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In this present paper, we will discuss the existence and uniqueness for a class of mild solutions for quasi-linear fractional integrodifferential equations with impulsive conditions via Hausdorff measures of noncompactness and fixed point theory in Banach space Λ.

1. Introduction. The aim of this paper is to study the existence and uniqueness of a class mild solution of quasi-linear fractional integrodifferential equations with impulsive and nonlocal condition of the form

       C D α
0+ θ(t) + A(t, θ(t))θ(t) = Φ(t, θ(t)) + 1 Γ(α) t 0 (t -s) α-1 g(t, s, θ(s))ds, t ∈ [0, b], t = t i θ(0) + Ξ(θ) = θ 0 ∆θ(t i ) = I i (θ(t i )), i = 1, ..., n, 0 < t 1 < ... < t n < b (1) where C D α 0+ (•) is the Caputo fractional derivative of order 0 < α ≤ 1, t ∈ [0, b], A : [0, b] × Λ → Λ be a closed and linear operator the generator of an (α, u)resolvent family, θ 0 ∈ Λ (Λ is a Banach space), Φ : [0, b] × Λ → Λ, g : Ω × Λ → Λ, Ξ : PC([0, b], Λ) × Λ → Λ and ∆θ(t i ) = θ(t + i ) -θ(t - i ) constitutes an impulsive condition. Here Ω = (t, s); 0 ≤ s ≤ t ≤ b.

Over the decades, the quest to discuss results about existence, uniqueness, controllability, among other properties of solutions of differential and integrodifferential equations, has been the target of an investigation of paramount importance in mathematics, among other areas of knowledge [START_REF] Samuel | Existence of solutions for quasi-linear impulsive functional integrodifferential equations in Banach spaces[END_REF][START_REF] Byszewski | Theorems about the existence and uniqueness of solutions of a nonlocal Cauchy problem in Banach spaces[END_REF]6]. Tools, as a measure of non-compactness and fixed point theory, are very useful in discussing the theory of differential equations [7,[START_REF] Banas | Measures of noncompactness and solvability of an integral equation in the class of functions of locally bounded variation[END_REF]9,[START_REF] Emmanuele | Measures of weak noncompactness and fixed point theorems[END_REF].

On the other hand, in a special way, the theory of impulsive differential equations appears as a natural description of several real processes subject to certain disturbances whose duration is insignificant compared to the duration of the process. For many years, Lakshmikantham et al. [START_REF] Byszewski | Theorems about the existence and uniqueness of solutions of a nonlocal Cauchy problem in Banach spaces[END_REF], Ntouyas and Tsamatos [6], discussed numerous properties of their solutions. We do not restrict these authors here, but other important researchers who have developed and are developing other theories can be found in the papers and references therein [11,[START_REF] Hernández | On a new class of abstract impulsive differential equations[END_REF][START_REF] Ji | Existence results for impulsive differential inclusions with nonlocal conditions[END_REF].

In 2012, Arjunan et al. [START_REF] Arjunan | Existence results for impulsive differential equations with nonlocal conditions via measures of noncompactness[END_REF], investigated the existence of solutions impulsive differential equations with nonlocal conditions in a real Banach space X of the form

   u (t) = Au(t) + f (t, u(t)), t ∈ [0, b], t = t i u(0) = g(u) ∆θ(t i ) = I i (θ(t i )), i = 1, ..., n, 0 < t 1 < ... < t n < b
where A : D(A) ⊂ X is a non-densely defined operator, ∆u(t i ) = u(t + i ) -u(t - i ), u(t - i ), u(t + i ) denote the right and left limit of u at t i , respectively. It is unquestionable the importance and relevance that fractional calculus over the years provides to numerous areas, in particular, physics, engineering, medicine, biology, among others [START_REF] Teodoro | A review of definitions of fractional derivatives and other operators[END_REF][START_REF] Yang | Exact travelling wave solutions for local fractional partial differential equations in mathematical physics[END_REF][START_REF] Moghaddam | Numerical approach for a class of distributed order time fractional partial differential equations[END_REF][START_REF] Ortigueira | Variable order fractional systems[END_REF][START_REF] Almeida | An epidemiological MSEIR model described by the Caputo fractional derivative[END_REF][START_REF] Almeida | On systems of fractional differential equations with the ψ-Caputo derivative and their applications[END_REF][START_REF] Almeida | A Caputo fractional derivative of a function with respect to another function[END_REF][START_REF] Nemati | A numerical approach for solving fractional optimal control problems using modified hat functions[END_REF][START_REF] Ammi | Optimal control of a nonlocal thermistor problem with ABC fractional time derivatives[END_REF]. Today, the theory of fractional calculus, is well established, and what has been noticed, is the growing number of researchers using tools discussed in fractional calculus, and applying in other areas, providing this important link, which grows exponentially over the years [START_REF] Sakthivel | Controllability for a class of fractional-order neutral evolution control systems[END_REF][START_REF] Shi | A study on the mild solution of impulsive fractional evolution equations[END_REF][START_REF] Liu | Approximate controllability of fractional functional evolution inclusions with delay in Hilbert spaces[END_REF][START_REF] Chalishajar | Existence and controllability results of impulsive fractional neutral integro-differential equation with sectorial operator and infinite delay[END_REF][START_REF] Dabas | Existence and uniqueness of mild solution for an impulsive neutral fractional integro-differential equation with infinite delay[END_REF][START_REF] Nirmala | Null controllability of fractional dynamical systems with constrained control[END_REF]. Here, we will highlight the fractional differential equations, which has been the subject of study by several researchers [START_REF] Diethelm | Analysis of fractional differential equations[END_REF][START_REF] Lakshmikantham | Basic theory of fractional differential equations[END_REF][START_REF] Kilbas | Theory and applications of fractional differential equations[END_REF][START_REF] Yong | Basic theory of fractional differential equations[END_REF].

The theory of fractional differential equations is of paramount importance in both the theoretical and practical aspects. In a theoretical sense, we can highlight researchers such as: Trujillo, Nieto, Donal O'Regan, Benchohra, N'Guerekata, Debbouche, among other renowned researchers, who discussed important and relevant results that enabled the growth and strengthening of the area [START_REF] Benchohra | Semilinear fractional differential equations with infinite delay and non-instantaneous impulses[END_REF][START_REF] Tuan | Approximation of mild solutions of a semilinear fractional differential equation with random noise[END_REF][START_REF] Tuan | Existence and regularity of final value problems for time fractional wave equations[END_REF][START_REF] Benchohra | Semilinear fractional differential equations with infinite delay and non-instantaneous impulses[END_REF][START_REF] Boudjerida | Controllability of coupled systems for impulsive ϕ-Hilfer fractional integro-differential inclusions[END_REF]. Recently, Sousa and Oliveira [START_REF] Sousa | Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation[END_REF]16,17,19,[START_REF] Sousa | On the Ψ-fractional integral and applications[END_REF][START_REF] Sousa | Fractional calculus and the ESR test[END_REF], has discussed some results on existence, uniqueness, stability of solutions of fractional differential equations via ψ-Hilfer fractional derivative, obtaining a wide class of particular cases. Other works, involving the ψ-Hilfer fractional derivative, we suggest [START_REF] Sousa | A note on the mild solutions of Hilfer impulsive fractional differential equations[END_REF][START_REF] Sousa | A new class of mild and strong solutions of integro-differential equation of arbitrary order in Banach space[END_REF][START_REF] Sousa | Existence of mild solutions to Hilfer fractional evolution equations in Banach space[END_REF].

