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Abstract
& Key message Based on an empirical dataset originating from the French Douglas-fir breeding program, we showed that
the bidimensional autoregressive and the two-dimensional P-spline regression spatial models clearly outperformed the
classical block model, in terms of both goodness of fit and predicting ability. In contrast, the differences between both
spatial models were relatively small. In general, results from simulated data were well in agreement with those from
empirical data.
& Context Environmental (and/or non-environmental) global and local spatial trends can lead to biases in the estimation of
genetic parameters and the prediction of individual additive genetic effects.
& Aims The goal of the present research is to compare the performances of the classical a priori block design (block) and two
different a posteriori spatial models: a bidimensional first-order autoregressive process (AR) and a bidimensional P-spline
regression (splines).
& Methods Data from eight trials of the French Douglas-fir breeding program were analyzed using the block, AR, and splines
models, and data from 8640 simulated datasets corresponding to 180 different scenarios were also analyzed using the two a
posteriori spatial models. For each real and simulated dataset, we compared the fitted models using several performance metrics.
& Results There is a substantial gain in accuracy and precision in switching from classical a priori blocks design to any of the two
alternative a posteriori spatial methodologies. However, the differences between AR and splines were relatively small. Simulations,
covering a larger though oversimplified hypothetical setting, seemed to support previous empirical findings. Both spatial ap-
proaches yielded unbiased estimations of the variance components when they match with the respective simulation data.
& Conclusion In practice, both spatial models (i.e., AR and splines) suitably capture spatial variation. It is usually safe to use any
of them. The final choice could be driven solely by operational reasons.
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1 Introduction

Global and local spatial trends are well known empirically in
forestry field trials as a result of environmental factors such as
variations in soil characteristics and land topography. Tree
breeders have attempted to account for this environmental
variability using a priori designs (i.e., by design), including
randomized complete and incomplete blocks and lattices.
However, in most cases, even under the most efficient exper-
imental layout, the spatial heterogeneity is conveniently re-
vealed at the evaluation stage (Fu et al. 1999). Thus, it is often
necessary to model such variability a posteriori within the
model of evaluation (i.e., by analysis). Additionally, the spa-
tial heterogeneity can also include other non-environmental
factors such as competition, non-random arrangements of ge-
notypes, or any other unexplained variation (Gilmour et al.
1997), which could further affect the performance of evalua-
tion methods.

Although environmental heterogeneity has been often
considered a nuisance in forest genetic evaluation,
where the main goal is the prediction of breeding
values, ignoring such a source of heterogeneity can lead
to biases in the estimation of genetic parameters and the
prediction of individual additive genetic effects other-
wise known as breeding values (Magnussen 1993,
1994). Several a posteriori approaches called Bspatial
models^ have been developed and widely applied to
forest genetic trials in order to account accurately for
site heterogeneity. The impact of small-scale spatial het-
erogeneity is accounted for by including a spatially cor-
related structure into the model residuals expressed as a
Kronecker product of first-order autoregressive process-
es for rows and columns (Gilmour et al. 1997). Other
alternatives to model the small-scale spatial variability
use nearest neighbor techniques (Anekonda and Libby
1996; Joyce et al. 2002; Kroon et al. 2008; Gezan
et al. 2010) or kriging (Hamann et al. 2002; Zas
2006). Large-scale continuous spatial variation has been
modeled following a variety of approaches, like post-
blocking (Ericsson 1997; Lopez et al. 2002; Gezan
et al. 2006), the inclusion of spatial coordinates
expressed as either classification variables such as poly-
nomials (Thomson and El-Kassaby 1988; Federer 1998;
Saenz-Romero et al. 2001), or smoothing splines
(Gilmour et al. 1997; Verbyla et al. 1999). Of these
me thods , a Kronecke r p roduc t o f f i r s t - o rde r
autoregressive residual (co)variance structure has be-
come commonly used in forest tree breeding. In one
dimension (either in rows or in columns), the resulting
first-order autoregressive structure is equivalent to a

geostatistical model with an exponential covariance
function. Many forest genetic studies using this spatial
model approach displayed a consistent reduction in the
error variance and increases in both heritabilities and
accuracies of predicted breeding values with respect to
the a priori model with block design (e.g., Costa e Silva
et al. 2001, Dutkowski et al. 2002, 2006, Ye and
Jayawickrama 2008). In a first-generation Douglas-fir
progeny trial, Ye and Jayawickrama (2008) showed that
the spatial autoregressive model removed on average 14
to 34% of residual variance due to spatial heterogeneity,
which resulted in 20% increase in accuracy of breeding
value prediction with respect to the classical non-spatial
model.

An alternative approach to model complex patterns of en-
vironmental heterogeneity proposed by Cappa and Cantet
(2007) is to use a mixed model representation of a two-
dimensional P-spline regression (Eilers and Marx, 2003) with
spatially structured coefficients. Over a series of studies with
forest genetic trials involving large scale (Cappa and Cantet
2007), small scale (< 1 ha) (Cappa et al. 2011), and both large
and small scales (Cappa et al. 2015a), the P-splines approach
also displayed a consistent reduction in the residual variance
with respect to the blocks’ model, together with increases in
heritability and accuracy of the predicted breeding values of
parents and offspring.

Many forest genetic studies have already compared a
priori design models with one of the several a posteriori
spatial approaches available. Gezan et al. (2010) com-
pared the results from the a priori incomplete block
design with those obtained with a model with an
autoregressive residual structure, by using simulated da-
ta of unrelated genotypes with different surface patterns.
The comparison indicated that the incorporation of this
autoregressive structure yielded the highest correlations
between the predicted and true treatment effects. Few
studies, however, have systematically compared several
a posteriori methods over a range of trials and paramet-
ric scenarios. Saenz-Romero et al. (2001) combined
quadratic polynomials and autoregressive approaches in-
to a mixed model to fit simultaneously global and local
trends in a nursery trial. The study showed that the
combination of the two methods was one of the best
analytical choices. Rodríguez-Álvarez et al. (2018) com-
pared the autoregressive approach with a more sophisti-
cated spatial model based on splines in an agricultural
context.

