An FPT Algorithm for Spanning, Steiner and Other subTree Problems Parameterized with the Treewidth.

Dimitri Watel

To cite this version:

Dimitri Watel. An FPT Algorithm for Spanning, Steiner and Other subTree Problems Parameterized with the Treewidth.. 2020. hal-02610732

HAL Id: hal-02610732
 https://hal.science/hal-02610732

Preprint submitted on 17 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

An FPT Algorithm for Spanning, Steiner and Other subTree Problems Parameterized with the Treewidth.

Dimitri Watel
ENSIIE
SAMOVAR
dimitri.watel@ensiie.fr

Abstract

-_ Abstract This paper investigates the possibility to find a single FPT algorithm with respect to the treewidth that solves a large variety of spanning tree, steiner tree and more generally covering tree problems that can be found in the literature. This includes problems for which no such algorithm was already described as the Minimum Branch Vertices problem, the Minimum Leaf Spanning Tree problem or the k-Bottleneck Steiner Tree Problem. To do so, a generalization of many of those covering tree problems, called the Minimum subTree problem with Degree Weights MTDW, is introduced and the parameterized complexity of that problem is studied.

2012 ACM Subject Classification Theory of computation \rightarrow Complexity classes; Theory of computation \rightarrow Parameterized complexity and exact algorithms; Theory of computation \rightarrow Graph algorithms analysis; Theory of computation \rightarrow Dynamic programming

Keywords and phrases Parameterized complexity, Treewidth, Spanning tree, Dynamic programming
Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

There exists a real variety of spanning tree, steiner tree and more generally covering tree problems that can be found in the literature and mostly have applications in network routing. In each such problem, the objective is to find a subtree in a graph satisfying some constraints and minimizing an objective. Well known examples are the Minimum Undirected Steiner Tree problem (UST) in which we search for a minimum-edge-cost subtree of an undirected graph covering a specific subset of nodes; the k-Minimum Spanning Tree problem (k-MST) in which we search again for a minimum-edge-cost subtree covering any k nodes; the Prize Collecting Steiner Tree problem (PCST) in which the edges and node are weighted, and adding an edge to the tree costs the weight of that edge, but not covering a node costs the weight of that node; the Minimum Branch Vertices problem (MBV) in which the tree must span all the nodes and minimize the number of nodes with degree 3 or more; or the Minimum Leaf Spanning Tree (MLST) in which me minimize the number of leaves.

A natural question to ask is how hard are those problems and their variants when the graph is close to a tree. A way to describe the distance between a graph and a tree is the treewidth, introduced by Robertson and Seymour [8], and actively used in parameterized complexity of graph optimization problems [3, 4]. It was proved, for instance, that UST, PCST and k-MST are FPT with respect to the treewidth $[2,7]$. No such result seems to exist for MBV or MLST. However, the last two problems are a generalization of the Hamiltonian path problem which is also FPT in the treewidth [4]. This paper aims to explore the fact that all those problems can be described (or rewritten) only by looking at the degree of the nodes of the graph in the tree. As shown in the following sections, that common property makes all those problems, and most of their variants, FPT with respect to the treewidth.

© Dimitri Watel;
licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

Contributions of the paper

We introduce the Minimum subTree problem with Degree Weights (MTDW). This problem encodes many kinds of constraints (for instance spanning, degree or cost constraints), that must be satisfied by a feasible tree, by associating to each node a set of scores depending on the degree of the node in the tree. We then get a set of scores of the tree by summing the scores of the nodes. One of the scores is used to define an objective function that must be minimized, and the others are used to define a set of constraint.

Given an undirected graph G and a node of v, we denote by $d_{G}(v)$ and $\gamma_{G}(v)$ the degree and the incident edges of v in G. We are given an undirected graph $G=(V, E)$ with n nodes, an integer $m \geq 0, m+1$ mappings $C_{1}, C_{2}, \ldots, C_{m}, C_{m+1}$ associating to each node $v \in V$ and to each integer $d \in \llbracket 0 ; d_{G}(v) \rrbracket$ an integer $C_{j}(v, d) \in \mathbb{Z}$, and m integers $K_{1}, K_{2}, \ldots, K_{m} \in \mathbb{Z}$. We search for a tree T included in G such that, for $j \in \llbracket 1 ; m \rrbracket, \sum_{v \in V} C_{j}\left(v, d_{T}(v)\right) \leq K_{j}$, and minimizing $\sum_{v \in V} C_{m+1}\left(v, d_{T}(v)\right)$. Note all the nodes of the graph intervene in the formulas, including those for which $d_{T}(v)=0$.

For instance the Minimum Leaf Spanning Tree problem can be rewritten as a subproblem of MTDW with $m=1 . C_{1}$ is a spanning tree constraint: $C_{1}(v, 0)=1, C_{1}(v, d \geq 1)=0$ and $K_{1}=0$. We minimize the number of leaves with $C_{2}: C_{2}(v, 1)=1$ and $C_{2}(v, d \neq 1)=0$.

In this paper, we mostly focus on the parameterized complexity of MTDW with respect to the treewidth and proves that a large set of subproblems of MTDW are FPT when parameterized with the treewidth, including all of the previously mentioned problems. More precisely, three parameters are studied: the treewidth $T W$ of G, the number of constraints m and the maximum degree Δ above which every mapping C_{j} is constant: for every $j \in \llbracket 1 ; m \rrbracket$, $v \in V$ and $d \geq \Delta, C_{j}(v, d)=C_{j}(v, \Delta)$. Throughout the paper, we distinguish three possible cases for a parameter of MTDW depending if we are restricted to the instances where that parameter equals a constant, in which case we write the parameter on the left (for instance $(\Delta=2)$-MTDW) or if the parameter is classically considered from a parameterized complexity point of view, in which case, we explicitly mention it as a parameter. A last element that affects the complexity results in this paper is the encoding of the values K_{j} and $C_{j}(v, d)$ for every $j \in \llbracket 1 ; m \rrbracket, v \in G$ and $d \leq d_{G}(v)$. Some hardness results do not hold if those values are unary encoded. Let $\max |C|=\max _{j=1}^{m} \sum_{v \in V} \sum_{d \leq d_{G}(v)}\left|C_{j}(d, v)\right|$. Every result explicitly specifies if $\max |C|$ is unary or binary, meaning that every mapping C_{j} is unary or binary encoded. We may assume, without loss of generality, that $\left|K_{j}\right| \leq \max |C|$ for every $j \in \llbracket 1 ; m \rrbracket$, as, otherwise, either the $j-t h$ constraint is necessarily satisfied or necessarily unsatisfied, thus the encoding of those integers is never given. Note also that the mapping C_{m+1} is not included in the formula of $\max |C|$: the cost function is always binary.

The next section provides the following theorem.

- Theorem 1. If $\max |C|$ is unary, MTDW is XP with respect to $T W$ and m, and, for every $c \in \mathbb{N},(m=c)-M T D W$ is FPT with respect to $T W$ and Δ.

This theorem can be applied to all the previously cited problems as they can be rewritten as subproblem of MTDW with a fixed value of m. Appendix A details, for each mentioned subproblem, the consequences of this Theorem. In short, it gives, is in addition to all the existing results, an FPT algorithm with respect to the treewidth to solve a large class of subtree problems. The last section of the paper gives hardness results, proving that it is not possible to change the encoding of $\max |C|$, or to consider that Δ or $T W$ is part of the instance and keep MTDW in the class FPT: the problem is either NP-Hard or XP but $\mathrm{W}[1]$-hard with respect to the parameters.

2 An FPT Algorithm for $(m=c)$-MTDW with Respect to Δ and $T W$

In this part, we provide an algorithm that proves Theorem 1.
Let $\mathcal{I}=\left(G=(V, E), C_{1}, C_{2}, \ldots, C_{m+1}, K_{1}, K_{2}, \ldots, K_{m}\right)$ be an instance of MTDW. Let τ be a tree composition of G. We will solve \mathcal{I} by using a dynamic programming algorithm on a tree decomposition of the graph. In order to avoid any confusion, a node of τ will be called a bag. We recall that τ is a tree, that every node belongs to at least one bag, that for each edge $(v, w) \in E$, there exists a bag of τ containing v and w, and that the subgraph of τ with all the bags containing a same node v is connected. For each bag u of τ, we define X_{u} as the set of nodes of G contained in the bag and G_{u} as the subgraph of G induced by all nodes in all the bags descendant from u in τ (including u). We have $T W=\max _{u \in \tau}\left|X_{u}\right|-1$. Without loss of generality, we consider that τ is a nice tree decomposition, meaning it can be rooted such that: if u is the root or a leaf of τ, then $\left|X_{u}\right|=0$; if u has two children u_{1} and u_{2}, then $X_{u}=X_{u_{1}}=X_{u_{2}}$, we say u is a join bag; if u has one children u^{\prime} then either there exists $v \in V$ such that $X_{u}=X_{u^{\prime}} \cup\{v\}$, we say u is a introduce bag or there exists $v \in V$ such that $X_{u^{\prime}}=X_{u} \cup\{v\}$, we say u is a forget bag; and finally no bag has three or more children.

It is possible to build, from an optimal decomposition, a nice decomposition that is also optimal, with $O(|V|)$ bags in linear time [5]. We use a classical dynamic programming algorithm to solve MTDW using the tree decomposition τ. Each bag u is associated with a set of states and each state is associated with a subproblem that can be solved recursively using the states of the children of u. In the following definitions, if $X \subset V, E(X)$ are the edges connecting X in E.

- Definition 2 (States of a bag). For each bag, we define a set $S(u)$ of states. A state of u contains m integers $k_{1}, k_{2}, \ldots, k_{m}$, with $k_{j} \leq \max |C|$; an integer $c \leq n$; a subset $Y \subset X_{u}$; a subset $F \subset E(Y)$; a mapping d_{1} associating $u \in Y$ to a non negative integer $d_{1}(v) \leq \min \left(d(v)-d_{G_{u}}(v), \Delta\right)$; a second mapping d_{2} associating $v \in Y$ to a non negative integer $d_{2}(v)$ such that $\min \left(d_{1}(v)+d_{F}(v), \Delta\right) \leq d_{2}(v) \leq \min (d(v), \Delta)$ and a third mapping C associating $v \in Y$ to a positive integer $C(v) \in \llbracket 1 ;|Y| \rrbracket$ such that, if $(v, w) \in F$, then $C(v)=C(w)$ and such that the number of distinct values $C(v)$ for all the nodes $v \in Y$ is lower than c. We write $s=\left(u, k_{1}, k_{2}, \ldots, k_{m}, c, Y, F, d_{1}, d_{2}, C\right)$.
- Lemma 3. $|S(u)| \leq(2 \max |C|+1)^{m} \cdot n \cdot 2^{T W} \cdot 2^{T W^{2}} \cdot(\Delta+1)^{2 T W} \cdot T W^{T W}$

Proof. Let $s=\left\{u, k_{1}, k_{2}, \ldots, k_{m}, c, Y, F, d_{1}, d_{2}, C\right\} \in S(u)$. Then $\left|k_{j}\right| \leq \max |C|$ and $c \leq n$, Y and F are subsets of X_{u} and $E\left(X_{u}\right)$, containing respectively at most $T W$ and $T W^{2}$ elements, d_{1} and d_{2} associate a value between 0 and Δ to at most $T W$ nodes and C associates a value lower than $|Y| \leq T W$ to at most $T W$ nodes.

