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The dynamics of ligaments retracting under the action of surface tension occurs in
a multitude of natural and industrial applications; these include inkjet printing and
atomization. We perform direct, fully three-dimensional, two-phase numerical simulations
of the retracting process over a range of system parameters that account for surfactant
solubility, sorption kinetics, and Marangoni stresses. Our results indicate that the presence
of surfactant inhibits the “end-pinching” mechanism and promotes neck reopening through
Marangoni-flow; this is induced by the formation of surfactant concentration gradients that
drive flow-reversal toward the neck. The vortical structures associated with this flow are
also analyzed in detail. We also show that these Marangoni stresses lead to interfacial
rigidification, observed through a reduction of the retraction velocity and ligament kinetic
energy.

DOI: 10.1103/PhysRevFluids.5.084007

I. INTRODUCTION

Interfacial breakup is often accompanied by the formation of satellite droplets [1–3]. Following
breakup, the interface assumes the shape of liquid threads or ligaments which undergo further
capillary breakup if their lengths exceed their perimeters [2,3]; if not, then they retract into a
single spherical drop or a multitude of droplets. Both the breakup and retraction processes are
driven by surface tension to minimize interfacial energy. These phenomena are observed in multiple
applications, such as atomization or spray formation [1,4], ink-jet printing or microencapsulation
[5–7].

In the absence of surfactant, the retracting dynamics of a Newtonian liquid thread surrounded by a
passive ambient gas has been studied by Refs. [8,9] using a Galerkin finite element approach under a
two-dimensional axisymmetric assumption in the azimuthal direction, and by also assuming another
symmetry through the ligament midplane in the longitudinal direction; the flow is parameterized by
the ligament aspect ratio, Lo = L/R, and Ohnesorge number, Oh = μ/

√
ρσR, where L and R are the

initial half length and radius of the ligament, while ρ, μ, and σ are the density, dynamic viscosity,
and surface tension, respectively.
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Reference [9] has simulated the ligament retraction toward a minimum radius of r ∼ 0.8R,
where r is the radial coordinate, while [8] were able to reach r ∼ 10−4 × R. Reference [8] has also
presented the temporal evolution of a retracting ligament of aspect ratio Lo = 15 for three different
regimes depending on the magnitude of Oh: (i) low Oh values (Oh ∼ 10−3), where capillarity is
more dominant than viscous forces, the outcome is the formation of two bulbous regions at both ends
of the ligament that pinchoff eventually leading to the formation of a smaller, secondary ligament;
(ii) intermediate Oh values (Oh ∼ 10−2), where there is a balance between viscous and capillary
forces, a situation that culminates in the breakup of the ligament into three droplets; (iii) at higher
Oh values (Oh ∼ 10−1), which reflects the dominance of viscous forces and for which the retraction
is not accompanied by breakup but by the formation of a single spherical drop.

Reference [8] has also presented a regime map of the ligament evolution prior to its eventual
breakup, varying both Lo and Oh. Reference [10] performed experiments on retracting ligaments
beyond breakup, and, more recently, Ref. [11] extended the work of Ref. [8], considering all
possible ranges of fluid properties (Oh = 10−3–100) and aspect ratios (Lo = 5–103). Reference [12]
has shown that a cylindrical ligament undergoes capillary-driven “end-pinching” at low values of
Ohnesorge number (below Oh ∼ 0.002). As Oh increases, a viscous boundary layer is localized in
the region of the neck, due to its high curvature, which may detach leading to the formation of a
jet inside the thread, reopening the neck and, subsequently, inhibiting the end-pinching mechanism.
This jet is the onset of formation of a vortex ring inside the bulbous ends of the ligament.

Reference [13] have performed both experimental and two-dimensional axisymmetric compu-
tations to determine the influence of capillary waves on the ligament stability at low viscosities
(i.e., low Oh numbers). They have shown that the end-pinching mechanism always takes place for
large Lo (i.e., Lo > 14 for Oh < 0.03). At intermediate Lo (i.e., 5 � Lo � 14 for Oh < 0.03), the
retraction time is too short for the neck to lead to an end-pinching mechanism, and the dynamics
are induced by the interaction of the superficial capillary waves. This capillary wave interaction
provides another mechanism to generate equal-sized droplets. Recently, Ref. [14] has analyzed the
capillary retraction of Newtonian ligaments identifying three distinct regions in the system: the
body of the ligament, the growing spherical bulbous end regions, and the intermediate region which
connects the bulbous ends to the ligament body.

The studies summarised in the foregoing have shown that the ligament dynamics are character-
ized by a longitudinal retraction followed by one or possibly several breakup events [6,15–18] which
lead to satellite droplet formation. The presence of surfactant, either as an additive or a contaminant,
influences the interfacial dynamics via reduction of the mean surface tension, and the creation of
Marangoni stresses. Reference [19] showed that insoluble surfactant retard thread pinchoff but do
not alter the breakup scalings; this is because the surfactant is convected away from the thread neck
by the capillary-driven flow.

Reference [20] observed the formation of microthreads, which connect drops during the thinning
of surfactant-covered threads. This thinning toward the breakup singularity follows the scalings
predicted by Ref. [17]. Reference [21] performed both experiments and simulations of pendant
droplets covered by insoluble surfactant and showed that Marangoni stresses are responsible for
microthread formation. These stresses act near the pinch point giving rise to reduced rates of thread
thinning. Reference [21] further observed that as the thread thins, a stagnation point is formed
leading to surfactant accumulation at this point resisted by Marangoni-induced flow.

Surfactant solubility provides additional complexity due to its influence on Marangoni-driven
transport along the interface, which influences the stability and dynamics of a number of flows
driven by capillary instabilities. Reference [22] observed experimentally that the addition of a
soluble surfactant at high concentrations enhances the asymmetric behavior of a liquid bridge.
References [23,24] studied the detachment of a viscous drop in the presence of soluble surfactant.
They have shown that solubility alters the drop dynamics in terms of neck thinning. For slow
adsorption-desorption kinetics, characterized by a large, suitably defined Biot number, Bi, solubility
does not influence the neck dynamics since surfactant behaves as an insoluble additive leading
to the formation of primary and secondary necks, and the capillary breakup of the former. For
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faster adsorption-desorption kinetics (i.e., increasing Bi), the neck dynamics can transition through
different regimes such as the existence of only one neck, the thinning of the secondary neck, or
the inhibition of neck thinning. As the Biot number increases, the mean interfacial concentration
approaches its equilibrium value, as the rate of mass transfer between the bulk and the interface
becomes comparable to, and eventually, exceeds the convection rates which give rise to the
formation of Marangoni stresses. Reference [25] has studied the breakup of a viscous thread in
the presence of soluble surfactant at concentrations that are potentially above the critical micelle
concentration and have shown that Marangoni stresses cause the formation of large satellites. This
prediction was observed experimentally by Refs. [26,27] where the satellite drop size increased by
up to three times when soluble surfactant was added; the diffusion from the bulk to the interface
has also been studied experimentally by Roche et al. [13]. Reference [25] have also shown that the
scalings for the minimum neck radius and axial velocity as the breakup singularity is approached
are the same as the ones derived by Ref. [17] as surfactant is swept away from the thinning region.

