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The dynamics of ligaments retracting under the action of surface tension occurs in a multitude
of natural and industrial applications, such as inkjet printing and atomisation. We perform fully
three-dimensional, two-phase direct numerical simulations of the retraction dynamics with soluble
surfactants. A full parametric study is performed using a hybrid interface-tracking/level-set method,
which is utilised to treat the interface; this method is capable of capturing faithfully the topolog-
ical transitions that are a feature of the flow over a certain range of ligament aspect ratios and
Ohnesorge numbers. Our results demonstrate the delicate interplay between capillarity, modulated
by the presence of surfactants, surfactant-induced Marangoni stresses, inertial and viscous effects.
Particular attention is paid to the formation of vortices, which accompany the retraction process,
and the influence of surfactant on the vortex dynamics.
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I. INTRODUCTION

Fluid ligaments undergo a surface tension-driven instability if their lengths exceeds their perimeter [27, 29] or
retraction into a single spherical drop or a multitude of droplets, in order to minimise interfacial energy. These
phenomena are observed in multiple applications, such as, for instance, atomisation or spray formation [11, 22], ink-
jet printing or micro-encapsulation [3, 9, 13]. In the absence of surfactant, the retracting dynamics of a Newtonian
liquid thread surrounded by a passive ambient gas has been studied by Schulkes [30], and Notz and Basaran [26] using
a Galerkin finite element approach under a two-dimensional axisymmetric assumption in the azimuthal direction,
and by also assuming another symmetry through the ligament mid-plane in the longitudinal direction; the flow is
parameterised by the ligament aspect ratio, Lo = L/R, and Ohnesorge number, Oh = µ/

√
ρσR, where L and R are

the initial length and radius of the ligament, while ρ, µ, and σ are the density, dynamic viscosity, and surface tension,
respectively.

Schulkes [30] has simulated the ligament retraction towards a minimum radius of r ∼ 0.8R, where r is the radial
coordinate, while Notz and Basaran [26] were able to reach r ∼ 10−4×R. Notz and Basaran [26] have also presented
the temporal evolution of a retracting ligament of aspect ratio Lo = 15 for three different regimes depending on the
magnitude of Oh: (i) low Oh values (Oh ∼ 10−3), where capillarity is more dominant than viscous forces, the outcome
is the formation of two bulbous regions at both ends of the ligament that pinchoff eventually leading to the formation
of a smaller, secondary ligament; (ii) intermediate Oh values (Oh ∼ 10−2), where there is a balance between viscous
and capillary forces, a situation that culminates in the breakup of the ligament into three droplets; (iii) at higher Oh
values (Oh ∼ 10−1), which reflects the dominance of viscous forces and for which the retraction is not accompanied
by breakup but by the formation of a single spherical drop.

Notz and Basaran [26] have also presented a detailed regime map of the ligament evolution prior to breakup, varying
both Lo and Oh. Castrejon-Pita et al. [4] performed experiments on retracting ligaments beyond breakup, and, more
recently, Anthoni et al. [1] extended the work of Notz and Basaran [26], considering all possible ranges of fluid
properties (Oh = 10−3 − 100) and aspect ratios (Lo = 5− 103). The studies summarised in the foregoing have shown
that the ligament dynamics are characterised a longitudinal retraction followed by one or possibly several breakups
events which lead to satellite droplet formation. The presence of surface-active chemicals in the retracting ligament,
either as an additive or a contaminant, could, potentially, have a strong influence on the emergent dynamics. This
has not received as much attention as the surfactant-free case, and is the subject of the present paper.

It is well known through the work of Eggers [10] that the breakup of a liquid thread follows a self-similar behaviour
as rupture is approached. Craster et al. [5] showed that the presence of surfactant does not alter the breakup scalings;
this is because the surfactant is convected away from the thread ’neck’ under the action of surface tension that drives
fluid away from that region. Xu [40] studied numerically the effect of insoluble surfactant on the recoiling filament
under similar symmetry assumptions to those adopted by Notz and Basaran [26] for multiple values of Oh. McGough
and Basaran [23] carried out computational studies in order to observe the formation of successive surfactant-covered
threads. More recently, Kamal et al. [20] performed both experiments and numerical simulations of Newtonian
pendant droplets covered by insoluble surfactants using doubly-axisymmetric simulations, and Wang et al. [41] have
performed both experimental and two-dimensional axisymmetric computations to determine the influence of capillary
waves on the ligament stability. Dziedzic et al. [8] have also studied the dynamics of ligaments including substract
effects; here, only a quarter of the ligament was modelled through the use of symmetry conditions.