- Definition 4. Let (FOR) be the following auxilliary problem: given a bag u and a state $s=\left(u, k_{1}, k_{2}, \ldots, k_{m}, c, Y, F, d_{1}, d_{2}, C\right)$ of $S(u)$, we search for a forest f such that:
(i) f is included in G_{u};
(ii) for every $j \in \llbracket 1 ; m \rrbracket, \sum_{v \in G_{u} \backslash X_{u}} C_{j}\left(v, d_{f}(v)\right) \leq k_{j}$;
(iii) f covers Y but not $X_{u} \backslash Y$;
(iv) f contains every edge in F but no edge in $E\left(X_{u}\right) \backslash F$;
(v) f contains c trees;
(vi) for $v, w \in Y, v$ and w are in the same tree of f if and only if $C(v)=C(w)$;
(vii) for $v \in Y$, if $d_{2}(v)<\Delta, d_{f}(v)=d_{2}(v)-d_{1}(v)$ else $d_{f}(v) \geq d_{2}(v)-d_{1}(v)$.

If such a forest exists, we say f is a feasible solution of s and we set the cost of the forest as $\Omega(s, f)=\sum_{v \in Y} C_{m+1}\left(v, d_{2}(v)\right)+\sum_{v \in G_{u} \backslash Y} C_{m+1}\left(v, d_{f}(v)\right)$. We search for the optimal forest $f^{*}(s)$ with minimum cost $\Omega^{*}(s)=\Omega\left(s, f^{*}(s)\right)$. If no such forest exists, $\Omega^{*}(s)=+\infty$.

We will then refer to Properties $s(\mathrm{i}), s(\mathrm{ii}), \ldots, s($ vii $)$ of a feasible solution of a state s, or simply Properties (i), (ii), ... (vii) if there is no ambiguity with the state.

2.1 Root

In order to solve MTDW, we have to search for the optimal forest of a state of the root. We can easily check the following lemma:

- Lemma 5. Let r be the root of T. Then the optimal solution of the instance \mathcal{I} of MTDW is $f^{*}(s)$ for $s=\left(r, K_{1}, K_{2}, \ldots, K_{m}, 1, \emptyset, \emptyset,\{ \},\{ \},\{ \}\right)$.

We now exhibit a recursive relation between each bag and its children to compute $f^{*}(s)$ and $\Omega^{*}(s)$. This relation depends on the type of bag. In the next subsections, we start with the termination point and then deal with the forget, introduce and join bags.

2.2 Leaves

- Lemma 6. Let u be a leaf bag of τ. Then if $s=\left(u, k_{1}, k_{2}, \ldots, k_{m}, 0, \emptyset, \emptyset,\{ \},\{ \},\{ \}\right)$ then the empty forest is feasible and optimal for s if $k_{j} \geq 0$ for every $j \in \llbracket 1 ; m \rrbracket$. In that case $\Omega^{*}(s)=0$. For any other state $s \in S(u), \Omega^{*}(s)=+\infty$.

Proof. If u is a leaf, then X_{u} and G_{u} are empty. Any feasible forest f of s is empty by Property (i) and satisfies for every $j \in \llbracket 1 ; m \rrbracket, \sum_{v \in G_{u} \backslash X_{u}} C_{j}\left(v, d_{f}(v)\right)=0$. Consequently, any set with $k_{j}<0$ for some j has no feasible solution by Property (ii) and has $\Omega^{*}(s)=+\infty$. Any other state has only one feasible solution, the empty forest, of cost 0.

2.3 Forget bags

Let u be a forget bag and u^{\prime} be the child of u. Let x be the node forgotten by $u: X_{u^{\prime}}=X_{u} \cup\{x\}$. Let $s=\left(u, k_{1}, k_{2}, \ldots, k_{m}, c, Y, F, d_{1}, d_{2}, C\right) \in S(u)$. We want to compute $\Omega^{*}(s)$.

- Definition 7. \mathcal{P} is a set of parameters $\left(k_{1}^{\prime}, k_{2}^{\prime}, \ldots, k_{m}^{\prime}, F^{\prime}, d^{\prime}, C^{\prime}\right)$ such that $0 \leq d^{\prime} \leq$ $\min (d(x), \Delta)$; for $j \in \llbracket 1 ; m \rrbracket, k_{j}-C_{j}\left(x, d^{\prime}\right) \geq-\max |C|$ and $k_{j}^{\prime}=\min \left(k_{j}-C_{j}\left(x, d^{\prime}\right), \max |C|\right)$; for $v, w \in Y, C^{\prime}(v)=C^{\prime}(w) \Leftrightarrow C(v)=C(w) ; F \subset F^{\prime} \subset F \cup \gamma_{Y}(x)$; and for $v \in Y$, if there exists a path connecting v to x with edges of $F^{\prime}, C^{\prime}(x)=C^{\prime}(v)$.

Given a tuple $p=\left(k_{1}^{\prime}, k_{2}^{\prime}, \ldots, k_{m}^{\prime}, F^{\prime}, d^{\prime}, C^{\prime}\right) \in \mathcal{P}$, let $s^{\prime}(p)$ be the following state:
$s^{\prime}(p)=\left(u^{\prime}, k_{1}^{\prime}, k_{2}^{\prime}, \ldots, k_{m}^{\prime}, c, Y \cup\{v\}, F^{\prime}, d_{1} \cup\{x \rightarrow 0\}, d_{2} \cup\left\{x \rightarrow d^{\prime}\right\}, C^{\prime}\right) \in S\left(u^{\prime}\right)$.
Finally, let $S^{\prime}=\left\{\left(u^{\prime}, k_{1}, k_{2}, \ldots, k_{m}, c, Y, F, d_{1}, d_{2}, C\right)\right\} \cup\left\{s^{\prime}(p), p \in \mathcal{P}\right\}$.

- Lemma 8. $\Omega^{*}(s)=\min _{s^{\prime} \in S^{\prime}} \Omega^{*}\left(s^{\prime}\right)$

Proof. Let f be any subforest of G_{u}. We first prove that f is a feasible solution of s if and only if there exists $s^{\prime} \in S^{\prime}$ such that f is a feasible solution of s^{\prime}, and that, in that case, $\Omega\left(f^{\prime}, s\right)=\Omega\left(f^{\prime}, s^{\prime}\right)$. Either $x \in f$ or not. We consider the two cases.

The feasible solutions of the state $s^{\prime}=\left(u^{\prime}, k_{1}, k_{2}, \ldots, k_{m}, c, Y, F, d_{1}, d_{2}, C\right)$ are exactly the feasible solutions of s not containing x. Thus, if x is not in f, then f is a feasible solution of s if and only if f is a feasible solution of s^{\prime}. Similarly, the formula of the cost of the solution is identical in s and $s^{\prime}: \Omega(s, f)=\Omega\left(s^{\prime}, f\right)$.

We now assume that $x \in f$. Let F^{\prime} be F and the edges connecting x to the nodes of Y in f. Let $d^{\prime}=\min \left(d_{f}(x), \Delta\right)$. For every $j \in \llbracket 1 ; m \rrbracket$, we set $k_{j}^{\prime}=\min \left(k_{j}-C_{j}\left(x, d^{\prime}\right)\right.$, max $\left.|C|\right)$. Finally, we define the mapping C^{\prime} as $C^{\prime}(v)=C(v)$ for every $v \in Y$ and $C^{\prime}(x)=C(v)$ for
some arbitrary node $v \in Y$ that is in the same tree as x in f. If no such node exists, we set $C^{\prime}(x)=|Y|+1$. Clearly, $\left(k_{1}^{\prime}, k_{2}^{\prime}, \ldots, k_{m}^{\prime}, F^{\prime}, d^{\prime}, C^{\prime}\right)$ satisfies all the properties of a tuple of \mathcal{P} except possibly $k_{j}-C_{j}\left(x, d^{\prime}\right) \geq-\max |C|$.

We first show that if there exists $j \in \llbracket 1 ; m \rrbracket$ such that $k_{j}-C_{j}\left(x, d^{\prime}\right)<-\max |C|$ then f is not feasible for s and f is not feasible for any state $s^{\prime} \in S^{\prime}$. Firstly, if f is feasible for s, then by Property $s($ ii $), \sum_{v \in G_{u} \backslash X_{u}} C_{j}\left(v, d_{f}(v)\right) \leq k_{j}$. As $C_{j}\left(x, d_{f}(x)\right)=$ $C_{j}\left(x, d^{\prime}\right), k_{j}-C_{j}\left(x, d^{\prime}\right) \geq \sum_{v \in G_{u} \backslash X_{u} \cup\{x\}} C_{j}\left(v, d_{f}(v)\right) \geq-\max |C|$. Secondly, we assume there exists a state $s^{\prime \prime}=s^{\prime}\left(k_{1}^{\prime \prime}, k_{2}^{\prime \prime}, \ldots, k_{m}^{\prime \prime}, F^{\prime \prime}, d^{\prime \prime}, C^{\prime \prime}\right) \in S^{\prime}$ such that f is feasible for $s^{\prime \prime}$. As $\left(k_{1}^{\prime \prime}, k_{2}^{\prime \prime}, \ldots, k_{m}^{\prime \prime}, F^{\prime \prime}, d^{\prime \prime}, C^{\prime \prime}\right) \in \mathcal{P}$, then $-\max |C| \leq k_{j}-C_{j}\left(x, d^{\prime \prime}\right)$. In addition, by Property $s^{\prime \prime}($ vii $), d_{f}(x)=d_{2}^{\prime \prime}(x)-d_{1}^{\prime \prime}(x)=d^{\prime \prime}$ if $d^{\prime \prime}<\Delta$ or $d_{f}(x) \geq d^{\prime \prime}$ otherwise. However, we defined d^{\prime} as $\min \left(d_{f}(x), \Delta\right)$. Consequently $d^{\prime}=d^{\prime \prime}$. At last, by Property $s^{\prime \prime}(\mathrm{ii})$, $-\max |C| \leq k_{j}-C_{j}\left(x, d^{\prime \prime}\right)=k_{j}-C_{j}\left(x, d^{\prime}\right)$.

We now assume that $k_{j}-C_{j}\left(x, d^{\prime}\right) \geq-\max |C|$ for every $j \in \llbracket 1 ; m \rrbracket$. We can then safely set $s^{\prime}=s^{\prime}\left(k_{1}^{\prime}, k_{2}^{\prime}, \ldots, k_{m}^{\prime}, F^{\prime}, d^{\prime}, C^{\prime}\right) \in S^{\prime}$ and show that f is a feasible solution of s^{\prime} if and only if f is feasible for s.