In this paper, we perform numerical simulations of the Navier-Stokes equations coupled to
transport equations for the interfacial and bulk surfactant species to analyze the effect of soluble sur-
factant on the dynamics of retracting ligaments. Our study accounts for surfactant solubility, sorption
kinetics, bulk and interfacial diffusion, and Marangoni stresses. A hybrid front-tracking/level-set
approach is used to resolve the interfacial dynamics [28]. We use the results of our simulations
to elucidate the delicate interplay between the flow dynamics and the surfactant physico-chemical
effects that underlies the mechanisms responsible for several phenomena of interest; these include
ligament retraction with and without breakup, and, in the latter case, subsequent re-coalescence. In
this study, we show that the surfactant concentration gradients along the interface give rise to the
formation of Marangoni stresses that suppress the “end-pinching” mechanism.

The rest of this article is organized as follows. Section II presents the governing equations for the
flow and surfactant transport, the simulation configuration, and the numerical methods. In Sec. III,
we present a discussion of our results focusing on the effect of surfactant on the dynamics of
the thread, a parametric study with respect to the governing surfactant parameters, and a detailed
analysis of the vorticity. Finally, concluding remarks are provided in Sec. IV.

II. FORMULATION AND PROBLEM STATEMENT

A. Governing equations

The numerical simulations are performed by solving the two phase Navier-Stokes equations
in a three-dimensional Cartesian domain x = (x, y, z). Surfactant transport was resolved in both
the liquid bulk and on the interface by convection-diffusion equations describing the transport of
surfactant species in the bulk and on the interface, with concentrations C and �, respectively. The
source term of the momentum related to the surface tension forces is treated by using a hybrid
interface-tracking/level-set method presented by Ref. [29]. The surface force is decomposed into its
normal component for the normal stress jump across the interface, and its tangential component,
which is associated with the surface gradient of the surface tension due to the presence of surfactant
[28]. All variables are rendered nondimensional by using the following scaling where the tildes
designate dimensionless quantities:

r̃ = r

R
, t̃ = t

tR

, ũ = u
uR

, p̃ = p

ρl u2
R

, ρ̃ = ρ

ρl

, μ̃ = μ

μl

,

σ̃ = σ

σs
, �̃ = �

�∞
, C̃ = C

C∞
, C̃s = Cs

C∞
, (1)

where, t , u, and p stand for time, velocity, and pressure, respectively. The physical parameters
correspond to the liquid density ρl , and viscosity, μl , and the surfactant-free surface tension, σs.
The length and timescales are normalised by the initial ligament radius R and the capillary breakup
timescale tR = √

ρl R3/σs, respectively. Hence, velocities are scaled by the capillary velocity uR =
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R/tR = √
σs/(ρl R). Additionally, �∞ and C∞ are the interfacial concentration at saturation and the

bulk concentration, respectively. Finally, Cs is the concentration of surfactant in the bulk sub-phase,
immediately adjacent to the interface. As a result of this scaling, the dimensionless equations are

∇ · ũ = 0, (2)

ρ̃

(
∂ũ
∂ t̃

+ ũ · ∇ũ
)

+ ∇ p̃ = Oh ∇ · [μ̃(∇ũ + ∇ũT )] +
∫

Ã ˜(t )
(σ̃ κ̃n + ∇sσ̃ )δ(x̃ − x̃ f )dÃ, (3)

∂C̃

∂ t̃
+ ũ · ∇C̃ = 1

Peb
∇ · (∇C̃), (4)

∂�̃

∂ t̃
+ ∇s · (�̃ũt ) = 1

Pes
∇2

s �̃ + J̃, (5)

J̃ = Bi[kC̃s(1 − �̃) − �̃], (6)

σ̃ = 1 + βs ln (1 − �̃), (7)

where the density and viscosity are given by ρ̃ = ρg/ρl + (1 − ρg/ρl )H (x̃, t̃ ) and μ̃ = μg/μl +
(1 − μg/μl )H (x̃, t̃ ), wherein H (x̃, t̃ ) represents a smoothed Heaviside function, which is zero in
the gas phase and unity in the liquid phase, while subscripts “g” and “l” designate the gas and liquid
phase, respectively; κ and n denote the curvature and the outward-pointing unit normal, respectively,
and the surface gradient operator is given by ∇s = [I − nn] · ∇, wherein I is the identity tensor, x̃ f

is a parametrization of the interface Ã(t̃ ), and δ(x̃ − x̃ f ) is a Dirac delta function that is nonzero
only when x̃ = x̃ f .

Additionally, ũt = (ũs · t)t is the tangential velocity on the interface in which ũs represents the
surface velocity; J̃ is the sorptive flux, which provides a relationship between C̃ and �̃ that connects
the bulk and interfacial concentrations. The left-hand side of Eq. (5) represents the transient and
convective transport of surfactant at the interface, and its right-hand side models interfacial diffusion
and bulk-interface mass exchange.

The dimensionless parameters appearing in Eqs. (3)–(7) are given by

Oh = μl√
ρl σsR

, Bi = kd R

uR

, βs = �T �∞
σs

, Pes = uR R

Ds
, Peb = uR R

Db
, (8)

where Oh denotes the Ohnesorge number and measures the relative importance of viscous to surface
tension forces, Bi is the Biot number representing the ratio of characteristic desorptive to convective
timescales, βs is the elasticity number, which measures the sensitivity of the surface tension to
changes in surfactant interfacial concentration; Pes and Peb are the interfacial and bulk Peclet
numbers and compare the ratio of convective to diffusive timescales in the plane of the interface
and the bulk, respectively. Finally, kd refers to the surfactant desorption coefficient, � the ideal gas
constant, T the temperature, Ds and Db the surfactant interfacial and bulk diffusivities, respectively.