The goal of the present research is to compare the
performances of alternative approaches to account for
various patterns of spatial autocorrelation on forest
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genetic data. Competing methods are the classical a
priori block design and two different spatial models: a
bidimensional separable first-order autoregressive spatial
process and a bidimensional P-spline regression (hereaf-
ter, Bblock,^ BAR,^ and Bsplines^ models, respectively).
These are the three most widely used models to accom-
modate the spatial heterogeneity in forest genetic trials.
The block model is the classical approach to handle
environmental variation and dates back to the develop-
ment of the theory of experimental design almost a cen-
tury ago. The AR model is a more modern and flexible
approach that estimates a nearly continuous surface of
environmental effects. Finally, the splines model has
been gaining more recognition recently. Besides their
popularity, they represent three fundamentally different
approaches to environmental variation. The block model
is based on the aggregation of individuals into groups
that share similar environments and assume the effect of
the environment being constant in each group. The AR
model estimates the correlation between neighboring re-
sidual effects. Finally, the splines model belongs to the
family of kernel smoothers, representing the spatial ef-
fect as a linear combination of a set of basis functions.
In addition, the present study showcases different mo-
dalities for diagnosing competing models, as an addi-
tional but important step in the analysis of spatial data.
One of the most common tools is the analysis of the
residual semivariograms, which helps to quantify the
unaccounted spatial autocorrelation from a given model.
Another approach involves cross-validation, a measure
of model’s adequacy independent of any model assump-
tions (Grondona et al. 1996).

For generality, we based our study on simulated and
real data. Simulated data offer the advantage of cover-
ing large parametric ranges that are difficult to find in
real datasets, and allow for a more accurate assessment
of model performance. Our simulated datasets involved
contrasting spatial patterns generated by both AR and
splines models under different scenarios. Each dataset
was then fitted with AR and splines models and their
respective performances assessed and compared under
several criteria. Among the alternative scenarios, the
cases of single- and multiple-tree plot designs, and
half-full-sibs, and clonal genetic structures were studied.
We also used data from the French Douglas-fir tree
improvement program to complement simulated scenar-
ios and confront the alternative methods to real datasets.
These datasets involved a number of mature progeny
trials that were established across a range of contrasting
sites but yet appropriate for productivity in the context

of the species in France. Precise genetic evaluation at
this stage is of critical importance before selection. For
this reason, previous analyses based on a priori design
were re-analyzed with these alternative a posteriori spa-
tial models (i.e., AR and splines) and the new results
compared with the previous ones. We discuss the impli-
cations of our findings for the French Douglas-fir breed-
ing program led by the French National Institute for
Agricultural Research (INRA), and wider implications
for diagnosis of spatial modeling and genetic evaluation
in general.

2 Materials and methods

2.1 Genetic material, mating design, and trial
description

Data from eight trials of the French Douglas-fir breed-
ing program of an appropriated age for genetic evalua-
tion were used in the current study (Bastien et al.
2013). These trials correspond to progeny tests involv-
ing either breeding stock for the renewal of the breeding
population (2.707.1, 2.707.3, 2.708.1, and 2.708.3) or
progeny-tested genotypes from first-generation seed or-
chards going into genetic thinning (3.704.2, 3.713.1,
3.713.1, and 3.713.1). Trials were roughly the same
age, 18 to 21 years after planting, and were chosen to
be representative of the French trial network for
Douglas-fir breeding program, accounting for geography,
climate, and basic trial disposition. The features of each
of the trials are given in Table 1. The standard design
in all eight trials corresponded to a randomized com-
plete block setting following a single-tree plot design,
with as many blocks as replicates per family. The num-
ber of replicates per trial can be found in Table 1.

Two traits, height and diameter at breast height, were mea-
sured at 6–8 and 16–20 years, respectively (Table 1).
However, not all traits were available for every trial.

2.2 Statistical models of analysis and inference

We compared three individual-tree models of general form:

y ¼ Xβþ Bbþ Zaþ e

with alternative formulations of the spatial random ef-
fect Bb: block, AR, and splines. These three models

Annals of Forest Science (2019) 76: 53 Page 3 of 16 53



were evaluated for each combination of site and trait in
the Douglas-fir dataset. Although genetic evaluation is
generally conducted with multiple-trait and multiple-site
models, splitting data analyses in this way was justified
by the need of collecting a broad spectrum of spatial
patterns. The vector y contains the phenotypic data, and
all three models included a fixed effect of provenance
(β, genetic group) to account for different sub-
population means. A set of genetic (a) and residual (e)
random effects were also considered in all models. The
former was a normally distributed random additive ge-
netic effect (breeding values) with (co)variance matrix
Aσ2

a, where A is the additive relationship matrix among

all trees (Henderson 1984), and σ2
a is the additive ge-

netic variance. The residuals were independently distrib-
uted with mean 0 and residual variance σ2

e . X and Z are
the incidence matrices relating the observations (y) to
the model effects β and a.