Despite the attention received by ligament dynamics in the literature, the effect of surfactant, and associated
surfactant-induced Marangoni stresses, on the three-dimensional (3D) evolution of the ligament has not yet been
reported. The aim of the present paper is therefore to perform 3D numerical simulations of the retraction process
over a wide range of system parameters that account for surfactant solubility and sorption kinetics, bulk and interfacial
diffusion, and Marangoni stresses. We will consider situations characterised by ligament pinchoff, and attention will
be paid to the formation of vortical structures during the flow evolution. The results will be used to elucidate the
mechanisms underlying the flow phenomena observed to accompany the dynamics.

The rest of this article is organized as follows. Section II presents the governing equations for the flow and surfactant
transport, the simulation configuration, and the numerical methods. In Section III, we present a discussion of our
results focusing on the effect of surfactant on the dynamics of the thread, a parametric study with respect to the
governing surfactant parameters, and a detailed analysis of the vorticity. Finally, concluding remarks are provided in
Section IV.

II. PROBLEM FORMULATION AND NUMERICAL METHODS

In this section, we provide the main steps in the problem formulation together with details of the hybrid interface-
tracking/level-set approach to treat the interface. As presented in Fig. 1-(a), we consider an initially axisymmetric
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cylinder terminated by hemispherical caps at its two ends and surrounded by a gas phase. The governing equations
for incompressible and immiscible two-phase fluid systems in a three-dimensional Cartesian domain x = (x, y, z) are
expressed by a single field formulation for the continuity and the momentum balance equation:

∇ · u = 0, (1)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ · µ(∇u +∇uT ) + F, (2)

where u stands for the velocity, p for the pressure, and t denotes time. The density ρ and dynamic viscosity µ are
given by

ρ(x, t) = ρ
g

+
(
ρ

l
− ρ

g

)
I(x, t),

µ(x, t) = µg +
(
µ

l
− µg

)
I(x, t),

(3)

using a single-field formulation in which I represents a Heaviside function, while the ‘g’ and ‘l’ subscripts designate
the gas and liquid-phase quantities, respectively. The last term in (2) represents the surface tension force, which
is decomposed into its normal component (Fn) for the normal stress jump across the interface, and its tangential
component (Fs), which is associated with the surface gradient of the surface tension [31], ∇sσ:

F = Fn + Fs =

∫
A(t)

σκnδ
(
x− x

f

)
dA+

∫
A(t)

∇sσδ (x− xf ) dA. (4)

Here, κ and n denote the curvature and the outward-pointing unit normal, respectively, and the surface gradient
operator is given by ∇s = [I − nn] · ∇ wherein I is the identity tensor. In these formulae, x

f
is an interface

parameterisation, A(t), and δ(x − x
f
) is a Dirac distribution that is non-zero only when x = x

f
. We use a hybrid

front-tracking/level-set technique (also known as Level Contour Reconstruction Method, LCRM) proposed by Shin
and Juric [31, 32, 35] to predict the location of the interface. The LCRM is capable of predicting accurately Fn and
Fs and of handling deforming interfaces with topological changes. The solver follows a decomposition strategy for its
parallelization with a message-passing-interface algorithm; further details of the numerical method can be found in
the work of Shin et al. [33]

In addition to the equations of motion given above, the set of convection-diffusion equations describing the transport
of surfactant species in the bulk and on the interface, with concentrations C and Γ, respectively, are expressed by

∂C

∂t
+ u · ∇C = ∇ · (Dc∇C), (5)

and

∂Γ

∂t
+∇s · (Γut) = Ds∇2

sΓ + J, (6)

where ut = (us · t) t is the tangential velocity on the interface in which us represents the surface velocity; Ds and
Dc denote the surfactant interfacial and bulk diffusivities, respectively, and J is the sorptive flux, which provides
a relationship between C and Γ that connects the bulk and interfacial concentrations. The left-hand-side of Eq.
(6) represents the transient and convective transport of surfactant at the interface, and its right-hand side models
interfacial diffusion and bulk-interface mass exchange. The flux J is expressed by

J = kaCs(Γ∞ − Γ)− kdΓ, (7)

where ka and kd stand for the kinetic constants for adsorption and desorption, respectively, and Cs denotes the
surfactant concentration in the sub-phase adjoining the interface.

The equation of state describing the variation of the surface tension as a function of the local interfacial surfactant
concentration is given by the Langmuir relation [31]

σ(Γ) = σs +RTΓ∞ ln

(
1− Γ

Γ∞

)
, (8)

where σs is the surface tension in the absence of surfactant, and Γ∞ is interfacial concentration at maximal packing.
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(a) (b) (c)

FIG. 1: Initial shape of the ligament, (a), highlighting the computational domain of size 8R× 8R× 32R in a
three-dimensional Cartesian domain x = (x, y, z) and divided into 6× 6× 12 sub-domains; the Cartesian resolution
is set to 32× 32× 64 per sub-domain, and the global resolution is 192× 192× 768. Typical interfacial shape for a
surfactant-free case at t = 7 for Lo = 15 and Oh = 10−2, (b), with definitions of particular locations and features

whose dynamics will be discussed in the present work. Typical interfacial shape for a surfactant-laden case at t = 7
with Lo = 15, Oh = 10−2, Bi = 1, Pe = 10, and x = 0.9 with colour bars indicating the magnitude of the surfactant

interfacial and bulk concentrations in the left and right halves of the ligament, respectively.