At equilibrium, Eq. (6) reduces to the Langmuir adsorption isotherm

χ = �eq

�∞
= k

1 + k
, k = kaC∞

kd
, (9)

where χ stands for the fraction of surface covered by adsorbed surfactant, k is the adsorption
parameter, which represents the ratio of adsorption to desorption timescales. Here, ka refers to the
adsorption coefficient. The equation of state describing the variation of the surface tension as a
function of the local interfacial surfactant concentration is given by the Langmuir relation shown in
Eq. (7). Marangoni stress, τ , arises due to the surface tension gradients and they can be expressed
in terms of gradients in � as follows:

τ̃ ≡ ∇sσ̃ · t = − βs

1 − �̃
(t · ∇s�̃). (10)

For simplicity, the tildes are dropped henceforth.
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The viscosity and density ratios, ρg/ρl and μg/μl , are set to 1.2 × 10−3 and 1.8 × 10−2,
respectively, corresponding to values for a water ligament in air. The timescale associated with the
Marangoni flow is determined from a balance between Marangoni stresses and viscous retardation,
τ ∼ �σ/R ∼ μl /tM , hence tM = μl R/�σ , and is of order 10−3 s. However, the capillary breakup
time is of order 10−2 s, and the timescale associated with the retraction of the ligament is also of
order 10−2 s. For the soluble cases, we consider the properties of n-alcohols (such as n-propanol,
n-butanol, and n-pentanol) or dicarboxylic acid type (such as adipic and pimelic acid) as surfactants,
which are characterized by desorptive timescales of 10−2 s [30–32]. Therefore, for both soluble and
insoluble surfactant configurations, Marangoni stress is expected to play a major role in the ligament
retraction dynamics.

B. Problem statement and validation

As introduced in the beginning of this section, the liquid ligament is initialised as a cylindrical
thread of length 2L with an aspect ratio Lo = L/R = 15 and hemispherical caps at its two ends,
as shown in Fig. 1(a). The size of the three-dimensional computation domain is 8R × 8R × 32R,

where the z coordinate is aligned with the height of the ligament while x and y are along its
width. Hence, a radial component is defined as r =

√
(x − xo)2 + (y − yo)2, where xo and yo are the

abscissa and ordinate ligament position, respectively. The simulation is initialised with fluids at rest
in the absence of gravity. A no-slip boundary condition is imposed on the fluid velocity at the walls
of the computational domain and a Neumann condition is imposed for the pressure (∂ p/∂n = 0),
where n here refers to the normal vector at the boundaries of the computational domain. At the free
surface, we set

n · ∇C̃ = −PebBi(kC̃s(1 − �̃) − �̃), (11)

as a condition on C̃. The entire domain is discretized into an Eulerian fixed regular mesh. The
surfactant-free simulation was carried out on three different meshes, referred to here as M1, M2,
and M3, to ensure mesh-independent results. The results presented in the study correspond to the
M2 mesh, unless stated otherwise. The code was benchmarked against the ligament profiles of
Ref. [8] (see Fig. 2) on the dynamics of the surfactant-free simulation and the pichoff time. The
validation of the surfactant solver has been presented previously by Ref. [28], where the authors
ensured mass conservation of the surfactant. More information of the validation, mesh refinement
studies, and numerical method can be found in the Appendix.

III. RESULTS

In this section, we present a discussion of our results, beginning by comparing our predictions
with previous work on retracting surfactant-free ligaments. This serves the purpose of validating our
numerical method and provides a benchmark against which to highlight the effects associated with
the presence of surfactant.

A. Surfactant-free ligament retraction and capillary-breakup

We study the retraction of a surfactant-free ligament with Lo = 15 and Oh = 10−2 previously
examined by Refs. [8,9] paying particular attention to interfacial breakup and post-pinchoff
dynamics. To inspire confidence in the reliability of the numerical method used to carry out the
computations, we show in Fig. 2 a comparison between our numerical predictions and those from
Ref. [8], which reveals a good agreement. Figure 3 depicts time-space plots of the interface,
pressure, and the axial velocity; for the latter two, spatial variations are shown with respect to the
ligament centreline. The initially motionless, cylindrical ligament undergoes retraction due to the
pressure gradient between the two bulbous ends and the rest of its body, which drives flow from
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FIG. 1. Schematic representation of the initial shape of the ligament (a) highlighting the fluid quantities
and nondimensional parameters of the system, and (b) initial shape of the ligament with the computational
domain of size 8R × 8R × 32R in a three-dimensional Cartesian domain x = (x, y, z) and divided into 6 ×
6 × 12 subdomains; the Cartesian resolution is set to 32 × 32 × 64 per subdomain, and the global resolution
is 192 × 192 × 768. Typical interfacial shape for a surfactant-free case at t = 7 for Lo = 15 and Oh = 10−2

(c) with definitions of particular locations and features whose dynamics will be discussed in the present work.
(d) Typical interfacial shape for a surfactant-laden case at t = 7 with Lo = 15, Oh = 10−2, Bi = 1, Pes = 10,
and χ = 0.9 with color bars indicating the magnitude of the surfactant interfacial and bulk concentrations in
the left and right halves of the ligament, respectively.

these regions toward its center in the form of a capillary wave; this dominates the early stages of the
dynamics.

The retraction velocity results from a force balance between capillary and inertial forces, the
latter being proportional to the rate of change of momentum of the bulbous ends. Extending the
Taylor-Culick expression for the retraction of a two-dimensional axisymmetric planar liquid sheet
to a cylindrical thread, we arrive at V = (2σs/ρl πR)1/2, which gives a value for the vertical velocity
of retraction 0.079 m/s. This is in good agreement with the retraction velocity predicted by our
simulations, ∼0.0789 m/s and provides further validation of the accuracy and reliability of our
numerical method.
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FIG. 2. Spatiotemporal evolution of a retracting ligament for Lo = 15 and Oh = 10−2. The solid lines
correspond to the results of the present study and the diamonds are collected from Ref. [8].

The retraction motion and associated capillary waves form neck regions near the two ends of the
ligament connecting the bulbous regions with the rest of the ligament. The pressure under these
neck regions is large and drives flow away from them on timescales shorter than those related
to retraction, dominating the intermediate stage of the dynamics, and promoting further necking
and an even larger pressure gradient that eventually leads to a double pinchoff event for the set of
parameters used to generate these results; the profiles for the interface, pressure, and axial velocity
associated with this event are highlighted in red in Figs. 3(d) and 3(f).