The spatial random effect was modeled differently in
the three alternative models. For the block model, B
was the incidence matrix for blocks and b was a nor-
mally distributed random effect with mean 0 and vari-
ance σ2

s . The AR model considers b a random effect at

individual level with a covariance structure σ2
s

AR1 ρrowð Þ⨂AR1 ρcolð Þ½ � given by the Kronecker product
of first-order autoregressive processes AR1(ρ.) in the
rows (row) and the columns (col) with spatial variance
parameter σ2

s , while B is a permutation matrix to sort
observations by columns within rows (Gilmour et al.
1997) . Fina l ly, the spl ines model f i t s a two-
dimensional surface built as a tensor product of cubic
B-splines basis (Eilers and Marx 2003). The matrix B
contains the two-dimensional B-splines basis evaluated
in the corresponding row and column for each tree,
while the vector of regression coefficients b is normally
distributed with mean 0 and covariance matrix Uσ2

s ,

where U is a fixed spatial structure and σ2
s is the spatial

variance parameter. A more detailed explanation of the
two-dimensional surface and the covariance structure
used in this work can be found in Cappa and Cantet
(2007). Note that the three formulations (block, AR, and
splines) are mutually exclusive. In particular, the AR
and splines models do not include the effect of the
blocks.

In order to make the alternative parameters of spatial
variance comparable, we scaled the covariance matrices

so that σ2
s represented exactly the characteristic marginal

variance of the spatial effect (Sørbye and Rue 2014).
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Residual maximum likelihood (REML, Patterson and
Thompson 1971) was used to estimate the variance
components for the random effects in the three spatial
models described previously, by using the function
remlf90 in the R-package breedR (Muñoz and
Sanchez, 2015), which is based on the programs
REMLF90 and AIREMLF90 of the BLUPF90 library
(Misztal 1999). While REML90 uses the Bexpectation
maximization^ algorithm for the variance component es-
timation, AIREMLF90 is based on the Baverage
information^ approach. The former is slower but more
robust to initial values and was used for the more com-
plex splines models, while the latter was used for the
AR models.

The autocorrelation parameters in the AR models and
the number of row and column knots in the splines
models, respectively, were estimated by a grid-search
approach that fits the model using several combinations
of these values and selects the one with highest log-
likelihood. Specifically, for the empirical Douglas-fir da-
ta, we used a two-step procedure for AR, initially fitting
the models on a coarse grid with all combinations of
the values (− 0.8, − 0.2, 0.2, 0.8) for the autoregressive
parameters in each direction. A refined grid of the same
size around the previous best combination was used in
the second step, considering a variation of roughly 20%
at each side in each dimension in the logit scale. For
the spline models, the initial number of knots in each
dimension is a power function of the size of the field
given as a default by breedR. We tested all the

combinations of five values around this initial value in
each dimension, similarly to AR. As a result, search
process for the empirical Douglas-fir data assumed anisot-
ropy for the AR and splines models; i.e., different
autoregressive parameters and number of knots were fitted
in row and column directions.

Standard errors for estimated variances and functions of
variances (i.e., heritabilities, see equation below) were calcu-
lated via Monte Carlo (Manly 1991). This implied sampling
random realizations of datasets from the corresponding ana-
lytical models and estimated variance components.

2.3 Model comparison and diagnostics
for the empirical Douglas-fir datasets

We compared the predictive ability of the fitted models
with the Akaike information criterion (AIC, Akaike
1974), which is an approximation of the average out-
of-sample deviance based on the marginal likelihood. A
smaller AIC value indicates a better trade-off between
goodness of fit and parsimony.

In addition, a 12-fold cross-validation was conducted.
Each dataset was subdivided into 12 equally sized inde-
pendent samples. Each of the samples was used for
validation after fitting the model. The predicting ability
was obtained as the Pearson correlation between ob-
served phenotypes and fitted values. A complementary
measure of the prediction quality was obtained as the
root mean square error (RMSE) of the fitted values.

Fig. 1 Empirical semivariograms of residuals from the bidimensional
separable first-order autoregressive (AR) and bidimensional spline re-
gression (splines) models fitted to a simulated dataset with a high-

variance short-ranged AR spatial effect under a single-tree plot structure.
The horizontal (darker) lines are the estimated values of the residual
variances for a true value of 1
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Single-site narrow-sense individual heritability ĥ
2

� �
was

estimated as ĥ
2 ¼ σ̂2

a= σ̂2
a þ σ̂2

e

� �
, where σ̂2

a is the estimated

additive genetic variance, and σ̂2
e is the estimated resid-

ual variance. We explicitly excluded the spatial variance
from the denominator in order to get comparable esti-
mates of heritability across sites. This simple definition
of heritability does not adhere to the standard quantita-
tive genetics assumptions (Cullis et al. 2006), and so
this measure should only be interpreted as a descriptive
measure of precision (or ability) to detect additive ge-
netic differences among the three models studied.

Further model comparison was provided by the predictive
accuracy of breeding values, computed as:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−SE2

σ̂2
a

vuut

where SE stands for the standard error of predicted
breeding values using the Bbest linear unbiased
predictors^ (BLUPs) of parents and offspring. Finally,
Spearman correlations between the best 10% candidate
breeding values obtained by any two alternative models
were also calculated, in order to check whether the
ranking of breeding values differed between alternatives
and therefore selection decisions were impacted by the
choice of the model.

We also computed the empirical semivariogram of
residuals as a standard model diagnostics tool. The iso-
tropic semivariogram represents the half-average varia-
tion in pairwise residual differences as a function of the
distance (Cressie 1993). Since the synthetic residuals
were simulated independently and identically distributed,
a logical expectation is that the empirical semivariogram
of the residuals from a model properly accounting for
all relevant effects will be approximately constant at the
estimated residual variance. Thus, it might be disturbing
to obtain empirical residual semivariograms such as
those shown in Fig. 1 after fitting an AR or splines
model to an ideal, simulated dataset.

