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The effect of surfactants on the tail and film dynamics of elongated gas bubbles propagating
through circular capillary tubes is investigated by means of an extensive three-dimensional numerical
study using a hybrid front-tracking/level-set method. The focus is on the visco-inertial regime, which
occurs when the Reynolds number of the flow is much larger than unity. Under these conditions,
‘clean’ bubbles exhibit interface undulations in the proximity of the tail [25], with an amplitude
that increases with the Reynolds number. We perform a systematic analysis of the impact of a
wide range of surfactant properties, including elasticity, bulk surfactant concentration, solubility,
and diffusivity, on the bubble and flow dynamics in the presence of inertial effects. The results
show that the introduction of surfactants is effective in suppressing the tail undulations as they
tend to accumulate near the bubble tail. Here, large Marangoni stresses are generated, which lead
to a local ‘rigidification’ of the bubble. This effect becomes more pronounced for larger surfactant
elasticities and adsorption depths. At reduced surfactant solubility, a thicker rigid film region forms
at the bubble rear, where a Couette film flow is established, while undulations still appear at the
trailing edge of the downstream ‘clean’ film region. In such conditions, the bubble length becomes
an influential parameter, with short bubbles becoming completely rigid.
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I. INTRODUCTION

The dynamics of elongated bubbles within liquid-filled capillary channels is receiving increasing scientific and
industrial attention due to its widespread occurrence in many processes such as modern electronic cooling systems,
enhanced oil recovery, and coating processes, to name a few. When an elongated gas bubble is transported by liquid
in a capillary tube, the front and rear caps are separated by a cylindrical region where the thickness of the liquid film
trapped against the channel wall is uniform. Initial experimental work by Taylor [40] showed that the film thickness
ratio h0/R (where R and h0 refer to the tube radius and the uniform liquid film thickness, respectively) attains an
asymptotic value of 1/3 when the bubble capillary number Cab = µUb/σ approaches 2 (with µ being the viscosity of
the liquid, σ the surface tension, and Ub the bubble velocity). Using lubrication theory, Bretherton [4] showed that

h0/R ≈ Ca
2/3
b in the limits of Cab � 1 and Reb � 1, where Reb = 2ρUbR/µ refers to the Reynolds number (with ρ

being the density of the liquid).
Since the seminal works of Taylor [40] and Bretherton [4], the motion of long gas bubbles in capillary tubes has

become a classical fluid mechanics problem and has been studied extensively. The effect of inertia on the front
meniscus and film thickness of the bubble was studied experimentally by Aussillous and Quéré [1], who provided
an empirical correction to Bretherton’s law to fit Taylor’s film thickness data [40] at large capillary numbers, and
proposed a scaling law for the film thickness in the presence of inertia. Han and Shikazono [14] performed direct film
thickness measurements with optical techniques using low viscosity fluids and, in the limit of Reb < 2000, found that
their experimental data were best correlated as

h0

R
=

1.34Ca
2/3
b

1 + 3.13Ca
2/3
b + 0.504Ca0.672

b Re0.589
b − 0.352We0.629

b

. (1)

where the Weber number was defined as Web = 2ρU2
bR/σ.

A lubrication theory approach to quantify film thickness in the presence of inertia was used by de Ryck [6]. Numerical
studies of the behaviour of the front meniscus in the presence of inertia have looked into the meniscus shape and film
thickness [9], vortical structures ahead of the bubble tip [17], and pressure drop across the bubble [23]. Numerical
studies into the rear meniscus of the bubble have reported that bubble undulations appear in the proximity of the
tail when Reb � 1 and become more apparent as Reb increases [7, 10]. More recently, Magnini et al. [25] have used
both lubrication theory and direct numerical simulation approaches to study systematically the effect of Reb on the
tail dynamics. They observed that increasing inertia decreases monotonically the wavelength of the tail undulations,
which was also observed experimentally by Khodaparast et al. [20].

Often bubble dynamics is affected by deliberately-placed or accidentally-found surface active agents. Surfactants
find it more energy favourable to migrate toward fluid interfaces, where they act to reduce surface tension. The
presence of non-uniform interfacial species concentration can lead to surface tension gradients, which, in turn, give
rise to Marangoni stresses that drive fluid away from regions of high surfactant concentration [26]. The presence of
surfactants for confined gas-liquid systems plays a significant role on the re-opening of pulmonary airways [12, 13, 15,
16], where the lack of surfactants can lead to higher surface tension at the air-liquid interface, leading to blockage of
the passage way [16].

The significance of surfactant effects on confined gas-liquid systems has led to a number of theoretical works,
built upon the simplifying assumption of negligible inertia (Re � 1). Ginley and Radke [11] studied the effect of
adsorption controlled soluble surfactant transport on the motion of gas bubbles in cylindrical tubes and reported that
their presence results in an increased pressure drop across the bubble and a slightly decreased thin film thickness.
Ratulowski and Chang [31] have shown that the presence of surfactant bulk concentration gradients can act to increase
the liquid film thickness by a maximum factor of 42/3 in comparison to the Bretherton theory [4]. This result was
later confirmed by works from Park [30] and Stebe and Barthès-Biesel [39] and was largely attributed to the presence
of higher surfactant concentration at the front of the bubble in comparison to the thin film region, where Marangoni
stresses act to drive fluid from the front into the thin film region. Further theoretical work by Borhan and Mao [2]
focused on the effect of insoluble surfactants on the motion and deformation of gas bubbles and reported that the
presence of Marangoni stresses acts to retard the bubble motion by opposing surface convection. Experimental works
on the effect of surfactants on film thickness have been primarily focused on coating processes. Ou Ramdane and
Quéré [29] focused on fiber-coating and observed a film-thickening factor ranging between 1 and 42/3 compared to the
‘clean’ interface case, depending on the radius of the coated wire. Film-thickening in the presence of surfactants was
also found in plate-coating applications [5, 22], often referred to as the ‘Landau-Levich problem’.