Figure 3(a), which highlights the temporal evolution of the north and south tips of the bulbous
ligament ends during retraction, also shows that the pinchoff, which takes places at t ∼ 11.11,
is followed by the formation of three droplets [see Fig. 3(a) for t = 11.4]. These droplets are
sufficiently close that a double coalescence takes place simultaneously at t = 12.1 generating
capillary waves that travel up and down the ligament [see Fig. 3(a) for t = 12.6, 14, and 15.2].
These waves decelerate giving way to decaying oscillations between a spherical and an ellipsoidal
ligament shape that are the main features of the late-time dynamics [see Fig. 3(a) for t = 28
and 37].

It is also instructive to perform an analysis of the temporal variation of the system energy. The
total energy ET must be constant over time and its constituents are the surface energy, Es = Sσs,
where S is the superficial area of the ligament, the kinetic energy, Ek = ∫

V (ρu2)/2dv, and the
energy dissipated, ED = − ∫

V (τ̃ : ∇u)dv, where τ̃ refers to a viscous stress tensor. As highlighted
in Fig. 3(b), all energies are normalised by the surface energy of a motionless spherical droplet
with a volume similar to that of the ligament of aspect ratio Lo = 15. Initially, the total energy is
solely represented by the surface energy Es. When the ligament retracts, part of the surface energy
is transferred into kinetic energy. During the coalescence of the three droplets (at t ∼ 12.1) the
total area of the system changes significantly and a fraction of the surface energy is dissipated [see
Fig. 3(b)]. At longer times, Es → 1 and Ek → 0, as the ligament tends toward a steady, spherical
shape.

B. Surfactant-laden ligament retraction: Escape from capillary-breakup

In this section, we present the effect of insoluble surfactant on the dynamics of a retracting
ligament with Lo = 15, Oh = 10−2, Pes = 10, βs = 0.3, and �o = �∞/2. Figure 4 depicts the
spatiotemporal evolution of the interface and � together with the pressure and axial velocity
along the ligament centreline. Similar to the surfactant-free case, retraction is accompanied by the
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FIG. 3. Surfactant-free ligament retraction for Lo = 15 and Oh = 10−2: (a) Temporal evolution of the
location of both ligament tips, and a three-dimensional representation of the interface for the dimensionless
times shown in the panel in which the color bar depicts the velocity magnitude; (b) temporal evolution of the
total, kinetic and surface energies, ET , EK , and ES , respectively, and the energy dissipated, ED; (c) scaling
of the minimum radius with respect to the pinchoff time to = 11.115, which agrees with that predicted by
inertio-viscous scaling theory of Ref. [17]; (d)–(f) time-space plots of the interface, p, and uz, respectively, with
snapshots shown between t = 0–13.5, with time intervals of 1 between t = 0–11 and 0.5 between t = 11–13.5;
here, the red profiles are associated with t = 11.5 and t = 12, the instances at which pinchoff occurs.

formation of capillary waves that dominate the dynamics leading to the collapse of the initially
cylindrical ligament toward a spherical one. The surfactant concentration �, which is coupled to
the interfacial dynamics through the dependence of σ on �, is redistributed along the interface,
and achieves a maximal value around t ∼ 15 since the ligament area decreases as it approaches a
spherical shape. As shown clearly in Figs. 4(a) and 4(b), the presence of surfactant retards ligament
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FIG. 4. Ligament retraction with an insoluble surfactant for Lo = 15, Oh = 10−2, Pes = 10, βs = 0.3, and
�o = �∞/2: (a) temporal evolution of the north tip location for the surfactant-free and surfactant-laden cases,
and a three-dimensional representation of the interface for the dimensionless times shown in the panel in which
the color bar depicts the magnitude of the surfactant interfacial concentration, �; (b) temporal evolution of the
Kinetic energy EK for the surfactant-free and surfactant-laden cases; (c) temporal evolution of the neck radius
highlighting the two escapes of pinchoff; (d)–(g) time-space plots of the interface, �, p, uz with snapshots
shown between t = 0–16 at equal time intervals; here, the red profiles are associated with t = 10.

retraction as evidenced by the slower temporal evolution of the ligament tips and lower kinetic
energy in comparison to the surfactant-free case; the retraction speed is ∼0.070 m/s as compared
to ∼0.0789 m/s in the “clean” case. This is due to the surfactant-induced interfacial rigidification
brought about by the Marangoni stresses, which, in turn, are caused by gradients in �.

To elucidate the coupling between interface and surfactant concentration, we consider the
interface, �, p, and uz, at t = 10 shown in red dashed lines in panels (c)–(f) of Fig. 4. The retraction
capillary waves are characterized by regions of radially diverging and converging motion and
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FIG. 5. Spatial variation of the interfacial shape, �, and τ (a), the tangential interfacial velocity, ut , for
the surfactant-free and surfactant-laden cases (b), and the streamline structure within the retracting ligament,
(c); the parameter values are the same as in Fig. 4 with t = 10.

associated higher and lower interfacial areas and therefore reduced (i.e., increased) and increased
(i.e., reduced) � (σ ) locally, respectively. These concentration gradients lead to Marangoni stresses
that drive flow from the higher-tension radially diverging to the lower-tension converging regions,
which act to retard the interfacial motion. To further illustrate the retarding effect of the Marangoni
stresses, three distinct regions are also highlighted, as shown in Fig. 5(a). In Region “A,” the
interfacial flow diverges away from point “1,” at the ligament tip, driving surfactant away from
this location leading to the lowest � value along the interface. There is an overall increase in �

from the tip toward the center reaching a maximal value at location “3” where the interface exhibits
a local minimum. The � profile then undergoes oscillations in response to the wavy shape of the
interface, with a local minimum and maximum in � at locations “4” and “5” that coincide with a
local interfacial maximum and minimum, respectively. It is clear from Fig. 5(a) that τ < 0 in Region
“A,” suggesting that the direction of the Marangoni flow is toward the ligament tip, which acts to
retard the capillary-driven flow from the tip toward the center; this retarding effect in Region “A”
manifests itself through a decrease in the tangential velocity along the interface, ut , as shown in
Fig. 5(b). In Region “B,” τ > 0, thus Marangoni-driven flow is toward the ligament center, which is
counter to the capillary flow away from this necking region. As also indicated in Fig. 5(b), ut , which
was negative in Region “B” in the surfactant-free, becomes positive in the surfactant-laden case.

It is also evident that using similar mechanisms, the Marangoni-driven flow reduces substantially
the magnitude of ut in Region “C.” Figure 5(c) shows the structure of the streamlines, which
characterize the flow within the ligament. It is clearly seen that the formation of several stagnation
points occurs along the interface reflecting the competition between the capillary- and Marangoni-
driven flows an example of which is provided by the stagnation point close to the neck region. The
formation of the stagnation zone is similar to what [21] have described, reporting the deceleration
of the fluid by the action of the Marangoni stress during the thinning of the fluid thread. This force
competition reverses the flow direction, leading to the genesis of the stagnation zone.

