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Let ϕ : H → R be a convex differentiable function whose solution set Argminϕ is nonempty. To study the problem minH ϕ, we consider the following system:

By assuming that β(t) ≤ αβ(t), we obtain this convergence result ϕ(u(t))-

. The choice β(t) = e pt , p ≤ α, is valid and a linear convergence is realized without strong convexity of ϕ. The discrete case is also considered.

Introduction

Let H be a real Hilbert space and ϕ : H → R a convex and continuously differentiable function. Historically, the passage from the study of the first order system u(t) + ∇ϕ(u(t)) = 0 [START_REF] Álvarez | On the minimizing property of a second-order dissipative system in Hilbert spaces[END_REF] to the study of the second order one, see [START_REF] Su | A differential equation for modeling Nesterov's accelerated gradient method: theory and insights[END_REF], [START_REF] Cabot | On the long time behavior of second order differential equations with asymptotically small dissipation[END_REF] ü(t) + α t u(t) + ∇ϕ(u(t)) = 0 [START_REF] Álvarez | A second-order gradient-like dissipative dynamical system with Hessian-driven damping. Application to optimization and mechanics[END_REF] has been justified by the gain in rate of convergence of the values of the function ϕ towards its minimum. Indeed, the first system makes it possible to obtain ϕ(u(t)) -min

H ϕ = O 1 t ,
while the second leads to:

(i) For α ≥ 3, ϕ(u(t)) -min H ϕ = O 1 t 2 , see [START_REF] Attouch | Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity[END_REF] (ii) For α ≤ 3 ϕ(u(t)) -min

H ϕ = O 1 t 2α 3
, see [START_REF] Attouch | Rate of convergence of the Nesterov accelerated gradient method in the subcritical case α ≤ 3[END_REF], [START_REF] Aujol | Optimal rate of convergence of an ODE associated to the Fast Gradient Descent schemes for b > 0[END_REF].

Notice that the system (2) is closely related with Nesterov's type accelerated scheme, see [START_REF] Nesterov | A method of solving a convex programming problem with convergence rate O(1/k2)[END_REF], [START_REF] Nesterov | Introductory lectures on convex optimization: A basic course[END_REF]. In order to further improve the rate of convergence of values, several directions were explored. Apart from the fact of imposing geometric hypotheses on the function, like the strong convexity, authors made vary with time the term of friction α, see [START_REF] Attouch | Rate of convergence of inertial gradient dynamics with time-dependent viscous damping coefficient[END_REF] and/or multiply the term ∇ϕ(x(•)) by a measurable and positive term, see [START_REF] Attouch | Fast proximal methods via time scaling of damped inertial dynamics[END_REF]. In this work, , we keep the term α constant and consider the system ü(t) + α u(t) + β(t)∇ϕ(u(t)) = 0.

(

) 3 
where β(•) is a positive rescaling term. By an adequate assymption on this parameter, we obtain,

ϕ(u(t)) -min H ϕ = O 1 β(t)
.

For β(t) = 1, we find the work of Alvarez, [START_REF] Álvarez | On the minimizing property of a second-order dissipative system in Hilbert spaces[END_REF]. Surprisingly, the choice β(t) = e -pt , p ≤ α, works. This leads to the linear convergence result without assuming any kind of strong convexity on ϕ.

Strengthening the hypothesis on β, the weak convergence of the trajectory to an element in Argminϕ is obtained. The discrete case is then presented. We study an inertial proximal algorithm and similar results to the continuous case are given. 

Rate of convergence of values

H β : β(t) ≤ αβ(t).
Then, for each solution trajectory u of (2)

ϕ(u(t)) -min H ϕ = O 1 β(t) .
Proof 2.2 Let u is a solution of (2) and z ∈ Argminϕ. We introduce