We have seen this pattern emerging often from
models fitted to real datasets as well (e.g., progeny trial
3.704.2; see Fig. 2b), most noticeably with AR spatial
models. Specifically, the two challenging aspects are:

1. a discrepancy between the variance of the empirical resid-
uals and the estimated residual variance, and

2. a remarkable non-flat slope in the first few lags.

Such behavior could lead to thinking that there re-
mains some unaccounted structure in the residuals, or
that the spatial effect is overfitting the observations.
To assess this, we devised two metrics for quantifying
the extent of these effects in the simulation experiment
(see Section 2.5). For each fitted model, we measured
the discrepancy between the empirical and estimated
residual variances (i.e., empirical vs. estimated differ-
ences; RV_disc) and the slope of the empirical
semivariogram of residuals at distance 0 (vgslope).

2.4 Selection of representative trials according
to spatial patterns

Twelve site-trait combinations from height difference
progeny trials were analyzed in order to assess the pat-
terns of environmental heterogeneity. We examined the
spatial distribution of residuals (heat map) and their iso-
tropic empirical semivariograms from a model with
fixed genetic groups whenever present and individual-
tree level additive genetic effects (breeding values).

Although all cases were used for comparing the per-
formance of the different spatial models, only three of
them were used as representative cases of the different
spatial pattern scenarios (Fig. 2) for further illustration
in Section 3. The first selected trial (2.708.3, height) is
a typical case exhibiting large-scale variation in two
dimensions, with a heat map displaying large patches
of similar residuals and a semivariogram with a clear
trend of increasing variation with the distance between
trees. A trial with mostly short-scale variation is shown
in the next panel (2.707.1, height) , where the
semivariogram depicts a rapid change in variation at
close distances with a leveling out at medium distances.
The heat map displayed smaller aggregates of similar
tones than in the previous case. Finally, the last selected
trial (3.704.2, diameter) displays a very short-scale spatial
pattern, with the heat map showing antagonistic residuals
in neighboring cells, and a semivariogram with no general
trend but at the very short range.

Fig. 2 Heat maps (a) and isotropic empirical semivariograms (b)
from the residuals of a basic genetic model not accounting for
spatial autocorrelation, for three contrasting cases of the eight
Douglas-fir progeny trials b
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2.5 Performance assessment of AR and splines
approaches under simulated scenarios

We designed an extensive simulation experiment where a num-
ber of datasets were sampled under several alternative scenarios.
We fitted AR and splines models to each dataset and compared
their relative performance according to a few selected measures.

Specifically, we simulated 180 datasets of dimension 70 ×
70 individuals in each of the 12 scenarios which arise from the
combination of the following:

& generating model: AR and splines
& range: short and long
& variance ratio of spatial and residual variances: low, me-

dium, and high

Given that the environmental spatial variation may interact
with other non-environmental factors like additive genetic resem-
blance between neighbors or plot structure and this interaction
can affect differently the performance of alternative spatial
modeling, we simulated four additional scenarios involving

Fig. 3 Random realizations of
examples of simulated spatial
patterns with the bidimensional
separable first-order
autoregressive (AR) and
bidimensional spline regression
(splines) models at short and long
spatial ranges

Fig. 4 Empirical semivariograms of realized spatial effects by model (bidimensional separable first-order autoregressive-AR-and bidimensional spline
regression -splines- ) and spatial range (short and long)
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combinations of plot design and within-plot genetic relatedness.
The basic scenario was a single-tree plot design (STP) with a
Gaussian residual variance of 1. No genetic effects were simu-
lated in this scenario, since their effect on the estimation of the
spatial component would be indistinguishable from the residuals
due to the stochastic independence. Three other alternative sce-
narios with multiple-tree plot designs (MTP) of seven trees in
line plots differed in their within-plot genetic composition, with
clonal, full-sib, and half-sib family structures with independent
progenitors. The STP designs were completely randomized,
while the MTP designs were arranged into 10 bands of random-
ized line plots with seven individuals each (see Supplementary
Fig. S1). For the MTP designs, we assumed an additive genetic
variance of half the residual variance (1/3 and 2/3 respectively),
keeping the total at 1 for comparability, and simulated breeding
values according to the specific family structure. We rescaled the
genetic and residual effects to keep the total variance comparable
to that of the STP design.

A short (long) range was simulated with an autocorrelation
parameter of 0.80 (0.93) for the AR model and 20 (7) internal
knots for the splines model. In all cases, the same parameter was
used for both the row and column directions. The specific values
were selected to produce spatial patterns with qualitatively dif-
ferent ranges of approximately equivalent extent across models.

Figure 3 shows four random realizations of spatial patterns by
model and range (more examples in Supplementary Fig. S2).

The differences in perceived smoothness between the spatial
patterns from AR and splines are intrinsic to the nature of these
models. Specifically, this feature is caused by a fundamental
difference in the curvature of the semivariogram at 0 (e.g., see
Cressie 1993, p. 60). Figure 4 displays the corresponding empir-
ical semivariograms for the realized spatial patterns in Fig. 3 (and
Supplementary Fig. S3, the corresponding empirical
semivariograms for the realized spatial patterns in
Supplementary Fig. S2).

The categories of the ratio of the spatial effect variance (σ2
s )

with respect to the residual variance (σ2
e ) (i.e., σ2

s=σ
2
e ) were

0.0625, 0.25, and 0.5 for low, medium, and high, respectively.
The R code used for simulating the entire datasets used in this
study is given as an Electronic Supplementary Material
(Supplementary R_code S1). Additionally, an R code to generate
a reduced simulation studymimicking the entire datasets is given
also as an Electronic Supplementary Material (Supplementary
R_code S2).