Properties $s(\mathrm{i})$ and $s^{\prime}(\mathrm{i})$ are satisfied as f is, by hypothesis, a subforest of $G_{u}=G_{u^{\prime}}$. As c is unchanged, $s(\mathrm{v})$ and $s^{\prime}(\mathrm{v})$ are identical. We have Property $s(\mathrm{iii})$ if and only if f covers Y but not $X_{u} \subset Y=X_{u^{\prime}} \backslash Y \cup\{x\}$ if and only if we have Property s^{\prime} (iii). Similarly $s(\mathrm{iv})$ and $s^{\prime}(\mathrm{iv})$ are equivalent. Properties $s(\mathrm{vi})$ and $s^{\prime}(\mathrm{vi})$ are equivalent by construction of C^{\prime}.

We now consider Properties $s\left(\right.$ vii and $s^{\prime}\left(\right.$ vii). Let $d_{1}^{\prime}=d_{1} \cup\{x \rightarrow 0\}$ and $d_{2}^{\prime}=d_{2} \cup\{x \rightarrow$ $\left.d^{\prime}\right\}$. As $d_{1}(v)=d_{1}^{\prime}(v)$ and $d_{2}(v)=d_{2}^{\prime}(v)$ for every node $v \in Y$, Property $s($ vii) is equivalent to Property s^{\prime} (vii) restricted to Y. We finally show that Property s^{\prime} (vii) is always true for the node x. Indeed, as $d_{2}^{\prime}(x)-d_{1}^{\prime}(x)=d^{\prime}$, as $d_{2}^{\prime}(x)=d^{\prime}$ and as $d^{\prime}=d_{f}(x)$ if $d_{f}(x)<\Delta$ and Δ otherwise, then $d_{f}(x)=d_{2}^{\prime}(x)-d_{1}^{\prime}(x)$ if $d_{2}^{\prime}(x)<\Delta$ and $d_{f}(x) \geq d_{2}^{\prime}(x)-d_{1}^{\prime}(x)$ otherwise.

At last, we consider Properties $s($ ii $)$ and $s^{\prime}(\mathrm{ii})$. For every $j \in \llbracket 1 ; m \rrbracket, C_{j}\left(x, d_{f}(x)\right)=$ $C_{j}\left(x, d^{\prime}\right)$ whatever the value of d^{\prime} is. Consequently $\sum_{w \in G_{u} \backslash X_{u}} C_{j}\left(v, d_{f}(v)\right) \leq k_{j} \Leftrightarrow$ $\sum_{v \in G_{u^{\prime}} \backslash X_{u^{\prime}}} C_{j}\left(v, d_{f}(v)\right) \leq k_{j}-C_{j}\left(x, d_{f}(x)\right) \leq k_{j}-C_{j}\left(x, d^{\prime}\right)$.

In addition $\sum_{v \in G_{u} \backslash X_{u} \cup\{x\}} C_{j}\left(v, d_{f}(v)\right) \leq \max |C|$. Thus Properties $s(i i)$ is equivalent to: for every $j \in \llbracket 1 ; m \rrbracket, \sum_{v \in G_{u^{\prime}} \backslash X_{u^{\prime}}} C_{j}\left(v, d_{f}(v)\right) \leq k_{j}^{\prime}$.

As a conclusion, f is feasible for s if and only if f is feasible for s^{\prime}. Moreover, an argument similar to the one of the previous paragraph can be used to prove that $\Omega(s, f)=$ $\sum_{v \in Y} C_{m+1}\left(v, d_{2}(v)\right)+\sum_{v \in G_{u} \backslash Y} C_{m+1}\left(v, d_{f}(v)\right)=\sum_{v \in Y} C_{m+1}\left(v, d_{2}^{\prime}(v)\right)+C_{m+1}\left(x, d^{\prime}\right)+$ $\sum_{v \in G_{u^{\prime}} \backslash Y \cup\{x\}} C_{m+1}\left(v, d_{f}(v)\right)=\Omega\left(s^{\prime}, f\right)$. Consequently, $\Omega^{*}(s)=\min _{s^{\prime} \in S^{\prime}} \Omega^{*}\left(s^{\prime}\right)$.

2.4 Introduce bags

Let u be an introduce bag, u^{\prime} be the child of u and x be the node introduced by u with $X_{u}=X_{u^{\prime}} \cup\{x\}$. Let $s=\left(u, k_{1}, k_{2}, \ldots, k_{m}, c, Y, F, d_{1}, d_{2}, C\right) \in S(u)$.

- Lemma 9. Let f be a feasible solution of s, then $\gamma_{f}(x)=\gamma_{F}(x)$.

Proof. Recall that, in a tree decomposition, if a node belongs to two bags u_{1} and u_{2}, it belongs to all the bags on the path connecting u_{1} and u_{2}. As $x \notin X_{u^{\prime}}$, then x is not in any descendant bag of u^{\prime}. Consequently, the only edges incident to x in G_{u} are $\gamma_{X_{u}}(v)=\left\{(x, v) \mid v \in X_{u}\right\}$. From the edges of $\gamma_{X_{u}}(v)$, we are only allowed to put $\gamma_{F}(x)$ in the forest f by Property (iv).

Let $H=(Y, F)$ be the graph induced by the edges in F.

- Lemma 10. If $x \in Y$ and $d_{1}(x)+d_{F}(x) \neq d_{2}(x)$ then $\Omega^{*}(s)=+\infty$. If $x \in Y$ and x has no neighbor in H and there exists v such that $C(x)=C(v)$ then $\Omega^{*}(s)=+\infty$.

Proof. Let f be a feasible solution of s. By Lemma 9 , if $d_{F}(x)<d_{2}(x)-d_{1}(x)$, then $d_{f}(x)<d_{2}(x)-d_{1}(x)$ and there is a contradiction with Property (vii). If $C(x)=C(v)$, in any feasible solution f of s, x and v are in the same tree by Property (vi). However, by Lemma $9, \gamma_{f}(x)=\gamma_{F}(x)$. Thus, if $\gamma_{F}(x)=\emptyset$, there is a contradiction.

We now assume the hypothesis of the previous lemma are false. We build a state s^{\prime} of $S\left(u^{\prime}\right)$. We set $c^{\prime}=c+d_{F}(x)-1$ if $x \in Y$ and c otherwise; $Y^{\prime}=Y \backslash\{x\} ; F^{\prime}=F \backslash \gamma(x)$; for every $v \in Y^{\prime}, d_{1}^{\prime}(v)=\min \left(\Delta, d_{1}(v)+1\right)$ if $(x, v) \in F$ and $d_{1}(v)$ otherwise; and $d_{2}^{\prime}(v)$ is $d_{2}(v)$.

We also build a mapping C^{\prime} with the following procedure. If $v \notin Y$ or v has no neighbor in Y then C^{\prime} is C restricted to Y^{\prime}. Otherwise, we build a sorted list $L=\left[a_{1}, a_{2}, \ldots, a_{|L|}\right]$ containing the elements of $\left\{C(v) \mid v \in Y^{\prime}\right\}$. For every $v \in Y^{\prime}$ such that $C(v)=a_{i}$, we set $C^{\prime}(v)=i$. We then arbitrarily order the new connected components of H obtained by removing x as $\mathcal{C}=\left[\mathcal{C}_{1}, \mathcal{C}_{2}, \ldots, \mathcal{C}_{|\mathcal{C}|}\right]$. For every node $v \in \mathcal{C}_{j}$ for $j \in \llbracket 2 ;|\mathcal{C}| \rrbracket$, we reset $C^{\prime}(v)=|L|+j-1$. We can easily check the following lemma:

- Lemma 11. C^{\prime} maps every node of Y^{\prime} to an integer between 1 and $\left|Y^{\prime}\right|$ such that
- if $C\left(v_{1}\right) \neq C\left(v_{2}\right)$, then $C^{\prime}\left(v_{1}\right) \neq C^{\prime}\left(v_{2}\right)$;
- if $C\left(v_{1}\right)=C\left(v_{2}\right)$ and v_{1} and v_{2} are connected by a path containing x in H if and only if $C^{\prime}\left(v_{1}\right) \neq C^{\prime}\left(v_{2}\right)$.

We finally define $s^{\prime}=\left(u^{\prime}, k_{1}, k_{2}, \ldots, k_{m}, c^{\prime}, Y^{\prime}, F^{\prime}, d_{1}^{\prime}, d_{2}^{\prime}, C^{\prime}\right)$.

- Lemma 12. If $x \notin Y$, then $\Omega^{*}(s)=\Omega^{*}\left(s^{\prime}\right)+C_{m+1}(x, 0)$.

Proof. Let f be any subforest of G_{u}. We first show that f is a feasible solution of s if and only if f is a feasible solution of s^{\prime}.

If $x \notin Y$ then $s^{\prime}=\left(u^{\prime}, k_{1}, k_{2}, \ldots, k_{m}, c, Y, F, d_{1}, d_{2}, C\right)$. Thus, Properties $s(\mathrm{ii}), s(\mathrm{v}), s(\mathrm{vi})$ and s (vii) are identical to Properties $s^{\prime}(\mathrm{ii}), s^{\prime}(\mathrm{v}), s^{\prime}(\mathrm{vi})$ and $s^{\prime}(\mathrm{vii})$.

If f contains x, then f satisfies neither Properties s (iii) nor Property $s^{\prime}(\mathrm{i})$ thus is not feasible for s and s^{\prime}. If, on the contrary, f does not contain x, then, Properties $s(\mathrm{i})$ and $s^{\prime}(\mathrm{i})$ are satisfied, and Properties s (iii) and s (iv) are equivalent to s^{\prime} (iii) and s^{\prime} (iv).

Consequently, the feasible forests of s are feasible for s^{\prime} and conversely. In addition, if f is feasible (and thus does not contain x), we have $\Omega(s, f)=\sum_{v \in Y} C_{m+1}\left(v, d_{2}(v)\right)+$ $\sum_{G_{u^{\prime}} \backslash Y} C_{m+1}\left(v, d_{f}(v)\right)+C_{m+1}\left(x, d_{f}(x)\right)=\Omega\left(s^{\prime}, f\right)+C_{m+1}(x, 0)$ and the lemma follows.

Lemma 13. If $x \in Y$, then $\Omega^{*}(s)=\Omega^{*}\left(s^{\prime}\right)+C_{m+1}\left(x, d_{2}(x)\right)$.
Proof. We consider two sets: \mathcal{F} are the subforests of G_{u} satisfying Properties $s($ iii) and $s(\mathrm{iv})$; and \mathcal{F}^{\prime} are the subforests of $G_{u^{\prime}}$ satisfying Properties $s^{\prime}\left(\right.$ iii) and s^{\prime} (iv). Note that, firstly, any other forest is respectively not a feasible solution of s or s^{\prime}; secondly, that from any subforest $f \in \mathcal{F}$ we can obtain a subforest of \mathcal{F}^{\prime} by removing x and every incident edge to x ; thirdly, that from any subforest $f^{\prime} \in \mathcal{F}^{\prime}$ we can obtain a subforest of \mathcal{F} by adding x and $\gamma_{F}(x)$; and lastly, by Lemma 9, that the two previous transformations are opposite and describe a bijection between \mathcal{F} and \mathcal{F}^{\prime}.