To separate the effects of mean surface tension and Marangoni stresses induced by surface
tension gradients, we consider a case in which the surface tension value is reduced and given by
Eq. (7) using the initial interfacial concentration, but where no Marangoni stresses are supported.
Figure 6 shows that the reduction in surface tension leads to a delay in the ligament retraction but
does not prevent breakup; very similar behavior to the surfactant-free case is observed in terms of
the formation of three droplets, which eventually coalesce, and temporal evolution of the kinetic
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FIG. 6. Dynamics of a retracting, surfactant-covered ligament with isolating the Marangoni effect:
(a) temporal evolution of the north tip location for the surfactant-free and surfactant-laden cases, and a
three-dimensional representation of the interface for the dimensionless times shown in the panel in which
the color bar depicts the magnitude of the surfactant interfacial concentration, �; (b) temporal evolution of the
kinetic energy EK for the surfactant-free and surfactant-laden cases.

energy which undergoes a slightly delayed rise due to the slower capillary-driven flow, as expected.
These results demonstrate that the prevention of the breakup is due to the formation of Marangoni
stresses rather than the reduction in surface tension.

In Fig. 4(c), we observe two escapes from breakup at t ∼ 12.3 and t ∼ 14.3. The interfacial
shape prior to the first escape resembles that of the surfactant-free case before its breakup, shown
in Fig. 3(a). Hence, we will compare the flow fields of theses two cases to determine the effect of
surfactant on the onset of suppression of the capillary breakup for the surfactant-laden case.

The first row of Fig. 7(a) shows the flow behavior through the azimuthal vorticity, ωθ , the
instantaneous streamlines, and a three-dimensional representation of the velocity vector field for
the surfactant-free case before pinchoff. Two stagnation points shown in Fig. 7(a) at t = 10.6 are
also observed on either side of the neck, for which there is a change in direction of the flow rotation.
By inspecting ωθ , the highest vorticity production is located on the neck of the ligament promoted
by the large interfacial curvature in that region. A thin vorticity boundary layer is detached from the
neck of the ligament and diffuses into the bulk of the bulbous region [see Fig. 7(a) at t = 11.0]. As
the interfacial singularity is approached, the axial velocity component through the neck increases
due to the associated rise in the capillary pressure, which pumps liquid rapidly away from the neck
toward the bulbous region. The velocity achieves its maximum value at the moment of singularity
as can be seen in Fig. 7(a).

The second row of Fig. 7(b) shows the flow behavior for the surfactant-laden case prior to the
first escape from pinchoff. Inspection of ωθ reveals the formation of a vortex ring also located at the
neck, as shown at t = 12.0. However, the vorticity production is not as strong as in the surfactant-
free case due to the rigidification of the interface brought about by the presence of Marangoni
stresses. In comparison to the surfactant-free case, an additional stagnation point between the neck
and the center of the ligament is observed as shown in Fig. 7(b) at t = 12.0. The presence of this
stagnation point has an associated vortex ring which interacts with the interface. As time increases,
the mutual interaction of the two vortices leads to a vortex-pairing process, as shown at t = 12.3.
This pairing up reverses the flow direction toward the neck ultimately leading to its reopening. The
framed regions of the ligament show a magnified view of the flow direction and the flow reversal
toward the neck. As the flow re-enters through the neck, the formation of a jet toward the bulbous
region is observed, which gives rise to a vortex ring that eventually detaches toward the center of
the bulbous region, as shown at t = 12.4. This behavior is similar to the phenomenon explained by
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FIG. 7. Illustration of the surfactant-mediated mechanism underlying the first escape from pinchoff in
Fig. 4(c) depicting the vorticity ωθ and streamlines for the surfactant-free case at t = 10.6, 10.8, and 11 (a),
and the surfactant laden base case (b) at t = 12.0, 12.3, and 12.4, with the same parameters as in Fig. 4. The
framed regions of the ligament show a magnified view of the flow direction at every snapshot.

Ref. [12] (see their Fig. 6), where they showed that the formation of a vortex ring plays the primary
role in the escape from breakup of viscous ligaments in the absence of surfactant.

Figure 8(a) shows the coupling between the interface, uz, and p for the surfactant-free case as the
neck evolves toward its capillary breakup. We have limited the fields to the framed region shown
at the top of Fig. 8, due to the axisymmetric behavior of the system. As the neck reduces its size,
capillary pressure drives the flow, pumping fluid toward the neck, and, consequently, uz increases
over time.

Similarly, Fig. 8(b) shows the coupling between �, τ , uz, p and the interface for the surfactant-
laden base case. At t = 11.8, uz has a qualitatively similar behavior to that associated with the
surfactant-free case though the competition between Marangoni stresses and the capillary pressure
determines the direction of the flow. Inspection of τ at t = 11.8 reveals the presence of two
Marangoni peaks of opposite sign is observed; we have labeled the positive and negative peaks
“P1” and “P2,” respectively. We have also labeled with red and blue arrows the direction associated
with Marangoni-induced and capillary-driven flow.

In the region where P2 is located (see Fig. 8(b) at t = 11.8), Marangoni stresses and capillary
pressure drive flow toward the neck and the center of the ligament, respectively. Hence, both
mechanisms act in opposing directions. The induced τ decelerates the flow caused by the capillary
pressure (observe that uz at t = 11.8 and t = 12.0 is equal to 0.18 and 0.05, respectively). At t =
12.0, an additional stagnation point appears, as already discussed in connection with Fig. 7(b) and
the deceleration continues until flow-reversal occurs at t = 12.1 with the merging of two stagnation
points. Furthermore, the τ peak P1 also decelerates the flow which passes through the neck though
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FIG. 8. Spatiotemporal evolution of the interfacial shape, uz, and p for the surfactant-free case (a), and the
surfactant-laden case (b), for the same parameters as those used to generate Fig. 7. In (b), we have also plotted
the evolution of � and τ , and labeled the the direction of the Marangoni-induced and capillary-driven flows
with red and blue arrows, respectively. The dimensionless times are shown in each panel.

the neck size reduces over time in this case. After this point, the flow behavior followsthat described
previously in the discussion of Fig. 7(b). It is also noteworthy that a comparison of the pressure p
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FIG. 9. Illustration of the surfactant-mediated mechanism underlying the second escape from pinchoff in
Fig. 4(c) depicting the vorticity ωθ and streamlines (a) at t = 13.8, 14.4, and 14.5. The framed regions of the
ligament show a magnified view of the flow direction at each time. In (b), we have plotted the spatiotemporal
evolution of the interfacial shape, �, uz, and τ and labeled the direction of the Marangoni-induced and capillary-
driven flows with red and blue arrows, respectively.

for the clean and surfactant-laden cases reveals that a reduction of the capillary pressure is observed
in the latter case due to the reduction in surface tension.