Other numerical works have focused on the effect of soluble surfactants on liquid displacement by a gas phase in the
negligible inertia regime [8, 33]. Severino et al. [33] reported film thickening in all cases, whereas Ghadiali and Gaver
[8] found that for bulk Peclet number Pec > 10, where Pec = UbR/Dc with Dc being the bulk diffusion coefficient, or
low adsorption rates, film-thinning may occur. Further computational efforts by Johnson and Borhan [18] investigated
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the effect of soluble surfactants on bubble motion and concluded that at low surface coverage, reduced drop mobility
is uniform, whereas at high concentration a stagnant bubble cap forms. More recently, Olgac and Muradoglu [28]
performed an extensive study of the effect of a wide range of surfactant parameters on the film thickness of the
bubbles.

The review of the literature above highlights the fact that the existing studies have primarily focused on the
impact of surfactants in flow conditions where inertia is negligible. The aim of this work is to investigate the effect
of surfactants on elongated gas bubbles propagating through capillary tubes, when inertial forces have a significant
impact on the liquid film dynamics (Re� 1). In particular, this work will focus on the effect of surfactant addition
on the undulatory structures observed at the bubble tail. The dynamics of the tail undulations plays a role for a
number of engineering and scientific applications such as microchannel flow boiling [24], with specific emphasis on the
potential occurrence of liquid film rupture and dryout [3], and cleaning of microorganisms from the walls of confined
microgeometries [21]. In these applications, water and other low-viscosity refrigerant fluids are utilised, at high flow
rates, such that the Reynolds number may exhibit values of Re ∼ 103 even in sub-millimetric capillaries [20].

We employ fully three-dimensional direct numerical simulations, using a hybrid interface-tracking/level-set method
(also known as the Level Contour Reconstruction Method), proposed by Shin et al. [34–38], where the unsteady
dynamics of the free-interface is resolved explicitly. A comprehensive computational study is performed to assess
the influence of a range of dimensionless groups associated with the flow (e.g. Reynolds and capillary numbers) and
the surfactants properties (e.g. Peclet number, elasticity number, Biot number, Damkohler number, and adsorption
depth), on the bubble dynamics. The rest of this paper is organised as follows: in Sec. II the governing equations are
presented, along with a description of the computational set-up, scaling, and validation of the numerical procedure.
The main results and discussion are presented in Sec. III, where the overall effect of surfactant addition is discussed
first, followed by a thorough parametric study. Finally, the main conclusions of this work are detailed in Sec. IV.

II. FORMULATION AND PROBLEM STATEMENT

A. Governing equations

In this section, the governing equations are presented in the context of the Level Contour Reconstruction Method
(LCRM). The propagation of a gas bubble through a liquid-filled cylindrical tube of diameter D is considered, as
shown in Fig. 1. The gas and liquid are assumed to be immiscible, incompressible Newtonian fluids, and gravitational
effects are neglected. The continuity and momentum equations are written in a three-dimensional Cartesian domain
using a single-fluid formulation, respectively:

∇ · u = 0, ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ · µ(∇u +∇uT ) +

∫
A

σκnδ(x− xf )dA+

∫
A

∇sσδ(x− xf )dA, (2)

where t, u, and p denote time, velocity, and pressure, and the density ρ and viscosity µ are given by

ρ (x, t) = ρb + (ρl − ρb) I (x, t) ,
µ (x, t) = µb + (µl − µb) I (x, t) .

(3)

Here, I (x, t) represents a smoothed Heaviside function, which is zero in the bubble (gas) phase and unity in the
liquid phase, while the subscripts l and b designate the individual liquid and bubble phases, respectively. The last two
terms on the right-hand-side of Eq. (2) represent the normal and tangential components of the surface tension force,
respectively. The former is associated with the mean surface tension, σ, whereas the latter appears as a consequence
of surface tension gradients, giving rise to Marangoni stresses; κ denotes the interface curvature, ∇s is the surface
gradient operator, and n is the outward-pointing unit normal to the interface. The three-dimensional Dirac delta
function, δ(x− xf ), vanishes everywhere except at the interface localised at x = xf .

The surfactant concentration on the interface, Γ, is governed by the following conservation equation

∂Γ

∂t
+∇s · (Γut) = Ds∇2

sΓ + ṠΓ, (4)

where ut = (us · t)t is the tangential velocity vector in which us is the surface velocity and t is the unit tangent to
the interface. The diffusion of surfactant along the interface is accounted for in the first term on the right-hand-side,
where Ds is the surface diffusion coefficient. The sorptive flux, which characterises the exchange of surfactant species
between the bulk and the interface, is given by the source term

ṠΓ = kaCs(Γ∞ − Γ)− kdΓ, (5)
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(a)

(b)

FIG. 1: (a) Initial three-dimensional bubble shape and parabolic velocity profile imposed at the tube inlet. (b)
Schematic representation of the problem in a vertical centreline (x, y) plane, where D denotes the tube diameter, Ub

is the bubble-tip velocity, h is the vertical distance of the liquid-gas interface from the y = 0 axis, and h0 is the
uniform liquid film thickness.

where ka and kd are adsorption and desorption coefficients, respectively, Cs is the concentration of surfactant in the
bulk sub-phase, immediately adjacent to the interface, and Γ∞ is the interfacial surfactant concentration at saturation.
The transport of surfactant concentration C in the bulk is governed by

∂C

∂t
+ u · ∇C = Dc∇ · (∇C), (6)

where Dc refers to the surfactant diffusivity in the bulk phase. The source term in Eqs. (4) and (5) can be related to
the bulk concentration by

n · ∇C|interface = − ṠΓ

Dc
, (7)

The equation of state used in this work to describe the decrease of σ with Γ is given by the Langmuir relation
[27, 38]:

σ = σs + <TΓ∞ ln

(
1− Γ

Γ∞

)
= σs

[
1 + βs ln

(
1− Γ

Γ∞

)]
, (8)

where σs is the surface tension of the ‘clean’ interface, < is the ideal gas constant, T is temperature, and βs = <TΓ∞/σs
is defined as the surfactant elasticity parameter.