Each of the resulting 180 × 12 × 4 = 8640 datasets was fitted
with both AR and splines models using a grid search for their
respective parameters (i.e., autocorrelation parameter and

Table 2 Akaike information
criterion (AIC), estimates of
variance components (Genetics,
Spatial, Residual), heritabilities
(Heritability), and average of the
correlation coefficients and root
mean square errors (RMSE) from
the cross-validation analyses for
each of the three spatial mixed
models studied (see text for
models’ abbreviations). Standard
errors are in brackets. The corre-
sponding traits analyzed are total
height for sites 2.708.3 and
2.707.1, and diameter for site
3.704.2. The lowest AIC and
RMSE values, and highest corre-
lations values are highlighted in
italics

Trial Modela

block AR splines

2.708.3 AIC 104,886 104,454 104,523

Genetic 2507 (172) 2484 (182) 2514 (173)

Spatial 1889 (320) 1786 (172) 1649 (341)

Residual 4625 (107) 4089 (114) 4359 (111)

Heritability 0.35 (0.02) 0.38 (0.002) 0.37 (0.02)

Correlation coefficients 0.54 (0.04) 0.57 (0.03) 0.56 (0.03)

RMSE 23.65 (1.09) 23.1 (1.06) 23.22 (1.03)

2.707.1 AIC 64,179 63,722 63,905

Genetic 1723 (180) 1882 (224) 1770 (217)

Spatial 2050 (403) 4804 (378) 4693 (890)

Residual 11,353 (262) 7998 (163) 10,430 (292)

Heritability 0.13 (0.01) 0.19 (0.02) 0.15 (0.02)

Correlation coefficients 0.38 (0.03) 0.49 (0.03) 0.44 (0.04)

RMSE 33.02 (1.21) 31.07 (1.15) 32.03 (1.24)

3.704.2 AIC 33,830 33,799 33,798

Genetic 7833 (971) 7719 (978) 7731 (1170)

Spatial 286 (137) 907 (354) 578 (268)

Residual 18,155 (799) 18,060 (839) 18,070 (824)

Heritability 0.30 (0.03) 0.30 (0.03) 0.30 (0.04)

Correlation coefficients 0.24 (0.07) 0.26 (0.07) 0.27 (0.07)

RMSE 45.38 (1.91) 45.07 (2.04) 45.05 (2.08)

a block: block design model, AR: bidimensional separable first-order autoregressive model, splines:
bidimensional spline regression model
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number of knots, respectively). The search process assumed isot-
ropy (i.e., same parameter value in row and column directions)
and fitted seven different values around the true simulated pa-
rameter value. The specific values for ρ were defined in a logit
scale as logit(ρ0) + (k − 4)/2, k= 1,… , 7, where ρ0 is the value of
the autocorrelation parameter used for simulation. The specific
values for the number of knots were defined as exp(log(k0− 2) +
(k− 4)/6 + 2), k = 1,… , 7, where k0 is the number of knots used
for simulation. The resulting values were rounded to two and
zero decimal places, respectively. These somewhat arbitrary
scales were designed to produce approximately uniformly dis-
tributed values in qualitative terms, since, for example, a 0.05
increase in correlation from 0.5 has a very different relevance
than from 0.9. The model with the highest likelihood was select-
ed as the outcome of the grid-search processes for the
autoregressive and knots parameters.

In summary, for each approach (i.e., AR or splines), we
fitted seven models to each of the 8640 datasets, which result-
ed in more than 120K model fits.

For each dataset and approach, we calculated the following
performance metrics:

& AIC: Akaike Information Criterion, see above
& RMSE: root mean square error of prediction of the expect-

ed phenotype

& RVRD: residual variance relative deviation, i.e., σ̂
2
e−σ2e
σ2e

& SCor: correlation between predicted and true spatial ef-
fects based on the simulations

& SVRD: spatial variance relative deviation, i.e., σ̂
2
s−σ2s
σ2s

Note that AIC and RMSE are always positive, and lower
values are better. For RVRD and SVRD, values closer to 0 are
preferable, while SCor ranges between 0 and 1, and higher values
are superior.

Finally, in order to compare the relative performances of the
AR and splines approaches, we computed the differences be-
tween the absolute values of their metrics (|mSplines| − |mAR|) for
each simulated dataset. This resulted in a Monte Carlo

approximation (with 8640 samples coming from the 180 differ-
ent scenarios) of the sampling distribution of these relative-
performance metrics where positive (negative) values favor the
AR (splines) approach, except for SCor where this relationship is
reversed.

Data availability The datasets generated and analyzed during
the current study are available in the Zenodo repository
(Cappa et al. 2019) at https://doi.org/10.5281/zenodo.
2629151.

3 Results

3.1 Results from Douglas-fir case studies

Only one of the 12 traits by site combinations resulted in the
block model being the best performing analytical method. We
present the measures of model comparison for the three repre-
sentative case studies in Table 2. The equivalent measurements
for the rest of the trial by trait combinations are shown in
Supplementary Table S1. According to AIC, the block model
resulted in the worst fit (i.e., highest AIC), while AR yielded
the lowest AICs for the cases with large- and short-scale envi-
ronmental heterogeneity (2.708.3 and 2.707.1, respectively). For
the case with very-short-scale environmental heterogeneity
(3.704.2), splines gave the best fit although differences were very
small compared to AR (33,798 versus 33,799, respectively).
Both AR and splines yielded smaller residual variance estimates
than the block model, which resulted ultimately in higher herita-
bilities. Measures of predictive ability from cross-validation re-
vealed a similar picture of advantages for AR and splines over
the block model (correlation coefficient and RMSE in Table 2).
In general, differences between the two best fitting models (AR
and splines) were more important when environmental variation
was at short scale than when compared at larger scales, with AR
outperforming splines in terms of AIC and predicting ability.