In 2010, Debbouche [START_REF] Debbouche | Fractional evolution integro-differential systems with nonlocal conditions[END_REF], discussed the existence and uniqueness of local mild and classic solutions of a class of nonlinear fractional evolution integro-differential systems with nonlocal conditions of the form

   d α dt α u(t) + A(t)u(t) = f (t, u(t)) + t 0 B(t -s)g(s, u(s))ds, u(t 0 ) + h(u) = u 0 in a Banach space X, where 0 < α ≤ 1, 0 ≤ t 0 < t, -A(t) is a closed linear operator defined on a dense domain D(A) in X into X such that D(A) independent of t.
It is assumed also that -A(t) generates an evolution operator in the Banach space X, the function B is real valued and locally integrable on [t 0 , ∞], the nonlinear maps f and g are defined on [t 0 , ∞] × X into X and h : C(J, X) → D(A) is a given function. In addition to these important results, Debbouche and Baleanu [START_REF] Debbouche | Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems[END_REF], discussed results on controllability of fractional integrodifferential equations.

In 2017, Gou and Li [START_REF] Gou | Local and global existence of mild solution to impulsive fractional semilinear integro-differential equation with noncompact semigroup[END_REF], investigated the local and global existence of mild solutions to impulsive fractional semilinear integro-differential equation with noncompact semigroup

       u α (t) + Au(t) = f (t, u(t)) + t 0 q(t -s)g(s, u(s))ds, t > 0, α ∈ (0, 1) u(0) = u 0 ∈ X ∆u| t=t k = I k (θ(t k )), k = 1, ..., m
where the u α (•) is Caputo fractional derivative of order α (α ∈ (0, 1)), A : D(A) ⊂ X → X is a closed linear operator and -A generates a uniformly bounded c 0semigroup T (t) (t ≥ 0) in X, the nonlinear maps f, g : [0, ∞] × X → X, and

q : I → X are continuous, I = [0, T ), 0 < T ≤ ∞, u 0 ∈ X. I k : X → X, 0 = t 0 < t 1 < • • • < t m < t m+1 = T , ∆u| t=t k = u(t + k ) -u(t - k ), u(t + k ) = lim n→∞ u(t k + n) and u(t - k ) = lim n→∞ u(t k -n)
represent the right and left limits of u(t) at t = t k respectively.

Motivated by the papers above, and also because the theory of fractional integrodifferential and differential equations is under construction, with numerous open questions, our goal is to contribute significantly, providing results on the existence and uniqueness of a class of mild solutions to the fractional problem (1) in the sense of Caputo fractional derivative. To make the development of the paper simple and clear, we highlight the main results discussed. It is also important to note that the results discussed in this paper are based on conditions that will be presented throughout the paper, which makes your discussions interesting and important. Basically, this paper is divided into two stages (main). The first step, we dedicate ourselves to investigate the existence of mild solutions for Eq.(1), i.e., the following results:

Theorem 1.1. Assumptions EC 1 -EC 6 , below holds, then the impulsive nonlocal problem Eq.( 1) has at least one mild solution.

Theorem 1.2. Suppose that the EC 1 -EC 2 and EC 7 -EC 8 are satisfied, then the Eq.( 1) has at least one mild solution if

lim n→∞ sup M α 0 r ϕ(r) + φ(r) t 0 p(s)ds + G 1 χ(r) Γ(α) t 0 (t -s) α-1 q(s)ds + n i=1 d i < 1
where ϕ(r) = sup{ Ξ(θ) , u < r}.

Theorem 1.3. Let 0 < α < 1. Suppose that the assumptions EC 1 -EC 9 are satisfied, then the Eq.( 1) has at least one mil solution provided that

M α 0 L 0 + 4 t 0 k 1 (s) + 2G 0 k 3 (s)(t -s) α-1 Γ(α) ds + n i=1 l i < 1.
Theorem 1.4. Suppose that the assumption EC 1 -EC 9 are satisfied, then the equation Eq.( 1) has at least one mild solution if Eq.( 28) and the following condition is satisfied,

M α 0 L 0 + lim n→∞ M α 0 r φ(r) t 0 p(s)ds + χ(r)G 1 Γ(α) t 0 (t -s) α-1 q(s)ds + n i=1 d i < 1.
(

) 2 
The second step is dedicated to discussing the uniqueness of solutions for Eq.(1), i.e., it is to discuss the following result: The rest of the paper is divided as follows. In section 2, we present the fundamental concepts of Riemann-Liouville fractional integral and the Caputo fractional derivative. In this sense, we discussed some fundamental results on the noncompactness measure and the fundamental concept of the mild solution.

2. Preliminaries. In this section, we present fundamental concepts of integrals and fractional derivatives of Riemann-Liouville and Caputo, respectively. In this sense, the concept of noncompactness measure and some fundamental results that will be used throughout the paper are presented. Definition 2.1. [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF][START_REF] Sousa | Leibniz type rule: ψ-Hilfer fractional operator[END_REF] Let (a, b)(-∞ ≤ a < b ≤ ∞) be a finite or infinite interval of the real line R and let α > 0. In addition, let ψ(t) be an increasing and positive monotone function on (a, b], having a continuous derivative ψ (t) on (a, b). The leftsided fractional integral of function θ with respect to function ψ on [a, b] is defined by

I α;ψ a + θ(t) = 1 Γ(α) t a ψ (s)(ψ(t) -ψ(s)) α-1 θ(s)ds. (3) 
The right-sided fractional integral is defined in an analogous form [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF][START_REF] Sousa | Leibniz type rule: ψ-Hilfer fractional operator[END_REF]. Choosing in particular ψ(t) = t, we have the Riemann-Liouville fractional integral given by [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF][START_REF] Sousa | Leibniz type rule: ψ-Hilfer fractional operator[END_REF] 

I α a + θ(t) = 1 Γ(α) t a (t -s) α-1 θ(s)ds, ( 4 
)
where Γ is the gamma function and

f ∈ L 1 ([a, b], R).
If a = 0, we can write I α θ(t) = (g α * θ)(t), where

g α (t) :=    1 Γ(α) t α-1 se t > 0 0 se t ≤ 0 (5) 
and as usual * denotes convolution of functions, also we have lim α→0 g α (t) = δ(t), which the delta function. From choosing ψ(•), we have another fractional integrals.