All variables are rendered dimensionless by using the following scalings:

x̃ =
x

D
, ũ =

u

U
, t̃ =

t

D/U
, p̃ =

p

ρlU2
, σ̃ =

σ

σs
, Γ̃ =

Γ

Γ∞
, C̃ =

C

C∞
, C̃s =

Cs

C∞
, (9)

where the tildes designate dimensionless quantities. Here, the diameter D, the average liquid velocity at the tube
inlet U , and C∞, are used as the characteristic length, velocity, and bulk concentration scales. As a result of this
scaling, Eqs. (2)-(8) become:

∇ · ũ = 0, ρ̃

(
∂ũ

∂t̃
+ ũ · ∇ũ

)
= −∇p̃+

1

Re
∇ ·
[
µ̃(∇ũ +∇ũT )

]
+

1

ReCa

∫
Ã

(σ̃κ̃n +∇sσ̃) δ
(
x̃− x̃

f

)
dÃ, (10)
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ρ̃ (x, t) =
ρb
ρl

+

(
1− ρb

ρl

)
I (x, t) ,

µ̃ (x, t) =
µb

µl
+

(
1− µb

µl

)
I (x, t) ,

(11)

∂C̃

∂t̃
+ ũ · ∇C̃ =

1

Pec
∇ · (∇C̃), (12)

∂Γ̃

∂t̃
+∇s · (Γ̃ũt) =

1

Pes
∇2

sΓ̃ +Bi
(
kC̃s(1− Γ̃)− Γ̃

)
, (13)

n · ∇C̃|interface = −PecDaBi
(
kC̃s(1− Γ̃)− Γ̃

)
, (14)

σ̃ = 1 + βs ln
(

1− Γ̃
)
. (15)

The dimensionless parameters appearing in these equations are given by

Re =
ρlUD

µl
; Ca =

µlU

σs
; Pec =

UD

Dc
; Pes =

UD

Ds
; Bi =

kdD

U
; Da =

Γ∞
DC∞

; k =
kaC∞
kd

, (16)

where Ca and Re are the liquid capillary and Reynolds numbers, and the density and viscosity ratios are represented
by ρl/ρb and µl/µb, respectively. The competition between convection and diffusion for the surfactant species at the
interface and in the bulk is characterised by Pes and Pec, respectively. Other surfactant-related parameters are the
Biot number, Bi, Damkohler number, Da, and the adsorption depth, k. The bulk surfactant concentration, used as an
initial condition, and kept constant throughout the simulation, is represented by C∞. The surface tension gradients
give rise to the Marangoni stresses, which can be expressed in terms of Γ by

1

ReCa
∇sσ̃ · t ≡

τ̃

ReCa
= −Ma

1

(1− Γ̃)
∇sΓ̃ · t, (17)

where Ma ≡ βs/ReCa = <TΓ∞/ρlU
2D is a Marangoni parameter.

B. Problem statement and validation

The flow domain is a tube of circular cross-section of diameter D and length 27.8D, which is modeled with a
three-dimensional geometry. The walls of the tube are constructed via a module that defines solid objects by means
of a signed distance function, an approach that was previously adopted for more complex geometries when using the
present numerical solver [19, 32]. The elongated bubble is initially located at the beginning of the channel and its
shape is initialised using a cylindrical body with a cross-sectional diameter Db = 0.94D, and two hemispherical caps
at its two ends, as indicated in Fig. 1a. We adopt a reference frame where x represents the streamwise coordinate,
y the vertical coordinate with y = 0 being the bottom line of the tube, and z the horizontal coordinate. The length
of the bubble, Lb, is one of the parameters varied in this work. The flow is initiated by imposing a fully-developed
parabolic velocity profile at the inlet (i.e. x = 0). A no-slip boundary condition is imposed on the channel wall. The
channel length is set to be sufficiently long to allow for the development of steady-state motion of the bubble.

The effect of the governing dimensionless groups in Eq. (16) is explored through a systematic parametric study
throughout which the density and viscosity ratios are kept constant at ρl/ρb = 1000 and µl/µb = 100, respectively,
representing the values associated with an air-water system. A ‘base’ case is defined, characterised by the following
dimensionless parameters listed in Eq. (16): Re = 443, Ca = 0.0089, Pec = 100, Pes = 100, βs = 0.5, Bi = 1,
Da = 0.1, k = 1, and Ma = 0.13; the initial dimensionless length of the bubble for the base case is kept as
L̃b ≡ Lb/D = 5. At equilibrium, adsorption and desorption are equal and the source term in Eq. (5) is equal to zero.
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(a) (b)

FIG. 2: (a) Mesh dependence study for a ‘clean’ bubble with reference parameters Re = 443 and Ca = 0.0089; (b)
comparison of the experimental correlation of Han and Shikazono [14] with the simulation results from this study,

for a varying capillary number and fixed Re = 443.