All variables are rendered non-dimensional by using the following scaling where the tildes designate dimensionless
quantities:

r̃ =
r

R
, t̃ =

t

tR
, ũ =

u

uR
, p̃ =

p

ρlu2R
, ρ̃ =

ρ

ρl
, µ̃ =

µ

µl
, σ̃ =

σ

σs
, Γ̃ =

Γ

Γ∞
, C̃ =

C

C∞
, (9)

here, tR =
√
ρlR3/σs corresponds to the capillary time scale and C∞ the bulk concentration. Hence, velocities are

scaled on the capillary velocity uR = R/tr =
√
σs/(ρlR). As a result of this scaling, Eqs. (1)-(8) become

∇ · ũ = 0, (10)

ρ̃(
∂ũ

∂t̃
+ ũ · ∇ũ) +∇p̃ = Oh ∇ ·

[
µ̃(∇ũ +∇ũT )

]
+

∫
Ã(̃t)

σ̃κ̃nδ
(
x̃− x̃

f

)
dÃ+

∫
Ã(̃t)

∇sσ̃dÃ , (11)
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∂C̃

∂t̃
+ ũ · ∇C̃ =

1

Peb
∇ · (∇C̃), (12)

∂Γ̃

∂t̃
+∇s · (Γ̃ũt) =

1

Pes
∇2

sΓ̃ + J̃ , (13)

J̃ = Bi
(
kC̃(1− Γ̃)− Γ̃

)
, (14)

σ̃ = 1 + βs ln
(

1− Γ̃
)
, (15)

in which the dimensionless parameters appearing in these equations are given by

Oh =
µl√
ρlσsR

, Bi = kdR

√
ρlR

σs
, βs =

RTΓ∞
σs

, P eb =
1

Db

√
σsR

ρl
, and Pes =

1

Ds

√
σsR

ρl
. (16)

where Oh denotes the Ohnesorge number and measures the relative importance of viscous to surface tension forces,
Bi is the Biot number representing the ratio of characteristic desorptive to convective time-scales, βs is the elasticity
number, which measures the sensitivity of the surface tension to changes in surfactant interfacial concentration; Pes
and Peb are the interfacial and bulk Peclet numbers and compare the ratio of convective to diffusive time-scales in
the plane of the interface and the bulk, respectively. The viscosity and density ratios are represented by ρg/ρl and
µg/µl and they correspond to 1.2× 10−3 and 1.8× 10−2 respectively, corresponding to a water ligament in air.

At equilibrium, the equation (7) reduces to the Langmuir adsorption isotherm

x =
Γeq

Γ∞
=

k

1 + k
, k =

kaC∞
kd

, (17)

where x stands for the fraction of surface covered by adsorbed surfactant, k is the adsorption parameter, which
represents the ratio of adsorption to desorption time scales. Finally, the Marangoni stress ∇sσ due to the presence of
surfactant is expressed in terms of gradients in Γ as follows:

∇sσ̃ = − βs

1− Γ̃
∇sΓ̃ (18)

For simplicity, the tildes are dropped henceforth.
The time scale associated with the Marangoni flow is determined from a balance between Marangoni stresses and

viscous retardation, ∇sσ ∼ ∆σ/R ∼ µl/tM , hence tM = µlR/∆σ, and it is of order 10−3 s. However, the capillary
breakup time is of order 10−2s, and the time scale associated with the retraction of the ligament is also of order
10−2s. For the soluble cases, we consider the properties of n-alcohols (such as n-propanol, n-butanol and n-pentanol)
or dicarboxylic acid type (such as adipic and pimelic acid) as surfactants, which are characterised by desorptive time
scales of 10−2s [2, 15, 16]. Therefore, for both soluble and insoluble surfactant configuration, Marangoni stress will
play a major role in the ligament retraction dynamics.