Let then $f \in \mathcal{F}$ and $f^{\prime} \in \mathcal{F}^{\prime}$ be two associated forests. We now show that f is feasible for s if and only if f^{\prime} is feasible for s^{\prime}. Firstly, by definition of \mathcal{F} and \mathcal{F}^{\prime}, f satisfy Properties $s(\mathrm{i})$, $s(\mathrm{iii})$ and $s(\mathrm{iv})$ and f^{\prime} satisfies Property $s^{\prime}(\mathrm{i}), s^{\prime}(\mathrm{iii})$ and $s^{\prime}(\mathrm{iv})$.

We have Property $s(\mathrm{v})$ for f if and only if f has c trees. During the transformation process from f to f^{\prime}, the tree containing x is replaced by $d_{F}(x)$ new trees, one for each incident edge of x in f. Consequently f has c trees if and only if f^{\prime} has $c+d_{F}(x)-1=c^{\prime}$ trees if and only if Property $s^{\prime}(\mathrm{v})$ is satisfied by f^{\prime}.

If f satisfies Property $s(\mathrm{vi})$, then two nodes v_{1} and v_{2} of Y^{\prime} are in the same tree in f^{\prime} if and only if they were in the same tree in f and were not connected through x if and only if $C^{\prime}\left(v_{1}\right)=C^{\prime}\left(v_{2}\right)$ by Lemma 11. We now assume f^{\prime} satisfies Property $s^{\prime}(\mathrm{vi})$. Two nodes v_{1} and v_{2} of Y^{\prime} are in the same tree in f if and only if the trees containing v_{1} and v_{2} in f^{\prime} are the same or are connected by x in f^{\prime} if and only if $C\left(v_{1}\right)=C\left(v_{2}\right)$ by Lemma 11 . We finally consider x. By Lemma 10, either x has no neighbor in H in which case $C(x) \neq C(v)$ for every node $v \in Y$ or x has a neighbor w in H in which case, by Definition 2, $C(x)=C(w)$. In the first case, by Lemma 9 , the tree of x in f contains only that node, and Property $s(\mathrm{vi})$ is satisfied. In the second case, as Property $s(\mathrm{vi})$ is true for every nodes $v_{1}, v_{2} \in Y^{\prime}$, then a node v is in the tree containing w (and x) if and only if $C(v)=C(w)=C(x)$.

We now deal with Properties s (vii) and s^{\prime} (vii). Recall first that we considered a case where Lemma 10 cannot be applied, meaning that $d_{1}(x)+d_{F}(x)=d_{2}(x)$. By Lemma 9 , $d_{f}(x)=d_{F}(x)=d_{2}(x)-d_{1}(x)$. Thus, Properties $s($ vii) is true for x. We then just have to check that the two properties are equivalent for every node in Y^{\prime}. We separate two cases depending if the node is a neighbor of x or not in F. Let $v \in Y^{\prime}$ be a neighbor of x in F. In that case $d_{f}(v)=d_{f^{\prime}}(v)+1$. If $d_{1}(v)<\Delta$, then $d_{1}^{\prime}(v)=d_{1}(v)+1$. Consequently, $d_{f}(v)=d_{2}(v)-d_{1}(v) \Leftrightarrow d_{f^{\prime}}(v)=d_{2}^{\prime}(v)-d_{1}^{\prime}(v)$ and $d_{f}(v) \geq d_{2}(v)-d_{1}(v) \Leftrightarrow$ $d_{f^{\prime}}(v) \geq d_{2}^{\prime}(v)-d_{1}^{\prime}(v)$. As $d_{2}(v)=d_{2}^{\prime}(v)$, Properties $s(v i i)$ and $s^{\prime}(v i i)$ are equivalent for the node v in that case. If now $d_{1}(v)=\Delta$, then $d_{1}^{\prime}(v)=d_{2}^{\prime}(v)=d_{2}(v)=\Delta$. Thus $d_{2}(v)-d_{1}(v)=d_{2}^{\prime}(v)-d_{1}^{\prime}(v)=0 \leq d_{f^{\prime}}(v) \leq d_{f}(v)$. So the Properties are true for v. Let finally $v \in Y^{\prime}$ which is not a neighbor of x. In that case $d_{f}(v)=d_{f^{\prime}}(v), d_{2}(v)=d_{2}^{\prime}(v)$ and $d_{1}(v)=d_{1}^{\prime}(v)$, thus the equivalence is true for v.

We end with Properties s (ii) and $s^{\prime}(\mathrm{ii})$. For every node $v \in G_{u} \backslash X_{u}$, by Lemma $9, v$ is not a neighbor of x in f. Thus $d_{f}(v)=d_{f^{\prime}}(v)$. In addition, $G_{u^{\prime}} \backslash X_{u^{\prime}}=G_{u} \backslash X_{u}$, thus the two properties are identical.

As a conclusion, f is feasible for s if and only if f^{\prime} is feasible for s^{\prime}. In addition, if f is feasible for s (and thus contains x), we have $\Omega(s, f)=\sum_{v \in Y^{\prime}} C_{m+1}\left(v, d_{2}(v)\right)+$ $C_{m+1}\left(x, d_{2}(x)\right)+\sum_{G_{u^{\prime}} \backslash Y^{\prime}} C_{m+1}\left(v, d_{f}(v)\right)=\Omega\left(s^{\prime}, f\right)+C_{m+1}\left(x, d_{2}(x)\right)$.

2.5 Join bags

Let u be a join bag and u^{\prime} and $u^{\prime \prime}$ be the two children of u. We recall that $X_{u}=X_{u^{\prime}}=X_{u^{\prime \prime}}$.

- Lemma 14. $G_{u^{\prime}} \cap G_{u^{\prime \prime}}=X_{u}$

Proof. Let $v \in G_{u^{\prime}} \cap G_{u^{\prime \prime}}$. Then v is contained in a descendant bag of u^{\prime} in the tree decomposition τ and in a descendant bag of $u^{\prime \prime}$. Consequently, it belongs to every bag on the path linking those two descendants, including u. Thus $v \in X_{u}$.

Let $s=\left(u, k_{1}, k_{2}, \ldots, k_{m}, c, Y, F, d_{1}, d_{2}, C\right) \in S(u)$. We want to compute $\Omega^{*}(s)$. Given a mapping C, we write $\# C$ as the number of distinct values in the image of C.

Definition 15. \mathcal{Q} is a set of parameters $\left(k_{1}^{\prime}, k_{2}^{\prime}, \ldots, k_{m}^{\prime}, k_{1}^{\prime \prime}, k_{2}^{\prime \prime}, \ldots, k_{m}^{\prime \prime}, c^{\prime}, c^{\prime \prime}, d_{1}^{\prime}, d_{1}^{\prime \prime}, C^{\prime}, C^{\prime \prime}\right)$ such that $\left|k_{j}^{\prime}\right|,\left|k_{j}^{\prime \prime}\right| \leq \max |C| ; k_{j}^{\prime \prime}=\min \left(\max |C|, k_{j}-k_{j}^{\prime}\right) ; d_{1}(v) \leq d_{1}^{\prime}(v) \leq d_{2}(v), d_{1}^{\prime \prime}(v)=$ $\max \left(d_{1}^{\prime}(v)-d_{F}(v), 0\right) ; C\left(v_{1}\right)=C\left(v_{2}\right)$ if and only if there exists a list $\left(x_{1}=v_{1}, x_{2}, \ldots, x_{p}=\right.$ $\left.v_{2}\right) \in Y$ such that for all $i \in \llbracket 1 ; p-1 \rrbracket, C^{\prime}\left(x_{i}\right)=C^{\prime}\left(x_{i+1}\right)$ or $C^{\prime \prime}\left(x_{i}\right)=C^{\prime \prime}\left(x_{i+1}\right) ;$ and $c^{\prime}+c^{\prime \prime}-\# C^{\prime}-\# C^{\prime \prime}=c-\# C$.

Given a tuple $q=\left(k_{1}^{\prime}, k_{2}^{\prime}, \ldots, k_{m}^{\prime}, k_{1}^{\prime \prime}, k_{2}^{\prime \prime}, \ldots, k_{m}^{\prime \prime}, c^{\prime}, c^{\prime \prime}, d_{1}^{\prime}, d_{1}^{\prime \prime}, C^{\prime}, C^{\prime \prime}\right) \in \mathcal{Q}$, let $s^{\prime}(q)=\left(u^{\prime}, k_{1}^{\prime}, k_{2}^{\prime}, \ldots, k_{m}^{\prime}, c, Y, F, d_{1}, d_{1}^{\prime}, C^{\prime}\right) \in S\left(u^{\prime}\right)$ and $s^{\prime \prime}(q)=\left(u^{\prime \prime}, k_{1}^{\prime \prime}, k_{2}^{\prime \prime}, \ldots, k_{m}^{\prime \prime}, c^{\prime \prime}, Y, F, d_{1}^{\prime \prime}, d_{2}, C^{\prime \prime}\right) \in S\left(u^{\prime \prime}\right)$.

- Lemma 16. Let f be a feasible solution of s and let $f^{\prime} \subset G_{u^{\prime}}$ and $f^{\prime \prime} \subset G_{u^{\prime \prime}}$ obtained by respectively removing $\left(G_{u^{\prime \prime}} \backslash X_{u}\right)$ and $\left(G_{u^{\prime}} \backslash X_{u}\right)$ from f. There exists $q \in \mathcal{Q}$ such that f^{\prime} is feasible for $s^{\prime}(q)$ and $f^{\prime \prime}$ is feasible for $s^{\prime \prime}(q)$.

Proof. We first build the tuple q. For every $j \in \llbracket 1 ; m \rrbracket$, we set $k_{j}^{\prime}=\sum_{v \in G_{u^{\prime}} \backslash X_{u}} C_{j}\left(v, d_{f}(v)\right)$ and $k_{j}^{\prime \prime}=\min \left(\max |C|, k_{j}-k_{j}^{\prime}\right)$. For every node $v \in Y$, we set $d_{1}^{\prime}(v)=\min \left(d_{f^{\prime}}(v)+d_{1}(v), \Delta\right)$ and $d_{1}^{\prime \prime}(v)=\max \left(d_{1}^{\prime}(v)-d_{F}(w), 0\right)$. We set c^{\prime} as the number of trees in f^{\prime} and C^{\prime} such that for any two nodes $v_{1}, v_{2} \in Y, C^{\prime}\left(v_{1}\right)=C^{\prime}\left(v_{2}\right) \Leftrightarrow v_{1}$ and v_{2} are in the same tree of f^{\prime}. We similarly set $c^{\prime \prime}$ and $C^{\prime \prime}$. Hereinafter, we demonstrate that $q \in \mathcal{Q}$.