E p,ξ (t) = β(t) ϕ(u(t)) -ϕ(z) + 1 2 p(u(t) -z) + u(t) 2 + 1 2 ξ u(t) -z 2 ,
that will serve as a Lyapunov function, where p and ξ are positive parameters that will be defined further. We derivative E p,ξ (•) by means of the classical derivation chain rule,

d dt E p,ξ (t) = β(t) ϕ(u(t)) -ϕ(z) + β(t) ∇ϕ(u(t)), u(t) + p u(t) + ü(t), p(u(t) -z) + u(t) +ξ u(t), u(t) -z . = β(t) ϕ(u(t)) -ϕ(z) + β(t) ∇ϕ(u(t)), u(t) + (p 2 + ξ) u(t), u(t) -z + p u(t) 2 +p ü(t), u(t) -z + ü(t), u(t) .
Using convexity of ϕ and equation ( 2), we obtain, after simplification,

d dt E p,ξ (t) ≤ ( β(t) -pβ(t)) ϕ(u(t)) -ϕ(z) + (p 2 -pα + ξ) u(t), u(t) -z (p -α) u(t) 2 .
(4) Let us make the second term equal to zero by taking p = α and ξ = 0, that gives

d dt E α,0 (t) ≤ ( β(t) -αβ(t)) ≤0 ϕ(u(t)) -ϕ(z) + (p -α) =0 u(t) 2 (5) 
Under the condition (H β ), we conclude that d dt E α (t) ≤ 0, hence for every

t ≥ t 0 , we have E α (t) ≤ E α (t 0 ), which implies that ϕ(u(t)) -min H ϕ = O 1 β(t)
.

Remark 1

The assumption H β is verified if we take β(t) = e pt , p ≤ α. This leads to the following linear convergence result

ϕ(u(t)) -min H ϕ = O e -pt .
Proposition 2.3 Suppose that β(•) is a continuously differentiable function and there exists 0 < ρ < 1 such that the following condition

H + β : β(t) ≤ α(1 -ρ)β(t).
holds true. Then, for each solution trajectory u of (2), we have

• +∞ t0 u(t) 2 dt < +∞. • +∞ t0 β(t)(ϕ(u(t)) -min ϕ)dt < +∞.
Proof 2.4 Following the proof of Theorem (2.1), the inequality [START_REF] Attouch | Asymptotic stabilization of inertial gradient dynamics with time-dependent viscosity[END_REF] gives

d dt E α,0 (t) ≤ ( β(t) -αβ(t)) ≤0 ϕ(u(t)) -ϕ(z) ≤ -αρβ(t)) ϕ(u(t)) -ϕ(z) (6) 
where the last inequality comes from condition (H + β ), we obtain

d dt E α (t) + αρβ(t)) ϕ(u(t)) -ϕ(z) ≤ 0
By integrating, and using the fact that E α,0 (•) is nonincreasing, we get

αρ +∞ t0 β(t)) ϕ(u(t)) -ϕ(z) dt < +∞; (7) 
and that gives Item 2. For item 1, let us return to the basic estimate ( 4), which we recall below

d dt E p,ξ (t) ≤ ( β(t) -pβ(t)) ϕ(u(t)) -ϕ(z) + (p 2 -pα + ξ) u(t), u(t) -z (p -α) u(t) 2 .
(8) Now, unlike the previous proof, to remove the second term, we take p = α(1 -ρ) and ξ = p(α -p) ≥ 0, we obtain

d dt E α(1-ρ) (t) ≤ β(t) -α(1 -ρ)β(t) ϕ(u(t)) -ϕ(z) -αρ u(t) 2 .
By using the condition (H + β ), we get

d dt E α(1-ρ) (t) + αρ u(t) 2 ≤ β(t) -α(1 -ρ)β(t) ϕ(u(t)) -ϕ(z) ≤ 0.
By integrating last inequality, and since

E α(1-ρ) (•) is nonincreasing, we obtain αρ +∞ t0 u(t) 2 dt < +∞.
which gives the claim.

Theorem 2.5 (Form O to o convergence rate of the values) Suppose that β(•) is a continuously differentiable and nondecreasing function satisfy the condition (H + β ), and

+∞ t0 β(t)dt = +∞, then ϕ(u(t)) -min H ϕ = o 1 +∞ t0 β(t)dt .
Proof 2.6 Lets take the following energy function defined by

W (t) = 1 β(t) E 0,0 (t) = ϕ(u(t)) -ϕ(z) + 1 2β(t) u(t) 2 .
By differentiating W (•) we get

d dt W (t) = ∇ϕ(u(t)), u(t) - β(t) 2β 2 (t) u(t) 2 + 1 β(t) ü(t), u(t) . (9) 
A direct consequence of the equation ( (2))

gives d dt W (t) = -1 β(t) α+ β(t) 2β(t) u(t) 2 .
Since β(•) nondecreasing, then d dt W (t) ≤ 0, hence W (•) is decreasing. According to the integral estimates obtained in Propositions 2.3, we conclude that