Assuming that the surfactant concentration near the interface is equal to the surfactant concentration in the bulk
Cs = C∞, the following relationship for Γeq can be obtained

Γeq

Γ∞
=

k

k + 1
. (18)

For the base case (e.g. k = 1), this relationship becomes Γeq = 0.5Γ∞. The initial interfacial surfactant concentration
is specified to be 50% of the equilibrium concentration.

The computations are assumed to reach steady-state when the change in total bubble concentration is below 0.1%
for one period of dimensionless time as suggested by Olgac and Muradoglu [28]. In addition, the steady propagation
of the bubble is also monitored. The ‘clean’ case is presumed to be at steady-state when the change in velocity of
the bubble front and back menisci is less than 0.1%. As suggested by Ratulowski and Chang [31], a balance between
adsorption and interfacial convection is achieved if the Stanton number, St = kaΓ∞/U , is St ≈ O(Ca1/3), which is
the case for the selected base case parameters. Following the guidelines by Ratulowski and Chang [31], the selected
bulk Peclet number represents a system where both convective and diffusive transport (Pec ≈ O(Ca−2/3)) parts play
a role in the dynamics and both need to be resolved.

The computational work in this study employs a three-dimensional uniform Cartesian grid. The grid dependence
analysis (see Fig. 2a), performed for the base case surfactant-free bubble parameters, shows that doubling the cell
count in each direction has a negligible effect on the bubble shape. All subsequent simulations are performed using
the coarser grid of 56.6 million cells (i.e. 3456× 128× 128). Validation is performed against the empirical correlation
for film thickness presented by Han and Shikazono [14] and given by Eq. (1). The film thickness in the computational
results is evaluated at the midpoint between the bubble nose and tail, where the liquid film is uniform. At this
location, the value of the film thickness is representative of an average value for the bubble. The numerical results are
found to be in good agreement with the experiment, with a maximum 10% deviation that is within the uncertainty
of the experimental correlation [14].

III. RESULTS AND DISCUSSION

A. Effect of Marangoni stresses

In this section, the effect of key flow and surfactant dimensionless groups on the bubble dynamics is studied. Firstly,
the effect of the base case surfactant parameters is considered. As described previously, the addition of surface active
species acts to reduce the surface tension and gives rise to surface tension gradients. In order to isolate the effect of
the Marangoni stresses, a simulation is performed where the surface tension, σ, is set equal to the steady-state average



7

surface tension for the surfactant base case. As σ = σ(Γ), the average interfacial concentration is evaluated and then
used to calculate the effective surface tension, σeff , given by Eq. (8). To distinguish between the cases, a capillary
number based on the effective surface tension is defined for this section, Caeff = µlU/σeff . This effective capillary
number for the surfactant base case is Caeff = 0.0094. Although the change in capillary number is not expected to
influence the bubble dynamics significantly, the Caeff = 0.0094 case allows us to separate the effect of surfactants
on reducing the mean surface tension, from that associated with the formation of Maragoni stresses due to surface
tension gradients. This case will be referred to below as the ‘no-Marangoni’ case, or τ̃ = 0.

The effect of the base case surfactant parameters in comparison to the ‘clean’ and ‘no-Marangoni’ cases is presented
in Fig. 3. In Fig. 3a, it is seen that the surfactant is swept to the back of the bubble by the flow and accumulates
in that region as also shown in Fig. 3b, which illustrates the variation of the interfacial concentration, Γ̃, along x̃
for the Marangoni-supported case. The Γ̃ profile exhibits an increase to a peak value, which is spatially-coincident
with the peak of the interfacial oscillation at the bubble tail shown in Fig. 3c. The concentration then decreases via
mild undulations towards an essentially constant value, which extends over a substantial fraction of the bubble; these
Γ̃ variations are mirrored by similar characteristics in the bubble shape where the constant Γ̃ region coincides with
that of the film of uniform thickness that separates the bubble from the wall. The concentration Γ̃ then undergoes a
decrease followed by an increase in response of a stagnation point located near the bubble tip, as it will be revealed
below by the analysis of the fluid flow. The average film thickness for the surfactant base case is seen to decrease
when compared to the ‘clean’ and ‘no-Marangoni’ cases by 2.5% and 3.6%, respectively; similar observations were
made by Ghadiali and Gaver [8].

The non-uniform distribution in Γ̃ near the two extremes of the domain gives rise to concentration gradients and
Marangoni stresses whose spatial variation is also shown in Fig. 3c. A close comparison of the tail dynamics associated
with the ‘clean’ and ‘no-Marangoni’ cases shown in the inset of Fig. 3c reveals that these dynamics are essentially
independent of the presence of surfactant; in contrast, the oscillations in the Marangoni-supported case are damped
significantly thereby illustrating that the damping is Marangoni-driven. This is explained further via inspection of the
surfactant distribution near the bubble tail, which induces Marangoni stresses that drive flow away from the peak of
the interfacial oscillation, decreasing its amplitude. The Marangoni stresses are predominantly positive in this region
and thus they act to retard the flow and ‘rigidify’ the interface. As the right domain boundary is approached, the
magnitude of the Marangoni stresses decreases considerably though they remain positive-valued apart from a narrow
region in which they are negative in response to surfactant accumulation at the bubble nose. The rigidifying effect of
the Marangoni stress at the front and the back of the bubble reduces the speed of the bubble by approximately 5%,
an effect previously observed by Borhan and Mao [2].

