
HAL Id: hal-02610732
https://hal.science/hal-02610732

Preprint submitted on 17 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An FPT Algorithm for Spanning, Steiner and Other
subTree Problems Parameterized with the Treewidth.

Dimitri Watel

To cite this version:
Dimitri Watel. An FPT Algorithm for Spanning, Steiner and Other subTree Problems Parameterized
with the Treewidth.. 2020. �hal-02610732�

https://hal.science/hal-02610732
https://hal.archives-ouvertes.fr

An FPT Algorithm for Spanning, Steiner and1

Other subTree Problems Parameterized with the2

Treewidth.3

Dimitri Watel4

ENSIIE5

SAMOVAR6

dimitri.watel@ensiie.fr7

Abstract8

This paper investigates the possibility to find a single FPT algorithm with respect to the treewidth9

that solves a large variety of spanning tree, steiner tree and more generally covering tree problems10

that can be found in the literature. This includes problems for which no such algorithm was already11

described as the Minimum Branch Vertices problem, the Minimum Leaf Spanning Tree problem or12

the k-Bottleneck Steiner Tree Problem. To do so, a generalization of many of those covering tree13

problems, called the Minimum subTree problem with Degree Weights MTDW, is introduced and the14

parameterized complexity of that problem is studied.15

2012 ACM Subject Classification Theory of computation → Complexity classes; Theory of com-16

putation → Parameterized complexity and exact algorithms; Theory of computation → Graph17

algorithms analysis; Theory of computation → Dynamic programming18

Keywords and phrases Parameterized complexity, Treewidth, Spanning tree, Dynamic programming19

Digital Object Identifier 10.4230/LIPIcs...20

1 Introduction21

There exists a real variety of spanning tree, steiner tree and more generally covering tree22

problems that can be found in the literature and mostly have applications in network routing.23

In each such problem, the objective is to find a subtree in a graph satisfying some constraints24

and minimizing an objective. Well known examples are the Minimum Undirected Steiner25

Tree problem (UST) in which we search for a minimum-edge-cost subtree of an undirected26

graph covering a specific subset of nodes; the k-Minimum Spanning Tree problem (k-MST)27

in which we search again for a minimum-edge-cost subtree covering any k nodes; the Prize28

Collecting Steiner Tree problem (PCST) in which the edges and node are weighted, and29

adding an edge to the tree costs the weight of that edge, but not covering a node costs the30

weight of that node; the Minimum Branch Vertices problem (MBV) in which the tree must31

span all the nodes and minimize the number of nodes with degree 3 or more; or the Minimum32

Leaf Spanning Tree (MLST) in which me minimize the number of leaves.33

A natural question to ask is how hard are those problems and their variants when the34

graph is close to a tree. A way to describe the distance between a graph and a tree is the35

treewidth, introduced by Robertson and Seymour [8], and actively used in parameterized36

complexity of graph optimization problems [3, 4]. It was proved, for instance, that UST,37

PCST and k-MST are FPT with respect to the treewidth [2, 7]. No such result seems to exist38

for MBV or MLST. However, the last two problems are a generalization of the Hamiltonian39

path problem which is also FPT in the treewidth [4]. This paper aims to explore the fact40

that all those problems can be described (or rewritten) only by looking at the degree of the41

nodes of the graph in the tree. As shown in the following sections, that common property42

makes all those problems, and most of their variants, FPT with respect to the treewidth.43

© Dimitri Watel;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dimitri.watel@ensiie.fr
https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 An FPT Algorithm for subTree Problems Parameterized with the Treewidth.

Contributions of the paper44

We introduce the Minimum subTree problem with Degree Weights (MTDW). This problem45

encodes many kinds of constraints (for instance spanning, degree or cost constraints), that46

must be satisfied by a feasible tree, by associating to each node a set of scores depending on47

the degree of the node in the tree. We then get a set of scores of the tree by summing the48

scores of the nodes. One of the scores is used to define an objective function that must be49

minimized, and the others are used to define a set of constraint.50

Given an undirected graph G and a node of v, we denote by dG(v) and γG(v) the degree51

and the incident edges of v in G. We are given an undirected graph G = (V,E) with n nodes,52

an integer m ≥ 0, m+ 1 mappings C1, C2, . . . , Cm, Cm+1 associating to each node v ∈ V and53

to each integer d ∈ J0; dG(v)K an integer Cj(v, d) ∈ Z, and m integers K1,K2, . . . ,Km ∈ Z.54

We search for a tree T included in G such that, for j ∈ J1;mK,
∑
v∈V Cj(v, dT (v)) ≤ Kj , and55

minimizing
∑
v∈V Cm+1(v, dT (v)). Note all the nodes of the graph intervene in the formulas,56

including those for which dT (v) = 0.57

For instance the Minimum Leaf Spanning Tree problem can be rewritten as a subproblem58

of MTDW with m = 1. C1 is a spanning tree constraint: C1(v, 0) = 1, C1(v, d ≥ 1) = 0 and59

K1 = 0. We minimize the number of leaves with C2: C2(v, 1) = 1 and C2(v, d 6= 1) = 0.60

In this paper, we mostly focus on the parameterized complexity of MTDW with respect61

to the treewidth and proves that a large set of subproblems of MTDW are FPT when62

parameterized with the treewidth, including all of the previously mentioned problems. More63

precisely, three parameters are studied: the treewidth TW of G, the number of constraints m64

and the maximum degree ∆ above which every mapping Cj is constant: for every j ∈ J1;mK,65

v ∈ V and d ≥ ∆, Cj(v, d) = Cj(v,∆). Throughout the paper, we distinguish three possible66

cases for a parameter of MTDW depending if we are restricted to the instances where67

that parameter equals a constant, in which case we write the parameter on the left (for68

instance (∆ = 2)-MTDW) or if the parameter is classically considered from a parameterized69

complexity point of view, in which case, we explicitly mention it as a parameter. A last70

element that affects the complexity results in this paper is the encoding of the values Kj71

and Cj(v, d) for every j ∈ J1;mK, v ∈ G and d ≤ dG(v). Some hardness results do not hold72

if those values are unary encoded. Let max |C| = maxmj=1
∑
v∈V

∑
d≤dG(v) |Cj(d, v)|. Every73

result explicitly specifies if max |C| is unary or binary, meaning that every mapping Cj is74

unary or binary encoded. We may assume, without loss of generality, that |Kj | ≤ max |C|75

for every j ∈ J1;mK, as, otherwise, either the j − th constraint is necessarily satisfied or76

necessarily unsatisfied, thus the encoding of those integers is never given. Note also that the77

mapping Cm+1 is not included in the formula of max |C|: the cost function is always binary.78

The next section provides the following theorem.79

I Theorem 1. If max |C| is unary, MTDW is XP with respect to TW and m, and, for every80

c ∈ N, (m = c)-MTDW is FPT with respect to TW and ∆.81

This theorem can be applied to all the previously cited problems as they can be rewritten82

as subproblem of MTDW with a fixed value of m. Appendix A details, for each mentioned83

subproblem, the consequences of this Theorem. In short, it gives, is in addition to all the84

existing results, an FPT algorithm with respect to the treewidth to solve a large class of85

subtree problems. The last section of the paper gives hardness results, proving that it is86

not possible to change the encoding of max |C|, or to consider that ∆ or TW is part of87

the instance and keep MTDW in the class FPT: the problem is either NP-Hard or XP but88

W[1]-hard with respect to the parameters.89

D. Watel XX:3

2 An FPT Algorithm for (m = c)-MTDW with Respect to ∆ and TW90

In this part, we provide an algorithm that proves Theorem 1.91

Let I = (G = (V,E), C1, C2, . . . , Cm+1,K1,K2, . . . ,Km) be an instance of MTDW. Let92

τ be a tree composition of G. We will solve I by using a dynamic programming algorithm93

on a tree decomposition of the graph. In order to avoid any confusion, a node of τ will be94

called a bag. We recall that τ is a tree, that every node belongs to at least one bag, that for95

each edge (v, w) ∈ E, there exists a bag of τ containing v and w, and that the subgraph of τ96

with all the bags containing a same node v is connected. For each bag u of τ , we define Xu97

as the set of nodes of G contained in the bag and Gu as the subgraph of G induced by all98

nodes in all the bags descendant from u in τ (including u). We have TW = maxu∈τ |Xu| − 1.99