+∞ t0 β(t)W (t)dt = +∞ t0 β(t) ϕ(u(t)) -min H ϕ dt + +∞ t0 u(t) 2 dt < +∞.
(10) By using the fact that +∞ t0 β(t)dt = +∞, and that the function W (•) is decreasing, we get

W (t) = o 1 +∞ t0 β(t)dt , Remark 2 When β(t) = e pt , with p < α. By taking ρ = (α-p) p ∈]0, 1[, the condition (H + β )
is fulfilled . This leads to the following linear convergence (with the small o)

ϕ(u(t)) -min H ϕ = o e -pt .

Convergence of trajectory

Let set h(t) = u(t) -z 2 where z ∈ argminϕ. we consider the scalar product of (2) by u(t) -z :

ü(t), u(t) -z + α u(t), u(t) -z + β(t) ϕ(u(t)), u(t) -z = 0 ( 11 
)
which can be written:

ḧ(t) + α ḣ(t) + β(t) ϕ(u(t)), u(t) -z = u(t) 2 .
By using the fact that ϕ(u(t)), u(t) -z ≥ 0, we obtain

ḧ(t) + α ḣ(t) ≤ u(t) 2 . ( 12 
) Theorem 3.1 (Weak convergence) Let ϕ : H → R be a convex function of class C 1 such that argminϕ = ∅. Let α > 0 and suppose that β : [t 0 , +∞[→ R + is a continuous function satisfying the condition (H + β ).
Then every solution u(•) of (2 ) converges weakly as t → +∞ toward some u * ∈ argminϕ. Proof 3.2 let's prove that h(t) = u(t) -z 2 fills the two conditions in Opial's Lemma (see Lemma ??). First, by combining the inequality [START_REF] Attouch | Convergence rates of inertial proximal algorithms with general extrapolation and proximal coefficients[END_REF] and the fact that +∞ t0 u(t) 2 dt < +∞, (Proposition2.3), we conclude by Lemma that the limit of h(t) exists as t → +∞. Now, let us show that every weak sequential limit point of u(t k ), as t k → +∞, belongs to Argmin H (ϕ) Assume that there exist ū ∈ H such u(t n ) ū weakly as n → +∞. 

Discretization of the continuous system

Let ϕ : H → R ∪ {+∞} be a proper lower semicontinuous and convex function (not need to be differentiable), and let us consider the following implicit discretization case of ( 2), where for simplicity, the time step size has been normalized equal to one. for k ≥ 1,

u k+1 -2u k + u k-1 + α(u k+1 -u k ) + β k ∂ϕ(u k+1 ) 0 ( 13 
)
which gives the inertial proximal algorithm

y k = u k + ( 1 1+α )(u k -u k-1 ) u k+1 = prox λ k ϕ (y k ) (IP α,β k )
where

λ k = β k 1 + α
. it can also be written as:

v k+1 -v k ∈ -β k ∂ϕ(u k+1 ), with v k = α(u k -z) + (u k -u k-1 ). ( 14 
)
Similar to the continuous version, we study the convergence properties of the algorithm (IP α,β k ).

Convergence rate results

the next theorem gives convergence rate results. Theorem 4.1 Consider the algorithm (IP α,β k ) and assume that sequence β k is non negative and satisfies the following condition: For k ≥ 1

β k+1 ≤ (1 + α)β k . (H β )
Then, for any sequence (u k ) generated by the algorithm (IP α,β k ), we have

               (i) ϕ(u k ) -min H ϕ = O 1 β k . (ii) k≥1 (1 + α)β k -β k+1 (ϕ(u k+1 ) -min H ϕ) < +∞. (iii) k≥1 β 2 k ζ k 2 < +∞, with ζ k ∈ ∂ϕ(u k+1 ). ( 15 
)
Proof 4.2 Let us denote briefly m := min H ϕ. Fix z ∈ argminϕ, that is ϕ(z) = min H ϕ = m, and consider, for k ≥ 1, the energy function:

E k,p = β k ϕ(u k ) -m + 1 2 v k 2 + (α -p)p 2 u k -z 2 (16 
)

with v k = p(u k -z) + (u k -u k-1
). where 0 < p ≤ α is a parameter that will be determined after.