Indeed, $\left|k_{j}\right| \leq \max |C|$ and $k_{j}^{\prime \prime}=\min \left(\max |C|, k_{j}-k_{j}^{\prime}\right)$ by definition. By Property $s(\mathrm{ii})$, $\sum_{v \in G_{u} \backslash X_{u}} C_{j}\left(v, d_{f}(v)\right) \leq k_{j} . \operatorname{As} \sum_{v \in G_{u^{\prime \prime}} \backslash X_{u}} C_{j}\left(v, d_{f}(v)\right)=\sum_{v \in G_{u} \backslash X_{u}} C_{j}\left(v, d_{f}(v)\right)-$ $\sum_{v \in G_{u^{\prime}} \backslash X_{u}} C_{j}\left(v, d_{f}(v)\right) \leq k_{j}-k_{j}^{\prime},-\max |C| \leq k_{j}-k_{j}^{\prime}$, then $\left|k_{j}^{\prime \prime}\right| \leq \max |C|$.

Let $v \in Y$. As $d_{f^{\prime}}(v) \geq 0$ and $d_{1}(v) \leq \Delta, d_{1}^{\prime}(v) \geq d_{1}(v)$. By definition, $d_{1}^{\prime \prime}(v)=$ $\max \left(d_{1}^{\prime}(v)-d_{F}(v), 0\right)$. By Property $s($ vii $)$, if $d_{2}(v)<\Delta$, then $d_{1}(v)+d_{f}(v)=d_{2}(v)<\Delta$. As $d_{f}(v) \geq d_{f^{\prime}}(v), d_{1}(v)+d_{f^{\prime}}(v)<\Delta$ and then $d_{1}^{\prime}(v)=d_{1}(v)+d_{f^{\prime}}(v)$. Consequently, $d_{1}^{\prime}(v)+d_{f^{\prime}}(v) \leq d_{2}(v)$. If $d_{2}(v)=\Delta$, then either $d_{1}(v)+d_{f^{\prime}}(v)<\Delta$ and then $d_{1}^{\prime}(v) \leq d_{2}(v)$ or $d_{1}(v)+d_{f^{\prime}}(v) \geq \Delta$ and then $d_{1}^{\prime}(v)=\Delta=d_{2}(v)$.

We finally have to prove the two last properties of \mathcal{Q}. Let $G^{\prime}=\left(G_{u^{\prime}} \backslash X_{u}\right)$ and $G^{\prime \prime}=$ $\left(G_{u^{\prime \prime}} \backslash X_{u}\right)$. The difference $c-\# C$ (resp. $c^{\prime}-\# C^{\prime}$ and $\left.c^{\prime \prime}-\# C^{\prime \prime}\right)$ is the number of trees in f (resp. f^{\prime} and $f^{\prime \prime}$) not containing any node in Y. By Lemma $14, G^{\prime} \cap G^{\prime \prime}=\emptyset$. Thus $c-\# C=c^{\prime}-\# C^{\prime}+c^{\prime \prime}-\# C^{\prime \prime}$.

Let now v_{1} and v_{2} be two nodes of X_{u}. Then $C\left(v_{1}\right)=C\left(v_{2}\right)$ if and only if v_{1} and v_{2} are in the same tree. There exists a path $P=\left(p_{1}=v_{1}, p_{2}, \ldots, p_{|P|}=v_{2}\right)$ connecting v_{1} and v_{2} in that tree. Let $x_{1}, x_{2}, \ldots, x_{p}$ be the $p \geq 2$ nodes of $P \cap Y$. For each couple $\left(x_{i}, x_{i+1}\right)$, either x_{i} and x_{i+1} are connected by an edge in F, then $C^{\prime}\left(x_{i}\right)=C^{\prime}\left(x_{i+1}\right)$ and $C^{\prime \prime}\left(x_{i}\right)=C^{\prime \prime}\left(x_{i+1}\right)$; or x_{i} and x_{i+1} are connected by a subpath of P consisting of nodes of G^{\prime} or $G^{\prime \prime}$. Thus x_{i} and x_{i+1} are either in the same tree in f^{\prime} or in $f^{\prime \prime}$, which is equivalent to $C^{\prime}\left(x_{i}\right)=C^{\prime}\left(x_{i+1}\right) \vee C^{\prime \prime}\left(x_{i}\right)=C^{\prime \prime}\left(x_{i+1}\right)$ by definition of C^{\prime} and $C^{\prime \prime}$.

Consequently, $q \in \mathcal{Q}$ and we can safely define $s^{\prime}=s^{\prime}(q)$ and $s^{\prime \prime}=s^{\prime \prime}(q)$. Firstly by definition, f, f^{\prime} and $f^{\prime \prime}$ respectively satisfy $s(\mathrm{i}), s^{\prime}(\mathrm{i})$ and $s^{\prime \prime}(\mathrm{i})$. In addition, by Lemma 14 , and because $X_{u}=X_{u^{\prime}}=X_{u^{\prime \prime}}$, the properties (iii) and (iv) of s, s^{\prime} and $s^{\prime \prime}$ are equivalent. Properties $s^{\prime}(\mathrm{v}), s^{\prime}(\mathrm{vi}), s^{\prime \prime}(\mathrm{v})$ and $s^{\prime \prime}(\mathrm{vi})$ are satisfied by definition of $c^{\prime}, C^{\prime}, c^{\prime \prime}$ and $C^{\prime \prime}$.

We now focus on Properties $s^{\prime}(\mathrm{vii})$ and $s^{\prime \prime}(\mathrm{vii})$. Let $v \in Y$. If $d_{1}^{\prime}(v)=d_{1}(v)+d_{f^{\prime}}(v)$, then Property $s^{\prime}($ vii $)$ is satisfied. If $d_{1}^{\prime}(v)=\Delta$ then $d_{1}^{\prime}(v)=\Delta \leq d_{1}(v)+d_{f^{\prime}}(v)$ and the property is also proven. We now have to prove that $d_{f^{\prime \prime}}(v)=d_{2}(v)-d_{1}^{\prime \prime}(v)$. Note firstly that $d_{f}(v)=d_{f^{\prime}}(v)+d_{f^{\prime \prime}}(v)-d_{F}(v)$ because $d_{f^{\prime}}$ and $d_{f^{\prime \prime}}$ count the edges in F twice.

- If $d_{2}(v)<\Delta$, then, by Property $s(\mathrm{vii}), d_{f}(v)=d_{2}(v)-d_{1}(v)$. In addition, $d_{1}^{\prime}(v) \leq d_{2}(v)<$
Δ by definition of \mathcal{Q}, then $d_{1}(v)=d_{1}(v)+d_{f^{\prime}}(v)$. As $d_{f^{\prime}}(v) \geq d_{F}(v)$ by Property $s(\mathrm{iii})$,
then $d_{1}^{\prime}(v)-d_{F}(v) \geq 0$ and $d_{1}^{\prime \prime}(v)=\max \left(d_{1}^{\prime}(v)-d_{F}(v), 0\right)=d_{1}^{\prime}(v)-d_{F}(v)$. Finally,
$d_{f^{\prime \prime}}(v)=d_{f}(v)-d_{f^{\prime}}(v)+d_{F}(v)=d_{2}(v)-d_{1}^{\prime \prime}(v)$.
- If $d_{2}(v)=\Delta$, then $d_{f}(v) \geq d_{2}(v)-d_{1}(v)$.
$=$ If $d_{1}^{\prime}(v)=d_{1}(v)+d_{f^{\prime}}(v)$ then $d_{f^{\prime \prime}}(v)=d_{f}(v)-d_{f^{\prime}}(v)+d_{F}(v) \geq d_{2}(v)-d_{1}(v)-$ $d_{1}^{\prime}(v)+d_{1}(v)+d_{F}(v)$. As $d_{1}^{\prime \prime}(v) \leq d_{1}^{\prime}(v)-d_{F}(v), d_{f^{\prime \prime}}(v) \geq d_{2}(v)-d_{1}^{\prime \prime}(v)$.
$=$ If $d_{1}^{\prime}(v)=\Delta$ then $d_{1}^{\prime \prime}(v)=\max \left(\Delta-d_{F}(v), 0\right)$. If $d_{1}^{\prime \prime}(v)=\Delta-d_{F}(v)$ then $d_{2}(v)-d_{1}^{\prime \prime}(v)=$ $d_{F}(v) \leq d_{f^{\prime \prime}}(v)$ by Property $s\left(\right.$ iii . If $d_{1}^{\prime \prime}(v)=0$ then $\Delta-d_{F}(v) \leq 0$. In addition, $d_{2}(v)-d_{1}^{\prime \prime}(v)=\Delta \leq d_{F}(v) \leq d_{f^{\prime \prime}}(v)$.
Consequently Property $s^{\prime \prime}$ (vii) is satisfied.
We end with Properties $s^{\prime}(\mathrm{ii})$ and $s^{\prime \prime}(\mathrm{ii})$. The former is true by definition of k_{j}^{\prime}. By Property $s(\mathrm{ii}), \sum_{v \in G_{u} \backslash X_{u}} C_{j}\left(v, d_{f}(v)\right) \leq k_{j}$. Consequently, $\sum_{v \in G_{u^{\prime \prime}} \backslash X_{u}} C_{j}\left(v, d_{f}(v)\right)=$

```
\(\sum_{v \in G_{u} \backslash X_{u}} C_{j}\left(v, d_{f}(v)\right)-\sum_{v \in G_{u^{\prime}} \backslash X_{u}} C_{j}\left(v, d_{f}(v)\right) \leq k_{j}-k_{j}^{\prime}\). In addition, \(\sum_{v \in G_{u^{\prime \prime}} \backslash X_{u}} C_{j}\left(v, d_{f}(v)\right) \leq\)
\(\max |C|\), then \(\sum_{v \in G_{u^{\prime \prime}} \backslash X_{u}} C_{j}\left(v, d_{f}(v)\right) \leq k_{j}^{\prime \prime}\).
As a consequence, \(f^{\prime}\) and \(f^{\prime \prime}\) are feasible solutions of the states \(s^{\prime}\) and \(s^{\prime \prime}\).
Due to lack of space, the proof of the converse property, given in the following lemma, can be found in Appendix B. The used arguments are similar to the ones in the proof of Lemma 16.
Lemma 17. Let \(q \in \mathcal{Q}\) and \(f^{\prime}\) (respectively \(f^{\prime \prime}\) ) be a feasible solution of \(s^{\prime}(q)\) (respectively \(\left.s^{\prime \prime}(q)\right)\). Then \(f=f^{\prime} \cup f^{\prime \prime}\) is feasible for \(s\).
- Lemma 18. \(\Omega^{*}(s)=\min _{q \in \mathcal{Q}} \Omega^{*}\left(s^{\prime}(q)\right)+\Omega^{*}\left(s^{\prime \prime}(q)\right)-\sum_{v \in Y} C_{m+1}\left(v, d_{1}^{\prime}(v)\right)-\sum_{v \in X_{u} \backslash Y} C_{m+1}(v, 0)\).
```

Proof. In the two lemmas 16 and 17 , we have $f=f^{\prime} \cup f^{\prime \prime}$ and f^{\prime} (respectively $f^{\prime \prime}$) can be obtained by removing $\left(G_{u^{\prime \prime}} \backslash X_{u}\right)$ (respectively $\left(G_{u^{\prime}} \backslash X_{u}\right)$) from f. We have $\Omega\left(s^{\prime}, f^{\prime}\right)=$ $\sum_{v \in Y} C_{m+1}\left(v, d_{1}^{\prime}(v)\right)+\sum_{v \in X_{u} \backslash Y} C_{m+1}(v, 0)+\sum_{v \in G_{u^{\prime}} \backslash X_{u}} C_{m+1}\left(v, d_{f}(v)\right)$ and $\Omega\left(s^{\prime \prime}, f^{\prime \prime}\right)=$ $\sum_{v \in Y} C_{m+1}\left(v, d_{2}(v)\right)+\sum_{v \in X_{u} \backslash Y} C_{m+1}(v, 0)+\sum_{v \in G_{u^{\prime \prime}} \backslash X_{u}} C_{m+1}\left(v, d_{f^{\prime \prime}}(v)\right)$. By Lemma 14, $\Omega(s, f)=\Omega\left(s^{\prime}, f^{\prime}\right)+\Omega\left(s^{\prime \prime}, f^{\prime \prime}\right)-\sum_{v \in Y} C_{m+1}\left(v, d_{1}^{\prime}(v)\right)-\sum_{v \in X_{u} \backslash Y} C_{m+1}(v, 0)$.