Without loss of generality, we consider that τ is a nice tree decomposition, meaning it can be100

rooted such that: if u is the root or a leaf of τ , then |Xu| = 0; if u has two children u1 and101

u2, then Xu = Xu1 = Xu2 , we say u is a join bag; if u has one children u′ then either there102

exists v ∈ V such that Xu = Xu′ ∪{v}, we say u is a introduce bag or there exists v ∈ V such103

that Xu′ = Xu ∪ {v}, we say u is a forget bag; and finally no bag has three or more children.104

It is possible to build, from an optimal decomposition, a nice decomposition that is105

also optimal, with O(|V |) bags in linear time [5]. We use a classical dynamic programming106

algorithm to solve MTDW using the tree decomposition τ . Each bag u is associated with a107

set of states and each state is associated with a subproblem that can be solved recursively108

using the states of the children of u. In the following definitions, if X ⊂ V , E(X) are the109

edges connecting X in E.110

I Definition 2 (States of a bag). For each bag, we define a set S(u) of states. A state111

of u contains m integers k1, k2, . . . , km, with kj ≤ max |C|; an integer c ≤ n; a subset112

Y ⊂ Xu; a subset F ⊂ E(Y); a mapping d1 associating u ∈ Y to a non negative integer113

d1(v) ≤ min(d(v) − dGu
(v),∆); a second mapping d2 associating v ∈ Y to a non negative114

integer d2(v) such that min(d1(v) + dF (v),∆) ≤ d2(v) ≤ min(d(v),∆) and a third mapping115

C associating v ∈ Y to a positive integer C(v) ∈ J1; |Y |K such that, if (v, w) ∈ F , then116

C(v) = C(w) and such that the number of distinct values C(v) for all the nodes v ∈ Y is117

lower than c. We write s = (u, k1, k2, . . . , km, c, Y, F, d1, d2, C).118

I Lemma 3. |S(u)| ≤ (2 max |C|+ 1)m · n · 2TW · 2TW 2 · (∆ + 1)2TW · TWTW
119

Proof. Let s = {u, k1, k2, . . . , km, c, Y, F, d1, d2, C} ∈ S(u). Then |kj | ≤ max |C| and c ≤ n,120

Y and F are subsets of Xu and E(Xu), containing respectively at most TW and TW 2
121

elements, d1 and d2 associate a value between 0 and ∆ to at most TW nodes and C122

associates a value lower than |Y | ≤ TW to at most TW nodes. J123

I Definition 4. Let (FOR) be the following auxilliary problem: given a bag u and a state124

s = (u, k1, k2, . . . , km, c, Y, F, d1, d2, C) of S(u), we search for a forest f such that:125

(i) f is included in Gu;126

(ii) for every j ∈ J1;mK,
∑
v∈Gu\Xu

Cj(v, df (v)) ≤ kj;127

(iii) f covers Y but not Xu\Y ;128

(iv) f contains every edge in F but no edge in E(Xu)\F ;129

(v) f contains c trees;130

(vi) for v, w ∈ Y , v and w are in the same tree of f if and only if C(v) = C(w);131

(vii) for v ∈ Y , if d2(v) < ∆, df (v) = d2(v)− d1(v) else df (v) ≥ d2(v)− d1(v).132

If such a forest exists, we say f is a feasible solution of s and we set the cost of the forest133

as Ω(s, f) =
∑
v∈Y Cm+1(v, d2(v)) +

∑
v∈Gu\Y Cm+1(v, df (v)). We search for the optimal134

forest f∗(s) with minimum cost Ω∗(s) = Ω(s, f∗(s)). If no such forest exists, Ω∗(s) = +∞.135

XX:4 An FPT Algorithm for subTree Problems Parameterized with the Treewidth.

We will then refer to Properties s(i), s(ii), . . . , s(vii) of a feasible solution of a state s, or136

simply Properties (i), (ii), . . . (vii) if there is no ambiguity with the state.137

2.1 Root138

In order to solve MTDW, we have to search for the optimal forest of a state of the root. We139

can easily check the following lemma:140

I Lemma 5. Let r be the root of T . Then the optimal solution of the instance I of MTDW141

is f∗(s) for s = (r,K1,K2, . . . ,Km, 1, ∅, ∅, {}, {}, {}).142

We now exhibit a recursive relation between each bag and its children to compute f∗(s) and143

Ω∗(s). This relation depends on the type of bag. In the next subsections, we start with the144

termination point and then deal with the forget, introduce and join bags.145

2.2 Leaves146

I Lemma 6. Let u be a leaf bag of τ . Then if s = (u, k1, k2, . . . , km, 0, ∅, ∅, {}, {}, {}) then147

the empty forest is feasible and optimal for s if kj ≥ 0 for every j ∈ J1;mK. In that case148

Ω∗(s) = 0. For any other state s ∈ S(u), Ω∗(s) = +∞.149

Proof. If u is a leaf, then Xu and Gu are empty. Any feasible forest f of s is empty by150

Property (i) and satisfies for every j ∈ J1;mK,
∑
v∈Gu\Xu

Cj(v, df (v)) = 0. Consequently,151

any set with kj < 0 for some j has no feasible solution by Property (ii) and has Ω∗(s) = +∞.152

Any other state has only one feasible solution, the empty forest, of cost 0. J153

2.3 Forget bags154

Let u be a forget bag and u′ be the child of u. Let x be the node forgotten by u: Xu′ = Xu∪{x}.155

Let s = (u, k1, k2, . . . , km, c, Y, F, d1, d2, C) ∈ S(u). We want to compute Ω∗(s).156

I Definition 7. P is a set of parameters (k′1, k′2, . . . , k′m, F ′, d′, C ′) such that 0 ≤ d′ ≤157

min(d(x),∆); for j ∈ J1;mK, kj−Cj(x, d′) ≥ −max |C| and k′j = min(kj−Cj(x, d′),max |C|);158

for v, w ∈ Y , C ′(v) = C ′(w)⇔ C(v) = C(w); F ⊂ F ′ ⊂ F ∪ γY (x) ; and for v ∈ Y , if there159

exists a path connecting v to x with edges of F ′, C ′(x) = C ′(v).160

Given a tuple p = (k′1, k′2, . . . , k′m, F ′, d′, C ′) ∈ P, let s′(p) be the following state:161

s′(p) = (u′, k′1, k′2, . . . , k′m, c, Y ∪ {v}, F ′, d1 ∪ {x→ 0}, d2 ∪ {x→ d′}, C ′) ∈ S(u′).162

Finally, let S′ = {(u′, k1, k2, . . . , km, c, Y, F, d1, d2, C)} ∪ {s′(p), p ∈ P}.163

I Lemma 8. Ω∗(s) = min
s′∈S′

Ω∗(s′)164

Proof. Let f be any subforest of Gu. We first prove that f is a feasible solution of s if and165

only if there exists s′ ∈ S′ such that f is a feasible solution of s′, and that, in that case,166

Ω(f ′, s) = Ω(f ′, s′). Either x ∈ f or not. We consider the two cases.167

The feasible solutions of the state s′ = (u′, k1, k2, . . . , km, c, Y, F, d1, d2, C) are exactly the168

feasible solutions of s not containing x. Thus, if x is not in f , then f is a feasible solution of169

s if and only if f is a feasible solution of s′. Similarly, the formula of the cost of the solution170

is identical in s and s′: Ω(s, f) = Ω(s′, f).171

We now assume that x ∈ f . Let F ′ be F and the edges connecting x to the nodes of Y172

in f . Let d′ = min(df (x),∆). For every j ∈ J1;mK, we set k′j = min(kj − Cj(x, d′),max |C|).173

Finally, we define the mapping C ′ as C ′(v) = C(v) for every v ∈ Y and C ′(x) = C(v) for174

D. Watel XX:5

some arbitrary node v ∈ Y that is in the same tree as x in f . If no such node exists, we set175