We search for conditions on β k and α with the goal that the sequence (E k,p ) is not increasing. To this end, we evaluate the term

E k+1,p -E k,p . E k+1,p -E k,p = β k+1 ϕ(u k+1 ) -m -β k ϕ(u k ) -m + 1 2 v k+1 2 -v k 2 = (β k+1 -β k ) ϕ(u k+1 ) -m + β k ϕ(u k+1 ) -ϕ(u k ) + 1 2 v k+1 2 -v k 2 + (α-p)p 2 u k+1 -z 2 -u k -z 2 (17) which leads us to evaluate the term v k+1 2 -v k 2 .
By using the elementary algebraic equality,

1 2 v k+1 2 - 1 2 v k 2 = v k+1 -v k , v k+1 - 1 2 v k+1 -v k 2 (18) 
In other hand, we have,

v k+1 -v k = p(u k+1 -u k ) + (u k+1 -2u k + u k-1 )
, by equation ( 13), we conclude that

v k+1 -v k = (p -α)(u k+1 -u k ) -β k ζ k , with ζ k ∈ ∂ϕ(u k+1 ), ( 19 
)
which implies that

v k+1 -v k , v k+1 = (p -α) u k+1 -u k , v k+1 -β k ζ k , v k+1
by using definition of v k and the convexity of ϕ, it gives

v k+1 -v k , v k+1 = -pβ k ζ k , u k+1 -z -β k ζ k , u k+1 -u k + (p -α) u k+1 -u k , v k+1 ≤ -αβ k ϕ(u k+1 ) -m -β k ϕ(u k+1 ) -ϕ(u k ) + (p -α)A k . whereA k = p u k+1 -u k , u k+1 -z + u k+1 -u k 2 .
By combining the last inequality with [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF], we obtain

1 2 v k+1 2 - 1 2 v k 2 ≤ -pβ k ϕ(u k+1 )-m -β k ϕ(u k+1 )-ϕ(u k ) - 1 2 β 2 k ζ k 2 +(p-α)A k .
(20) together with [START_REF] Aujol | Optimal rate of convergence of an ODE associated to the Fast Gradient Descent schemes for b > 0[END_REF], gives after simplification

E k+1,p -E k,p ≤ (β k+1 -(1 + p)β k ) ϕ(u k+1 ) -m -1 2 β 2 k ζ k 2 (p -α)A k + (α-p)p 2 u k+1 -z 2 -u k -z 2 . ( 21 
)
By taking p = α in last inequality, we get

E k+1,α -E k,α ≤ (β k+1 -(1 + α)β k ) ϕ(u k+1 ) -m - 1 2 β 2 k ζ k 2 
Therefore,

E (k+1),α -E k,α + (1 + α)β k -β k+1 ϕ(u k+1 ) -m + 1 2 β 2 k ζ k 2 ≤ 0. ( 22 
)
By condition (H β ), we have (1+α)β k -β k+1 ≥ 0, then for k ≥ 1, the sequence (E k,α ) k≥1 is non-increasing minorized by zero, by definition of (E k,α ) k≥1 , we have

β k ϕ(u k ) -m ≤ E k,α ≤ E 1,α .
Which implies that

ϕ(u k ) -min H ϕ = O 1 β k ,
that's item i). For item ii) and iii), we go back to [START_REF] Chambolle | On the convergence of the iterates of the Fast Iterative Shrinkage Thresholding Algorithm[END_REF]. By summing the corresponding inequalities from k = 1 to n ≥ 1, we obtain

n k=1 (1 + α)β k -β k+1 ϕ(u k+1 ) -m + 1 2 n k=1 β 2 k ζ k 2 ≤ E 1,α -E n,α .
By condition (H β ), the two terms of the first member of the preceding inequality are positive, consequently

k≥1 β 2 k ζ k 2 < +∞, and k≥1 (1 + α)β k -β k+1 ϕ(u k+1 ) -m < +∞.
which gives the claim.