As introduced in the beginning of this section, the liquid ligament is initialised as a cylindrical thread in the centre
of the domain with hemispherical caps at its two edges (see Fig. 1-a). The aspect ratio of the liquid thread fixed as
Lo = 15 and the size of the three-dimensional computation domain is 8R × 8R × 32R. An example of the interface
position, together with definitions of particular features and locations on the ligament surface to which reference will
be made below, are shown in Fig. 1-(b). Also shown in this figure is the partitioning of the computational domain
into subdomains for deployment of the MPI decomposition technique for code parallelisation. Numerical solutions
are obtained subject to Dirichlet boundary conditions on the velocity and Neumann conditions on the pressure.
Both soluble and insoluble surfactants are considered in this study and numerical simulations are arranged into three
groups. The first group is focused on the effect of insoluble surfactant on the interfacial dynamics of the interface for
which Pes is varied with βs = 0.3 held constant. The second group of simulations was launched to study the effect of
Marangoni stresses for which βS is varied with Pes = 10 held constant. Finally, the last set of numerical simulations
has the objective to understand the surfactant mass transfer between the interface and the bulk.
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FIG. 2: Spatio-temporal evolution of a retracting ligament for Lo = 15 and Oh = 10−2. The solid lines correspond
to the results of the present study and the diamonds are collected from Notz and Basaran [26].

III. RESULTS

In this section, we present a discussion of our results, beginning by comparing our predictions with previous work
on retracting surfactant-free ligaments. This serves the purpose of validating our numerical method and provides a
benchmark against which to highlight the effects associated with the presence of surfactant.

A. Surfactant-free ligament retraction and breakup

We study the retraction of a surfactant-free ligament with Lo = 15 and Oh = 10−2 previously examined by Schulkes
[30] and Notz and Basaran [26] paying particular attention to interfacial breakup and post-pinchoff dynamics. In order
to inspire confidence in the reliability of the numerical method used to carry out the computations, we show in Fig.
2 a comparison between our numerical predictions and those from the Notz and Basaran [26] which reveals excellent
agreement. Fig. 3 depicts time-space plots of the interface, pressure, and the axial velocity; for the latter two, spatial
variations are shown with respect to the ligament centreline. The initially motionless, cylindrical ligament undergoes
retraction due to the pressure gradient between the two bulbous ends and the rest of the ligament, which drives flow
from these regions towards its centre in the form of a capillary wave; this dominates the early stages of the dynamics.

The retraction velocity results from a force balance between capillary and inertial forces, the latter being propor-
tional to the rate of change of momentum of the bulbous ends. Extending the Taylor-Culick expression for the retrac-

tion of a two-dimensional axisymmetric planar liquid sheet to a cylindrical thread, we arrive at V = (2σs/ρlπR)
1/2

,
which gives a value for the vertical velocity of retraction 0.079 m/s. This is in good agreement with the retraction
velocity predicted by our simulations, ∼ 0.0789 m/s and provides further validation of the accuracy and reliability of
our numerical method.

The retraction motion and associated capillary waves form neck regions near the two ends of the ligament connecting
the bulbous regions with the rest of the ligament. The pressure under these neck regions is large and drives flow away
from this region on time scales shorter than those related to retraction, dominating the intermediate stage of the
dynamics, and promoting further necking and an even larger pressure gradient that eventually leads to a double
pinchoff event for the set of parameters used to generate these results; the profiles for the interface, pressure, and
axial velocity associated with this event are highlighted in red in Fig. 3-(d) and (f).

Fig. 3-(a), which highlights the temporal evolution of the north and south tips of the bulbous ligament ends during
retraction, also shows that the pinchoff, which takes places at t ∼ 11.11, is followed by the formation of three droplets
(see Fig. 3-(a) for t = 11.4). These droplets are sufficiently close that a double coalescence takes place at t = 12.1
generating capillary waves that travel up and down the ligament (see 3-(a) for t = 12.6, 14, and 15.2). These waves
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(a)

(b)

(c)

(d) (e) (f)

FIG. 3: Surfactant-free ligament retraction for Lo = 15 and Oh = 10−2: (a) Temporal evolution of the location of
both ligament tips, and a three-dimensional representation of the interface for the dimensionless times shown in the
panel in which the colour bar depicts the velocity magnitude; (b) temporal evolution of the maximal radial extent of

the ligament; and (c) temporal evolution of the kinetic and surface energies, EK and ES , respectively, and the
energy dissipated, ED; (d)-(f) time-space plots of the interface, p, and uz, respectively, with snapshots shown
between t = 0− 13.5, with time intervals of 1 between t = 0− 11 and 0.5 between t = 11− 13.5; here, the red

profiles are associated with t = 11.5 and t = 12, the instances at which pinchoff occurs.
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decelerate giving way to decaying oscillations between a spherical and an ellipsoidal ligament shape that are the main
features of the late-time dynamics (see 3-(a) for t = 28 and 37).

It is also instructive to perform an analysis of the temporal variation of the system energy. The total energy must
be constant over time and its constituents are the surface energy, Es = Sσs, where S is the superficial area of the
ligament, the kinetic energy, Ek = 1/2(u2 + v2 +w2), and the energy dissipated, ED. As highlighted in Fig. 3-(c), all
energies are normalised by the surface energy of a motionless spherical droplet with a volume similar to that of the
ligament of aspect ratio Lo = 15. Initially, the total energy is represented by the surface energy Es solely. When the
ligament retracts, part of the surface energy is transferred into kinetic energy. During the coalescence of the three
droplets (t ∼ 12.1) the total area of the system significantly and a fraction of the surface energy is transferred into
dissipation energy (see Fig. 3-(c)). At longer times, Es → 1 and Ek → 0, as the ligament tends towards a steady,
spherical shape.