C ′(x) = |Y |+ 1. Clearly, (k′1, k′2, . . . , k′m, F ′, d′, C ′) satisfies all the properties of a tuple of P176

except possibly kj − Cj(x, d′) ≥ −max |C|.177

We first show that if there exists j ∈ J1;mK such that kj − Cj(x, d′) < −max |C|178

then f is not feasible for s and f is not feasible for any state s′ ∈ S′. Firstly, if f is179

feasible for s, then by Property s(ii),
∑
v∈Gu\Xu

Cj(v, df (v)) ≤ kj . As Cj(x, df (x)) =180

Cj(x, d′), kj − Cj(x, d′) ≥
∑
v∈Gu\Xu∪{x} Cj(v, df (v)) ≥ −max |C|. Secondly, we assume181

there exists a state s′′ = s′(k′′1 , k′′2 , . . . , k′′m, F ′′, d′′, C ′′) ∈ S′ such that f is feasible for182

s′′. As (k′′1 , k′′2 , . . . , k′′m, F ′′, d′′, C ′′) ∈ P, then −max |C| ≤ kj − Cj(x, d′′). In addition,183

by Property s′′(vii), df (x) = d′′2(x) − d′′1(x) = d′′ if d′′ < ∆ or df (x) ≥ d′′ otherwise.184

However, we defined d′ as min(df (x),∆). Consequently d′ = d′′. At last, by Property s′′(ii),185

−max |C| ≤ kj − Cj(x, d′′) = kj − Cj(x, d′).186

We now assume that kj − Cj(x, d′) ≥ −max |C| for every j ∈ J1;mK. We can then safely187

set s′ = s′(k′1, k′2, . . . , k′m, F ′, d′, C ′) ∈ S′ and show that f is a feasible solution of s′ if and188

only if f is feasible for s.189

Properties s(i) and s′(i) are satisfied as f is, by hypothesis, a subforest of Gu = Gu′ . As190

c is unchanged, s(v) and s′(v) are identical. We have Property s(iii) if and only if f covers Y191

but not Xu ⊂ Y = Xu′\Y ∪ {x} if and only if we have Property s′(iii). Similarly s(iv) and192

s′(iv) are equivalent. Properties s(vi) and s′(vi) are equivalent by construction of C ′.193

We now consider Properties s(vii) and s′(vii). Let d′1 = d1 ∪{x→ 0} and d′2 = d2 ∪{x→194

d′}. As d1(v) = d′1(v) and d2(v) = d′2(v) for every node v ∈ Y , Property s(vii) is equivalent195

to Property s′(vii) restricted to Y . We finally show that Property s′(vii) is always true for196

the node x. Indeed, as d′2(x)− d′1(x) = d′, as d′2(x) = d′ and as d′ = df (x) if df (x) < ∆ and197

∆ otherwise, then df (x) = d′2(x)− d′1(x) if d′2(x) < ∆ and df (x) ≥ d′2(x)− d′1(x) otherwise.198

At last, we consider Properties s(ii) and s′(ii). For every j ∈ J1;mK, Cj(x, df (x)) =199

Cj(x, d′) whatever the value of d′ is. Consequently
∑
w∈Gu\Xu

Cj(v, df (v)) ≤ kj ⇔200 ∑
v∈Gu′\Xu′ Cj(v, df (v)) ≤ kj − Cj(x, df (x)) ≤ kj − Cj(x, d′).201

In addition
∑
v∈Gu\Xu∪{x} Cj(v, df (v)) ≤ max |C|. Thus Properties s(ii) is equivalent to:202

for every j ∈ J1;mK,
∑
v∈Gu′\Xu′ Cj(v, df (v)) ≤ k′j .203

As a conclusion, f is feasible for s if and only if f is feasible for s′. Moreover, an204

argument similar to the one of the previous paragraph can be used to prove that Ω(s, f) =205 ∑
v∈Y Cm+1(v, d2(v)) +

∑
v∈Gu\Y Cm+1(v, df (v)) =

∑
v∈Y Cm+1(v, d′2(v)) + Cm+1(x, d′) +206 ∑

v∈Gu′\Y ∪{x} Cm+1(v, df (v)) = Ω(s′, f). Consequently, Ω∗(s) = mins′∈S′ Ω∗(s′). J207

2.4 Introduce bags208

Let u be an introduce bag, u′ be the child of u and x be the node introduced by u with209

Xu = Xu′ ∪ {x}. Let s = (u, k1, k2, . . . , km, c, Y, F, d1, d2, C) ∈ S(u).210

I Lemma 9. Let f be a feasible solution of s, then γf (x) = γF (x).211

Proof. Recall that, in a tree decomposition, if a node belongs to two bags u1 and u2,212

it belongs to all the bags on the path connecting u1 and u2. As x 6∈ Xu′ , then x is213

not in any descendant bag of u′. Consequently, the only edges incident to x in Gu are214

γXu(v) = {(x, v)|v ∈ Xu}. From the edges of γXu(v), we are only allowed to put γF (x) in215

the forest f by Property (iv). J216

Let H = (Y, F) be the graph induced by the edges in F .217

I Lemma 10. If x ∈ Y and d1(x) + dF (x) 6= d2(x) then Ω∗(s) = +∞. If x ∈ Y and x has218

no neighbor in H and there exists v such that C(x) = C(v) then Ω∗(s) = +∞.219

XX:6 An FPT Algorithm for subTree Problems Parameterized with the Treewidth.

Proof. Let f be a feasible solution of s. By Lemma 9, if dF (x) < d2(x) − d1(x), then220

df (x) < d2(x)− d1(x) and there is a contradiction with Property (vii). If C(x) = C(v), in221

any feasible solution f of s, x and v are in the same tree by Property (vi). However, by222

Lemma 9, γf (x) = γF (x). Thus, if γF (x) = ∅, there is a contradiction. J223

We now assume the hypothesis of the previous lemma are false. We build a state s′ of224

S(u′). We set c′ = c+ dF (x)− 1 if x ∈ Y and c otherwise; Y ′ = Y \{x} ; F ′ = F\γ(x) ; for225

every v ∈ Y ′, d′1(v) = min(∆, d1(v) + 1) if (x, v) ∈ F and d1(v) otherwise; and d′2(v) is d2(v).226

We also build a mapping C ′ with the following procedure. If v 6∈ Y or v has no neighbor227

in Y then C ′ is C restricted to Y ′. Otherwise, we build a sorted list L = [a1, a2, . . . , a|L|]228

containing the elements of {C(v)|v ∈ Y ′}. For every v ∈ Y ′ such that C(v) = ai, we229

set C ′(v) = i. We then arbitrarily order the new connected components of H obtained230

by removing x as C = [C1, C2, . . . , C|C|]. For every node v ∈ Cj for j ∈ J2; |C|K, we reset231

C ′(v) = |L|+ j − 1. We can easily check the following lemma:232

I Lemma 11. C ′ maps every node of Y ′ to an integer between 1 and |Y ′| such that233

if C(v1) 6= C(v2), then C ′(v1) 6= C ′(v2);234

if C(v1) = C(v2) and v1 and v2 are connected by a path containing x in H if and only if235

C ′(v1) 6= C ′(v2).236

We finally define s′ = (u′, k1, k2, . . . , km, c
′, Y ′, F ′, d′1, d

′
2, C

′).237

I Lemma 12. If x 6∈ Y , then Ω∗(s) = Ω∗(s′) + Cm+1(x, 0).238

Proof. Let f be any subforest of Gu. We first show that f is a feasible solution of s if and239

only if f is a feasible solution of s′.240

If x 6∈ Y then s′ = (u′, k1, k2, . . . , km, c, Y, F, d1, d2, C). Thus, Properties s(ii), s(v), s(vi)241

and s(vii) are identical to Properties s′(ii), s′(v), s′(vi) and s′(vii).242

If f contains x, then f satisfies neither Properties s(iii) nor Property s′(i) thus is not243

feasible for s and s′. If, on the contrary, f does not contain x, then, Properties s(i) and s′(i)244

are satisfied, and Properties s(iii) and s(iv) are equivalent to s′(iii) and s′(iv).245

Consequently, the feasible forests of s are feasible for s′ and conversely. In addition,246

if f is feasible (and thus does not contain x), we have Ω(s, f) =
∑
v∈Y Cm+1(v, d2(v)) +247 ∑