Here, we restrict the Riemann-Liouville fractional integral to use to discuss the results of this paper. However, other formulations of fractional integrals can be obtained by choosing ψ(•) [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF][START_REF] Sousa | Leibniz type rule: ψ-Hilfer fractional operator[END_REF].

On the other hand, we will present the definition of the ψ-Hilfer fractional derivative.

Definition 2.2. [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF][START_REF] Sousa | Leibniz type rule: ψ-Hilfer fractional operator[END_REF] 

Let n -1 < α < n, with n ∈ N, let I = [a, b] be an interval such that -∞ ≤ a < b ≤ ∞ and let θ, ψ ∈ C n ([a, b],
R) be two functions, such that ψ is increasing and ψ (t) = 0, for all t ∈ I. The left-sided ψ-Hilfer fractional derivative H D α,β;ψ a+ (•) of a function θ, of order α and type 0 ≤ β ≤ 1 is defined by

H D α,β;ψ a+ θ(t) := I β(h-α);ψ a+ 1 ψ (t) d dt n I (1-β)(n-α);ψ a+ θ(t). (6) 
The right-sided ψ-Hilfer fractional derivatives is defined in an analogous form [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF][START_REF] Sousa | Leibniz type rule: ψ-Hilfer fractional operator[END_REF].

Choosing ψ(t) = t and taking the limit with β → 1, on both sides of the Eq.( 6), we have the Caputo fractional derivative given by [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF][START_REF] Sousa | Leibniz type rule: ψ-Hilfer fractional operator[END_REF] 

C D α a+ θ(t) = I (n-α);ψ a+ d dt n θ(t) = I (n-α);ψ a+ θ (n) (t) (7) 
To investigate our main result, we use Caputo fractional derivative Eq.( 7).

Let Λ a Banach space with norm 

• . Let PC([a, b]; Λ) consist of functions θ from J = [0, b] into X, such that θ(t) is continuous at t = t i
θ L = b 0 θ(t) dt.
We will present below the definition of Hausdorff measure of noncompactness and some results of paramount importance in the discussion of the main results of this paper.

The Hausdorff measure of noncompactness µ Ω (•) defined by µ(B) = inf{r > 0, B can be covered by a finite number of balls with radii r} for bounded set B in a Banach space Ω [START_REF] Yong | Basic theory of fractional differential equations[END_REF].

Lemma 2.3. [START_REF] Yong | Basic theory of fractional differential equations[END_REF] Let Ω be a real Banach space and B, E ⊆ Ω be bounded, with the following properties:

1. B is precompact if and only if µ Ω (B) = 0; 2. µ Ω (B) = µ Ω ( B) = µ Ω (con B)
, where B and B mean the closure and convex hull of B, respectively;

3. µ Ω (B) ≤ µ Ω (E), where B ⊆ E; 4. µ Ω (B + E) ≤ µ Ω (B) + µ Ω (E), where B + E = {x + y; x ∈ B, y ∈ E}; 5. µ Ω (B ∪ E) ≤ max{µ Ω (B), µ Ω (E)}; 6. µ Ω (λB) ≤ |λ| µ Ω (B), for any λ ∈ R; 7. If the map Θ : D(Θ) ⊂ Ω → Z is a Lipschitz continuous with constant r, then µ Z (ΘB) ≤ rµΩ(B) for any bounded subset B ⊆ D(Θ), where Z being Banach space; 8. µ Ω (B) = inf{d Ω (B, E); Θ ⊆ Ω is precompact = inf{d Ω (B, E); E ⊆ Ω is finite valued}, where d Ω (B, E) means the non-symmetric (or symmetric) Hausdorff distance between B and E in Ω; 9. If {W n } ∞ n=1 is decreasing sequence of bounded closed nonempty subsets of Ω and lim n→∞ µ Ω (W n ) = 0, then ∞ n=1 W n is nonempty and compact in Ω.
The map W ⊆ Ω → Ω is said to be a µ Ω -contraction if there exists a positive constant r < 1 such that µ Ω (Θ(B)) ≤ rµ Ω (B) for any bounded closed subset B ⊆ W, where Ω if a Banach space. Lemma 2.5. [START_REF] Yong | Basic theory of fractional differential equations[END_REF] If W is bounded, then for each ε > 0, there is a sequence

{θ n } ∞ n=1 ⊂ W, such that µ(W) ≤ 2µ {θ n } ∞ n=1 + ε. Lemma 2.6. [37] If W ⊆ PC([0, b], Λ) is bounded, then µ(W(t)) ≤ µ c (W), for all t ∈ [0, b] , where W(t) = {θ(k); θ ∈ W} ⊆ Λ. Furthermore, if W is equicontinuous on [0, b], then µ(W(t)) is continuous on [a, b] and µ c (W) = sup{µ(W(t)), t ∈ [a, b]}. Lemma 2.7. [37] If {θ n } ∞ n=1 ⊂ L 1 ([a, b], Λ) is uniformly integrable, then the func- tion µ({θ n } ∞ n=1
) is mensurable and

µ t 0 θ n (s)ds ∞ n=1 ≤ 2 t 0 µ ({θ n (s)} ∞ n=1 ) ds. Lemma 2.8. [37] If W ⊆ PC([0, b], Λ) is bounded and equicontinuous, then µ(W(t))
is continuous and

µ t 0 W(s)ds ≤ t 0 µ(W(s))ds, for all t ∈ [0, b], where t 0 µ(W(s))ds = t 0 θ(s)ds; θ ∈ W The C 0 semigroup U θ (t, s) is said to be equicontinuous if (t, s) → U θ (t, s)θ(s); θ ∈
B is equicontinuous for t > 0 for all bounded set B in Λ. So, the following lemma is obvious.

Lemma 2.9. [START_REF] Yong | Basic theory of fractional differential equations[END_REF] If the evolution family U θ (t, s)

0≤s≤t≤b is continuous and η ∈ L ([a, b], R + ), then the set t 0 U θ (t, s)θ(s)ds , θ(s) ≤ η(s) for a.e. s ∈ [0, b] is equicontinuous for t ∈ [0, b].
From Eq.(6) we know that for any fixed u ∈ PC([0, b, Λ]) there exist a unique continuous function

U θ : [0, b] × [0, b] → B(Λ) defined on [0, b] × [0, b] such that [4] U θ (t, s) = I + t s A θ (w)U θ (w, s)dw, (8) 
where B(Λ) denote the Banach space of bounded linear operator from Λ to Λ with the norm Θ = sup{ Θ(θ) ; θ = 1} and I stands for the identity operator on Λ,