2.6 Main theorem

- Lemma 19. There exists an algorithm solving MTDW with time complexity $O\left(n^{4} \cdot\left(m+T W^{3}\right) \cdot(2 \max |C|+1)^{3 m} \cdot 2^{3 T W+3 T W^{2}} \cdot(\Delta+1)^{6 T W} \cdot T W^{3 T W}\right)$.

Proof. If we compute $f^{*}(s)$ and $\Omega^{*}(s)$ for $s=\left(r, K_{1}, K_{2}, \ldots, K_{m}, 1, \emptyset, \emptyset,\{ \},\{ \},\{ \}\right)$, by Lemma 5, we get the result. We can recursively compute those values using Lemmas 6, 8, 12, 13 and 18. Consequently, we can use a dynamic programming algorithm to solve the problem in polynomial time, for instance an iterative algorithm that iterate through the bags of τ using a reversed breadth-first search algorithm and apply the lemmas for every state of every bag. We recall that by Lemma 3, for every bag u, the number of state in $S(u)$ is bounded by $B=(2 \max |C|+1)^{m} \cdot n \cdot 2^{T W} \cdot 2^{T W^{2}} \cdot(\Delta+1)^{2 T W} \cdot T W^{T W}$.

The time complexity of the calculation of $\Omega^{*}(s)$, for some state $s \in S(u)$, depends on the type of the bag u. For a leaf, the computation is done in time $O(m)$. If u is not a leaf, we assume that $\Omega^{*}\left(s^{\prime}\right)$ was computed for every state $s^{\prime} \in S\left(u^{\prime}\right)$, for every child u^{\prime} of u and is accessible in constant time. For a forget bag, the computation consists in building S^{\prime} and computing $\min _{s^{\prime} \in S^{\prime}} \Omega^{*}\left(s^{\prime}\right)$. The first step can be done by enumerating the at most B states of u^{\prime}. For each such state, using Definition 7 to check if it belongs to S^{\prime} is done in time $O\left(m+T W^{2}\right)$. The complexity is then $O\left(\left(m+T W^{2}\right) \cdot B\right)$. For an introduce bag, the computation first consists in checking the two properties of Lemma 10 in time $O(T W)$. Then a state $s^{\prime} \in S\left(u^{\prime}\right)$ is then computed for Lemmas 12 and 13 in $O(m)$. Computing the minimum value is done in constant time. The complexity is then $O(T W+m)$. For a join bag, we similarly enumerate every couple of states of u^{\prime} and $u^{\prime \prime}$ and check if the related parameters belongs to \mathcal{Q}. This last part is done in time $O\left(m+T W^{3}\right)$. The $T W^{3}$ term comes from the penultimate property of \mathcal{Q} that can (naively) be done by running Y^{2} depth first searches in the nodes of Y. Every other property is checked in constant time, in $O(m)$ or in $O(T W)$. Thus, the complexity for that bag is in $O\left(\left(m+T W^{3}\right) \cdot B^{2}\right)$.

As the number of bags in the tree decomposition τ is $O(|V|)=O(n)$, the total number of states we have to consider is $O(n \cdot B)$. The overall complexity is then $O\left(n \cdot\left(m+T W^{3}\right) \cdot B^{3}\right)$.

From the time complexity of Lemma 19, we can immediately deduce Theorem 1.

3 Hardness Result

This section provides four hardness results to prove that Theorem 1 cannot be adapted when m is not fixed, when $T W$ or Δ are neither fixed nor a parameter or when $\max |C|$ is binary.

- Theorem 20. $(m=1, \Delta=2)$-MTDW is NP-Hard, even if $\max |C|$ is unary.

Proof. The Minimum Leaf Spanning Tree problem is NP-Hard and, as stated in Appendix A, can be expressed as a subproblem of MTDW where $m=1, \Delta=2$ and $\max |C|=n$.

- Theorem 21. $(m=0)-M T D W$ is $W[1]$-Hard with respect to $T W$, even if $\max |C|$ is unary.

Proof. We give an FPT-reduction from the General Factors problem in which, given an undirected graph $H=\left(V_{H}, E_{H}\right)$ and, for each node $v \in V_{H}$, a subset $\beta(v) \subset \llbracket 1 ; d(v) \rrbracket$, we search for a subset $F \subset E_{H}$ such that, for each node $v \in V_{H}$, the number of edges of F incident to v is in $\beta(v)$. Such a subset is called a β-factor of H. GF is $\mathrm{W}[1]$-hard with respect to the treewidth of H [9].

Given an instance $\mathcal{I}=\left(H=\left(V_{H}, E_{H}\right), \beta\right)$ of General Factors with treewidth TW, we build an instance $\mathcal{J}=\left(G, C_{1}\right)$ of $M T D W$ as follows. From the graph H, we build the graph G by adding one node s to G and by replacing each edge $e=(u, v) \in E_{H}$ by a path of 5 nodes $u, e_{u}, e_{s}, e_{v}, v$. We then link s to every node of V_{H} and to every node e_{s} for $e \in E_{H}$.
C_{1} is the following function: for each node $v \in V_{H}$, then $C_{1}(v, d)=0$ if $d-1 \in \beta(v)$ and 1 otherwise ; for each edge $e \in E_{H}, C_{1}\left(e_{s}, d\right)=0$ if $d=1$ or $d=3$ and 1 otherwise; for each edge $e=(u, v) \in E_{H}, C_{1}\left(e_{u}, 1\right)=C_{1}\left(e_{v}, 1\right)=0$ and $C_{1}\left(e_{u}, d\right)=C_{1}\left(e_{v}, d\right)=1$ for every $d \neq 1$; and $C_{1}(s, d)=0$ if $d=\left|V_{H}\right|+\left|E_{H}\right|$ and 1 otherwise.

This reduction is done in polynomial time with respect to $\left|V_{H}\right|+\left|E_{H}\right|$. We now prove there exists an optimal solution for \mathcal{J} with cost at most 0 if and only if H has a β factor.

Let T be a tree where $C_{1}\left(v, d_{T}(v)\right)=0$ for every node in T. Then $\left(u, e_{u}\right) \in T \Leftrightarrow\left(v, e_{v}\right) \in$ T for all $e=(u, v) \in E_{H}$. Indeed, if we assume for instance that $\left(u, e_{u}\right) \in T$ and $\left(v, e_{v}\right) \notin T$, then $\left(e_{v}, e_{s}\right) \in T$ otherwise e_{v} would have degree 0 in T and the cost of T would not be 0 . Similarly, $\left(e_{u}, e_{s}\right) \notin T$, thus $\left(e_{s}, s\right)$ cannot be in T as as the degree of e_{s} should be either 1 or 3. Finally $\left(e_{s}, s\right)$ is necessarily in T as all the incident edges of s must be in T to get a tree with cost 0 . Let then F be the edges $e \in E_{H}$ for which $\left(u, e_{u}\right)$ and $\left(v, e_{v}\right)$ are in T. The degree in T of a node u is the degree of u in F plus 1 , as u is connected to s in T; and as the cost of the tree is 0 , then $d_{T}(u)-1=d_{F}(u) \in \beta(v)$. Thus there exists an optimal solution for \mathcal{J} with cost 0 if and only if H has a β factor.

On the other hand, given a β-factor F of H, by selecting all edges incident to $s,\left(u, e_{u}\right)$ and $\left(v, e_{v}\right)$ for $(u, v) \in F$ and $\left(e_{u}, e_{s}\right)$ and $\left(e_{v}, e_{s}\right)$ for $(u, v) \notin F$, we get a tree of cost 0 .

Finally, the treewidth of G can be expressed as a fonction of the treewidth of H as it is at most $T W+3 \cdot T W \cdot(T W-1) / 2+1$. Indeed, from a tree decomposition τ of H, we can build a tree decomposition of G by adding s to every node of τ and by adding e_{u}, e_{s} and e_{v} to every node of T containing u and v. Consequently there exists an FPT reduction from General Factors to MTDW.

- Theorem 22. $(\Delta=2, T W=2)$-MTDW is NP-Hard and $W[1]$-Hard with respect to m, even if $\max |C|$ is unary.

Proof. We prove this result with an FPT reduction from the Partitioned Clique problem, parameterized with the size of the searched clique. Let $H=(V, E)$ be an undirected graph where V is partitioned into k independent sets $V=V_{1} \cup V_{2} \cup \cdots \cup V_{k}$, the partitioned Clique
problem consists in the search for a clique of size k in H, containing one node in each set V_{i}. This problem is NP-Hard and W[1]-Complete with respect to k [6].

Given an instance (H, k) of the Partitioned Clique problem, we assume without loss of generality that every set V_{i} is of size s, and $E_{i j}$, the edges linking V_{i} and V_{j}, is of size $\sigma(i j)$. We set $V_{i}=\left(v_{i 1}, v_{i 2}, \ldots, v_{i s}\right)$ and $E_{i j}=\left(e_{i j 1}, e_{i j 2}, \ldots, e_{i j \sigma(i j)}\right)$. We build an instance $\mathcal{I}=\left(G, C_{1}, C_{2}, \ldots, C_{m+1}, K_{1}, K_{2}, \ldots, K_{m}\right)$ of MTDW parameterized with m with $\Delta=2$ and $T W=2$ as follows. We first add a star to G with a center x and $2 k+k \cdot(k-1)$ leaves $\left\{w_{i}, w_{i}^{\prime}, i \in \llbracket 1 ; k \rrbracket\right\} \cup\left\{f_{i j}, f_{i j}^{\prime}, i<j \in \llbracket 1 ; k \rrbracket\right\}$. For each $i \in \llbracket 1 ; k \rrbracket$, we connect w_{i} and w_{i}^{\prime} with a path P_{i} containing $2\left|V_{i}\right|+2$ nodes $P_{i}=\left(w_{i}, v_{i 1}, v_{i 1}^{\prime}, v_{i 2}, v_{i 2}^{\prime}, \ldots, v_{i s}^{\prime}, v_{i s}^{\prime}, w_{i}^{\prime}\right)$. For each $i<j \in \llbracket 1 ; k \rrbracket$, we connect $f_{i j}$ and $f_{i j}^{\prime}$ with a path $Q_{i j}$ containing $2\left|E_{i j}\right|+2$ nodes $Q_{i j}=\left(f_{i j}, e_{i j 1}, e_{i j 1}^{\prime}, e_{i j 2}, e_{i j 2}^{\prime}, \ldots, e_{i j \sigma(i j)}, e_{i j \sigma(i j)}^{\prime}, f_{i j}^{\prime}\right)$. Note that G is a set of cycles with a common node x, and is thus outerplanar. Consequently, the treewidth of G equals 2 .