Gu′\Y Cm+1(v, df (v))+Cm+1(x, df (x)) = Ω(s′, f)+Cm+1(x, 0) and the lemma follows. J248

I Lemma 13. If x ∈ Y , then Ω∗(s) = Ω∗(s′) + Cm+1(x, d2(x)).249

Proof. We consider two sets: F are the subforests of Gu satisfying Properties s(iii) and s(iv)250

; and F ′ are the subforests of Gu′ satisfying Properties s′(iii) and s′(iv). Note that, firstly,251

any other forest is respectively not a feasible solution of s or s′ ; secondly, that from any252

subforest f ∈ F we can obtain a subforest of F ′ by removing x and every incident edge to x253

; thirdly, that from any subforest f ′ ∈ F ′ we can obtain a subforest of F by adding x and254

γF (x) ; and lastly, by Lemma 9, that the two previous transformations are opposite and255

describe a bijection between F and F ′.256

Let then f ∈ F and f ′ ∈ F ′ be two associated forests. We now show that f is feasible for257

s if and only if f ′ is feasible for s′. Firstly, by definition of F and F ′, f satisfy Properties s(i),258

s(iii) and s(iv) and f ′ satisfies Property s′(i), s′(iii) and s′(iv).259

We have Property s(v) for f if and only if f has c trees. During the transformation260

process from f to f ′, the tree containing x is replaced by dF (x) new trees, one for each261

incident edge of x in f . Consequently f has c trees if and only if f ′ has c+ dF (x)− 1 = c′262

trees if and only if Property s′(v) is satisfied by f ′.263

D. Watel XX:7

If f satisfies Property s(vi), then two nodes v1 and v2 of Y ′ are in the same tree in f ′ if264

and only if they were in the same tree in f and were not connected through x if and only if265

C ′(v1) = C ′(v2) by Lemma 11. We now assume f ′ satisfies Property s′(vi). Two nodes v1266

and v2 of Y ′ are in the same tree in f if and only if the trees containing v1 and v2 in f ′ are267

the same or are connected by x in f ′ if and only if C(v1) = C(v2) by Lemma 11. We finally268

consider x. By Lemma 10, either x has no neighbor in H in which case C(x) 6= C(v) for269

every node v ∈ Y or x has a neighbor w in H in which case, by Definition 2, C(x) = C(w).270

In the first case, by Lemma 9, the tree of x in f contains only that node, and Property s(vi)271

is satisfied. In the second case, as Property s(vi) is true for every nodes v1, v2 ∈ Y ′, then a272

node v is in the tree containing w (and x) if and only if C(v) = C(w) = C(x).273

We now deal with Properties s(vii) and s′(vii). Recall first that we considered a case274

where Lemma 10 cannot be applied, meaning that d1(x) + dF (x) = d2(x). By Lemma 9,275

df (x) = dF (x) = d2(x) − d1(x). Thus, Properties s(vii) is true for x. We then just have276

to check that the two properties are equivalent for every node in Y ′. We separate two277

cases depending if the node is a neighbor of x or not in F . Let v ∈ Y ′ be a neighbor278

of x in F . In that case df (v) = df ′(v) + 1. If d1(v) < ∆, then d′1(v) = d1(v) + 1.279

Consequently, df (v) = d2(v)− d1(v)⇔ df ′(v) = d′2(v)− d′1(v) and df (v) ≥ d2(v)− d1(v)⇔280

df ′(v) ≥ d′2(v) − d′1(v). As d2(v) = d′2(v), Properties s(vii) and s′(vii) are equivalent for281

the node v in that case. If now d1(v) = ∆, then d′1(v) = d′2(v) = d2(v) = ∆. Thus282

d2(v) − d1(v) = d′2(v) − d′1(v) = 0 ≤ df ′(v) ≤ df (v). So the Properties are true for v. Let283

finally v ∈ Y ′ which is not a neighbor of x. In that case df (v) = df ′(v), d2(v) = d′2(v) and284

d1(v) = d′1(v), thus the equivalence is true for v.285

We end with Properties s(ii) and s′(ii). For every node v ∈ Gu\Xu, by Lemma 9, v is286

not a neighbor of x in f . Thus df (v) = df ′(v). In addition, Gu′\Xu′ = Gu\Xu, thus the two287

properties are identical.288

As a conclusion, f is feasible for s if and only if f ′ is feasible for s′. In addition,289

if f is feasible for s (and thus contains x), we have Ω(s, f) =
∑
v∈Y ′ Cm+1(v, d2(v)) +290

Cm+1(x, d2(x)) +
∑
Gu′\Y ′ Cm+1(v, df (v)) = Ω(s′, f) + Cm+1(x, d2(x)). J291

2.5 Join bags292

Let u be a join bag and u′ and u′′ be the two children of u. We recall that Xu = Xu′ = Xu′′ .293

I Lemma 14. Gu′ ∩Gu′′ = Xu294

Proof. Let v ∈ Gu′ ∩ Gu′′ . Then v is contained in a descendant bag of u′ in the tree295

decomposition τ and in a descendant bag of u′′. Consequently, it belongs to every bag on296

the path linking those two descendants, including u. Thus v ∈ Xu. J297

Let s = (u, k1, k2, . . . , km, c, Y, F, d1, d2, C) ∈ S(u). We want to compute Ω∗(s). Given a298

mapping C, we write #C as the number of distinct values in the image of C.299

I Definition 15. Q is a set of parameters (k′1, k′2, . . . , k′m, k′′1 , k′′2 , . . . , k′′m, c′, c′′, d′1, d′′1 , C ′, C ′′)300

such that |k′j |, |k′′j | ≤ max |C|; k′′j = min(max |C|, kj − k′j); d1(v) ≤ d′1(v) ≤ d2(v), d′′1(v) =301

max(d′1(v)− dF (v), 0); C(v1) = C(v2) if and only if there exists a list (x1 = v1, x2, . . . , xp =302

v2) ∈ Y such that for all i ∈ J1; p − 1K, C ′(xi) = C ′(xi+1) or C ′′(xi) = C ′′(xi+1); and303

c′ + c′′ −#C ′ −#C ′′ = c−#C.304

Given a tuple q = (k′1, k′2, . . . , k′m, k′′1 , k′′2 , . . . , k′′m, c′, c′′, d′1, d′′1 , C ′, C ′′) ∈ Q,305

let s′(q) = (u′, k′1, k′2, . . . , k′m, c, Y, F, d1, d
′
1, C

′) ∈ S(u′)306

and s′′(q) = (u′′, k′′1 , k′′2 , . . . , k′′m, c′′, Y, F, d′′1 , d2, C
′′) ∈ S(u′′).307

XX:8 An FPT Algorithm for subTree Problems Parameterized with the Treewidth.

I Lemma 16. Let f be a feasible solution of s and let f ′ ⊂ Gu′ and f ′′ ⊂ Gu′′ obtained by308

respectively removing (Gu′′\Xu) and (Gu′\Xu) from f . There exists q ∈ Q such that f ′ is309

feasible for s′(q) and f ′′ is feasible for s′′(q).310

Proof. We first build the tuple q. For every j ∈ J1;mK, we set k′j =
∑
v∈Gu′\Xu

Cj(v, df (v))311

and k′′j = min(max |C|, kj−k′j). For every node v ∈ Y , we set d′1(v) = min(df ′(v) +d1(v),∆)312

and d′′1(v) = max(d′1(v)− dF (w), 0). We set c′ as the number of trees in f ′ and C ′ such that313

for any two nodes v1, v2 ∈ Y , C ′(v1) = C ′(v2)⇔ v1 and v2 are in the same tree of f ′. We314

similarly set c′′ and C ′′. Hereinafter, we demonstrate that q ∈ Q.315

Indeed, |kj | ≤ max |C| and k′′j = min(max |C|, kj − k′j) by definition. By Property s(ii),316 ∑
v∈Gu\Xu