Finally, we examine the flow field associated with the second reopening of the neck, t ∼ 14.5,
depicted in Fig. 4(c). As shown at t = 13.8 in Fig. 9, a large counter-clockwise rotating vortex is
located at the neck, which drives flow from the neck toward the center of the bulbous region as
shown through the representation of the velocity vector fields. At t = 13.8, the displacement of the
vortical ring from the neck toward the bulk is observed. This vortex moves flow from the neck to
the bulk triggering the reopening of the neck. Comparing the neck size at t � 14.8, the neck does
not stretch further and resists capillary breakup.
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FIG. 10. Effect of βs on the retraction dynamics for Lo = 15, Oh = 10−2, Pes = 10, and �o = χ�∞/2:
(a, b) temporal evolution of the north-tip location, and the kinetic energy, Ek , respectively; panels (a) and
(b) also show three-dimensional representations of the interface for βs = 0.5 and 0.1, respectively, and for
the dimensionless times shown in the panels in which the color bar depicts the magnitude of the surfactant
interfacial concentration, �. Panels (c), (e) and (d), (f) show the spatial variation of the interfacial shape, �,
and τ , and the tangential interfacial velocity, ut , for the surfactant-free and surfactant-laden cases, respectively,
at t = 10. In panels (c), (e) and (d), (f), βs = 0.1 and 0.5, respectively. Note: in (c) interface location is
superimposed, however, axis is not shown.

Figure 9 shows simultaneously a snapshot of the interface, �, and uz at t = 13.8 in which two
stagnation points are observed; the highest value of � is located close to the neck that links the
neck with the bulbous region while its lowest value is at the center of the ligament. Subsequently,
Marangoni stresses induce flow toward the second stagnation point (see the strong magnitude peak
of τ ; a red arrow has been added to highlight the induced flow due to the concentration gradients). In
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FIG. 11. Illustration of the no-escape from pinchoff for βs = 0.1 at t = 13 and 13.2. The rest of the
parameters are the same as in Fig. 10.

this region, the flow induced by τ competes with that driven by the capillary pressure in the opposite
direction (shown with the blue arrow). As time evolves, � is convected toward the center of the
ligament which becomes a point of convergence and τ acts to oppose the surfactant accumulation
(see t = 14.4 and t = 14.5); τ decelerates the flow induced by the capillary pressure and triggers
flow-reversal, which is highlighted by the merging of the two stagnation points at t = 14.5. The
flow reversal is due to the decrease in magnitude of the capillary pressure because of the surfactant-
induced local reduction in surface tension; consequently, the capillary-driven flow is not strong
enough to overcome that due to Marangoni stresses. With the suppression of one of the stagnation
points, the vortex ring is displaced toward the bulk of the bulbous region.

C. Parametric study

Here, we investigate the fate of the ligament on system parameters such as the dimensionless
elasticity parameter, βs, the surface Peclet number, Pes, the Biot number, Bi, and the adsorption
parameter, χ . Unless stated otherwise, the parameters remain fixed to their “base” values: Lo = 15,
Oh = 10−2, βs = 0.3, and Pes = 10.

We begin by examining the effect of parameter βs, which characterizes the relative significance
of Marangoni stresses. As highlighted above, the redistribution of surfactant along the interface
gives rise to concentration gradients and Marangoni stresses that act to retard retraction and prevent
ligament pinchoff. Further evidence for this is provided in Figs. 10(a) and 10(b) in which we plot
the temporal evolution of the ligament tip location, and the kinetic energy, respectively, for βs = 0.1
and 0.5. In Fig. 10, we also show a three-dimensional representation of the interface for these βs

values. With increasing βs, the Marangoni stresses are strengthened leading to a larger reduction in
the retraction velocity and highlighting their retarding effect on the dynamics. As can also be seen
clearly from Figs. 10(a) and 10(b), for sufficiently large βs values, Marangoni stresses dominate the
flow preventing ligament breakup. In Figs. 10(c) and 10(e), and 10(d) and 10(f), in which we plot a
snapshot of the interfacial shape, �, τ and ut (for the clean and surfactant-laden cases), for βs = 0.1
and 0.5, respectively, it is shown that for the higher βs value, the larger Marangoni stresses lead
to a more uniform distribution of surfactant along the interface and a greater degree of interfacial
rigidification; this is illustrated further through the overall reduction in ut and EK [see Fig. 10(b)]
with increasing βs.
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FIG. 12. Effect of Pes on the retraction dynamics for Lo = 15, Oh = 10−2, βs = 0.3, χ = 0.9 and �o =
χ�∞/2: (a) temporal evolution of the north-tip location and three-dimensional representations of the interface
for Pes = 0.1 and for the dimensionless times shown in the panels in which the color bar depicts the magnitude
of the surfactant interfacial concentration, �; (b) temporal evolution of the kinetic energy, Ek . respectively;
panels (a) and (b) also show βs = 0.5 and 0.1, panels (c) and (d) show the spatial variation of the interfacial
shape, �, and τ , and the tangential interfacial velocity, ut , for the surfactant-free and surfactant-laden cases,
respectively, for Pes = 0.1 and at t = 10. Note: in panels (c) and (e) interface location is superimposed;
however, axis is not shown.

For βs = 0.5, the escape from the end-pinching mechanism is observed as described in the
previous section. For βs = 0.1, however, the relative importance of Marangoni stresses is smaller
(see τ magnitude on Fig. 10(c) which does not lead to prevention of the capillary breakup of the
ligament (see interface at t = 13.4). Figure 11 shows that τ is not sufficiently large to reverse the
flow and the merging of the stagnation points does not occur here. Due to the existence of these
two stagnation points close to the neck, the vortex ring close to the neck is not displaced toward
the bulk (similar to Fig. 9 at t = 14.4), which is the genesis of the escape of pinchoff. Therefore, we
are identifying two different regimes with respect to βs, and the transition region between the two
regimes is located between βs = 0.1 and βs = 0.3.