A θ = A(t, θ(b)), we have [4] U θ (t, t) = I, U θ (t, s)U θ (s, r) = U θ (t, r), (t, s, r) ∈ [0, b] × [0, b] × [0, b] and ∂U θ (t, s) ∂t = A θ (t)U θ (t, s), for almost all t, s ∈ [0, b].
Let E be the Banach space formed from D(A) with the graph norm. Since, A(t) is a closed operator, it follows that A(t) is in the set bounded from E to Λ. Definition 2.10. [START_REF] Debbouche | Fractional evolution integro-differential systems with nonlocal conditions[END_REF][START_REF] Debbouche | Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems[END_REF] Let A(t, θ) be a closed and linear operator with domain D(A) defined on a Banach space Λ and α > 0. Let ρ(A(t, θ)) be the resolvent set of A(t, θ). We call A(t, θ) the generator of an (α, θ)-resolvent family if there exist w ≥ 0 and a strongly continuous function R (α,θ) : R 2 + → L (Λ) such that {λ α : R e (λ) > w} ⊂ ρ(A) and for 0 ≤ s ≤ t ≤ ∞,

λ α I -A(s, θ) -1 ν = ∞ 0 e -λ(t-s) R (α,θ) (t, s) ν dt, R e (λ) > w, (θ, ν) ∈ X 2 .
In this case, R (α,θ) (t, s) is called the (α, θ)-resolvent family generated by A(t, θ).

Remark 1.

1. We can deduce that Eq.( 1) is well posed if and only if A(t, θ) is the generator of (α, θ)-resolvent family. 2. Here R (α,θ) (t, s) can be extracted from the evolution operator of the generator A(t, θ). 3. The (α, θ)-resolvent family is similar to the evolution for non-autonomous differential equation in a Banach space.

3. The existence of mild solution. In this section, we will discuss the existence of a mild solution for the quasi-linear fractional integrodifferential equation with impulsive and nonlocal conditions in the sense of Caputo fractional derivative, using Hausdorff of noncompactness measure.

Definition 3.1. [2, 3] By a mild solution of Eq.( 1) we mean a function θ ∈ PC(J, Λ) with values in Ω satisfying the integral equation

θ(t) = R (α,θ) (t, 0)[θ 0 -Ξ(θ)] + 0<ti<t R (α,θ) (t, s) (t, t i ) I i (θ(t 0 )) (9) 
+ t 0 R (α,θ) (t, s) Φ(s, θ(s)) + 1 Γ(α) s 0 (s -x) α-1 g(s,
x, θ(x))dx ds t ∈ J for all θ 0 ∈ Λ and 0 < α < 1.

In this work, we denote

M α 0 = sup{R (α,θ) (t, s); (t, s) ∈ [0, b] × [0, b], 0 < α < 1} for all θ ∈ Λ.
Without loss of generality, we let θ 0 = 0.

To investigate the main result of this paper, we need some conditions, namely: 

EC 1 . The evolution family R (α,θ) (t, s) 0≤s≤t≤b is called the (α, θ)-resolvent gen- erated by A(t, θ(t)) if it is equicontinuous and R (α,θ) (t, s) ≤ M α 0 for almost every t, s ∈ [0, b] and 0 < α < 1.
m α (t) = M α 0 N 1 +M α 0 N 2 1 Γ(α) t 0 ξ(t) + C 0 (t -s) α-1 β 2 (s) (1 + m(s)) ds + n i=1 d i , (13) 
for 0 < α < 1. EC 6.1 . I i : Λ → Λ is continuous. There exist a constant d i > 0, i = 1, ..., n such that

I i (θ(t i )) ≤ n i=1 d i , i = 1, ..., n. (14) 
For any bounded subset D ⊂ Λ, and there is a constant l i > 0 such that

µ(I i (D)) ≤ n i=1 l i µ(D), i = 1, ..., n. (15) 
The first result that we will discuss, is Theorem 3.2 with some conditions as previously presented. In this sense, the other results that we will discuss in this section, we use the conditions EC 1 -EC 6 and impose other conditions. Theorem 3.2. Assumptions EC 1 -EC 6 , hold then the impulsive nonlocal problem Eq.( 1) has at least one mild solution.

Proof. Consider

m α (t) = M α 0 N 0 +M α 0 1 Γ(α) t 0 ξ(t) + C 0 (t -s) α-1 β 2 (s) (1 + m(s)) ds + n i=1 d i
be a solution and assume that the finite bound of

t 0 β 1 (s) ds is C 0 for t ∈ [0, b]. Consider the map Θ : PC([0, b], Λ) → PC([0, b], Λ) defined by (F θ)(t) = R (α,θ) (t, 0)[θ 0 -Ξ(θ)] + 0<ti<t R (α,θ) (t, t i )I i (θ(t i )) (16) 
+ t 0 R (α,θ) (t, s) Φ(s, θ(s)) + 1 Γ(α) s 0 (s -x) α-1 g(s, x, θ(x))dx ds, for all θ ∈ PC([0, b], Λ) and W 0 = {θ ∈ PC([0, b], Λ), θ(t) ≤ m(t), for all t ∈ [0, b]}. Then, W 0 ⊆ PC([0, b], Λ) is bounded and convex.
On the other hand, consider we define W 1 = covK(w 0 ), where cov means the closure of the convex hull in PC([0, b], X) is bounded due to Lemma 2.6, using the assumptions, W 1 ⊆ PC([0, b], Λ) is bounded closed convex nonempty and equicontinuous on [0, b]. Now, for θ ∈ Θ(w 0 ), yields

θ(t) ≤ R (α,θ) (t, 0)Ξ(θ) + 0<ti<t R (α,θ) (t, t i )I i (θ(t i )) + t 0 R (α,θ) (t, s) Φ(s, θ(s)) + 1 Γ(α) s 0 (s -x) α-1 g(s, x, θ(x))dx ds ≤ R (α,θ) (t, 0) Ξ(θ) + 0<ti<t R (α,θ) (t, t i ) I i (θ(t i )) + 1 Γ(α) t 0 s 0 R (α,θ) (t, s) (s -x) α-1 g(s, x, θ(x)) dxds + t 0 R (α,θ) (t, s) Φ(s, θ(s)) ds.
Using the conditions EC 2.1 , EC 2.2 , EC 3.2 , EC 4.2 and EC 6.1 , we have

θ(t) ≤ M 0 N 0 + M α 0 t 0 ξ(s)(1 + m(s))ds + M α 0 C 0 t 0 (t -s) α-1 Γ(α) β 2 (s)(1 + θ(s) )ds + M α 0 n i=1 d i ≤ M α 0 N 0 + M α 0 1 Γ(α) t 0 ξ(s) + C 0 (t -s) α-1 β 2 (s) (1 + m(s))ds + n i=1 d i = m α (t). ( 17 
)
It follows that W 1 ⊂ W 0 . We define W n+1 = con Θ(w n ), for n = 1, 2, 3, .... From above we know that W {w n } ∞ n=1 is a decreasing sequence of bounded, closed, convex, equicontinuos on [0, b] and nonempty subsets in PC([0, b], Λ). Now for n ≥ 1 and t ∈ [0, b], w n (t) and Θ(w n (t)) are bounded subsets of Λ, hence, for any ε > 0, there is a sequence {θ n } ∞ n=1 ⊆ w n , using the Lemma 2.5, Lemma 2.6, Lemma 2.7 and Lemma 2.8, such that