Cj(v, df (v)) ≤ kj . As
∑
v∈Gu′′\Xu

Cj(v, df (v)) =
∑
v∈Gu\Xu

Cj(v, df (v)) −317 ∑
v∈Gu′\Xu

Cj(v, df (v)) ≤ kj − k′j , −max |C| ≤ kj − k′j , then |k′′j | ≤ max |C|.318

Let v ∈ Y . As df ′(v) ≥ 0 and d1(v) ≤ ∆, d′1(v) ≥ d1(v). By definition, d′′1(v) =319

max(d′1(v) − dF (v), 0). By Property s(vii), if d2(v) < ∆, then d1(v) + df (v) = d2(v) < ∆.320

As df (v) ≥ df ′(v), d1(v) + df ′(v) < ∆ and then d′1(v) = d1(v) + df ′(v). Consequently,321

d′1(v) + df ′(v) ≤ d2(v). If d2(v) = ∆, then either d1(v) + df ′(v) < ∆ and then d′1(v) ≤ d2(v)322

or d1(v) + df ′(v) ≥ ∆ and then d′1(v) = ∆ = d2(v).323

We finally have to prove the two last properties of Q. Let G′ = (Gu′\Xu) and G′′ =324

(Gu′′\Xu). The difference c −#C (resp. c′ −#C ′ and c′′ −#C ′′) is the number of trees325

in f (resp. f ′ and f ′′) not containing any node in Y . By Lemma 14, G′ ∩ G′′ = ∅. Thus326

c−#C = c′ −#C ′ + c′′ −#C ′′.327

Let now v1 and v2 be two nodes of Xu. Then C(v1) = C(v2) if and only if v1 and328

v2 are in the same tree. There exists a path P = (p1 = v1, p2, . . . , p|P | = v2) connecting329

v1 and v2 in that tree. Let x1, x2, . . . , xp be the p ≥ 2 nodes of P ∩ Y . For each couple330

(xi, xi+1), either xi and xi+1 are connected by an edge in F , then C ′(xi) = C ′(xi+1) and331

C ′′(xi) = C ′′(xi+1) ; or xi and xi+1 are connected by a subpath of P consisting of nodes of332

G′ or G′′. Thus xi and xi+1 are either in the same tree in f ′ or in f ′′, which is equivalent to333

C ′(xi) = C ′(xi+1) ∨ C ′′(xi) = C ′′(xi+1) by definition of C ′ and C ′′.334

Consequently, q ∈ Q and we can safely define s′ = s′(q) and s′′ = s′′(q). Firstly by335

definition, f , f ′ and f ′′ respectively satisfy s(i), s′(i) and s′′(i). In addition, by Lemma 14,336

and because Xu = Xu′ = Xu′′ , the properties (iii) and (iv) of s, s′ and s′′ are equivalent.337

Properties s′(v), s′(vi), s′′(v) and s′′(vi) are satisfied by definition of c′, C ′, c′′ and C ′′.338

We now focus on Properties s′(vii) and s′′(vii). Let v ∈ Y . If d′1(v) = d1(v) + df ′(v),339

then Property s′(vii) is satisfied. If d′1(v) = ∆ then d′1(v) = ∆ ≤ d1(v) + df ′(v) and the340

property is also proven. We now have to prove that df ′′(v) = d2(v)− d′′1(v). Note firstly that341

df (v) = df ′(v) + df ′′(v)− dF (v) because df ′ and df ′′ count the edges in F twice.342

If d2(v) < ∆, then, by Property s(vii), df (v) = d2(v)−d1(v). In addition, d′1(v) ≤ d2(v) <343

∆ by definition of Q, then d1(v) = d1(v) + df ′(v). As df ′(v) ≥ dF (v) by Property s(iii),344

then d′1(v) − dF (v) ≥ 0 and d′′1(v) = max(d′1(v) − dF (v), 0) = d′1(v) − dF (v). Finally,345

df ′′(v) = df (v)− df ′(v) + dF (v) = d2(v)− d′′1(v).346

If d2(v) = ∆, then df (v) ≥ d2(v)− d1(v).347

If d′1(v) = d1(v) + df ′(v) then df ′′(v) = df (v) − df ′(v) + dF (v) ≥ d2(v) − d1(v) −348

d′1(v) + d1(v) + dF (v). As d′′1(v) ≤ d′1(v)− dF (v), df ′′(v) ≥ d2(v)− d′′1(v).349

If d′1(v) = ∆ then d′′1(v) = max(∆−dF (v), 0). If d′′1(v) = ∆−dF (v) then d2(v)−d′′1(v) =350

dF (v) ≤ df ′′(v) by Property s(iii). If d′′1(v) = 0 then ∆ − dF (v) ≤ 0. In addition,351

d2(v)− d′′1(v) = ∆ ≤ dF (v) ≤ df ′′(v).352

Consequently Property s′′(vii) is satisfied.353

We end with Properties s′(ii) and s′′(ii). The former is true by definition of k′j . By354

Property s(ii),
∑
v∈Gu\Xu

Cj(v, df (v)) ≤ kj . Consequently,
∑
v∈Gu′′\Xu

Cj(v, df (v)) =355

D. Watel XX:9

∑
v∈Gu\Xu

Cj(v, df (v))−
∑
v∈Gu′\Xu

Cj(v, df (v)) ≤ kj−k′j . In addition,
∑
v∈Gu′′\Xu

Cj(v, df (v)) ≤356

max |C|, then
∑
v∈Gu′′\Xu

Cj(v, df (v)) ≤ k′′j .357

As a consequence, f ′ and f ′′ are feasible solutions of the states s′ and s′′. J358

Due to lack of space, the proof of the converse property, given in the following lemma,359

can be found in Appendix B. The used arguments are similar to the ones in the proof of360

Lemma 16.361

I Lemma 17. Let q ∈ Q and f ′ (respectively f ′′) be a feasible solution of s′(q) (respectively362

s′′(q)). Then f = f ′ ∪ f ′′ is feasible for s.363

I Lemma 18. Ω∗(s) = min
q∈Q

Ω∗(s′(q)) + Ω∗(s′′(q))−
∑
v∈Y

Cm+1(v, d′1(v))−
∑

v∈Xu\Y
Cm+1(v, 0).364

Proof. In the two lemmas 16 and 17, we have f = f ′ ∪ f ′′ and f ′ (respectively f ′′) can365

be obtained by removing (Gu′′\Xu) (respectively (Gu′\Xu)) from f . We have Ω(s′, f ′) =366 ∑
v∈Y Cm+1(v, d′1(v)) +

∑
v∈Xu\Y Cm+1(v, 0) +

∑
v∈Gu′\Xu

Cm+1(v, df (v)) and Ω(s′′, f ′′) =367 ∑
v∈Y Cm+1(v, d2(v)) +

∑
v∈Xu\Y Cm+1(v, 0) +

∑
v∈Gu′′\Xu

Cm+1(v, df ′′(v)). By Lemma 14,368

Ω(s, f) = Ω(s′, f ′) + Ω(s′′, f ′′)−
∑
v∈Y

Cm+1(v, d′1(v))−
∑

v∈Xu\Y
Cm+1(v, 0). J369

2.6 Main theorem370

I Lemma 19. There exists an algorithm solving MTDW with time complexity371

O
(
n4 · (m+ TW 3) · (2 max |C|+ 1)3m · 23TW+3TW 2 · (∆ + 1)6TW · TW 3TW

)
.372

Proof. If we compute f∗(s) and Ω∗(s) for s = (r,K1,K2, . . . ,Km, 1, ∅, ∅, {}, {}, {}), by373

Lemma 5, we get the result. We can recursively compute those values using Lemmas 6, 8,374

12, 13 and 18. Consequently, we can use a dynamic programming algorithm to solve the375

problem in polynomial time, for instance an iterative algorithm that iterate through the bags376

of τ using a reversed breadth-first search algorithm and apply the lemmas for every state377

of every bag. We recall that by Lemma 3, for every bag u, the number of state in S(u) is378

bounded by B = (2 max |C|+ 1)m · n · 2TW · 2TW 2 · (∆ + 1)2TW · TWTW .379

The time complexity of the calculation of Ω∗(s), for some state s ∈ S(u), depends on380

the type of the bag u. For a leaf, the computation is done in time O(m). If u is not a381

leaf, we assume that Ω∗(s′) was computed for every state s′ ∈ S(u′), for every child u′ of u382

and is accessible in constant time. For a forget bag, the computation consists in building383