B. Surfactant-laden ligament retraction: insoluble surfactant case

In this section, we present the effect of insoluble surfactant on the dynamics of a retracting ligament with Lo = 15,
Oh = 10−2, Pes = 10, βs = 0.3, and Γo = Γ∞/2. Fig. 4 depicts the spatio-temporal evolution of the interface
and Γ together with the pressure and axial velocity along ligament centreline. Similar to the surfactant-free case,
retraction is accompanied by the formation of capillary waves that dominate the dynamics leading to the collapse of
the initially-cylindrical ligament towards a spherical one. The surfactant concentration Γ is coupled to the interfacial
dynamics through the dependence of σ on Γ, is redistributed along the interface, and achieves a maximal value around
t ∼ 15 since the ligament area decreases as it approaches a spherical shape. As shown clearly in Fig. 4-(a) and (b), the
presence of surfactant retards ligament retraction as evidenced by the slower temporal evolution of the ligament tips
and lower kinetic energy in comparison to the surfactant-free case; the retraction speed is ∼ 0.070 m/s as compared
to ∼ 0.0789 m/s in the ‘clean’ case. This is due to the surfactant-induced interfacial rigidification brought about by
the Marangoni stresses, which, in turn, are caused by gradients in Γ.

In order to elucidate the coupling between interface and surfactant concentration, we consider the interface, Γ, p,
and uz, at t = 10 shown in red dashed lines panels (c)-(f) of Fig. 4. The retraction capillary waves are characterised
by regions of radially-diverging and converging motion and associated higher and lower interfacial areas and there-
fore reduced (increased) and increased (reduced) Γ (σ) locally, respectively. These concentration gradients lead to
Marangoni stresses that drive flow from the higher-tension radially-diverging to the lower-tension converging regions,
which act to retard the interfacial motion. To further illustrate the retarding effect of the Marangoni stresses, three
distinct regions are also highlighted, as shown in Fig. 5-(a). In Region ‘A’, the interfacial flow diverges away from
point ‘1’, at the ligament tip, driving surfactant away from this location leading to the lowest Γ value along the
interface. There is an overall increase in Γ from the tip towards the centre reaching a maximal value at location ‘3’
at which the interface exhibits a local minimum. The Γ profile then undergoes oscillations in response to the wavy
shape of the interface, with a local minimum and maximum in Γ at locations ‘4’ and ‘5’ that coincide with a local
interfacial maximum and minimum, respectively. It is clear from Fig. 5-(a) that ∇sσ < 0 in Region A suggesting that
the direction of the Marangoni flow is towards the ligament tip, which acts to retard the capillary-driven flow from the
tip towards the centre; this retarding effect in Region A manifests itself through a decrease in the tangential velocity
along the interface, ut, as shown in Fig. 5-(b). In Region B, ∇sσ > 0, thus Marangoni-driven flow is towards the
ligament centre, which is counter to the capillary flow away from this necking region. As also indicated in Fig. 5-(b),
ut, which was negative in Region B in the surfactant-free, becomes positive in the surfactant-laden case. Finally, it
is also evident that using similar mechanisms, the Marangoni-driven flow reduces substantially the magnitude of ut
in Region C. Fig. 5-(c) shows the structure of the streamlines, which characterise the flow within the ligament. It
is clearly seen that the formation of several stagnation points occurs along the interface reflecting the competition
between the capillary- and Marangoni-driven flows an example of which is provided by the stagnation point close to
the neck region.

A comparison of the ligament shape between the clean and surfactant-laden cases is shown in Fig. 6, which depicts
surface plots of the ligaments together with the magnitude of Γ in the latter case for βs = 0.3, Γo = Γ∞/2, and
Pes = 10 at t = 11.11. In the presence of surfactant, due to the Marangoni-induced retardation of the retraction
process as a result of flow from high- to low-concentration regions, the ligament is longer than in the clean case. Due
to the imminent ligament pinchoff for the clean case, higher pressure and velocity fields are observed in comparison
to the surfactant-laden case.