µ (w n+1 (t)) = µ (Θ (w n (t))) ≤ 2µ t 0 R (α,θ k ) (t, s)Φ(s, {θ k } ∞ k=1 )ds + 2µ n i=1 R (α,θ k ) (t, t i )I i ({θ k (t i )} ∞ n=1 ) +2µ t 0 s 0 R (α,θ k ) (t, s) 1 Γ(α) (s -x) α-1 g(s, x, {θ k (x)} ∞ k=1 )dxds + ε ≤ 4M α 0 t 0 k 1 (s)µ ({θ k } ∞ k=1 ) ds + 8M 0 Γ(α) t 0 s 0 (s -x) α-1 k 2 (s)k 3 (x)µ ({θ k (x)} ∞ k=1 ) dxds +4M α 0 ∞ i=1 l i µ ({θ k (t i )} ∞ k=1 ) + ε ≤ 4M α 0 t 0 k 1 (s)µ (w n (s)) ds + 2G 0 Γ(α) t 0 (t -s) α-1 k 3 (s)µ (w n (s)) ds + ∞ i=1 l i µ (w n (t 0 )) + ε. (18) 
Since ε > 0 is arbitrary, from inequality (18), we have

µ (w n+1 (t)) ≤ 4M α 0 t 0 k 1 (s)µ (w n (s)) ds + 2G 0 Γ(α) t 0 (t -s) α-1 k 3 (s)µ (w n (s)) ds + ∞ i=1 l i µ (w n (t i )) (19 
) for all t ∈ [0, b] and 0 < α ≤ 1. Note that w n is decreasing for n, yields

H(t) = lim n→∞ µ(w n (t)) ( 20 
)
for all t ∈ [0, b]. So, by means of the inequalities ( 19) and ( 20), we have The natural question that arises is: will it be possible to obtain the existence of solutions to the problem, excluding some conditions EC 1 -EC 6 and imposing? At first the answer is yes. So, let's change the terms EC 3 -EC 4 , for the following conditions:

H(t) = lim n→∞ µ (w n (t)) ≤ 4M α 0 t 0 k 1 (s) + 2G 0 k 3 (s) Γ(α) H(s)ds + n i=1 l i H(t i ) (21 
1. EC 7.1 . There exists a function p ∈ L ([0, b], R + ) and an increasing function φ : R + → R + such that t, θ) ≤ p(t)φ( θ ) for a.e. t ∈ [0, b] and for all u ∈ PC([0, b], Λ). 2. EC 8.1 . There exist two functions q ∈ L ([0, b], R + ) and q ∈ L ([0, b], R + ) and a increasing function χ : R + → R + such that g(t, s, θ) ≤ q(t)q(s)χ( θ ), Theorem 3.3. Suppose that the EC 1 -EC 2 and EC 7 -EC 8 are satisfied, then the Eq.( 1) has at least one mild solution if

lim n→∞ sup M α 0 r ϕ(r) + φ(r) t 0 p(s)ds + G 1 χ(r) Γ(α) t 0 (t -s) α-1 q(s)ds + n i=1 d i < 1 (22) where ϕ(r) = sup{ Ξ(θ) , u < r}.
Proof. The inequality [START_REF] Sousa | A note on the mild solutions of Hilfer impulsive fractional differential equations[END_REF] implies that these exist a constant r > 0 such that

M α 0 ϕ(r) + φ(r) t 0 p(s)ds + G 1 χ(r) Γ(α) t 0 (t -s) α-1 q(s)ds + n i=1 d i < r. ( 23 
)
Now, we consider the following set W 0 = {θ ∈ PC([0, b], Λ), θ ≤ r} and W 1 = c onΘ(W 0 ). Then for any θ ∈ W 1 , and using the conditions EC 1 -EC 2 and EC 7 -EC 8 , yields

θ(t) ≤ R (α,θ) (t, 0) Ξ(θ) + t 0 R (α,θ) (t, s) Φ(s, θ(s)) ds + 0<ti<t R (α,θ) (t, t i ) I i (θ(t i )) + 1 Γ(α) t 0 s 0 R (α,θ) (t, s) (s -x) α-1 g (s, x, θ(x)) dxds ≤ M α 0 ϕ(r) + M α 0 t 0 p(s)φ( θ(s) )ds + M α 0 G 1 Γ(α) t 0 (t -s) α-1 q(s)χ( θ(s) )ds + M α 0 n i=1 d i ≤ M α 0 ϕ(r) + M α 0 φ(r) t 0 p(s)ds + M α 0 G 1 χ(r) Γ(α) t 0 (t -s) α-1 q(s)ds + M α 0 n i=1 d i .
In this sense, we have

θ(t) ≤ ϕ(r) + φ(r) t 0 p(s)ds + G 1 χ(r) Γ(α) t 0 (t -s) α-1 q(s)ds + M 0 n i=1 d i < r for t ∈ [0, b]. It means that W 1 ⊂ W 2 .
So we can complete the proof similarly to Theorem 3.2. Now let's investigate the existence of the mild solution for the function Ξ being Lipschitz, however φ, g and I i are not Lipschitz. First, let's admit the following condition:

1. EC 9.1 . The function Ξ is Lipschitz continuous in Λ, there exists a constant

L 0 > 0 such that Ξ(θ) -Ξ(ν) ≤ L 0 θ -ν , θ, ν ∈ PC([0, b], Λ).
Theorem 3.4. Let 0 < α < 1. Suppose that the assumptions EC 1 -EC 9 are satisfied, then the Eq.( 1) has at least one mil solution provided that

M α 0 L 0 + 4 t 0 k 1 (s) + 2G 0 k 3 (s)(t -s) α-1 Γ(α) ds + n i=1 l i < 1.
Proof. For the proof, we consider the map Θ :

PC([0, b], Λ) → PC([0, b], Λ) is defined by Θ = Θ 1 + Θ 2 , where (Θ 1 θ)(t) = R (α,θ) (t, 0)Ξ(θ)
and

(Θ 2 θ)(t) = t 0 R (α,θ) (t, s)Φ (s, θ(s)) + 1 Γ(α) s 0 (s -x) α-1 g(s, x, θ(x))dx ds+ 0<ti<t R (α,θ) (t, t i )I i (θ(t i )) for θ ∈ PC([0, b], Λ).
As introduced in the proof of Theorem 3.2, we consider W 0 = {θ ∈ PC([0, b], Λ); θ(t) ≤ m(t), for all t ∈ [0, b]} and let W = conΘw 0 . Then from the proof of Theorem 3.2 we know that W is a bounded, closed, convex and equicontinuous subset of PC([0, b], Λ) and ΘW ⊂ W. We shall prove that Θ is µ c -contraction on W. Then Darbo-Sadovskii's fixed point theorem can be used to get a fixed point of Θ in W, which is a mil solution of Eq.(1). First, for every bounded subset B ⊂ W, from the Eq.( 1). and by Lemma 2.3, we have