S′ and computing mins′∈S′ Ω∗(s′). The first step can be done by enumerating the at most384

B states of u′. For each such state, using Definition 7 to check if it belongs to S′ is done385

in time O(m + TW 2). The complexity is then O((m + TW 2) · B). For an introduce bag,386

the computation first consists in checking the two properties of Lemma 10 in time O(TW).387

Then a state s′ ∈ S(u′) is then computed for Lemmas 12 and 13 in O(m). Computing the388

minimum value is done in constant time. The complexity is then O(TW +m). For a join389

bag, we similarly enumerate every couple of states of u′ and u′′ and check if the related390

parameters belongs to Q. This last part is done in time O(m+TW 3). The TW 3 term comes391

from the penultimate property of Q that can (naively) be done by running Y 2 depth first392

searches in the nodes of Y . Every other property is checked in constant time, in O(m) or in393

O(TW). Thus, the complexity for that bag is in O((m+ TW 3) ·B2).394

As the number of bags in the tree decomposition τ is O(|V |) = O(n), the total number of395

states we have to consider is O(n·B). The overall complexity is then O(n·(m+TW 3)·B3). J396

From the time complexity of Lemma 19, we can immediately deduce Theorem 1.397

XX:10 An FPT Algorithm for subTree Problems Parameterized with the Treewidth.

3 Hardness Result398

This section provides four hardness results to prove that Theorem 1 cannot be adapted when399

m is not fixed, when TW or ∆ are neither fixed nor a parameter or when max |C| is binary.400

I Theorem 20. (m = 1,∆ = 2)-MTDW is NP-Hard, even if max |C| is unary.401

Proof. The Minimum Leaf Spanning Tree problem is NP-Hard and, as stated in Appendix A,402

can be expressed as a subproblem of MTDW where m = 1,∆ = 2 and max |C| = n. J403

I Theorem 21. (m = 0)-MTDW is W[1]-Hard with respect to TW , even if max |C| is unary.404

Proof. We give an FPT-reduction from the General Factors problem in which, given an405

undirected graph H = (VH , EH) and, for each node v ∈ VH , a subset β(v) ⊂ J1; d(v)K, we406

search for a subset F ⊂ EH such that, for each node v ∈ VH , the number of edges of F407

incident to v is in β(v). Such a subset is called a β-factor of H. GF is W[1]-hard with respect408

to the treewidth of H [9].409

Given an instance I = (H = (VH , EH), β) of General Factors with treewidth TW, we410

build an instance J = (G,C1) of MTDW as follows. From the graph H, we build the graph411

G by adding one node s to G and by replacing each edge e = (u, v) ∈ EH by a path of 5412

nodes u, eu, es, ev, v. We then link s to every node of VH and to every node es for e ∈ EH .413

C1 is the following function: for each node v ∈ VH , then C1(v, d) = 0 if d− 1 ∈ β(v) and414

1 otherwise ; for each edge e ∈ EH , C1(es, d) = 0 if d = 1 or d = 3 and 1 otherwise; for415

each edge e = (u, v) ∈ EH , C1(eu, 1) = C1(ev, 1) = 0 and C1(eu, d) = C1(ev, d) = 1 for every416

d 6= 1; and C1(s, d) = 0 if d = |VH |+ |EH | and 1 otherwise.417

This reduction is done in polynomial time with respect to |VH |+ |EH |. We now prove418

there exists an optimal solution for J with cost at most 0 if and only if H has a β factor.419

Let T be a tree where C1(v, dT (v)) = 0 for every node in T . Then (u, eu) ∈ T ⇔ (v, ev) ∈420

T for all e = (u, v) ∈ EH . Indeed, if we assume for instance that (u, eu) ∈ T and (v, ev) 6∈ T ,421

then (ev, es) ∈ T otherwise ev would have degree 0 in T and the cost of T would not be 0.422

Similarly, (eu, es) 6∈ T , thus (es, s) cannot be in T as as the degree of es should be either423

1 or 3. Finally (es, s) is necessarily in T as all the incident edges of s must be in T to get424

a tree with cost 0. Let then F be the edges e ∈ EH for which (u, eu) and (v, ev) are in T .425

The degree in T of a node u is the degree of u in F plus 1, as u is connected to s in T ; and426

as the cost of the tree is 0, then dT (u) − 1 = dF (u) ∈ β(v). Thus there exists an optimal427

solution for J with cost 0 if and only if H has a β factor.428

On the other hand, given a β-factor F of H, by selecting all edges incident to s, (u, eu)429

and (v, ev) for (u, v) ∈ F and (eu, es) and (ev, es) for (u, v) 6∈ F , we get a tree of cost 0.430

Finally, the treewidth of G can be expressed as a fonction of the treewidth of H as it is431

at most TW + 3 · TW · (TW − 1)/2 + 1. Indeed, from a tree decomposition τ of H, we can432

build a tree decomposition of G by adding s to every node of τ and by adding eu, es and ev433

to every node of T containing u and v. Consequently there exists an FPT reduction from434

General Factors to MTDW. J435

I Theorem 22. (∆ = 2, TW = 2)-MTDW is NP-Hard and W[1]-Hard with respect to m,436

even if max |C| is unary.437

Proof. We prove this result with an FPT reduction from the Partitioned Clique problem,438

parameterized with the size of the searched clique. Let H = (V,E) be an undirected graph439

where V is partitioned into k independent sets V = V1 ∪ V2 ∪ · · · ∪ Vk, the partitioned Clique440

D. Watel XX:11

problem consists in the search for a clique of size k in H, containing one node in each set Vi.441

This problem is NP-Hard and W[1]-Complete with respect to k [6].442

Given an instance (H, k) of the Partitioned Clique problem, we assume without loss443

of generality that every set Vi is of size s, and Eij , the edges linking Vi and Vj , is of size444

σ(ij). We set Vi = (vi1, vi2, . . . , vis) and Eij = (eij1, eij2, . . . , eijσ(ij)). We build an instance445

I = (G,C1, C2, . . . , Cm+1,K1,K2, . . . ,Km) of MTDW parameterized with m with ∆ = 2446

and TW = 2 as follows. We first add a star to G with a center x and 2k + k · (k − 1)447

leaves {wi, w′i, i ∈ J1; kK} ∪ {fij , f ′ij , i < j ∈ J1; kK}. For each i ∈ J1; kK, we connect wi and448

w′i with a path Pi containing 2|Vi|+ 2 nodes Pi = (wi, vi1, v′i1, vi2, v′i2, . . . , v′is, v′is, w′i). For449

each i < j ∈ J1; kK, we connect fij and f ′ij with a path Qij containing 2|Eij | + 2 nodes450

Qij = (fij , eij1, e′ij1, eij2, e′ij2, . . . , eijσ(ij), e
′
ijσ(ij), f

′
ij). Note that G is a set of cycles with a451

common node x, and is thus outerplanar. Consequently, the treewidth of G equals 2.452

We set m = k · (k − 1). In order to simplify the description, we first set Cj(v, d) = 0453

for every node v, degree d and constraint Cj . We then reset some of the values. For each454

i < j ∈ J1; kK, we build four constraints. For readability, we denote them by Cij , C ′ij , Cji455

and C ′ji. For every node vip ∈ VHi, we set Cij(vip, 1) = −C ′ij(vip, 1) = p. For every node456

vr ∈ VHj , we set Cji(vjr, 1) = −C ′ji(vjr, 1) = r. For every edge eijq = (vp, vr) ∈ Eij , we457

set Cij(eijq, 1) = −C ′ij(eijq, 1) = −p and Cji(eijq, 1) = −C ′ji(eijq, 1) = −r. Finally, we458

set Kij = K ′ij = Kji = K ′ji = 0. The cost function Cm+1 will imply a spanning tree459

constraint with some edge covering constraint: for v ∈ V , Cm(v, 0) = 1 ; for each node460

v ∈ {wi, w′i, fi,j , f ′i,j} for some i or (i, j), Cm(v, d < 2) = 1. Note that ∆ = 2. We search for461

the existence of a feasible solution of cost at most 0.462

We first characterize the properties of a feasible solution T of I with cost 0. Due to463

the cost constraint Cm+1, every node must be spanned by T . In addition, for every node464

v ∈ {wi, w′i, fij , f ′ij}, v is of degree two in T . As a consequence, every edge incident to x is in465