To obtain fast convergence of velocities to zero,we strengthen the condition (H β ).

Proposition 4.3 (Convergence rate of the velocities) Suppose that α > 0, and assume that there exists a positive number ρ < 1 such that for all k ≥ 1

β k+1 ≤ 1 + α(1 -ρ) β k . (H + β )
Then, we have

(i) k≥1 u k -u k-1 2 < +∞; (ii) k≥1 β k-1 (ϕ(u k ) -min H ϕ) < +∞. Moreover, k≥1 β k (ϕ(u k ) -min H ϕ) < +∞.
Proof 4.4 Following the proof of Theorem 4.1, let us return to the basic estimate [START_REF] Cabot | On the long time behavior of second order differential equations with asymptotically small dissipation[END_REF] , which we recall below

E k+1,p -E k,p ≤ (β k+1 -(1 + p)β k ) ϕ(u k+1 ) -m -1 2 β 2 k ζ k 2 +(p -α)A k + (α-p)p 2 u k+1 -z 2 -u k -z 2 . ( 23 
)
where p ≥ α and

A k = p u k+1 -u k , u k+1 -z + u k+1 -u k 2 . Since u k+1 - u k , u k+1 -z = 1 2 u k+1 -u k 2 + u k+1 -z 2 -u k -z 2 , then A k = 1 2 (1 + 2p) u k+1 -u k 2 + p u k+1 -z 2 -p u k -z 2 ,
Consequently, the inequality ( 23) becomes, after simplification

E k+1,p -E k,p ≤ (β k+1 -(1 + p)β k ) ϕ(u k+1 ) -m -1 2 β 2 k ζ k 2 + 1 2 (p -α)(1 + 2p) u k+1 -u k 2 .
Unlike the proof 3.2 , by taking p = α(1 -ρ), we obtain

E k+1,ρ -E k,ρ ≤ (β k+1 -(1 + α(1 -ρ))β k ) ϕ(u k+1 ) -m -1 2 β 2 k ζ k 2 - ρα 2 (1 + 2α(1 -ρ)) u k+1 -u k 2 .
By condition (H + β ), we conclude that

E k+1,ρ -E k,ρ + ρα 2 (1 + 2α(1 -ρ)) u k+1 -u k 2 ≤ 0.
Hence, by summing the above inequalities from k = 0 to n ≥ 1, we get

ρα 2 (1 + 2α(1 -ρ)) u k+1 -u k 2 ≤ E 1,ρ -E n+1,ρ ≤ E 1,ρ ,
since 0 < ρ < 1, we infer that k≥1 u k+1 -u k 2 < +∞, which after reindexation gives item (i). For item (ii), by condition (H + β ) and from the following elementary majorizations, we have

β k+1 ≤ (1 + α)β k ≤ (1 + α) αρ (1 + α)β k -β k+1 . Hence +∞ k=1 β k+1 ϕ(u k+1 ) -min H ϕ ≤ (1 + α) αρ +∞ k=1 Γ k ϕ(u k+1 ) -min H ϕ , (24) 
and

+∞ k=1 β k ϕ(u k+1 ) -min H ϕ ≤ 1 αρ +∞ k=1 Γ k ϕ(u k+1 ) -min H ϕ , (25) 
where 

Γ k = (1+α)β k -β k+1 . By Theorem 4.1 (item (ii)), we have +∞ k=1 Γ k ϕ(u k+1 )- min H ϕ < +∞,
W k = E k,0 = β k (ϕ(u k ) -m) + 1 2 u k -u k-1 2 (26) 
where (E k,p ) is the global energy function defined in the proof of Theorem 4.1, so let us return to the basic estimate [START_REF] Cabot | On the long time behavior of second order differential equations with asymptotically small dissipation[END_REF], with p = 0, it becomes

E k+1,0 -E k,0 ≤ (β k+1 -β k ) ϕ(u k+1 ) -m -1 2 β 2 k ζ k 2 -α u k+1 -u k 2 .
which implies that

W k+1 -W k = E k+1,0 -E k,0 ≤ (β k+1 -β k ) ϕ(u k+1 ) -m . (27) 
By condition (H + β ), we obtain

W k+1 -W k ≤ α(1 -ρ)β k ϕ(u k+1 ) -m . (28) 
Hence, the nonnegative sequence (a k ) with a k = W k satisfies the relation:

a k+1 -a k ≤ w k
where w k = β k ϕ(u k+1 ) -m . According the proposition 4.3 (item (ii)), we have k≥1 w k < +∞. Therefore, by Lemma (4.12), we deduce that the limit of the sequence (a k ) exists, that is

lim k→+∞ W k exists. (29) 
In other hanad, by proposition 4.3, we have Then u(t) converges weakly as t → +∞ to a point in S.