Apart from fitting quality and heritability increase, accuracy of
breeding values and eventual change in candidate ranking be-
tween models are also of concern for the breeder. Table 3 shows

Table 3 Accuracy of prediction of breeding values from the block
design (block), bidimensional separable first-order autoregressive (AR)
and bidimensional spline regression (splines) models, and Spearman

correlations coefficients between predicted breeding values of the 10%
best candidates for all pairs of models. The corresponding traits analyzed
are total height for sites 2.708.3 and 2.707.1, and diameter for site 3.704.2

Trail Accuracy of breeding values Spearman correlation of breeding values

block AR splines block/AR block/splines splines/AR

Parents Offspring Parents Offspring Parents Offspring Parents Offspring Parents Offspring Parents Offspring

2.708.3 0.87 0.66 0.88 0.67 0.88 0.67 0.95 0.83 0.95 0.86 0.96 0.93

2.707.1 0.70 0.47 0.73 0.51 0.71 0.49 0.81 0.74 0.93 0.88 0.90 0.83

3.704.2 0.86 0.63 0.86 0.63 0.86 0.63 0.96 0.95 0.96 0.95 1.00 1.00
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some statistics concerning resulting breeding values from the
threemodels. As expected, parents reached higher accuracies than
offspring, and accuracies increased with heritabilities. There were
no clear differences between AR and splines models for accura-
cies, except for the short-scale environmental variation case study,
for which AR model presented slightly higher accuracies. Block
model accuracies were similar or lower than those of AR and
splines models. However, we observed some changes in ranking
of best 10% candidates, which were particularly important be-
tween block and AR models, presumably because the former
takes mostly account for large-scale environmental variation only.

3.2 Results from simulated scenarios

Figure 5 shows a summary of the sampling distributions of the
considered performance metrics by fitted model, spatial range,
and plot structure. For ease of interpretation, we removed some
scenarios that did not add any further insight. Specifically, we
kept only the scenarios with highest ratio of spatial to residual
variances, which displayed the same patterns than lower ratios
but at a higher scale. Furthermore, we show only STP and half-
sib MTP designs, since they behave very similar to clone-MTP
and full-sib MTP designs, respectively. The full version of the
Fig. 5, for all scenarios and mating designs with two additional
metrics considered later, is available in Supplementary Fig. S4.

From Fig. 5, we can confirm some expected results concerning
the differences among scenarios. For instance, that STP designs
generally yielded more accurate predictions (most clearly in
terms of RMSE) than MTP, and that MTP designs had larger
sampling variability (e.g., standard error), notably in the estima-
tion of the residual variance. In general, long-ranged spatial ef-
fects were easier to fit, and spline-generated spatial effects were
also more easily recovered than AR counterparts. Furthermore,
both approaches yielded unbiased estimations of the variance
components when they matched the generating spatial model
(i.e., simulated model = fitted model; outermost couple of points
in each panel). Conversely, both approaches are biased in the
non-matching context. It is important to note that the relevant
comparison here is that between fitted models, rather than that
between generating models. These latter were simply two alter-
native ways of generating a Breality,^ the spatial heterogeneity,
for which the experimenter has no clue of its nature.

The relative performances of the splines and AR approaches
under these settings are more accurately assessed from Fig. 6,
which displays the differences in absolute value between the
splines and AR metrics by spatial range, simulated model, and
plot structure. The distributions over the BAR^ column tended to
be concentrated further away from 0 (meaning larger differences
between splines and ARmetrics) than their corresponding coun-
terparts over the Bsplines^ column, and this happened for most

Fig. 5 Median and 90% central
quantile of sampling distribution
of metrics (root mean squared
error of prediction of the expected
phenotype -RMSE-; residual
variance relative deviation
-RVRD- ; correlation between
predicted and true simulated
spatial effects -Scor-; and spatial
variance relative deviation
-SVRD-) by fitted model
(bidimensional separable first-
order autoregressive -AR- and
bidimensional spline regression
-splines-), spatial range (short and
long), and plot structure (design,
single-tree plot -STP- and
multiple-tree plot -MTP-)
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metrics except SVRD at long range which showed the contrary.
For example, with spline-generated data, the AR approach is
almost as good as the splines when it comes to estimating the
residual variance, or in terms of correlation between simulated
and predicted spatial effect. There is a more remarkable differ-
ence in these metrics in favor of AR when the spatial effect is
generated by an AR model. We can conclude that even if the
differences in performance are relatively small with respect to the
target values, it is easier for the AR approach to fit spline-
generated data than the converse. This is particularly true under
a scenario of long-ranged spatial effect and STP structure (e.g., in
terms of RMSE). Under MTP structure, however, the RMSE
increases dramatically for both approaches and the advantage
of the AR over splines vanishes almost completely.

Figure 7 displays the marginal distributions of the
semivariogram metrics residual variance discrepancy (RV_disc)
and semivariogram slope (vgslope) by (simplified) scenario, de-
sign, and approach. Note how the discrepancy between the em-
pirical and estimated residual variance is most important under
MTP designs, where there is the additional confounding of the
spatialized genetic arrangement. For STP designs on the other
hand, the discrepancy is more important for short- rather than for
long-ranged spatial effects, and for the AR than for the splines
approach, due to the weaker partial pooling. The slope of the
empirical semivariogram is systematically negative, except for

the case where the data were simulated with a long-ranged AR
spatial process and fitted with a splines approach. This is certain-
ly due to unaccounted autocorrelation at a shorter scale, and
reflects the mismatch in the covariance model. Otherwise, for
the AR approach under STP structure at short-ranged spatial
scale, the negative slope is remarkably steeper than for the splines
approach, both for AR- or splines-simulated data. This is likely a
side effect of the increased correlation between spatial and resid-
ual BLUPs. It is not the semivariogram peak which is taller but
the empirical variance which is lower. This can be seen from the
negative correlations between these two metrics for the non-
matching cases in Supplementary Fig. S5. From the same Fig.
S5, we can see that neither the empirical discrepancy with the
estimated residual variance (RV_disc) nor the semivariogram
slope (vgslope) is associated with any other metric. This suggests
that the discrepancy and slope are not signs of over- or under-
fitting but a generally expected outcome. Moreover, the fact that
the AR approach usually displays a steeper slope than splines
does not hamper its predictive ability.