T . Let now i ∈ J1; kK, as T is a spanning tree, exactly one edge of Pi must not be in T : exactly466

one node vip of Pi has degree 1 in T . We can similarly state that for every j ∈ Ji+1; kK, there467

exists q ≤ σ(ij) and r ≤ s such that dT (eijq) = dT (vjr) = 1. Assuming eijq = (via, vjb) for468

some a, b ≤ s,
∑
v∈V Cij(v, dT (v)) = p− a and

∑
v∈V Cji(v, dT (v)) = r − b. As Cij , C ′ij ,Kij469

and K ′ij are opposite numbers, we have
∑
v∈V Cij(v, dT (v)) = 0, thus p = a. Similarly, we470

have r = b. Consequently, there exists in H an edge linking vip and vjr. Consequently, the471

set {vip, i ∈ J1; kK, p ∈ J1; sK|dT (vip) = 1} is a clique of size k in H.472

Conversely, if C is a clique with |C| = k, we order the nodes of C. Without loss473

of generality, let C = (v11, v21, . . . , vk1). Then, the subgraph G\({(vi1, v′i1), i ∈ J1; kK} ∪474

{(eij1, e′ij1), i ∈ J1; kK, j ∈ Ji+ 1; kK}), where eij1 = (vi1, vj1) is a feasible solution of cost 0.475

This transformation is then an FPT reduction with respect to k and a polynomial476

reduction. Consequently, the theorem follows. J477

I Theorem 23. (∆ = 2, TW = 2,m = 2)-MTDW is (weakly) NP-Hard.478

Proof. We prove this result with a reduction, indirectly from the Partitioned Clique problem,479

by starting with the instance I build in the proof of Theorem 22. From I we build a new480

instance I ′ with m = 2 but where max |C| is exponential.481

We do not change the graph G. We have the same cost function Cm+1. However, the Cij482

functions are merged into a single function C1 and the functions C ′ij are merged into C2.483

Let n be the number of nodes in the graph from the Partitioned Clique instance then484

|Cij(v, d)| ≤ n and |Cji(v, d)| ≤ n. Let θ = 2n|G|+ 1. For every node v ∈ G and integer d ≤485

d(v), we set C1(v, d) = −C2(v, d) =
∑k
i=1

(∑k
j=i+1(n+ Cij(v, d)) · θik+j + (n+ Cji(v, d)) · θk2+ik+j

)
486

and K1 = −K2 =
∑k
i=1

(∑k
j=i+1 n|G| · θi·k+j + n|G| · θk2+i·k+j

)
.487

XX:12 An FPT Algorithm for subTree Problems Parameterized with the Treewidth.

T be a feasible solution of I ′ if and only if488 ∑k
i=1

(∑k
j=i+1

∑
v∈G(n+ Cij(v, dT (v))) · θik+j +

∑
v∈G(n+ Cji(v, dT (v))) · θk2+ik+j

)
= K1.489

However, for all i and j, 0 ≤
∑
v∈G(n + Cij(v, d)) ≤ 2n|G| < θ and 0 ≤

∑
v∈G(n +490

Cji(v, d)) ≤ 2n|G| < θ. Thus, the above equality is satisfied if and only if, for every i, j, we491

have
∑
v∈G(n+ Cij(v, dT (v))) =

∑
v∈G(n+ Cji(v, dT (v))) = n|G|, if and only if, for every492

i, j,
∑
v∈G Cij(v, dT (v)) =

∑
v∈G Cji(v, dT (v)) = 0 if and only if T is feasible for I. J493

4 Conclusion and future works494

This work gives an FPT algorithm for many covering tree problems with respect to the495

treewidth. The algorithm interest is mainly theoretical as its complexity makes it unpractical.496

This is not really a surprise considering the high level of generalization of MTDW. It gives497

a basis that can be used to build faster FPT algorithm for every subproblem by taking498

into account the particularities of that problem. In the same way, the hardness results may499

also be used as a working base to build NP-Hardness or W[1]-hardness with respect to the500

treewidth for subproblems which do not satisfy the requirements of Theorem 1.501

Those results can be extended to capture other classes of optimization problems. Firstly502

we could focus on the cyclomatic number, the size of a cycle basis, which is another distance503

between a graph and a tree. It would secondly be interesting to extend the results to other504

classical covering structures like forests, matchings, paths and cliques. A last possible future505

work would be to generalize the constraints. For instance, we could allow Cj to take as input506

a node v and a subset of γG(v) instead of a degree. Or instead of having
∑
v,d Cj(v, d) ≤ Kj507

for every j, we could have constraint such as minv,d Cj(v, d) ≤ Kj .508

References509

1 S Arnborg, J Lagergren, and D Seese. Easy problems for tree-decomposable graphs. Journal510

of Algorithms, 12(2):308–340, 1991. doi:10.1016/0196-6774(91)90006-K.511

2 Markus Chimani, Petra Mutzel, and Bernd Zey. Improved Steiner tree algorithms for bounded512

treewidth. In Journal of Discrete Algorithms, volume 16, pages 67–78, 2012. doi:10.1016/j.513

jda.2012.04.016.514

3 M Cygan, FV Fomin, L Kowalik, D Lokshtanov, D Marx, Ma Pilipczuk, Mi Pilipczuk,515

and S Saurabh. Parameterized Algorithms. Springer, Cham, 2015. doi:10.1007/516

978-3-319-21275-3.517

4 RG Downey and MR Fellows. Parameterized complexity. Springer-Verlag New York, 1999.518

doi:10.1007/978-1-4612-0515-9.519

5 Ton Kloks. Treewidth: computations and approximations. Springer-Verlag Berlin Heidelberg,520

1994. doi:10.1007/BFb0045375.521

6 Krzysztof Pietrzak. On the parameterized complexity of the fixed alphabet shortest common522

supersequence and longest common subsequence problems. Journal of Computer and System523

Sciences, 67(4):757–771, 2003. doi:10.1016/S0022-0000(03)00078-3.524

7 R. Ravi, R. Sundaram, M. V. Marathe, D. J. Rosenkrantz, and S. S. Ravi. Spanning525

trees - Short or small. SIAM Journal on Discrete Mathematics, 9(2):178–200, 1996. doi:526

10.1137/S0895480194266331.527

8 Neil Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-width.528

Journal of Algorithms, 7(3):309–322, 1986. doi:10.1016/0196-6774(86)90023-4.529

9 Marko Samer and Stefan Szeider. Tractable cases of the extended global cardinality constraint.530

Constraints, 16(1):1–24, 2011. doi:10.1007/s10601-009-9079-y.531

https://doi.org/10.1016/0196-6774(91)90006-K
https://doi.org/10.1016/j.jda.2012.04.016
https://doi.org/10.1016/j.jda.2012.04.016
https://doi.org/10.1016/j.jda.2012.04.016
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/BFb0045375
https://doi.org/10.1016/S0022-0000(03)00078-3
https://doi.org/10.1137/S0895480194266331
https://doi.org/10.1137/S0895480194266331
https://doi.org/10.1137/S0895480194266331
https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.1007/s10601-009-9079-y

D. Watel XX:13

A Subproblems of MTDW532

MTDW can be seen as a generalization of many covering tree problems in undirected graph.533

This appendix gives a non exhaustive list of such subproblems; how to rewrite them as a set534

of MTDW instances and what are the consequences of Theorem 1 on that problem.535

The Minimum Leaf Spanning Tree problem consists, given an undirected graph in the536

search for a spanning tree with a minimum number of leaves. We set m = 1. The537

constraint C1 is a spanning tree constraint: C1(v, 0) = 1, C1(v, d ≥ 1) = 0 and K1 = 0,538

every node must be spanned. Note that the connectivity constraint is given by the fact539

that any feasible solution is a tree. The cost function C2 counts the number of leaves:540

C2(v, 1) = 1 and C2(v, d 6= 1) = 0.541

The treewidth of the graph is unchanged. We have max |C| = n and ∆ = 2. Consequently,542

due to Theorem 1, this problem is FPT with respect to the treewidth. Similarly, the543