In Fig. 4, we show the effect of surfactant on the strain rate and vorticity for the same parameter values as
those used to generate Fig. 3. A comparison of the strain rate and vorticity patterns associated with the ‘clean’
and surfactant-laden, Marangoni-supported cases reveals some similarities in terms of the counter-rotating vortical
structures in regions ‘A’ and ‘B’, and ‘D’ and ‘E’, in the former and latter cases, respectively. Note the stagnation
point at the boundary between the regions ’E’ and ’D’ for the surfactant-laden case; here, the streamlines diverge
driving the surfactant away from the stagnation point, which yields the local minimum of Γ̃ observed in Fig. 3b. It
can also be seen that Marangoni-driven damping of the tail oscillations leads to suppression of the vortical structures
in regions ‘B’ and ‘C’ that are a feature of the back of the ‘clean’ bubble case. Vortex ‘F’ in Fig. 4 is related to the
change in the sign of the Marangoni stresses near the back of the surfactant-laden bubble discussed above.

Next, we investigate the effect of altering the Marangoni parameter, Ma, on the flow profiles with Ca = 0.0089 and
Re = 443 with all other parameters remaining unchanged from Fig. 3. In Fig. 5, it is seen that increasing Ma leads
to more effective suppression of the bubble tail interfacial and ũt oscillations, as shown in Fig. 5a and 5c; the increase
in Ma also results in a slight elongation of the bubble. The reduced interface mobility resulting from the rise in Ma
results in more uniform Γ̃ distributions, as can be seen in Fig. 5b, and, therefore, the weakest Γ̃ gradients, and hence
smallest steady Marangoni stresses. As a result, the largest Marangoni stresses are those observed at the bubble tail
for the lowest finite Ma studied, as was also reported by Olgac and Muradoglu [28].

B. Effect of Ca and Re

This section focuses on the effect of varying the Reynolds and capillary numbers in the presence of surfactant, where
the base case surfactant parameters remain unchanged from Pec = Pes = 100, Da = 0.1 , k = 1, Bi = 1, βs = 0.5,
and Ma = 0.13. The investigation begins with variation of the capillary number as shown in Fig. 6 generated for
Ca = 0.0089 and Ca = 0.0377 for both surfactant-free and surfactant-laden bubbles, with Re = 443. Inspection of
Fig. 6a reveals that an increase in Ca results in film thickening, while the amplitude of the interfacial undulations
near the back of the bubble increases and their wavelength decreases with Ca, as also previously observed by Magnini
et al. [25]. It is also seen clearly that the addition of surfactant dampens these oscillations for both capillary numbers,
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(a)

(b)

(c)

FIG. 3: Effect of surfactant on the flow characteristics; (a) three-dimensional representation of the bubble shape for
the surfactant-free (top) and surfactant-laden (bottom) cases, with the colour indicating the magnitude of surfactant

interfacial concentration, Γ̃; (b) variation of Γ̃ along x̃; (c) two-dimensional projection (in the z = 0 plane) of the
bubble shape for the surfactant-free (solid line), and surfactant-laden cases in the presence (dashed) and absence

(dotted) of Marangoni stresses. Also shown in (c), as a red dashed line, is the x̃ variation of the Marangoni stresses,
τ̃ . The capillary numbers for the surfactant-free and surfactant-laden cases are 0.0089 and 0.0094, respectively, while

the rest of the parameters are Re = 443, Pec = Pes = 100, Da = 0.1, k = 1, Bi = 1, βs = 0.5, and Ma = 0.13.

as demonstrated in the inset of Fig. 6a. This is due to the accumulation of surfactant at the bubble rear, depicted
in Fig. 6b, which leads to the formation of large Marangoni stresses in this region, as discussed in Sec. III A, whose
magnitude increases with Ca (see Fig. 6a).

It is also instructive to examine the variation of the interfacial tangential velocity component in the bubble-tip
reference frame ũt ≡ (ut − Ub)/Ub, where Ub is the bubble tip speed, along x̃, x̃ = x/D, shown in Fig. 6c. For
all the cases considered, ũt = 0 at the bubble tip due to the chosen moving frame-of-reference; ũt then becomes
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(a)

(b)

FIG. 4: Effect of surfactant on the magnitude of the dimensionless strain rate S̃, (a), and vorticity Ω̃, (b), for the
surfactant-free (top) and Marangoni-supported surfactant-laden (bottom) cases for the same parameters as in Fig.

3; here, S and Ω are scaled on D/U . The streamlines are drawn in the bubble-tip reference frame. The vortical
structures identified in zones ‘A’, ‘C’, and ‘E’, and B’, ‘D’, and ‘F’ rotate in a clockwise and counter-clockwise

direction, respectively.

positive-valued behind the tip before decreasing through zero, which coincides with the location of the stagnation
point that separates the counter-rotating vortices at the bubble front discussed above in connection with Fig. 4. The
tangential velocity assumes a value of ũt = −1, indicating a free-slip interface, over a significant proportion of the flat
film region of the bubble before reaching ũt = 0 at the bubble rear through oscillations that are damped severely in
the surfactant-laden case, due to the rigidifying effect of the surfactant-induced Marangoni stresses.

In Fig. 7, we study the effect of increasing inertia on the bubble dynamics by raising Re from Re = 443 to Re = 728
with Ca = 0.0089 and the rest of the parameters remaining unaltered from Fig. 3. It is observed from Fig. 7a that
a rise in Re in the surfactant-free case increases the amplitude and the frequency of the interfacial oscillations at the
bubble tail; this is similar to the observations made by Magnini et al. [25] who examined the interfacial undulations of
elongated ‘clean’ bubbles in confined geometries. The accumulation of surfactants at the trailing end of the bubble (see
Fig. 7b) and the associated Marangoni stresses lead to dampening of these oscillations for both investigated Re. This
effective Marangoni-induced reduction in the mean radius at the back of the bubble is accompanied by a slight increase
in bubble length, which is more pronounced for the Re = 443 case. The rigidifying effect of the Marangoni stresses
also manifests itself clearly in Fig. 7c through the suppression of the oscillations in the dimensionless streamwise
component of the interfacial velocity, ũt, present at the back of the surfactant-free bubble; this effect is also seen in
the decrease of the peak amplitude of ũt near the bubble tip and its shift upstream.