4 Discussion

In genetic evaluation and quantitative genetic analyses in for-
est trees, environmental heterogeneity is of relevance given

Fig. 6 Median and 90% central
confidence interval of differences
between the bidimensional spline
regression (splines) and
bidimensional separable first-
order autoregressive (AR) abso-
lute metrics (i.e., |mSplines| − |mAR|
for m equal to root mean square
error of prediction of the expected
phenotype -RMSE-; residual var-
iance relative deviation -RVRD-;
correlation between predicted and
true simulated spatial effects
-Scor-; and spatial variance rela-
tive deviation -SVRD-) by spatial
range (short and long) and plot
structure (design, single-tree plot
-STP- and multiple-tree plot
-MTP-). Positive (negative)
values indicate a better
performance by AR (splines),
except for SCor where the
relationship is the reverse
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that trials usually comprise large areas often established in
marginal heterogeneous lands, which in turn can exacerbate the
magnitude of environmental effects and the need to account pre-
cisely for them in the evaluation process. In the era of genome-
driven accuracy, we should not forget that environmental terms
also need to be assessed with precision in the populations used
for calibration, in order to be able to split precisely genetic and
environmental effects. In this study, we compared one of the
most common and classical methods to account for environmen-
tal heterogeneity in experimental trials, the blockmodel, which is
an a priori method based on design, with two alternatives that are
based on a posteriori analyses using an empirical Douglas fir data
and the a posteriori AR and splines models under different sim-
ulated scenarios. Of these latter methods, the ARmodel is one of
the most popular methods in the spatial literature in forest and
crop evaluation (e.g., Qiao et al. 2000; Smith et al. 2001; Costa e
Silva et al. 2001; Dutkowski et al. 2006). P-splines represents a
methodologically distinct approach which is considered suitable
to fitting trends over large scales than those usually associated to
AR models.

We found that a posteriori analyses byAR and splines models
clearly outperformed the blockmodel. This was the case across a
series of 11 out of the 12 traits by site combinations comprising
eight sites from the Douglas fir genetic evaluation program that
were used in the present study. Similar outcomes have been

found in previous works involving forest genetic trials, when
comparing a block model to AR (Costa e Silva et al. 2001;
Dutkowski et al. 2006; Ye and Jayawickrama 2008) and splines
(Cappa et al. 2011 and Cappa et al., 2015a) models. Other a
posteriori approaches for spatial modeling showed also improve-
ment of estimates of genetic parameters and breeding values over
standard designs, like kriging (Hamann et al. 2002, Zas 2006),
and nearest neighbor techniques (Anekonda and Libby 1996,
Joyce et al. 2002). In summary, there is a considerable amount
of work, of which we referenced just a few studies, all showing
the benefits of a posteriori spatial analyses over classical a priori
design-based approaches. However, there is a lack of compari-
sons between some of the best a posteriori methods.

This study presents one of the first comparisons between two
methodologically distinct a posteriori methods by using both
empirical and simulated data. Our empirical results revealed that
differences between AR and splines models in terms of fitting
and predicting ability, although in absolute terms favorable to the
former, were relatively small or difficult to discernwhen account-
ing for replicate variation in the cross-validation analysis. These
results are consistent with those obtained from Velazco et al.
(2017) where the performance of the splines model was equiva-
lent to the AR model when considering the improvement in the
precision and the predictions of genetic values, even though they
considered anisotropic models and a different covariance

Fig. 7 Median and 90% central
quantile of sampling distribution
of variogram metrics (empirical
and estimated residual variances
differences -RV_disc- and slope
of the empirical semivariogram of
residuals at distance 0 -vgslope-)
by fitted model (bidimensional
separable first-order
autoregressive -AR- and
bidimensional spline regression
-splines-), spatial range (short and
long), and plot structure (design,
single-tree plot -STP- and
multiple-tree plot -MTP-)
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structure in the splines model. Our results showed, however, that
the differences between splines andARwere of somehowgreater
magnitude for cases where spatial heterogeneity happened at
relatively short scale, which is well in agreement with what is
considered a favorable scenario for the ARmodel (Gilmour et al.
1997). Therefore, the ARmodel could well be considered a good
general option for most field testing situations, to the level of
generality that can be drawn from the experimental coverage that
was used in the present study. This study also comported a sys-
tematic comparison between the two a posteriorimethods involv-
ing a comprehensive collection of simulated data covering awide
range of parametric situations. In general, results from simulated
datawere well in agreement with those from empirical data. Both
methods performed similarly well, although AR model seemed
to handle more easily all kinds of spatial scenarios. Notably,
splines-based data resulted in AR fits being almost as good as
those obtained with splines counterparts, while AR-based data
were in general more challenging for the fit with splines. These
advantages were, however, of very small magnitude in relative
terms. Whenever MTP were fitted, any differences between the
two models vanished as a consequence of a decrease in predic-
tive ability for both models.

The result in the comparison between AR and splines models
brings an important point here: the fact that the best model is a
case-based choice and that for this there are now excellent alter-
natives to classical designs. This was already presented by
Gilmour et al. (1997), and other authors who reached similar
conclusions when facing analytical choices for spatial data in
agriculture. Although the gain by perfecting the choice for each
dataset between different a posteriori methods might appear as
negligible in most cases, it is clear that the exercise can give the
breeder an excellent insight into the way spatial heterogeneity
affects genetic evaluation.