µ c (Θ 1 B) = µ c R (α,B) (t, 0)Ξ(B) ≤ M 0 µ c (Ξ(B)) ≤ M 0 L 0 µ c (B). (24) 
For every bounded subset B ⊂ W, for t ∈ [0, b] and every ε > 0, there exists the sequence

{θ k } ∞ k=1 ⊂ B, such that µ (Θ 2 (B(t))) ≤ 2µ ({Θ 2 θ k (t)} ∞ n=1 ) + ε. (25) 
Note that B and Θ 2 B are equicontinuous. So, by means of the Lemmas 2.3, 2.5, 2.7, 2.8 and using the conditions EC 1 -EC 9 , yields

µ (Θ 2 (B (t))) ≤ 2µ t 0 R (α,θ) (t, s)Φ(s, {θ k (s)} ∞ k=1 )ds + 2µ 0<ti<t R (α,θ) (t, t i )I i ({θ k (t i )} ∞ k=1 ) + 2µ Γ(α) t 0 s 0 R (α,θ) (t, s)(x -s) α-1 g(s, x, {θ k (x)} ∞ k=1 )dxds ≤ 4M α 0 t 0 k 1 (s)µ({θ k (s)} ∞ k=1 )ds + 8M α 0 Γ(α) t 0 s 0 (s -x) α-1 k 2 (s)k 3 (x)µ({θ k (x)} ∞ k=1 )dxds +4M α 0 0<ti<t l i µ({θ k (t i )} ∞ k=1 ) ≤ 4M α 0 t 0 k 1 (s)µ(B)ds + 2G 0 Γ(α) t 0 (t -s) α-1 k 3 (s)µ(B)ds + n i=1 l i µ(B) + ε. (26) 
Since ε > 0 is arbitrary, using above inequality (note that µ c (W) = sup{µ(w(t)), t ∈ [0, b]}), we have

µ c (Θ 2 (B(t))) ≤ 4M 0 t 0 k 1 (s) + 2G 0 Γ(α) (t -s) α-1 k 3 (s) ds + n i=1 l i µ c (B) (27) 
for any bounded B ⊂ W. Now, for any subset B ⊂ W, using the Lemma 2.4 and the inequalities ( 24) and ( 27), we have

µ c (ΘB) = µ c (Θ 1 B + Θ 2 B) ≤ µ c (Θ 1 B) + µ c (Θ 2 B) ≤ M α 0 L 0 µ c (B) + 4M α 0 t 0 k 1 (s) + 2G 0 Γ(α) (t -s) α-1 k 3 (s) ds + n i=1 l i µ c (B) = M α 0 L 0 + 4 t 0 2G 0 Γ(α) (t -s) α-1 k 3 (s) ds + n i=1 l i µ c (B). (28) 
So, from Eq.( 28), we obtain that Θ is a µ c -contraction on W. Therefore, by Lemma 2.4, there is a fixed point θ of Θ in W, which is a solution of Eq.(1).

Finally, the next Theorem 3.5, also aims to discuss the existence of mild solution using the conditions EC 1 -EC 9 . Theorem 3.5. Suppose that the assumption EC 1 -EC 9 are satisfied, then the equation Eq.( 1) has at least one mild solution if Eq.( 28) and the following condition are satisfied,

M α 0 L 0 + lim n→∞ M α 0 r φ(r) t 0 p(s)ds + χ(r)G 1 Γ(α) t 0 (t -s) α-1 q(s)ds + n i=1 d i < 1. ( 29 
)
Proof. Using the condition [START_REF] Almeida | An epidemiological MSEIR model described by the Caputo fractional derivative[END_REF] and the fact that L 0 < 1, there exist a constant r > 0 such that

M α 0 L 0 r + Ξ(0) + φ(r) t 0 p(s)ds + χ(r)G 1 Γ(α) t 0 (t -s) α-1 q(s)ds + n i=1 d i < r. Now, we consider W 0 = {θ ∈ PC([0, b], Λ), θ(t) ≤ r} for all t ∈ [0, b].
Then for every θ ∈ W 0 and using the conditions EC 9 , yields

Θθ(t) ≤ R (α,θ) (t, 0)Ξ(θ) + 0<ti<t R (α,θ) (t, t i )I i (θ(t i )) + t 0 R (α,θ) (t, s) Φ(s, θ(s)) + 1 Γ(α) s 0 (s -x) α-1 g(s, x, θ(x))dx ds ≤ M α 0 Ξ(θ) -Ξ(0) + Ξ(0) + M α 0 t 0 p(s)φ( θ(s) )ds + M α 0 Γ(α) t 0 s 0 (s -x) α-1 q(s)q(x)χ( θ(x) )dxds + M α 0 n i=1 d i ≤ M α 0 L 0 r + Ξ(0) + t 0 p(s)φ( θ(s) )ds + 1 Γ(α) t 0 s 0 (s -x) α-1 q(s)q(x)χ( θ(x) )dxds + n i=1 d i ≤ M α 0 L 0 r + Ξ(0) + φ(r) t 0 p(s)ds + 1 Γ(α) χ(r)G 1 t 0 (t -s) α-1 q(s)ds + n i=1 d i . (30) 
Thus, we have

Θθ(t) ≤ M α 0 L 0 r + Ξ(0) + φ(r) t 0 p(s)ds + χ(r)G 1 Γ(α) t 0 (t -s) α-1 q(s)ds + n i=1 d i < r, for all t ∈ [0, b].
This means that ΘW 0 ⊂ W 0 . Define W = conΘ(W 0 ). The above proof also implies that ΘW ⊂ W. So we can prove the theorem similar with Theorem 3.4 and hence we omit.

One of the direct consequences of fractional calculus, in particular, the discussion of fractional differential equations, is to discuss the special case α = 1. So, in this sense, we will present the results for the entire case, for the problem Eq.(1). Then, taking the limit α → 1 in the Eq.( 1), we have

       θ (t) + A(t, θ(t))θ(t) = Φ(t, θ(t)) + t 0 g(t, s, θ(s))ds, t ∈ [0, b], t = t i θ(0) + Ξ(θ) = θ 0 ∆θ(t i ) = I i (θ(t i )), i = 1, ..., n, 0 < t 1 < ... < t n < b (31) 
Consequently, taking the limit α → 1 in the Eq.( 9), we have the mild solution for the Eq.( 31), given by

θ(t) = U θ (t, 0)[θ 0 -Ξ(θ)] + t 0 U θ (t, s) Φ(s, θ(s)) + s 0 g(s, x, θ(x))dx ds + 0<ti<t U θ (t, t i )I i (θ(t i )) 0 ≤ t ≤ b.
The following results are direct consequences of the existence results previously investigated. In this sense, their respective statements are omitted. Theorem 3.6. Assumptions EC 1 -EC 6 holds, then the impulsive nonlocal problem Eq.( 31) has at least one mild solution.

