding/Degridding timing represents
23% of the total execution time (88% on 1 node), Deconvo-
lution represents 40%, MPI 17% and the addition of all the
other timings represents 20%.

With these results obtained using our data-set, we can see
that, at some point, the efficiency of the speedup is limited
by all the timings which are not distributed over nodes. The
ideal would be to ensure a speedup similar to the one of the
griddind/degridding distributed over nodes, as shown in Fig
6.

To obtain such a speedup, we have to ensure that:

tgrid/degrid >> tdeconv + tmpi + tother

16 18 20 22 24 26

Save m Other

SpeedUp of the Gridding/Degridding depending of the number of nodes

0 2 4 6 8 10 12 14 16 18 20 22 24
Number of nodes

Fig. 6. Gridding/Degridding speedup of the distributed ver-
sion of DDFacet over nodes.

Thus, we would have to use a much bigger test case.

6. CONCLUSION AND FUTURE WORK

In this paper, we have presented the parallelization of a wide-
band wide-field spectral deconvolution framework DDFacet
on distributed memory HPC system, where DDFacet is one of
the best candidates as an imager for SKA regarding its high
superiority to compute data from new génération of radiote-
lescope.

In this study, we have shown the possibility to parallelize
over nodes an existing software with only minor modifica-
tions on the global structure of the software. This paralleliza-
tion has provided a speedup gain (time to generate an image
of the sky from a given data set) but was limited by the size
of the data set used. To keep good efficiency for an execution
on a higher number of nodes, large data sets are mandatory.
Thus, SKA is a perfect candidate.

The final design of the data format generated by SKA will
provide better hints to design the best architecture to compute
these data.

26

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

7. REFERENCES

F. Acero et al., “French SKA White Book - The French
Community towards the Square Kilometre Array,” 2017.

O. Smirnov, “Modern radio interferometric imaging
challenges: From meerkat towards the ska,” in 2018
IEEE International Workshop on Signal Processing Sys-
tems (SiPS), Oct 2018.

S. Jaeger, “The common astronomy software applica-
tion (casa),” Astronomical Data Analysis Software and
Systems XVII, vol. 394, pp. 623, 07 2008.

A. R. Offringa, B. McKinley, N. Hurley-Walker, F. H.
Briggs, R. B. Wayth, D. L. Kaplan, M. E. Bell, L. Feng,
A.R. Neben, J. D. Hughes, and et al., “wsclean: an im-
plementation of a fast, generic wide-field imager for ra-
dio astronomy,” Monthly Notices of the Royal Astronom-
ical Society, vol. 444, no. 1, pp. 606-619, Aug 2014.

M. Whiting, S. M. Ord, D. Mitchell, M. Voronkov, and
J. C. Guzman, “High-performance pipeline processing
for askap,” pp. 1-1, 2018.

Lao Bao-qgiang, An Tao, Yu Ang, and Guo Shao-guang,
“Research on parallel algorithms for uv-faceting imag-
ing,” Chinese Astronomy and Astrophysics, vol. 43, no.
3, pp- 424 — 443, 2019.

Bram Veenboer, Matthias Petschow, and John W.
Romein, “Image-Domain Gridding on Graphics Pro-
cessors,” pp. 545-554, May 2017.

A. Young, S. J. Wijnholds, T. D. Carozzi, R. Maaskant,
M. V. Ivashina, and D. B. Davidson, “Efficient
correction for both direction-dependent and baseline-
dependent effects in interferometric imaging: An A-
stacking framework,” Astronomy & Astrophysics, vol.
577, pp. A56, May 2015.

Sullivan et al., “Fast Holographic Deconvolution: a new
technique for precision radio interferometry,” The As-
trophysical Journal, vol. 759, no. 1, pp. 17, Nov. 2012,
arXiv: 1209.1653.

A. R. Thompson, James M. Moran, and George W.
Swenson, Interferometry and synthesis in radio astron-
omy, Springer, New York, 3nd ed edition, 2017.

S. Bhatnagar, T. J. Cornwell, K. Golap, and Juan M.
Uson, “Correcting direction-dependent gains in the de-
convolution of radio interferometric images,” Astron-
omy & Astrophysics, vol. 487, no. 1, pp. 419-429, Aug.
2008, arXiv: 0805.0834.

C. Tasse, S. van der Tol, J. van Zwieten, G. van
Diepen, and S. Bhatnagar, “Applying full polarization

[13]

[14]

A-Projection to very wide field of view instruments: An
imager for LOFAR,” Astronomy & Astrophysics, vol.
553, pp. A105, May 2013.

Tasse, C., Hugo, B., Mirmont, M., Smirnov, O.,
Atemkeng, M., Bester, L., Hardcastle, M. J., Lakhoo, R.,
Perkins, S., and Shimwell, T., “Faceting for direction-
dependent spectral deconvolution,” A&A, vol. 611, pp.
A87,2018.

Gonzalez et al., “Python code parallelization, challenges
and alternatives,” in Astronomical Data Analysis Soft-
ware and Systems XXVI ASP Conference Series, Oct
2019.