In Fig. 12, we show the effect of varying Pes, which reflects the influence of surfactant diffusion
effects along the interface, on the retraction dynamics. Inspection of this figure reveals that the
promotion of diffusive effects through a decrease in Pes leads to a more uniform interfacial
distribution of � and a reduction in the magnitude of surface tension gradients. It can also be seen
that the retraction speed and ligament kinetic energy are weakly dependent on Pes: they exhibit
quantitatively similar dynamics over a three orders of magnitude variation in Pes. Therefore, keeping
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FIG. 13. Effect of Bi on the retraction dynamics for Lo = 15, Oh = 10−2, βs = 0.3, Pes = 10, Peb = 10,

and �o = χ�∞/2: (a) and (b) temporal evolution of the north-tip location, and the kinetic energy, Ek ,
respectively; panels (a) and (b) also show three-dimensional representations of the interface for Bi = 1 and
10−3, respectively, and for the dimensionless times shown in the panels in which the color bar depicts the
magnitude of the surfactant interfacial concentration, �. Panels (c) and (e), and panels (d) and (f) show
the spatial variation of the interfacial shape, �, and τ , and the tangential interfacial velocity, ut , for the
surfactant-free and surfactant-laden cases, respectively, at t = 10. In panels (c) and (e), and panels (d) and
(f), Bi = 10−3 and 1, respectively.

the other parameters fixed, the inhibition of the end-pinching mechanism (see Fig. 12(a) at t = 12.8)
is expected for cases when Pes > 0.1.

Up to this point, we have only analyzed the fate of the ligament in presence of insoluble
surfactants; here, we investigate the effect of surfactant solubility on the dynamics by fixing value
of the fractional coverage to χ = 0.9 and exploring the range Bi = 10−3 − 1. At the lower end
of this range, the sorptive timescales are much larger than those associated with interfacial effects;
consequently, the dynamics are dominated by capillarity and Marangoni stresses and are expected to
be similar to those observed in the insoluble surfactant case. For Bi = O(1), the sorptive timescales
are comparable to their capillary and Marangoni counterparts and the flow will reflect the delicate
interplay amongst these effects. Inspection of Figs. 13(a) and 13(b), however, shows that, contrary to
expectations, Bi has a relatively minor effect on the retraction speed and the ligament kinetic energy.
From the three-dimensional representations of the interface, it can be seen that the ligament escapes
its breakup for all Bi. For Bi = 1, we observe the escape from breakup at t ∼ 12.4 and t ∼ 14. The
radius of the neck prior to its escape also increases with Bi. Therefore, keeping the other parameters
the same, the inhibition of the end-pinching mechanism [e.g., see Fig. 13(a) at t = 12.5] is observed
for three orders of magnitude of Bi.

We now investigate the effect of the fractional coverage, represented by χ on the dynamics
with Bi = 0.1 and the rest of the parameters set to their base values. Figures 14(a) and 14(b)
show that whereas the low χ dynamics resemble that of the surfactant-free case, at high χ , for
which adsorption effects are dominant, a significant reduction in the retraction velocity and kinetic
energy is observed. Furthermore, as can be seen in Figs. 14(c) and 14(f), for large χ , interfacial
gradients of the surfactant concentration, and therefore of surface tension, are small, which implies
that Marangoni stresses play a minor role in this case. Thus, the reduction in ligament retraction
velocity must be related to the significant reduction in surface tension, which acts to diminish the
magnitude of capillary effects. Therefore, for a low χ , the relative importance of Marangoni stresses
is very small [see τ magnitude in Fig. 14(c)] which does not lead to the prevention of capillary
breakup (see interface at t = 11.3).
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FIG. 14. Effect of χ on the retraction dynamics for Lo = 15, Oh = 10−2, βs = 0.3, Pes = 10, Peb = 10,

and Bi = 0.1: (a) and (b) temporal evolution of the north-tip location, and the kinetic energy, Ek , respectively;
panels (a) and (b) also show three-dimensional representations of the interface for χ = 0.1 and 0.99,
respectively, and for the dimensionless times shown in the panels in which the color bar depicts the magnitude
of the surfactant interfacial concentration, �. Panels (c) and (e), and panels (d) and (f) show the spatial
variation of the interfacial shape, �, and τ , and the tangential interfacial velocity, ut , for the surfactant-free
and surfactant-laden cases, respectively, at t = 10. In panels (c) and (e), and panels (d) and (f), χ = 0.1 and
0.99, respectively. Note: in panels (c) and (e) interface location is superimposed; however, axis is not shown.

IV. CONCLUSIONS

We have presented the effect of surfactant on ligament retraction of an aspect ratio L0 = 15
and for intermediate Ohnersorge numbers, Oh ∼ 10−2. We have performed fully three-dimensional
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numerical simulations of the retracting process over a range of system parameters that account
for the surfactant solubility and sorption kinetics and Marangoni stresses. The numerical method
has been validated against the work of Ref. [8] for a surfactant-free case. Our results indicate that
the presence of surfactant inhibits the end-pinching mechanism and promotes the neck reopening
through Marangoni-flow, induced by the formation of surfactant concentration gradients, and not via
lowering of the mean surface tension. The induced Marangoni stresses decelerate the flow caused
by the capillary pressure until flow-reversal occurs close to the neck. As the flow re-enters through
the neck, the formation of a jet toward the bulbous region is observed, which gives rise to a vortex
ring that eventually detaches toward the center of the bulbous region. This behavior is similar to the
phenomenon explained by [12] in the escape from breakup of viscous ligaments in the absence of
surfactant. Therefore, the presence of surfactants avoids the “end-pinching” mechanism because of
the existence of Marangoni stresses that suppress the mechanism of the Rayleigh-Plateau instability.
This inhibition of the flow singularities is a remarkable outcome in the presence of a contaminant.
We have also demonstrated that the pinchoff inhibition cannot happen by simply reducing the value
of the surface tension, but only by the introduction of the Marangoni stresses. The presence of
Marangoni stresses also leads to interfacial rigidification, which is observed through reduction of
the ligament retraction velocity and the ligament kinetic energy. We have also investigated how
the variation of key surfactant parameters affects the fate of the ligament. At βs = 0.1, Marangoni
stresses are insufficiently large to influence the flow close to the neck and do not prevent the capillary
breakup of the ligament. We also found that for the whole studied range of Pes and Bi an escape
from end-pinching occurred. Additionally, we showed that solubility, contrary to expectations,
has a relatively minor effect on the retraction speed and the ligament kinetic energy. Finally, the
adsorption effects were studied via variation of χ , where at χ = 0.1, Marangoni stresses do not
lead to the prevention of capillary breakup.