We set $m=k \cdot(k-1)$. In order to simplify the description, we first set $C_{j}(v, d)=0$ for every node v, degree d and constraint C_{j}. We then reset some of the values. For each $i<j \in \llbracket 1 ; k \rrbracket$, we build four constraints. For readability, we denote them by $C_{i j}, C_{i j}^{\prime}, C_{j i}$ and $C_{j i}^{\prime}$. For every node $v_{i p} \in V_{H i}$, we set $C_{i j}\left(v_{i p}, 1\right)=-C_{i j}^{\prime}\left(v_{i p}, 1\right)=p$. For every node $v_{r} \in V_{H j}$, we set $C_{j i}\left(v_{j r}, 1\right)=-C_{j i}^{\prime}\left(v_{j r}, 1\right)=r$. For every edge $e_{i j q}=\left(v_{p}, v_{r}\right) \in E_{i j}$, we set $C_{i j}\left(e_{i j q}, 1\right)=-C_{i j}^{\prime}\left(e_{i j q}, 1\right)=-p$ and $C_{j i}\left(e_{i j q}, 1\right)=-C_{j i}^{\prime}\left(e_{i j q}, 1\right)=-r$. Finally, we set $K_{i j}=K_{i j}^{\prime}=K_{j i}=K_{j i}^{\prime}=0$. The cost function C_{m+1} will imply a spanning tree constraint with some edge covering constraint: for $v \in V, C_{m}(v, 0)=1$; for each node $v \in\left\{w_{i}, w_{i}^{\prime}, f_{i, j}, f_{i, j}^{\prime}\right\}$ for some i or $(i, j), C_{m}(v, d<2)=1$. Note that $\Delta=2$. We search for the existence of a feasible solution of cost at most 0 .

We first characterize the properties of a feasible solution T of \mathcal{I} with cost 0 . Due to the cost constraint C_{m+1}, every node must be spanned by T. In addition, for every node $v \in\left\{w_{i}, w_{i}^{\prime}, f_{i j}, f_{i j}^{\prime}\right\}, v$ is of degree two in T. As a consequence, every edge incident to x is in T. Let now $i \in \llbracket 1 ; k \rrbracket$, as T is a spanning tree, exactly one edge of P_{i} must not be in T : exactly one node $v_{i p}$ of P_{i} has degree 1 in T. We can similarly state that for every $j \in \llbracket i+1 ; k \rrbracket$, there exists $q \leq \sigma(i j)$ and $r \leq s$ such that $d_{T}\left(e_{i j q}\right)=d_{T}\left(v_{j r}\right)=1$. Assuming $e_{i j q}=\left(v_{i a}, v_{j b}\right)$ for some $a, b \leq s, \sum_{v \in V} C_{i j}\left(v, d_{T}(v)\right)=p-a$ and $\sum_{v \in V} C_{j i}\left(v, d_{T}(v)\right)=r-b$. As $C_{i j}, C_{i j}^{\prime}, K_{i j}$ and $K_{i j}^{\prime}$ are opposite numbers, we have $\sum_{v \in V} C_{i j}\left(v, d_{T}(v)\right)=0$, thus $p=a$. Similarly, we have $r=b$. Consequently, there exists in H an edge linking $v_{i p}$ and $v_{j r}$. Consequently, the set $\left\{v_{i p}, i \in \llbracket 1 ; k \rrbracket, p \in \llbracket 1 ; s \rrbracket \mid d_{T}\left(v_{i p}\right)=1\right\}$ is a clique of size k in H.

Conversely, if C is a clique with $|C|=k$, we order the nodes of C. Without loss of generality, let $C=\left(v_{11}, v_{21}, \ldots, v_{k 1}\right)$. Then, the subgraph $G \backslash\left(\left\{\left(v_{i 1}, v_{i 1}^{\prime}\right), i \in \llbracket 1 ; k \rrbracket\right\} \cup\right.$ $\left.\left\{\left(e_{i j 1}, e_{i j 1}^{\prime}\right), i \in \llbracket 1 ; k \rrbracket, j \in \llbracket i+1 ; k \rrbracket\right\}\right)$, where $e_{i j 1}=\left(v_{i 1}, v_{j 1}\right)$ is a feasible solution of cost 0 .

This transformation is then an FPT reduction with respect to k and a polynomial reduction. Consequently, the theorem follows.

Theorem 23. $(\Delta=2, T W=2, m=2)$-MTDW is (weakly) NP-Hard.
Proof. We prove this result with a reduction, indirectly from the Partitioned Clique problem, by starting with the instance \mathcal{I} build in the proof of Theorem 22. From \mathcal{I} we build a new instance \mathcal{I}^{\prime} with $m=2$ but where $\max |C|$ is exponential.

We do not change the graph G. We have the same cost function C_{m+1}. However, the $C_{i j}$ functions are merged into a single function C_{1} and the functions $C_{i j}^{\prime}$ are merged into C_{2}.

Let n be the number of nodes in the graph from the Partitioned Clique instance then $\left|C_{i j}(v, d)\right| \leq n$ and $\left|C_{j i}(v, d)\right| \leq n$. Let $\theta=2 n|G|+1$. For every node $v \in G$ and integer $d \leq$ $d(v)$, we set $C_{1}(v, d)=-C_{2}(v, d)=\sum_{i=1}^{k}\left(\sum_{j=i+1}^{k}\left(n+C_{i j}(v, d)\right) \cdot \theta^{i k+j}+\left(n+C_{j i}(v, d)\right) \cdot \theta^{k^{2}+i k+j}\right)$ and $K_{1}=-K_{2}=\sum_{i=1}^{k}\left(\sum_{j=i+1}^{k} n|G| \cdot \theta^{i \cdot k+j}+n|G| \cdot \theta^{k^{2}+i \cdot k+j}\right)$.

XX:12 An FPT Algorithm for subTree Problems Parameterized with the Treewidth.

T be a feasible solution of \mathcal{I}^{\prime} if and only if
$\sum_{i=1}^{k}\left(\sum_{j=i+1}^{k} \sum_{v \in G}\left(n+C_{i j}\left(v, d_{T}(v)\right)\right) \cdot \theta^{i k+j}+\sum_{v \in G}\left(n+C_{j i}\left(v, d_{T}(v)\right)\right) \cdot \theta^{k^{2}+i k+j}\right)=K_{1}$.
However, for all i and $j, 0 \leq \sum_{v \in G}\left(n+C_{i j}(v, d)\right) \leq 2 n|G|<\theta$ and $0 \leq \sum_{v \in G}(n+$ $\left.C_{j i}(v, d)\right) \leq 2 n|G|<\theta$. Thus, the above equality is satisfied if and only if, for every i, j, we have $\sum_{v \in G}\left(n+C_{i j}\left(v, d_{T}(v)\right)\right)=\sum_{v \in G}\left(n+C_{j i}\left(v, d_{T}(v)\right)\right)=n|G|$, if and only if, for every $i, j, \sum_{v \in G} C_{i j}\left(v, d_{T}(v)\right)=\sum_{v \in G} C_{j i}\left(v, d_{T}(v)\right)=0$ if and only if T is feasible for \mathcal{I}.

4 Conclusion and future works

This work gives an FPT algorithm for many covering tree problems with respect to the treewidth. The algorithm interest is mainly theoretical as its complexity makes it unpractical. This is not really a surprise considering the high level of generalization of MTDW. It gives a basis that can be used to build faster FPT algorithm for every subproblem by taking into account the particularities of that problem. In the same way, the hardness results may also be used as a working base to build NP-Hardness or W[1]-hardness with respect to the treewidth for subproblems which do not satisfy the requirements of Theorem 1.

Those results can be extended to capture other classes of optimization problems. Firstly we could focus on the cyclomatic number, the size of a cycle basis, which is another distance between a graph and a tree. It would secondly be interesting to extend the results to other classical covering structures like forests, matchings, paths and cliques. A last possible future work would be to generalize the constraints. For instance, we could allow C_{j} to take as input a node v and a subset of $\gamma_{G}(v)$ instead of a degree. Or instead of having $\sum_{v, d} C_{j}(v, d) \leq K_{j}$ for every j, we could have constraint such as $\min _{v, d} C_{j}(v, d) \leq K_{j}$.

——References

1 S Arnborg, J Lagergren, and D Seese. Easy problems for tree-decomposable graphs. Journal of Algorithms, 12(2):308-340, 1991. doi:10.1016/0196-6774(91) 90006-K.
2 Markus Chimani, Petra Mutzel, and Bernd Zey. Improved Steiner tree algorithms for bounded treewidth. In Journal of Discrete Algorithms, volume 16, pages 67-78, 2012. doi:10.1016/j. jda.2012.04.016.
3 M Cygan, FV Fomin, L Kowalik, D Lokshtanov, D Marx, Ma Pilipczuk, Mi Pilipczuk, and S Saurabh. Parameterized Algorithms. Springer, Cham, 2015. doi:10.1007/ 978-3-319-21275-3.
4 RG Downey and MR Fellows. Parameterized complexity. Springer-Verlag New York, 1999. doi:10.1007/978-1-4612-0515-9.
5 Ton Kloks. Treewidth: computations and approximations. Springer-Verlag Berlin Heidelberg, 1994. doi:10.1007/BFb0045375.

6 Krzysztof Pietrzak. On the parameterized complexity of the fixed alphabet shortest common supersequence and longest common subsequence problems. Journal of Computer and System Sciences, 67(4):757-771, 2003. doi:10.1016/S0022-0000(03)00078-3.
7 R. Ravi, R. Sundaram, M. V. Marathe, D. J. Rosenkrantz, and S. S. Ravi. Spanning trees - Short or small. SIAM Journal on Discrete Mathematics, 9(2):178-200, 1996. doi: 10.1137/S0895480194266331.

8 Neil Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-width. Journal of Algorithms, 7(3):309-322, 1986. doi:10.1016/0196-6774(86) 90023-4.
9 Marko Samer and Stefan Szeider. Tractable cases of the extended global cardinality constraint. Constraints, 16(1):1-24, 2011. doi:10.1007/s10601-009-9079-y.

A Subproblems of MTDW

MTDW can be seen as a generalization of many covering tree problems in undirected graph. This appendix gives a non exhaustive list of such subproblems; how to rewrite them as a set of MTDW instances and what are the consequences of Theorem 1 on that problem.