Proof. Direct consequence of the Theorem 3.2. Theorem 3.7. Suppose that the assumptions EC 1 -EC 2 and EC 7 -EC 8 , are satisfied, then the Eq.( 31) has at least are mild solution if

lim r→∞ sup M 0 r ϕ(r) + φ(r) t 0 p(s)ds + G 1 χ(r) t 0 q(s)ds + n i=1 d i < 1,
where ϕ(r) = sup{ Ξ(θ) , u < r}.

Proof. Direct consequence of the Theorem 3.3.

Theorem 3.8. Suppose that the EC 1 -EC 9 , are satisfied, then the Eq.( 31) has at least one mild solution provided that

M 0 L 0 + 4 t 0 (k 1 (s) + 2G 0 k 3 (s)) ds + n i=1 l i < 1.
Proof. Direct consequence of the Theorem 3.4.

Theorem 3.9. Suppose that the EC 1 -EC 9 , are satisfied, then the Eq.( 31) has at least one mild solution if Eq.( 28) (with α → 1) and the following condition is satisfied

M 0 L 0 + lim r→∞ M 0 r ϕ(r) t 0 p(s)ds + χ(r)G 1 t 0 q(s)ds + n i=1 d i < 1.
Proof. Direct consequence of the Theorem 3.5.

We conclude the section on existence of mild solutions for the quasi-linear fractional integrodifferential equations with impulsive and nonlocal conditions given by Eq.( 1), discussing some necessary and sufficient conditions for discussing it. In addition, as a particular case, we discuss the entire case. In this sense, the next section is intended to investigate the uniqueness of mild solutions for Eq.(1).

4. The uniqueness of mild solution. In this section, we will discuss the uniqueness of mild solutions for Eq.( 1), using the fixed point technique. However, first, we need some conditions before we attack the main purpose of this section. So, consider:

1. UC 1 . Φ : [0, b] × Λ → Λ is continuous and there exists constant Θ A > 0, and Θ 0 > 0 such that

Φ(t, θ) -Φ(t, ν) ≤ Θ A θ -ν , θ, ν ∈ Λ and Θ 0 = max t∈[0,b] Φ(t, 0) . 2. UC 2 . g : [0, b]
× Ω → Λ is continuous and there exists constant H A > 0, and

H 0 > 0 such that t 0 g(t, θ) -g(t, ν) ds ≤ H A θ -ν , Θ 0 = max t 0 g(t, 0) ds; t ∈ [0, b] . 3. UC 3 . h : PC([0, b], Λ) → Ω is Lipschitz continuous in Λ and there a constant l i > 0, i = 1, ..., n such that Ξ(θ) -Ξ(ν) ≤ G A θ -ν PC , θ, ν ∈ PC([0, b], Λ).
4. UC 4 . I i : Ω → Ω is continuous and there exist a constant l i > 0, i = 1, ..., n such that

I i (θ) -I i (ν) ≤ l i θ -ν , θ, ν ∈ Λ. 5. UC 5 . Let ρ = k 0 ar + 2k 0 a (G A r + g(0) ) + M 0 F A a + M 0 Γ(α) H A a + k 0 ar n i=1 l i + M 0 n i=1 l i be such that 0 < ρ < 1.
Further there exists a constant k 0 such that for every θ, v ∈ PC([0, b], Λ) and y ∈ Λ we have, 

R (α,θ) (t, s)y -R (α,v) (t, s)y ≤ k 0 a y Λ θ -v PC , for 0 < α < 1.
(t) = R (α,θ) (t, 0)[θ 0 -Ξ(θ)] + 0<ti<t R (α,θ) (t, t i )I i (θ(t i )) + t 0 R (α,θ) (t, s) Φ(s, θ(s)) + 1 Γ(α) s 0 (s -x) α-1 g(s, x, θ(x))dx ds.
(Θθ)(t) -(Θν)(t) ≤ R (α,θ) (t, 0) -R (α,) (t, 0) θ 0 + R (α,θ) (t, 0)Ξ(θ) -R (α,) (t, 0)Ξ(θ) + t 0 R (α,θ) (t, s) Φ(s, θ(s)) + 1 Γ(α) s 0 (s -x) α-1 g(s, x, θ(x))dx ds - t 0 R (α,) (t, s) Φ(s, ν(s)) + 1 Γ(α) s 0 (s -x) α-1 g(s, x, (x))dx ds + 0<ti<t R (α,θ) (t, t i )I i (θ(t i )) - 0<ti<t R (α,ν) (t, t i )I i (ν(t i )) ≤ R ( 
+ 0<ti<t R (α,θ) (t, t i )I i (θ(t i )) - 0<ti<t R (α,ν) (t, t i )I i (ν(t i )) . (32) 
Using R (α,θ) (t, s) ≤ M α 0 , g(θ) ≤ G A θ PC and R (α,θ) (t, s)y -R (α,v) (t, s)y ≤ k 0 a y X θ -ν PC with k 0 constant, yields R (α,ν) (t, 0)g(ν) -R (α,θ) (t, 0)g(θ)

≤ R (α,ν) (t, 0) g(ν) + R (α,θ) (t, 0) g(θ)

≤ M α 0 g(ν) + M α 0 g(θ) ≤ M α 0 G A θ -v . (33) 
On the other hand, we obtain R (α,θ) (t, 0)g(θ) -R (α,ν) (t, 0)g(θ) ≤ k 0 a g(θ) θ -ν

≤ k 0 a G A θ ( θ + ν ) . (34) 
Using the Eq.( 33)-Eq.( 34), yields

M α 0 G A ( θ + ν ) ≤ a k 0 G A θ ( θ + ν )
. So, then we conclude that R (α,ν) (t, 0)g(ν) -R (α,θ) (t, 0)g(θ) ≤ R (α,θ) (t, 0)g(θ) -R (α,ν) (t, 0)g(ν) . [START_REF] Lakshmikantham | Basic theory of fractional differential equations[END_REF] Now, using the inequality [START_REF] Lakshmikantham | Basic theory of fractional differential equations[END_REF], we obtain R (α,θ) (t, 0)g(θ) -R (α,ν) (t, 0)g(ν) ≤ R (α,θ) (t, 0)g(θ) -R (α,ν) (t, 0)g(ν) + R (α,ν) (t, 0)g(ν) -R (α,θ) (t, 0)g(θ)

+ R (α,θ) (t, 0)g(0) -R (α,ν) (t, 0)g(0) + R (α,θ) (t, 0)g(0) -R (α,ν) (t, 0)g(0)

≤ 2 R (α,θ) (t, 0)g(θ) -R (α,ν) (t, 0)g(ν) + 2 R (α,θ) (t, 0)g(0) -R (α,ν) (t, 0)g(0)

≤ 2k 0 a g(θ) X θ -ν PC + 2k 0 a g(0) X θ -ν PC ≤ 2k 0 aG A θ PC θ -ν PC + 2k 0 aG A g(0) X θ -ν PC As presented in the previous section, here we also have the special case, when we choose α = 1, given by the following Theorem. 
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  and let continuous at t = t i and the right lim θ(t + 0 ) exists for i = 1, ..., n. Evidently PC([a, b]; Λ) is a Banach space, where θ PC = sup t∈[0,b] θ(t) and denoted L ([0, b], Λ) by the space of Λ-valued Bochner integrable functions on [0, b] with the norm [37]

Lemma 2 . 4 .