C. Bulk surfactant effects

We now examine the effect of varying the Damkohler number, Da, and the surfactant adsorption depth, k, on the
flow profiles with Ca = 0.0089, Re = 443, the rest of the parameters remain unchanged from Fig. 3. The dimen-
sionless group Da, within the context of the present work, measures the relative significance of the bulk surfactant
concentration, C∞. The parameter k controls the surfactant sorption kinetics: for a fixed C∞, large values of k corre-
spond to small desorption and/or large adsorption constants, and hence slow desorption and/or rapid adsorption. In
order to keep all other parameters constant, we vary Da and k simultaneously. In Fig. 8, we show the bubble shape,



10

(a)

(b)

(c)

FIG. 5: Effect of varying Ma on the steady spatial distribution of the Marangoni stresses and two-dimensional
projection (in the z = 0 plane) of the bubble shape, (a), the interfacial surfactant concentration and resulting

surface tension, (b), and the streamwise component of the interfacial velocity in the frame-of-reference of the bubble
tip, (c), where ũt = (ut − Ub)/Ub; here, Ca = 0.0089 and the rest of the parameters remain unchanged from Fig. 3.

and spatial distributions of Γ̃, ũt, and the Marangoni stresses for Da = 0.01, 0.1, 1 with k = 10, 1, 0.1, respectively.
For Da = 1 and k = 0.1, the bubble shape and the ũt profiles exhibit virtually no difference from the surfactant-free
case since the bulk concentration is relatively low and a limited amount of surfactant remains on the interface (see

Fig. 8b). Decreasing the value of Da from unity to 0.1, with k increasing to 1, leads to a significant increase in Γ̃
accompanied by a rise in the magnitude of the Marangoni stresses, which result in damping of the bubble oscillations
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(a)

(b)

(c)

FIG. 6: Effect of varying Ca on the steady spatial distribution of the Marangoni stresses and two-dimensional
projection (in the z = 0 plane) of the bubble shape, (a), the interfacial surfactant concentration, (b), and the

streamwise component of the interfacial velocity in the frame-of-reference of the bubble tip, (c), where
ũt = (ut − Ub)/Ub; the rest of the parameters remain unchanged from Fig. 3.

and rigidification of the tail region. A further decrease in Da from 0.1 to 0.01, with k increasing to 10, corresponding
to an order of magnitude rise in C∞, leads to more surfactant being adsorbed onto the interface, and a qualitative
change in the structure of the Γ̃ spatial distribution. As shown in Fig. 8b, although Γ̃ remains highest at the bubble
tail, its distribution no longer exhibits a quasi-constant region in the middle of the bubble as had been observed in
Figs. 3-7. As a result, the Marangoni stresses are non-zero over the entire bubble, even in the thin film region, which
no longer has a uniform thickness but is sloped from the bubble midpoint towards the front and rear menisci (see Fig.
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(a)

(b)

(c)

FIG. 7: Effect of varying Re on the steady spatial distribution of the Marangoni stresses and two-dimensional
projection (in the z = 0 plane) of the bubble shape, (a), the interfacial surfactant concentration, (b), and the

streamwise component of the interfacial velocity in the frame-of-reference of the bubble tip, (c), where
ũt = (ut − Ub)/Ub; here, Ca = 0.0089 and the rest of the parameters remaining unchanged from Fig. 3.

8a); furthermore, it is seen that the bubble is elongated significantly for Da = 0.01. Although the magnitude of the
Marangoni stresses for Da = 0.01 at the bubble tip and tail are respectively higher and lower than those associated
with Da = 0.1, the cumulative effect is a substantial reduction in the magnitude of ũt, as shown in Figs. 8a and 8c,
i.e. the interface allows only partial slip.

Next, we study the effect of the Biot number, Bi, which is a ratio of the flow and desorption time scales; thus,
small Bi values are characteristic of slow surfactant desorption kinetics. In Fig. 9, which depicts the steady bubble
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(a)

(b)

(c)

FIG. 8: Effect of varying Da and k on the steady spatial distribution of the Marangoni stresses and two-dimensional
projection (in the z = 0 plane) of the bubble shape, (a), the interfacial surfactant concentration, (b), and the

streamwise component of the interfacial velocity in the frame-of-reference of the bubble tip, (c), where
ũt = (ut − Ub)/Ub; here, Ca = 0.0089, and the rest of the parameters remaining unchanged from Fig. 3.

shape and Γ̃, ũt, and Marangoni stress distributions for Bi in the range 0.01− 5, it is seen clearly that this parameter
has a profound effect on these profiles. In particular, there is a critical Bi value that is a function of the remaining
parameters, for which there is a flow regime transition.