Maximum Leaf Spanning Tree problem (in which the number of leaves is maximized) is544

FPT with respect to the treewidth. The sole difference is that C2(v, 1) = −1 instead of 1.545

Another similar subproblem is the Minimum Branch Vertices problem, in which we search546

for a spanning tree with a minimum number of nodes with degree 3 or more. In that case,547

we set C2(v, d ≤ 2) = 0 and C2(v, d ≥ 3) = 1. It is then also FPT with respect to the548

treewidth as the treewidth is unchanged and as max |C| ≤ n2 and ∆ = 3. If we consider549

the generalized version, in which we minimize the number of nodes of degree k or more,550

then this problem is FPT with respect to the treewidth and k.551

The Steiner Tree problem may be rewritten as a subproblem of MTDW. In that problem,552

a subset X of nodes, called terminals, must be spanned. Each edge e is weighted with553

ω(e) and we search for a minimum-cost tree. We set m = 1. We first set C1(v, 0) = 1,554

C1(v, d > 0) = 0 for every node v ∈ X and K1 = 0. A second step consists in modifying555

the graph in order to consider the weight of the edges. We split every edge e = (u, v)556

in two edges (u, ve) and (ve, v) and, we set C1(ve, 0) = C1(ve, 2) = 0, C1(ve, 1) = 1 to557

ensure that the edge cannot be partially used. We finally set C2(ve, 2) = ω(e).558

The treewidth becomes the maximum of the treewidth and 3. Indeed, given a decompo-559

sition of the original graph, for each bag containing the two extremities u and v of an560

edge e, we attach to that bag another bag containing u, v and ve. This new tree is a561

decomposition of the new graph. We have max |C| = |S|+ n2 ≤ n+ n2 (we recall that562

max |C| only takes into account the constraints and not the cost function) and ∆ = 2.563

Thus, Theorem 1 is a way to prove the following existing result [2]: the Steiner Tree564

problem is FPT with respect to the treewidth.565

Similarly, it is also possible to prove that the Prize Collecting Steiner Tree problem is566

FPT with respect to the treewidth. Note that this is also an existing result [2]. Each567

edge e is weighted with ω(e) that must be paid if e belongs to the solution and each node568

v is weighted with a penalty π(v) that must be paid if v does not belong to the solution.569

We handle the edges weight as in the Steiner Tree problem. We set C2(v, 0) = π(v) and570

C2(v, d > 0) = 0 for every node v.571

The k-Minimum Spanning Tree problem, in which we search for a minimum-cost spanning572

tree containing at least k nodes, can similarly be proven FPT with respect to the treewidth.573

Note that this result is already given in [7]. We set m = 2. The edges are split as in the574

Steiner Tree problem and handled with a constraint C1 and the cost function C3. We575

add a second constraint C2: C2(v, 0) = 0, C2(v, d > 0) = −1 and K2 = −k.576

In the Budget Steiner Tree problem with Profits, the edges are weighted with a function ω577

and a budget B is given. Each node v is also weighted with a revenue r(v). The objective578

XX:14 An FPT Algorithm for subTree Problems Parameterized with the Treewidth.

is to maximize the total revenue of the spanned nodes without exceeding the budget B579

with weights of the edges in the solution. We set m = 2. As for the previous problems,580

we handle the edges by splitting them. However, instead of using a constraint C1 and581

the cost function C3, we use the two constraints C1 and C2. We set C2(ve, 2) = ω(e) and582

K2 = B so that the budget is not exceeded. The cost function C3 computes the revenue583

of the solution with C3(v, 0) = 0 and C3(v, d > 0) = −r(v).584

Note that, in this problem, the encoding of max |C| depends on the encoding of ω: the585

problem is FPT with respect to the treewidth if ω is unary. We conjecture that the proof586

of Theorem 23 can be adapted to the case where ω is binary to prove that this problem587

is NP-Hard even if the treewidth is 2.588

B Proof of Lemma 17589

We detail in this appendix the proof of Lemma 17.590

I Lemma 17. Let q ∈ Q and f ′ (respectively f ′′) be a feasible solution of s′(q) (respectively591

s′′(q)). Then f = f ′ ∪ f ′′ is feasible for s.592

Proof. Properties (i), (iii) and (iv) are obviously satisfied.593

We now show that f satisfies Property s(ii). Let j ∈ J1;mK. By Properties s′(ii) and594

s′′(ii),
∑
v∈Gu′\Xu

Cj(v, df ′(v)) ≤ k′j and
∑
v∈Gu′′\Xu

Cj(v, df ′′(v)) ≤ k′′j ≤ kj − k′j . By595

Lemma 14,
∑
v∈Gu\Xu

Cj(v, df (v) ≤ kj′ + kj − kj′ = kj .596

By definition of Q, for every two nodes v1 and v2, C(v1) = C(v2) if and only if there597

exists a path (x1 = v1, x2, . . . , xp = v2) such that, for each i < p, C ′(xi) = C ′(xi+1) or598

C ′′(xi) = C ′′(xi+1). By Properties s′(vi) and s′′(vi), this is equivalent to claim that xi and599

xi+1 belongs to the same tree in f ′ or in f ′′ which means that xi and xi+1 belongs to the600

same tree in f . Thus Property s(vi) is satisfied.601

The number of trees in f ′ and f ′′ are respectively c′ and c′′. The number of trees not602

containing nodes in Xu are respectively c′−#C ′ and c′′−#C ′′. Consequently, by Lemma 14,603

the number of trees in f not containing a node of Xu is c′−#C ′+c′′−#C ′′ and by definition604

of Q, this equals c−#C: the number of trees in f is c.605

We end with Property s(vii). Let v ∈ Y . Note firstly that df (v) = df ′(v)+df ′′(v)−dF (v)606

because df ′ and df ′′ count the edges in F twice. In the following, we consider multiple nested607

subcases: either d2(v) < ∆ or d2(v) = ∆ ; either d′′1(v) = d′1(v)− dF (v) or d′′1(v) = 0 ; and608

either d′1(v) < ∆ or d′1(v) = ∆.609

If d2(v) < ∆, then d′1(v) ≤ d2(v) < ∆ by definition of Q. By Property s′(vii), df ′(v) =610

d′1(v)− d1(v). Thus, as f ′ covers F by Property s′(iv), d′1(v) ≥ dF (v) + d1(v) ≥ dF (v).611

Then, by definition of Q, d′′1(v) = d′1(v)− dF (v). Finally, by Property s′′(vii) df ′′(v) =612

d2(v)− d′′1(v). Then df (v) = d2(v)− d′′1(v) + d′1(v)− d1(v)− dF (v) = d2(v)− d1(v).613

We now assume that d2(v) = ∆. By Properties s′(vii) and s′′(vii), df ′(v) ≥ d′1(v)− d1(v)614

and df ′′(v) ≥ d2(v) − d′′1(v). If d′′1(v) = d′1(v) − dF (v), then df (v) ≥ d2(v) − d′′1(v) +615

d′1(v)− d1(v)− dF (v) ≥ d2(v)− d1(v). If d′′1(w) = 0, then d′1(v)− dF (v) ≤ 0.616

If d′1(v) = ∆, then, ∆ ≤ dF (v). As f covers F by Property s(iv), df (v) ≥ dF (v) ≥617

∆ = d2(v) ≥ d2(v)− d1(v).618

If d′1(v) < ∆, then, by Definition 2, min(d1(v) + dF (v),∆) ≤ d′1(v) < ∆. Thus619

d′1(v) ≥ d1(v) + dF (v) ≥ dF (v). As d′1(v) − dF (v) ≤ 0, the two values are equal.620

Consequently, df (v) ≥ d2(v)− d′′1(v) + d′1(v)− d1(v)− dF (v) = d2(v)− d1(v).621

As a consequence, Property s(vii) is satisfied by f and thus f is feasible for s. J622

	Introduction
	An FPT Algorithm for (m = c)-MTDW with Respect to and TW
	Root
	Leaves
	Forget bags
	Introduce bags
	Join bags
	Main theorem

	Hardness Result
	Conclusion and future works
	Subproblems of MTDW
	Proof of Lemma 19