- The Minimum Leaf Spanning Tree problem consists, given an undirected graph in the search for a spanning tree with a minimum number of leaves. We set $m=1$. The constraint C_{1} is a spanning tree constraint: $C_{1}(v, 0)=1, C_{1}(v, d \geq 1)=0$ and $K_{1}=0$, every node must be spanned. Note that the connectivity constraint is given by the fact that any feasible solution is a tree. The cost function C_{2} counts the number of leaves: $C_{2}(v, 1)=1$ and $C_{2}(v, d \neq 1)=0$.
The treewidth of the graph is unchanged. We have $\max |C|=n$ and $\Delta=2$. Consequently, due to Theorem 1, this problem is FPT with respect to the treewidth. Similarly, the Maximum Leaf Spanning Tree problem (in which the number of leaves is maximized) is FPT with respect to the treewidth. The sole difference is that $C_{2}(v, 1)=-1$ instead of 1 .
- Another similar subproblem is the Minimum Branch Vertices problem, in which we search for a spanning tree with a minimum number of nodes with degree 3 or more. In that case, we set $C_{2}(v, d \leq 2)=0$ and $C_{2}(v, d \geq 3)=1$. It is then also FPT with respect to the treewidth as the treewidth is unchanged and as $\max |C| \leq n^{2}$ and $\Delta=3$. If we consider the generalized version, in which we minimize the number of nodes of degree k or more, then this problem is FPT with respect to the treewidth and k.
- The Steiner Tree problem may be rewritten as a subproblem of MTDW. In that problem, a subset X of nodes, called terminals, must be spanned. Each edge e is weighted with $\omega(e)$ and we search for a minimum-cost tree. We set $m=1$. We first set $C_{1}(v, 0)=1$, $C_{1}(v, d>0)=0$ for every node $v \in X$ and $K_{1}=0$. A second step consists in modifying the graph in order to consider the weight of the edges. We split every edge $e=(u, v)$ in two edges $\left(u, v_{e}\right)$ and $\left(v_{e}, v\right)$ and, we set $C_{1}\left(v_{e}, 0\right)=C_{1}\left(v_{e}, 2\right)=0, C_{1}\left(v_{e}, 1\right)=1$ to ensure that the edge cannot be partially used. We finally set $C_{2}\left(v_{e}, 2\right)=\omega(e)$.
The treewidth becomes the maximum of the treewidth and 3 . Indeed, given a decomposition of the original graph, for each bag containing the two extremities u and v of an edge e, we attach to that bag another bag containing u, v and v_{e}. This new tree is a decomposition of the new graph. We have $\max |C|=|S|+n^{2} \leq n+n^{2}$ (we recall that $\max |C|$ only takes into account the constraints and not the cost function) and $\Delta=2$. Thus, Theorem 1 is a way to prove the following existing result [2]: the Steiner Tree problem is FPT with respect to the treewidth.
Similarly, it is also possible to prove that the Prize Collecting Steiner Tree problem is FPT with respect to the treewidth. Note that this is also an existing result [2]. Each edge e is weighted with $\omega(e)$ that must be paid if e belongs to the solution and each node v is weighted with a penalty $\pi(v)$ that must be paid if v does not belong to the solution. We handle the edges weight as in the Steiner Tree problem. We set $C_{2}(v, 0)=\pi(v)$ and $C_{2}(v, d>0)=0$ for every node v.
- The k-Minimum Spanning Tree problem, in which we search for a minimum-cost spanning tree containing at least k nodes, can similarly be proven FPT with respect to the treewidth. Note that this result is already given in [7]. We set $m=2$. The edges are split as in the Steiner Tree problem and handled with a constraint C_{1} and the cost function C_{3}. We add a second constraint $C_{2}: C_{2}(v, 0)=0, C_{2}(v, d>0)=-1$ and $K_{2}=-k$.
- In the Budget Steiner Tree problem with Profits, the edges are weighted with a function ω and a budget B is given. Each node v is also weighted with a revenue $r(v)$. The objective
is to maximize the total revenue of the spanned nodes without exceeding the budget B with weights of the edges in the solution. We set $m=2$. As for the previous problems, we handle the edges by splitting them. However, instead of using a constraint C_{1} and the cost function C_{3}, we use the two constraints C_{1} and C_{2}. We set $C_{2}\left(v_{e}, 2\right)=\omega(e)$ and $K_{2}=B$ so that the budget is not exceeded. The cost function C_{3} computes the revenue of the solution with $C_{3}(v, 0)=0$ and $C_{3}(v, d>0)=-r(v)$.
Note that, in this problem, the encoding of max $|C|$ depends on the encoding of ω : the problem is FPT with respect to the treewidth if ω is unary. We conjecture that the proof of Theorem 23 can be adapted to the case where ω is binary to prove that this problem is NP-Hard even if the treewidth is 2 .

B Proof of Lemma 17

We detail in this appendix the proof of Lemma 17.

- Lemma 17. Let $q \in \mathcal{Q}$ and f^{\prime} (respectively $f^{\prime \prime}$) be a feasible solution of $s^{\prime}(q)$ (respectively $\left.s^{\prime \prime}(q)\right)$. Then $f=f^{\prime} \cup f^{\prime \prime}$ is feasible for s.

Proof. Properties (i), (iii) and (iv) are obviously satisfied.
We now show that f satisfies Property $s(i i)$. Let $j \in \llbracket 1 ; m \rrbracket$. By Properties $s^{\prime}(i i)$ and $s^{\prime \prime}(\mathrm{ii}), \sum_{v \in G_{u^{\prime}} \backslash X_{u}} C_{j}\left(v, d_{f^{\prime}}(v)\right) \leq k_{j}^{\prime}$ and $\sum_{v \in G_{u^{\prime \prime}} \backslash X_{u}} C_{j}\left(v, d_{f^{\prime \prime}}(v)\right) \leq k_{j}^{\prime \prime} \leq k_{j}-k_{j}^{\prime}$. By Lemma 14, $\sum_{v \in G_{u} \backslash X_{u}} C_{j}\left(v, d_{f}(v) \leq k_{j^{\prime}}+k_{j}-k_{j^{\prime}}=k_{j}\right.$.

By definition of \mathcal{Q}, for every two nodes v_{1} and $v_{2}, C\left(v_{1}\right)=C\left(v_{2}\right)$ if and only if there exists a path $\left(x_{1}=v_{1}, x_{2}, \ldots, x_{p}=v_{2}\right)$ such that, for each $i<p, C^{\prime}\left(x_{i}\right)=C^{\prime}\left(x_{i+1}\right)$ or $C^{\prime \prime}\left(x_{i}\right)=C^{\prime \prime}\left(x_{i+1}\right)$. By Properties $s^{\prime}(\mathrm{vi})$ and $s^{\prime \prime}(\mathrm{vi})$, this is equivalent to claim that x_{i} and x_{i+1} belongs to the same tree in f^{\prime} or in $f^{\prime \prime}$ which means that x_{i} and x_{i+1} belongs to the same tree in f. Thus Property $s(\mathrm{vi})$ is satisfied.

The number of trees in f^{\prime} and $f^{\prime \prime}$ are respectively c^{\prime} and $c^{\prime \prime}$. The number of trees not containing nodes in X_{u} are respectively $c^{\prime}-\# C^{\prime}$ and $c^{\prime \prime}-\# C^{\prime \prime}$. Consequently, by Lemma 14, the number of trees in f not containing a node of X_{u} is $c^{\prime}-\# C^{\prime}+c^{\prime \prime}-\# C^{\prime \prime}$ and by definition of \mathcal{Q}, this equals $c-\# C$: the number of trees in f is c.

We end with Property $s($ vii $)$. Let $v \in Y$. Note firstly that $d_{f}(v)=d_{f^{\prime}}(v)+d_{f^{\prime \prime}}(v)-d_{F}(v)$ because $d_{f^{\prime}}$ and $d_{f^{\prime \prime}}$ count the edges in F twice. In the following, we consider multiple nested subcases: either $d_{2}(v)<\Delta$ or $d_{2}(v)=\Delta$; either $d_{1}^{\prime \prime}(v)=d_{1}^{\prime}(v)-d_{F}(v)$ or $d_{1}^{\prime \prime}(v)=0$; and either $d_{1}^{\prime}(v)<\Delta$ or $d_{1}^{\prime}(v)=\Delta$.

- If $d_{2}(v)<\Delta$, then $d_{1}^{\prime}(v) \leq d_{2}(v)<\Delta$ by definition of \mathcal{Q}. By Property $s^{\prime}(v i i), d_{f^{\prime}}(v)=$ $d_{1}^{\prime}(v)-d_{1}(v)$. Thus, as f^{\prime} covers F by Property $s^{\prime}(\mathrm{iv}), d_{1}^{\prime}(v) \geq d_{F}(v)+d_{1}(v) \geq d_{F}(v)$. Then, by definition of $\mathcal{Q}, d_{1}^{\prime \prime}(v)=d_{1}^{\prime}(v)-d_{F}(v)$. Finally, by Property $s^{\prime \prime}($ vii $) d_{f^{\prime \prime}}(v)=$ $d_{2}(v)-d_{1}^{\prime \prime}(v)$. Then $d_{f}(v)=d_{2}(v)-d_{1}^{\prime \prime}(v)+d_{1}^{\prime}(v)-d_{1}(v)-d_{F}(v)=d_{2}(v)-d_{1}(v)$.
- We now assume that $d_{2}(v)=\Delta$. By Properties $s^{\prime}(v i i)$ and $s^{\prime \prime}(v i i), d_{f^{\prime}}(v) \geq d_{1}^{\prime}(v)-d_{1}(v)$ and $d_{f^{\prime \prime}}(v) \geq d_{2}(v)-d_{1}^{\prime \prime}(v)$. If $d_{1}^{\prime \prime}(v)=d_{1}^{\prime}(v)-d_{F}(v)$, then $d_{f}(v) \geq d_{2}(v)-d_{1}^{\prime \prime}(v)+$ $d_{1}^{\prime}(v)-d_{1}(v)-d_{F}(v) \geq d_{2}(v)-d_{1}(v)$. If $d_{1}^{\prime \prime}(w)=0$, then $d_{1}^{\prime}(v)-d_{F}(v) \leq 0$.
= If $d_{1}^{\prime}(v)=\Delta$, then, $\Delta \leq d_{F}(v)$. As f covers F by Property $s($ iv $), d_{f}(v) \geq d_{F}(v) \geq$ $\Delta=d_{2}(v) \geq d_{2}(v)-d_{1}(v)$.
= If $d_{1}^{\prime}(v)<\Delta$, then, by Definition $2, \min \left(d_{1}(v)+d_{F}(v), \Delta\right) \leq d_{1}^{\prime}(v)<\Delta$. Thus $d_{1}^{\prime}(v) \geq d_{1}(v)+d_{F}(v) \geq d_{F}(v)$. As $d_{1}^{\prime}(v)-d_{F}(v) \leq 0$, the two values are equal. Consequently, $d_{f}(v) \geq d_{2}(v)-d_{1}^{\prime \prime}(v)+d_{1}^{\prime}(v)-d_{1}(v)-d_{F}(v)=d_{2}(v)-d_{1}(v)$.

As a consequence, Property $s($ vii) is satisfied by f and thus f is feasible for s.