 24 [START_REF] Yong | Basic theory of fractional differential equations[END_REF][Darbo-Sadovskii] If W ⊆ Ω is bounded and closed and convex, the continuous map Θ : W → W is a µ Ω -contraction, the map Θ has at least one fixed point in W.We denote by µ the Hausdorff measure of noncompactness of Λ and denote µ c by the Hausdorff measure of noncompactness of PC([a, b]; Λ).

EC 2 . 1 EC 4 . 3 . 12 )EC 5 . 1 . 0 k 2 EC 5 . 2 .

 214312510252 The function Ξ : PC([0, b], Λ) → Λ is continuous and compact; EC 2.2 There exist N 0 > 0 such that Ξ(θ) ≤ N 0 . EC 3.1 . The nonlinear function Φ : [0, b] × Λ → Λ satisfies the Caratheodory-type conditions, i.e., Φ(•, θ) is mensurable for all θ ∈ Λ and Φ(t, •) is continuous for almost every t ∈ [0, b]; EC 3.2 . There exist a function ξ ∈ L ([0, b]; R + ) such that for every θ ∈ Λ, we have Φ (t, θ) ≤ ξ(t)(1 + θ ), a.e. t ∈ [0, b]; EC 3.3 . There exists a function K 1 ∈ L ([0, b], R + ) such that, for every bounded D ⊂ Λ, we have µ (Φ (t, D)) ≤ k 1 (t) µ(D), a.e. t ∈ [0, b]. (10) EC 4.1 . The nonlinear function g : [0, b] × [0, b] × Λ → Λ satisfies the Caratheodorytype conditions, i.e., g(•, •, θ) is continuous for a.e. t ∈ [0, b]; 8PRISCILA S. RAMOS AND J. VANTERLER DA C. SOUSA AND E. CAPELAS DE OLIVEIRA EC 4.2 . There exist two functions β 1 ∈ L ([0, b], R + ) and β 2 ∈ L ([0, b], R + ) such that for every θ ∈ Λ, we have g(t, s, θ(s)) ≤ β 1 (t)β 2 (t)(1 + θ(s) ), a.e t ∈ [0, b]; (11) There exist functions k 2 , k 3 ∈ L ([0, b], R + ) such that, for every bounded D ⊂ Λ, we have µ(g(t, s, D)) ≤ k 2 (t)k 3 (t) µ(D), a.e. t ∈ [0, b].(Assume that the finite bound of t (t)ds is G 0 . For every t ∈ [0, b] there exist positive constants N 1 and N 2 , the scalar equation

  ) for t ∈ [0, b], which implies that H(t) = 0 for all t i ∈ [0, b]. Using the Lemma 2.6, we have lim n→∞ µ (w n (t)) = 0. On the other hand, by means of the Lemma 2.3, we have W = ∞ n=1 w n is convex compact and nonempty in PC([0, b], Λ) and W) ⊂ W. Finally, making use the Schauder fixed point theorem, there exist at least one mild solution u of the initial value problem Eq.(1), where θ ∈ W is a fixed point of the continuous map Θ.

  for a.e. t ∈ [0, b] and for all θ ∈ PC([0, b], Λ). Assume that the finite bound of t 0 g(s)ds is G 1 .

Theorem 4 . 1 .

 41 Let θ 0 ∈ Λ and let B r = θ ∈ PC([0, b], Λ); θ ≤ r , r > 0. If the assumptions UC 1 -UC 5 are satisfied, then Eq.(1) has a unique mild solution. Proof. Consider θ 0 ∈ Λ (fixed) and the operator Θ on PC([0, b], Λ), given by (Θθ)
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0 R 0 R 0 R 0 R

 0000 α,θ) (t, 0) -R (α,ν) (t, 0) θ 0 + R (α,θ) (t, 0)Ξ(θ) -R (α,ν) (t, 0)Ξ(ν) + t (α,θ) (t, s) Φ(s, θ(s)) ds + 1 Γ(α) t (α,θ) (t, s) s 0 (s -x) α-1 g(s, x, θ(x)) dxds t (α,ν) (t, s) Φ(s, ν(s)) ds -1 Γ(α) t (α,ν) (t, s) s 0 (s -x) α-1 g(s, x, ν(x)) dxds

=A t 0 ( 0 ΓM α 0 Γ

 000 2k 0 a (G A θ + g(0) ) θ -ν PC Now, returning to the inequality[START_REF] Nemati | A numerical approach for solving fractional optimal control problems using modified hat functions[END_REF], we have(Θθ)(t) -(Θν)(t) ≤ k 0 a θ θ -ν PC + 2k 0 a (G A θ + g(0) ) θ -ν PC s, θ(s)) -Φ(s, 0) + Φ(s, 0) ) ds x) α-1 ( g(s, x, θ(x)) -g(s, 0, 0) + g(s, 0, 0) ) dxds s, θ(s)) -Φ(s, 0) + Φ(s, 0) ) ds x) α-1 ( g(s, x, ν(x)) -g(s, 0, 0) + g(s, 0, 0) ) dxds + n i=1 k 0 a θ -v PC l i θ(t i ) + M α 0 n i=1 l i θ -v PC ≤ k 0 a θ θ -v PC + 2k 0 a (G A θ + g(0) ) θ -ν PC +M α 0 Θ θ(s) -ν(s) ) ds + M α θ -v PC l i θ(t i ) + M α 0 n i=1 l i θ -ν PC ≤ k 0 a r θ -ν PC + 2k 0 a (G A r + g(0) ) θ -ν PC θ -ν PC l i r + M α r + 2k 0 a (G A r + g(0) ) + M 0 Θ A a + (α) H A a + k 0 a r n i=1 l i + M 0 n i=1 l i   θ -ν PC = ρ θ -ν PCFrom this inequality it follows that for any t ∈ [0, b], we have (Θθ)(t) -(Θν)(t) ≤ ρ θ -ν PC .

Theorem 4 . 2 .

 42 Let θ 0 ∈ Λ and let B r = {θ ∈ PC([0, b], Λ); θ ≤ r}, r > 0. If the assumptions UC 1 -UC 5 are satisfied, then Eq.(1) has a unique mild solution. Proof. Follows straight Theorem 4.1.
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