Lemma 4.12 Suppose that 0 ≤ p ≤ 1. Let (a k ) and (ω k ) be two sequences of nonnegative numbers such that, for all k ≥ 0,

a k+1 ≤ pa k + ω k (34) 
If 

  together with the inequality (23) implies that +∞ k=1 β k ϕ(u k+1 ) -min H ϕ < +∞, and +∞ k=1 β k+1 ϕ(u k+1 ) -min H ϕ < +∞ which gives the result, after reindexation.

Theorem 4 . 5 (= o 1 β k . Proof 4 . 6

 4546 From O to o) Suppose that the sequence (β k ) satisfies the condition (H + β ). Then, for any sequence (u k ) generated by the algorithm (IP α,β k ), we have, ϕ(u k ) -min H ϕ Consider, for k ≥ 1, the energy function W k defined by

k≥1 W k ≤ k≥1 β k (ϕ(u k ) -m) + 1 2 k≥1 u k -u k-1 2 <

 22 +∞Combining this inequality with (29), we conclude that lim k→+∞ W k = 0, which implies thatlim k→+∞ β k (ϕ(u k ) -m) = 0 and lim k→+∞ u k -u k-1 2 = 0(ii) Every weak sequential cluster point of u(t), as t → +∞.

+∞Since p ≤ 1 ,

 1 k=0 ω k < +∞, then +∞ k=0 a k < +∞. Moreover, lim a k exists. Proof 4.13 Inequality (34) givesa k+1 -a k + (1 -p)a k ≤ ω k .By summing from k = 0 to n, we deduce that n k=0 (a k+1 -a k ) + (1 -p) then we conclude that +∞ k=0 a k < +∞.

  by Theorem2.1, we have lim k→+∞ ϕ(u(t k )) = min H (ϕ), witch ensures that ū ∈ Argmin(ϕ). Since the two points of Opial's Lemma are satisfied, then u(t) converges weakly as t → +∞ to a point u * in Argmin(ϕ).

	is convex and continuous, then it is semicontinuous for the weak topology which
	means that		
	ϕ(ū) ≤ lim inf n→+∞	ϕ(u(t n )) ≤ lim k→+∞	ϕ(u(t k )),
			Since ϕ(•)

Convergence of the iterates

By following the same procedure in[], let's fix z ∈ Armin H ϕ, and define the sequence (h k ) by h k = u k+1 -z 2 . . The next proposition can be found in [], it plays a crucial role in the convergence analysis Proposition 4. [START_REF] Attouch | Rate of convergence of inertial gradient dynamics with time-dependent viscous damping coefficient[END_REF] We have

Proof 4.8 From (IP α,β k ), we observe that

), we have

(31) From other hand, we have

then from (31), we get

by using the above inequality and (32), we obtain

which completes the proof.

Theorem 4.9 Suppose that the sequence (β k ) is nondecreasing and satisfies the condition (H + β ). Then, any sequence (u k ) generated by algorithm (IP α,β k ) converges weakly, and its limit belongs to argminϕ. Proof 4.10 Let's show that the sequence (u k ) generated by algorithm (IP α,β k ), satisfies the conditions of Opial lemma(Lemma (??) ),

Assume that there exist ū ∈ H and a sequence (k n ) such that k n → +∞ and u kn ū weakly as n → +∞. Since the convex function ϕ is lower semicontinuous, so it is lower semicontinuous for the weak topology, hence, it satisfies

It ensues that ū ∈ argminϕ, which shows the first point.

(ii) Let's fix z ∈ argminϕ, and set

The purpose is to show that lim k→+∞ h k exists. From Proposition 4.7, the sequence (h k ) satisfies the following inequality

Taking the positive part, we find

From Proposition 4.