In order to separate the effects of mean surface tension and Marangoni stresses, whose magnitude is reduced and
enhanced in the presence of surfactant, respectively, we consider an additional ’clean’ case simulation with a reduced
surface tension value (the reduced surface tension is given by Eq. (15) using the initial interfacial concentration). This
reflects the (artificial) situation of a retracting, surfactant-covered ligament whose surface tension has been reduced
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(a) (b)

(c) (d) (e) (f)

FIG. 4: Ligament retraction with an insoluble surfactant for Lo = 15, Oh = 10−2, Pes = 10, βs = 0.3 and
Γo = Γ∞/2: (a) temporal evolution of the north tip location for the surfactant-free and surfactant-laden cases, and a
three-dimensional representation of the interface for the dimensionless times shown in the panel in which the colour

bar depicts the magnitude of the surfactant interfacial concentration, Γ; (b) temporal evolution of the Kinetic
energy EK for the surfactant-free and surfactant-laden cases; (c)-(f) time-space plots of the interface, Γ, p, uz with

snapshots shown between t = 0− 16 at equal time intervals; here, the red profiles are associated with t = 10.

but which cannot support Marangoni stresses. Fig. 7 shows that the reduction in surface tension leads to a delay in
the ligament retraction but does not prevent breakup; very similar behaviour to the surfactant-free case is observed
in terms of the formation of three droplets, which eventually coalesce, and temporal evolution of the kinetic energy
which undergoes a slightly delayed rise due to the slower capillary-driven flow, as expected. These results demonstrate
that the prevention of the breakup is due to the formation of Marangoni stresses rather than the decrease in surface
tension value.
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(a) (b) (c)

FIG. 5: Spatial variation of the interfacial shape, Γ, and ∇sσ, (a), the tangential interfacial velocity, ut, for the
surfactant-free and surfactant-laden cases, (b), and the streamline structure within the retracting ligament, (c); the

parameter values are the same as in Fig. 4 with t = 10.

FIG. 6: Comparison of the ligament shapes for the surfactant-free (top) and surfactant-laden (bottom) cases for the
same parameters as in Fig. 4 and t = 11.11. For the surfactant-laden case, the magnitude of Γ is displayed and

indicated by the colour bar. Additionally, streamlines (red and blue colour represent counter-clockwise and
clockwise rotation, respectively) and a three-dimensional representation of the velocity vector field are also shown.

C. Parametric study

Here, we investigate the fate of the ligament on system parameters such as the dimensionless elasticity parameter,
βs, the surface Peclet number, Pes, the Biot number, Bi, and the adsorption parameter, x. Unless stated otherwise,
the parameters remain fixed to their ’base’ values: Lo = 15, Oh = 10−2, βs = 0.3, and Pes = 10. We shall
begin by examining the effect of parameter βs, which characterises the relative significance of Marangoni stresses.
As highlighted above, the redistribution of surfactant along the interface gives rise to concentration gradients and
Marangoni stresses that act to retard retraction and prevent ligament pinchoff. Further evidence for this is provided in
Fig. 8(a)-(b) in which we plot the temporal evolution of the ligament tip location, and the kinetic energy, respectively,
for βs = 0.1 and 0.5. In Fig. 8, we also show a three-dimensional representation of the interface for these βs values.
With increasing βs, the Marangoni stresses are strengthened leading to a larger reduction in the retraction velocity
and highlighting their retarding effect on the dynamics. As can also be seen clearly from Fig. 8(a)-(b), for sufficiently
large βs values, Marangoni stresses dominate the flow preventing ligament breakup. In panels (c) and (e), and (d) and
(f) of Fig. 8, in which we plot a snapshot of the interfacial shape, Γ, ∇sσ and ut (for the ’clean’ and surfactant-laden
cases), for βs = 0.1 and 0.5, respectively, it is shown that for the higher βs value, the larger Marangoni stresses lead
to a more uniform distribution of surfactant along the interface and a greater degree of interfacial rigidification; this
is illustrated further through the overall reduction in ut and EK (see Fig. 8-(b)) with increasing βs.
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(a) (b)

FIG. 7: Dynamics of a retracting, surfactant-covered ligament with isolating the Marangoni effect: (a) temporal
evolution of the north tip location for the surfactant-free and surfactant-laden cases, and a three-dimensional

representation of the interface for the dimensionless times shown in the panel in which the colour bar depicts the
magnitude of the surfactant interfacial concentration, Γ; (b) temporal evolution of the kinetic energy EK for the

surfactant-free and surfactant-laden cases.

In Fig. 9, we show the effect of varying Pes, which reflects the influence of surfactant diffusion effects along the
interface, on the retraction dynamics. Inspection of this figure reveals that the promotion of diffusive effects through
a decrease in Pes leads to a more uniform interfacial distribution of Γ and a reduction in the magnitude of surface
tension gradients. It can also be seen that the retraction speed and ligament kinetic energy are weakly-dependent on
Pes: they exhibit quantitatively similar dynamics over a three orders of magnitude variation in Pes.