For Bi = 1, 5, all flow variables shown in Fig. 9 exhibit similar profiles to those discussed above: surfactant
accumulation at the bubble rear, and Marangoni-driven rigidification leading to damping of tail oscillations. As
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depicted in Fig. 9b for Bi = 0.1, however, it appears that the bubble is divided into two distinct regions: a surfactant-
covered region, Region ‘1’, in which Γ̃ decreases from the bubble rear to very low values at the bubble midpoint
approximately, which gives way to Region ‘2’ that extends to the bubble tip with much smaller concentrations.
Following the tail undulation, the liquid film in Region 1 decreases gradually to an essentially constant value, which
marks the beginning of the Region 2, as shown in Fig. 9a. Inspection of Fig. 9c reveals that ũt is essentially zero at
the bubble rear, highlighting the rigidifying effect of the surfactant in Region 1, before reaching a value of ũt = −1,
via a damped oscillation, at the start of Region 2. Due to the virtual absence of surfactant, Region 2 is considerably
more mobile than Region 1 for the Bi = 1 case. Interestingly, Region 2 also exhibits undulations at its trailing edge,
which are similar to those observed at the tail of a ‘clean’ bubble though of smaller amplitude. This is due to the
sign of the interfacial curvature upstream of the undulations, which is positive in the clean bubble case, and negative
at the beginning of Region 2 wherein the interface must adjust to an essentially flat Region 1.

The trends for the Bi = 0.1 case become more pronounced by lowering Bi further to Bi = 0.01: there is a significant
rise in Γ̃ in Region 1, the majority of which is rigid, and whose length is extended beyond the bubble midpoint. The
transition between Regions 1 and 2 is much sharper for Bi = 0.01 in comparison to the Bi = 0.1 case characterised
by abrupt film-thinning, rapid variation in ũt from ũt = 0 to ũt = −1, and a front-like structure exhibited by the
Marangoni stress at the leading edge of Region 1. The bubble also becomes more elongated following the decrease in
Bi.

It is worth remarking on the fact that the surfactant-laden interface becomes, effectively, a no-slip surface in Region
1 for Bi = 0.01; this is chiefly the reason underlying the film-thickening in this region shown in Fig. 9a. Parallels
can be drawn with the work of Yu et al. [41], where similar observations were made when the bubble rear was coated
with particles. These authors found that the measured film thickness of the particle-coated thicker film region grows
by a factor of 22/3 in comparison to the solution for a ‘clean’ bubble. The same thickening factor is observed in this
work in the case of Bi = 0.01.

In Fig. 10a we show a three-dimensional representation of the bubble shape for the Bi = 0.01 case with the colour
being indicative of the magnitude of Γ̃; this shows clearly the surfactant-laden and surfactant-free regions discussed
above. We also plot in Fig. 10b the variation of the dimensionless streamwise velocity component, ũx, in the wall-
normal direction within the films in Regions 1 and 2 in a frame-of-reference moving with the bubble. It is seen
that in Region 1, ũx = −1 and zero at the tube wall and the gas-liquid interface, respectively, which correspond to
no-slip conditions reflecting the rigidified nature of the interface in this region. As a result, the ũx profile in Region
1 is predominantly Couette-like due to the absence of significant pressure gradients arising from interfacial curvature
effects. In the more mobile Region 2, the liquid in this region is effectively in plug flow since ũx = −1 at the wall
located at ỹ = 1, and the interfacial condition corresponds, effectively, to one of no-shear stress, ∂ũx/∂ỹ ≈ 0, due to
the absence of surfactant.

The Couette-like profile in Region 1 leads to the development of a zone with nearly-uniform vorticity and strain
rates across this region, as shown in Fig. 10c and 10d. Exploring the evolution of the vortical structures, it is seen
in Fig. 10c that prior to the development of Region 1 two counter-rotating re-circulation zones form at the front and
the back of the bubble (see zones ‘A’ and ‘B’ in Fig. 10c). The vortex identified in zone ‘A’ helps the migration of
surfactant species towards the bubble tail, whereas the one at the bubble tail (see zone ‘B’ in Fig. 10c) inhibits the
surfactants from migrating further back. This gives rise to elevated Marangoni stresses, which as seen leads to the
creation of the thicker film region by pushing the liquid towards the centre of the tube. At steady-state, the larger
vortex that spans across the thicker film region (see zone ‘E’ in Fig. 10d) is counter-rotating to the one ahead of
it (see zone ‘D’ in Fig. 10d), helping the preservation of a constant vorticity rate across that region. An additional
vortex forms at the bubble head promoting the migration of surfactant species towards the bubble tip (see zone ‘C’
in Fig. 10d).

We now examine the effect of diffusion, whose relative significance is characterised by the interfacial and bulk Peclet
numbers, on the steady flow profiles of the Bi = 0.01 case; the results are shown in Fig. 11 with Pec = Pes, and
the rest of the parameters remaining unchanged from Fig. 9. First we inspect the effect of Pec,s on the surfactant-
covered Region 1. Upon investigation of the bubble shape in Fig. 11a, we see that Region 1 is the thickest and
longest one observed for the highest investigated Peclet number (i.e. Pec,s = 500). Lowering bulk and interfacial
diffusion allows for the Marangoni stress field to push further towards the bubble tip in comparison to Pec,s = 100.
In addition, inspection of Fig. 11b reveals a steeper concentration gradient between Regions 1 and 2 for Pec,s = 500

in comparison to Pec,s = 100, whereas, for Pec,s = 10, the spatial distribution of Γ̃ is more gradual between the two
regions, highlighting the stronger diffusive effects. The elimination of the abrupt concentration gradient in the case of
Pec,s = 10, results in the suppression of undulation structures at the beginning of Region 2. In Fig. 11c, we observe
that the mobility of this zone is also reduced.
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(a)

(b)

(c)

FIG. 9: Effect of varying Bi on the steady spatial distribution of the Marangoni stresses and two-dimensional
projection (in the z = 0 plane) of the bubble shape, (a), the interfacial surfactant concentration, (b), and the

streamwise component of the interfacial velocity in the frame-of-reference of the bubble tip, (c), where
ũt = (ut − Ub)/Ub; here, Ca = 0.0089, and the rest of the parameters remaining unchanged from Fig. 3.