Bymeans of the simulation experiment, we showed that some
discrepancy between the variance of the empirical residuals and
the estimated residual variance along with some non-flat slope in
the first few lags of the empirical residual semivariogram (Fig. 7)
are to be expected and are not an indication of model
misspecification of any sort. Indeed, Stein (1999) shows that it
is not generally possible to recover the covariance function of a
Gaussian random field from observations in a bounded region
(see Section 6.3 in Stein 1999). The reason is that the empirical
residuals are predicted conditional to the observations, and thus
they are neither independent nor identically distributed in gener-
al. In particular, they are prone to be positively correlated with
other random effects in the model, which are also conditional on
the data. This is enhanced by high-dimensional (e.g., individual
level) random effects with little shrinkage (also known as partial
pooling, or information sharing) such as short-ranged AR
models. The positive correlation among BLUPs explains that
the sum of the empirical variances of the effects is lower than
the empirical variance of the sum (i.e., the phenotypic variance),
and in turn, why the empirical semivariogram of residuals is

shifted downwards from its theoretical level. On the other hand,
the negative slope at distance 0 is a consequence of the partial
pooling performed by the spatial effect, where the spatial BLUPs
are shrunk towards the local average value. The remains of this
shrinkage are left over as increased residual variance in the dif-
ferences among neighboring residuals, which can be detected in
the first few semivariogram lags.

Our simulation results also demonstrated that the AR and
splines approaches yielded unbiased estimations of the variance
components when they match the generating spatial model (Fig.
5). This contrasts with the results from Rodríguez-Álvarez et al.
(2018), who found a slight but systematic bias in the estimates of
the spatial and residual variances for the AR model (see Table 4
in Rodríguez-Álvarez et al. 2018). However, this bias is most
apparent for extremely low values of the autocorrelation param-
eter (ρ = 0.1) which causes a lack of identifiability with the re-
sidual component. In our work, we did not consider these low
levels of autocorrelation since they do not produce spatial effects
of any practical interest as argued in Section 2. The remaining
discrepancy can be explained by differences in the implementa-
tion. Specifically, our implementation was restricted to an isotro-
pic grid search among 7 candidate values of the autocorrelation
parameter, which is estimated within the REML algorithm in
Rodríguez-Álvarez et al. (2018).

Our work has focused on positive correlations between two
adjoining trees caused by small- and large-scale environmental
variation. Moreover, it showed how these environmental varia-
tions can interact with other non-environmental factors occurring
at the same spatial scale (i.e., mating design and plot structure),
and how these interactions can affect the performance of the AR
and splines models. Interplant competition may be another non-
environmental factor at small-scale spatial variation that may
affect the performance of the AR and splines models. Tree com-
petition for resources may also bias breeding value estimation
from competing individuals by inducing a negative correlation
between either individual trees or neighbor plots, and is caused
by genetic and environmental sources (e.g., Cappa and Cantet
2008; Costa e Silva and Kerr 2013). In forest genetic trials, both
phenomena (i.e., competition and environmental heterogeneity)
are dynamic and coexist simultaneously (e.g., Magnussen 1994;
Cappa et al. 2015b). We would expect that splines will be less
affected than the AR models by a very short-scale disturbance,
for instance, due to competition. Further study is required on this
topic.

5 Implications for French Douglas fir breeding
program and conclusion

Progeny test of the French Douglas-fir breeding program of-
fered a good opportunity to test alternative methods for
modeling spatial heterogeneity. Many of these trials are large,
with surfaces often being between 5 and 10 ha, and

53 Page 14 of 16 Annals of Forest Science (2019) 76: 53



established on marginal heterogeneous lands, which are good
preconditions for the use of efficient modeling approaches.
Results suggested that there is a substantial gain in accuracy
and precision in switching from classical a priori blocks de-
sign to any of the two alternative a posteriori methodologies.
Simulations, covering a larger though oversimplified hypo-
thetical setting, seemed to support previous empirical find-
ings. As a result of this, one possibility offered by the use of
these alternative methods for future trials would be to trade the
extra precision and accuracy granted by these a posteriori
methods for some reduction in trial size. In addition, there is
a number of recommendations that are fully applicable to our
Douglas-fir breeding program, but that could be also of gen-
eral use for any program relying on progeny testing. These
recommendations are the following:

1. In practice, both models (i.e., AR and splines) suit-
ably capture spatial variation. It is usually safe to use
any of them. The final choice could be driven solely
by operational reasons. Sometimes, it will be more
convenient to use AR (e.g., faster), or splines (e.g.,
irregular arrangement of observations). In most cases,
changes in estimated parameters and predicted values
will be negligible.

2. It might be worth to assess second-order behavior by vi-
sual inspection of the empirical semivariogram of resid-
uals from a non-spatial model and determine whether it is
more similar to an AR process or to a splines counterpart.
Otherwise, an AR process emerges as a safe default
choice. If possible, it is recommended to fit both models
and confirm that they yield similar results. If they do not,
then investigate possible causes.

3. It might be worth to combine multiple spatial models,
notably if they can capture spatial variation at different
scales or different sources of variation (i.e., block and
splines, or block and AR) to capture spatial variation at
different scales or different sources of variation.

4. The empirical semivariogram of residuals from a fitted
model with a spatial effect (especially AR models, under
MTP designs) can sometimes display a sudden initial drop
and a subsequent stabilization at a value below the esti-
mated residual variance (see Fig. 1). This is expected and
it does not necessarily mean that the model is mis-speci-
fied, nor that the predictions are wrong.
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