Up to this point, we have only analysed the fate of the ligament in presence of insoluble surfactants; here, we
investigate the effect of surfactant solubility on the dynamics by fixing value of the fractional coverage to x = 0.9 and
exploring the range Bi = 10−3−1. At the lower end of this range, the sorptive time scales are much larger than those
associated with interfacial effects; consequently, the dynamics are dominated by capillarity and Marangoni stresses and
are expected to be similar to those observed in the insoluble surfactant case. For Bi = O(1), the sorptive time scales
are comparable to their capillary and Marangoni counterparts and the flow will reflect the delicate interplay amongst
these effects. Inspection of Fig. 10-(a) and (b), however, shows that, contrary to expectations, Bi has a relatively
minor effect on the retraction speed and the ligament kinetic energy. From the three-dimensional representations of
the interface, it can be seen that the ligament escapes its breakup for all Bi. For Bi = 1, we observe the escape from
breakup at t ∼ 12.4 and t ∼ 14. The radius of the neck prior to its escape also increases with Bi.

We now investigate the effect of the fractional coverage, represented by x on the dynamics with Bi = 0.1 and the
rest of the parameters set to their ‘base’ values. Fig. 11-(a) and (b) shows that whereas the low x dynamics resemble
that of the surfactant-free case, at high x, for which adsorption effects are dominant, a significant reduction in the
retraction velocity and kinetic energy is observed. Furthermore, as can be seen in Fig. 11-(c) and (f), for large x,
interfacial gradients of the surfactant concentration, and therefore of surface tension, are small, which implies that
Marangoni stresses play a minor role in this case. Thus, the reduction in ligament retraction velocity must be related
to the significant reduction in the mean value of the surface tension, which acts to diminish the magnitude of capillary
effects.

D. Vortex breakdown during the retraction

In this section, we highlight the role of the vortical structures, generated inside and outside the ligament, which
accompany the retraction process. High values of vorticity are located in the neck region, where the thread radius is
small, which is characterised by high curvature values and velocity gradients. During the retraction, there is a large
primary vortex due to the filament retraction and a small secondary vortex rotating in the opposite direction. The
latter resembles a vortex breakdown type [6, 19, 21, 36, 37] near the neck (as they are depicted by the instantaneous
streamlines of Fig. 12-(a) and (b) for the ’clean’ and surfactant-laden base case, respectively). A vortex breakdown
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(a) (b)

(c) (d)

(e) (f)

FIG. 8: Effect of βs on the retraction dynamics for Lo = 15, Oh = 10−2, Pes = 10, and Γo = xΓ∞/2: (a) and (b)
temporal evolution of the north-tip location, and the kinetic energy, Ek, respectively; (a) and (b) also show

three-dimensional representations of the interface for βs = 0.5 and 0.1, respectively, and for the dimensionless times
shown in the panels in which the colour bar depicts the magnitude of the surfactant interfacial concentration, Γ.

Panels (c) and (e), and (d) and (f) show the spatial variation of the interfacial shape, Γ, and ∇sσ, and the
tangential interfacial velocity, ut, for the surfactant-free and surfactant-laden cases, respectively, at t = 10. In (c)
and (e), and (d) and (f), βs = 0.1 and 0.5, respectively. Note: in (c) interface location is superimposed, however,

axis is not shown.
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(a) (b)

(c) (d)

FIG. 9: Effect of Pes on the retraction dynamics for Lo = 15, Oh = 10−2, βs = 0.3, and Γo = xΓ∞/2: (a) temporal
evolution of the north-tip location and three-dimensional representations of the interface for Pes = 0.1 and for the
dimensionless times shown in the panels in which the colour bar depicts the magnitude of the surfactant interfacial
concentration, Γ; (b) temporal evolution of the kinetic energy, Ek. respectively; (a) and (b) also show βs = 0.5 and
0.1, Panels (c) and (d) show the spatial variation of the interfacial shape, Γ, and ∇sσ, and the tangential interfacial
velocity, ut, for the surfactant-free and surfactant-laden cases, respectively, for Pes = 0.1 and at t = 10. Note: in (c)

and (e) interface location is superimposed, however, axis is not shown.

refers to stagnation points occurring inside a primary vortex and developing a secondary toroidal circulation. We
have chosen these two examples (t = 10.9 for the clean and t = 14.6 for the surfactant-laden base case) because
their neck radii have the same size, and for the surfactant case is characterised by the minimum neck radius value
before re-opening. We notice that for the clean case, the vortex breakdown occurs inside and outside the neck, and its
circulation follows the same direction of neck pinchoff. For the surfactant-laden base case, Marangoni stresses push
the vortex breakdown away from the neck, and leads to its re-opening. The variation of the pressure p and axial
velocity component uz are also provided for both cases in Fig. 12 highlighting the stagnation point (uz = 0) in the
z-axis.