D. Effect of bubble length at low Bi

Finally, we study the effect of varying the dimensionless bubble length, L̃b ≡ Lb/D, on the flow profiles for the
Bi = 0.01 case with Ca = 0.0089 and the rest of the parameters remaining unaltered from Fig. 3. We focus on the
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(a) (b)

(c)

(d)

FIG. 10: Flow profiles associated with the Bi = 0.01 case with the rest of the parameters remaining unchanged from
Fig. 9; (a) three-dimensional representation of the bubble shape coloured by the magnitude of the interfacial

surfactant distribution, Γ̃; (b) profiles of the dimensionless streamwise velocity component, ũx = (ux − Ub)/Ub,
calculated in a bubble-tip frame-of-reference, along the cross-stream direction, y, for the two axial locations

indicated in (a), which are in Regions 1 and 2, as described in the text; vortical structure evolution at t̃ = 3 and at

steady-state, shown in (c) and (d), with the magnitude of the dimensionless vorticity, Ω̃, and strain rate, S̃ depicted
in the top-half and bottom-half of each panel, respectively. The vortices labelled ‘A’ and ‘B’ in panel (c) rotate in

the clockwise and counter-clockwise directions, respectively. In panel (d), the vortices labelled ‘C’ and ‘E’, and
vortex ‘D’ rotate in the counter-clockwise, and clockwise directions, respectively; identical structures in the top half
of the panel rotate in the opposite directions. All streamlines are presented in a frame-of-reference moving with the

bubble tip.

influence of L̃b on the development of the two regions that arise for sufficiently low Bi values discussed above. A
summary of the results is shown in Fig. 12. It is seen clearly from Fig. 12a that for the shortest bubbles examined,
the interface is covered fully with surfactant, with the peak of the distribution located near the bubble rear. The
Marangoni stresses associated with this case act to smooth the tail oscillations and ‘rigidify’ the interface effectively,
as indicated by the low value of ũt presented in Fig. 12c. Furthermore, the two-region structure observed for low Biot
numbers discussed in the previous section is absent in the L̃b = 2 case. In contrast, the remaining cases examined, for
which L̃b = 3− 5, all demonstrate the development of a trailing edge, the shape of which is governed by the elevated
Marangoni stress zone, and ahead of which there is a markedly thinner surfactant-free region, as shown in Fig. 12a.
Though the latter region becomes more fully-developed with increasing L̃b, there is very little qualitative difference
between the flow profiles associated with these L̃b = 3− 5 cases.
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(a)

(b)

(c)

FIG. 11: Effect of varying Pec (set equal to Pes) on the steady spatial distribution of the Marangoni stresses and
two-dimensional projection (in the z = 0 plane) of the bubble shape, (a), the interfacial surfactant concentration,

(b), and the streamwise component of the interfacial velocity in the frame-of-reference of the bubble tip, (c), where
ũt = (ut − Ub)/Ub; here, Ca = 0.0089, Bi = 0.01, and the rest of the parameters remain unchanged from Fig. 3.

IV. CONCLUSION

The effect of surfactants on the dynamics of elongated bubbles propagating through capillary tubes was studied
extensively using a hybrid front-tracking/level-set method. The convective-diffusive transport of surfactant species
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(a)

(b)

(c)

FIG. 12: Effect of varying the initial dimensionless bubble length, L̃b on the steady spatial distribution of the
Marangoni stresses and two-dimensional projection (in the z = 0 plane) of the bubble shape for L̃b = 2− 5, (a), the

interfacial surfactant concentration, (b), and the streamwise component of the interfacial velocity in the
frame-of-reference of the bubble tip, (c), where ũt = (ut − Ub)/Ub; here, Bi = 0.01, Ca = 0.0089, and the rest of the

parameters remaining unchanged from Fig. 3. Note that we have normalised x̃ by the bubble length and the
dimensionless interfacial concentration by its maximum value.

along the gas-liquid interface and in the bulk is fully-coupled to the Navier-Stokes equations, where surface tension
is related to the interfacial surfactant concentration using a non-linear Langmuir equation of state. The simulations
performed in this work consider the effects of inertia, capillarity, bulk and interfacial diffusion, and Marangoni stresses
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arising from the presence of surfactant-induced surface tension gradients, on the flow dynamics; attention was focused
on high Reynolds numbers. The numerical predictions were validated against previous experimental work [14] before
performing a full parametric study.

It was found that the presence of surfactants is effective in suppressing the bubble tail undulations, which are
otherwise present in surfactant-free systems. In addition, at the lower range of the capillary and Reynolds numbers
examined, surfactants are found to have a wall-film thickening effect, attributed to the formation of Marangoni
stresses. We have also shown that increasing the strength of Marangoni stresses reduces the mobility of the interface
at the bubble rear significantly, and at high bulk concentrations these stresses influence the flow profiles over the
entire bubble. At low surfactant solubility, characterised by small Biot numbers, the steady bubble shape features
the formation of two distinct regions: a surfactant-covered, interfacially-immobile region at the bubble rear, and
another, mobile region downstream extending to the bubble tip. The thick liquid film associated with the former
region gives way to a thinner film via a transition region whose length decreases with decreasing Biot and increasing
Peclet numbers. Connections are established with previous studies involving armored confined bubbles, where the
bubble rear is covered with colloidal particles [41], in which similar phenomena are observed.

Finally, the effect of bubble length in the context of low solubility surfactants was also investigated. It was shown
that almost complete rigidification of the bubble interface occurs for bubbles with sufficiently small initial length,
beyond which qualitatively similar profiles were observed, characterised by the formation of the two-region structures
mentioned above.
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