This research is of importance for many applications that aim to produce equal-sized droplets,
which is a desired outcome for improving efficiency in technologies such as ink-jet printing. An
interesting future line of research would be to study the one-dimensional free-surface slender
cylindrical flow on the Navier-Stokes equations coupled with a set of equations describing
the surfactant interfacial transport on a Newtonian liquid thread. This analysis could provide
insights into the relationship between the classic Taylor-Culick retraction velocity and interfacial
rigidification brought by the surface-active agents. Future research avenues involve performing
numerical simulations of curved ligaments to breakup the symmetry behavior and of non-Newtonian
ligaments, including viscoplastic and viscoelastic types, with a large range of Ohnesorge numbers
and ligament aspect ratios. The retraction dynamics of nonaxisymmetric ligaments may lead to the
formation of “entrapped bubbles” inside the ligament and a three-dimensional oscillatory dynamics
of the formed droplet.
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APPENDIX: MESH STUDY AND NUMERICAL METHOD

Filament profiles (characterized by Lo = 15 and Oh = 10−2) are compared against Ref. [8], from
which data was extracted by image analysis. They used a Galerkin finite element approach under
a two-dimensional axisymmetric assumption in the azimuthal direction. As shown in Fig. 2, the
ligament profiles show a good qualitative agreement with our numerical method. The second check
that we are performing is the predicted time for the capillary breakup for the surfactant-free case
between the two methods (Notz and Basaran’s pinchoff time is 11.114 and our pinchoff time for
different meshes are shown in Table I), which shows a good quantitative agreement between the
two methods. These two checks allow us to proceed with caution.

The next question is to ensure that our numerical results are mesh-independent. To this end,
the dynamics of the retracting ligament for the surfactant free (i.e., Lo = 15 and Oh = 10−2)
and surfactant laden base cases (i.e., Lo = 15, Oh = 10−2, βs = 0.3, and Pes = 10) are tested for
different mesh resolutions (see Fig. 15) in terms of the temporal evolution of the tips location,
Ek and the relative variation of the liquid volume. The main characteristics of the meshes are
summarised in Table I including the number of elements, and the predicted pinchoff time for
the surfactant-free case. As for the time t ≈ 12–12.5, the resulting three droplets coalesce with
each other to form a single droplet [shown in Fig. 15(a)]. The volume of the liquid is conserved
with a loss of less than 0.2% during the topological changes. Because the curves for the kinetic
energy and the location of the tips overlap for M2 and M3 meshes, we conclude that M2 is
sufficiently refined to ensure mesh-independent results while providing a good compromise with
the computational cost of the simulation. The results presented in this paper correspond to the M2
mesh. Additionally, We have carefully checked the accuracy of the surfactant mass conservation in
all our simulations. Our numerical framework conserves surfactant moles with a relative error of
0.062% for the surfactant-laden base case. Moreover, the code conserves surfactant moles with a
relative error of 0.08% (for case: Lo = 15, Oh = 10−2, βs = 0.3, Pes = 10, Peb = 10, χ = 0.9, and
Bi = 0.1).

The temporal integration scheme is based on a second-order Gear method [33], with implicit
solution of the viscous terms of the velocity components. Each time step is computed by an adaptive
time step-size criterion:

�t = min{�tcap, �tvis, �tCFL , �tint}, (A1)

where �tcap, �tvis, �tCFL , and �tint represent the capillary time step, the viscous time step, the
Courant- Friedrichs-Lewy (CFL) time step, and interfacial CFL time step, respectively. Those terms
are defined by

�tcap = 1

2

√
(ρl + ρg)�x3

πσs
, �tvis = ρg�x2

6μl

, �tCFL = �x

|umax| , �tint = �x

|Vint| , (A2)

where �x refers to the minimum cell size, umax and Vint are the maximum fluid and interface
velocities, respectively. More details of the numerical method are provided in Refs. [28,29]. A
brief summary of the numerical aspects that are relevant to the study is presented here. The Navier
Stokes equations are solved by a finite volume method on a staggered grid [34]. The computational

TABLE I. Retracting ligament mesh study for the surfactant free case (Lo = 15 and Oh = 10−2).

Global mesh size Number of parallel Pinchoff
Run (number of cells) process threads time (s)

M1 96 × 96 × 384 54 11.1151
M2 192 × 192 × 768 432 11.1158
M3 384 × 384 × 1536 3456 11.1167
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FIG. 15. Mesh study for “surfactant-free” (panels (a), (c), and (e) on the left) when Lo = 15 and Oh = 10−2,
and “surfactant-laden base case” (panels (b), (d), and (f) on the right) when Lo = 15, Oh = 10−2, βs = 0.3, and
Pes = 10. The panels highlight the temporal evolution of the north and south tips location (a), (b), the kinetic
energy Ek (c), (d), and the relative variation of the liquid volume (e), (f).

domain is discretized by a fixed regular grid (i.e., Eulerian grid) and the spatial derivatives are
approximated by standard centered difference discretization, except for the nonlinear term, which
makes use of a second-order essentially nonoscillatory (ENO) scheme [35,36]. In the case of the
viscous term, a second-order centered difference scheme is used. The projection method is used
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to treat the incompressibility condition [37]. A multigrid iterative method is used for solving the
elliptic pressure Poisson equation.

With respect to the treatment of the free surface. The interface is tracked with an additional
Lagrangian grid by using the front-tracking method together with the reconstruction of the interface
by using the level contour reconstruction method [38,39]. Communication between the Eulerian
and Lagrangian grid (for the transfer of the geometric information of the interface) is done by using
the discrete delta function and the immersed boundary method of Ref. [40]. The advection of the
Lagrangian interface is done by integrating dx f /dt = V with a second-order Runge-Kutta method,
where V stands for the interfacial velocity which has been calculated by interpolation from the
Eulerian velocity. The code is parallelized through an algebraic domain-decomposition technique
and the communication between subdomains for data exchange is managed by the message passing
interface (MPI) protocol. Figure 1(b) highlights the partitioning of the computational domain into
6 × 6 × 12 = 432 subdomains.

Finally, due to the nature of the system, the surfactant transport is solved on the interface,
where the surfactant concentration is located on the center of the triangular front elements. In the
convective-diffusive equations, the time is integrated by a first order explicit scheme. The surface
surfactant gradients in the interface are computed by using a probing technique introduced by
Ref. [41]. A Sharp boundary condition for bulk surfactant concentration equation is implemented to
treat the source term at the interface.
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