The example shown in Fig. 12 highlights the vortical structure occurring during a neck pinchoff event for a clean
case and neck opening for an insoluble surfactant-laden base case, respectively. However, as shown in Fig. 13, a
multitude of vortical structures are formed from the initial stages of retraction until reaching either pinchoff or neck
re-opening. Similar structures and behaviour are also observed for soluble surfactant cases. As the ligament retraction
is faster for the clean case (see the temporal evolution in Fig. 10-(a)), the pressure and vorticity ω = ∇×u are much
larger due to the importance of the interface curvature (see Fig. 13-(a), (b) and (c)). Finally, the redistribution of
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(a) (b)

FIG. 10: Effect of Bi on the retraction dynamics for Lo = 15, Oh = 10−2, βs = 0.3, Pes = 10, and Γo = xΓ∞/2: (a)
and (b) temporal evolution of the north-tip location, and the kinetic energy, Ek, respectively; (a) and (b) also show
three-dimensional representations of the interface for Bi = 1 and 10−3, respectively, and for the dimensionless times

shown in the panels in which the colour bar depicts the magnitude of the surfactant interfacial concentration, Γ.
Panels (c) and (e), and (d) and (f) show the spatial variation of the interfacial shape, Γ, and ∇sσ, and the

tangential interfacial velocity, ut, for the surfactant-free and surfactant-laden cases, respectively, at t = 10. In (c)
and (e), and (d) and (f), Bi = 10−3 and 1, respectively.

surfactant in the ligament’s bulk C∞ is shown in Fig. 14. It starts by taking a shape of a mushroom type in the
bulbous regions and quasi-constant high concentration in the rest of the ligament thread except in the region adjacent
to the interface.

IV. CONCLUSIONS

We have presented the effect of surfactant on ligament retraction of an aspect ratio L0 = 15 and for intermediate
Ohnersorge numbers, Oh ∼ 10−2. We have performed fully three-dimensional numerical simulations of the retracting
process over a wide range of system parameters that account for the surfactant solubility and sorption kinetics
and Marangoni stresses. The numerical method has been validated against the work of Notz and Basaran [26] for
a surfactant-free case, and a mesh-refinement study was also performed to ensure that our numerical results are
resolution-independent. Our results indicate that the presence of surfactant inhibits ligament breakup and promote
neck re-opening through Marangoni-flow, induced by the formation of surfactant concentration gradients, and not via
lowering of the mean surface tension. These Marangoni stresses lead to interfacial rigidification, observed through a
reduction of the retraction velocity and the ligament kinetic energy.

Future research avenues involve performing numerical simulations of non-Newtonian ligaments, including visco-
plastic and visco-elastic types, with a large range of Ohnesorge numbers and ligament aspect ratios.
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(a) (b)

(c) (d)

(e) (f)

FIG. 11: Effect of x on the retraction dynamics for Lo = 15, Oh = 10−2, βs = 0.3, Pes = 10, and Bi = 0.1: (a) and
(b) temporal evolution of the north-tip location, and the kinetic energy, Ek, respectively; (a) and (b) also show

three-dimensional representations of the interface for x = 0.1 and 0.99, respectively, and for the dimensionless times
shown in the panels in which the colour bar depicts the magnitude of the surfactant interfacial concentration, Γ.

Panels (c) and (e), and (d) and (f) show the spatial variation of the interfacial shape, Γ, and ∇sσ, and the
tangential interfacial velocity, ut, for the surfactant-free and surfactant-laden cases, respectively, at t = 10. In (c)
and (e), and (d) and (f), x = 0.1 and 0.99, respectively. Note: in (c) and (e) interface location is superimposed,

however, axis is not shown.
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(a) (b)

FIG. 12: Effect of surfactant on the vortical structures during ligament retraction: (a) non-surfactant case for
Lo = 15, Oh = 10−2 at t = 10.9 (b) ”base surfactant case” at t = 14.6 . For both cases, transversal slice in the

centreline of the domain, with streamlines (top) and the velocity vector field (bottom). Pressure and streamwise
velocity in the vertical centreline, (0, 0, z) is also represented for both cases.

APPENDIX

In this Appendix, we show that the results presented in this study are mesh-independent. To this end, the dynamics
of the retracting ligament (Lo = 15 and Oh = 10−2) was tested for different mesh types and their main characteristics
are summarised in Table I such as, the number of elements, and the predicted pinchoff time. A M2 mesh-type is formed
by around ∼ 30M cells, and M3 mesh-type by ∼ 230M cells. We conclude, that a M2 mesh-type is satisfactory to
predict the dynamics regarding ligament retraction, and therefore, all the results presented in this paper corresponds
to a M2-mesh type.

TABLE I: Retracting ligament mesh study when Lo = 15 and Oh = 10−2.

Run
Global mesh size
(number of cells)

Number of parallel
process threads

Pinchoff time
(s)

Total
Comput. hours

M1 96 × 96 × 384 54 11.1151 ∼ 2
M2 192 × 192 × 768 432 11.1158 ∼ 70
M3 384 × 384 × 1536 432 11.1167 ∼ 288
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