
HAL Id: hal-02610535
https://hal.science/hal-02610535

Submitted on 26 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interaction of a Deformable Solid with Two-Phase
Flows: An Eulerian based Numerical Model for

Fluid-Structure Interaction using the Level Contour
Reconstruction Method

Seungwon Shin, Jalel Chergui, Damir Juric

To cite this version:
Seungwon Shin, Jalel Chergui, Damir Juric. Interaction of a Deformable Solid with Two-Phase Flows:
An Eulerian based Numerical Model for Fluid-Structure Interaction using the Level Contour Recon-
struction Method. International Journal for Numerical Methods in Fluids, 2020, 92 (11), pp.1478-1505.
�10.1002/fld.4836�. �hal-02610535�

https://hal.science/hal-02610535
https://hal.archives-ouvertes.fr


 

1 

 

 
 

Interaction of a Deformable Solid with Two-Phase Flows: 

An Eulerian based Numerical Model for Fluid-Structure 

Interaction using the Level Contour Reconstruction Method 

 

Seungwon Shin1*, Jalel Chergui2 and Damir Juric2 

1 Department of Mechanical and System Design Engineering 

Hongik University 

Seoul, 121-791 Korea 

2 Laboratoire d’Informatique pour la Mécanique et les Sciences de l’Ingénieur (LIMSI), 

Centre National de la Recherche Scientifique (CNRS), 

Université Paris Saclay, Bât. 507, Rue de Belvédère 

Campus Universitaire, F-91405 Orsay, France 

 

 

*Corresponding Author:  

Seungwon Shin, PhD 

Professor 

Department of Mechanical and System Design Engineering 

Hongik University 

Sangsu-dong, 72-1, Mapo-gu 

Seoul, 121-791, Korea 

 

Phone: 82-2-320-3038 

FAX: 82-2-322-7003 

E-Mail: sshin@hongik.ac.kr 



 

2 

 

ABSTRACT 

We describe the formulation of a method for fluid-structure interaction (FSI) involving 

the coupling of moving and/or flexible solid structures with multiphase flows in the 

framework of the Level Contour Reconstruction Method (LCRM).   We present an Eulerian 

based numerical procedure for tracking the motion and interaction of a liquid-gas interface 

with a fluid-solid interface in the Lagrangian frame together with the evaluation of the fluid 

transport equations coupled to those for the solid transport, namely the left Cauchy-Green 

strain tensor field, in the Eulerian frame.  To prevent excessive dissipation due to the 

convective nature of the solid transport equation, a simple incompressibility constraint for the 

strain field is enforced.  A single grid structure is used for both the fluid and solid phases 

which allows for a simple and natural coupling of the fluid and solid dynamics. Several 

benchmark tests are performed to show the accuracy of the numerical method and which 

demonstrate accurate results compared to several of those in the existing literature.  In 

particular we show that surface tension effects including contact line dynamics on the 

deforming solid phase can be properly simulated.  The three-phase interaction of a droplet 

impacting on a flexible cantilever is investigated in detail. The simulations follow the detailed 

motion of the droplet impact (and subsequent deformation, breakup and fall trajectory) along 

with the motion of the deformable solid cantilever due to its own weight as well as due to the 

force of the droplet impact.  

 

Keywords: multiphase flow; numerical simulation; front-tracking method; solid stress; 

Eulerian based formulation; fluid-structure interaction. 
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1. INTRODUCTION 

Numerical simulation and analysis are being called upon to provide solutions to 

increasingly complex real-world engineering problems where crucial information cannot be 

provided by theory or experiment alone.  Often these problems involve the dynamics of 

multiphase flows in complex geometries with additional physics due to complex rheology, 

interfacial physics, transport of surface-active agents, heat transport or interactions with solid 

structures.  Here we focus on the development of a method for fluid-structure interaction 

involving the interaction of moving and/or flexible solid structures with multiphase flows 

based on the Level Contour Reconstruction Method (LCRM).   

Phase interfaces can be present between either a liquid and a gas or a fluid and a solid. 

The numerical treatment of liquid-gas interfaces is one of the central topics of interest in the 

multiphase flow modeling community with attention focused on applications in engineering 

and physics involving interface deformation and surface tension forces.  Very often, the 

amount of liquid-gas interface deformation is quite large.  Thus, not only is an accurate 

interface tracking mechanism required of the numerical scheme but also an effective means 

of handling topology change in problems involving rupture or coalescence such as in 

drop/spray dynamics.   The main categories of methods that have been devised to represent 

such interface motion are the VOF1, Level Set2,3 and Front Tracking4 methods all of which 

use a stationary underlying Eulerian mesh structure for the solution of the bulk transport 

equations. The Front Tracking method differs in that it introduces an additional tracked 2D 

Lagrangian triangular grid which moves through the underlying 3D mesh structure.  These 

methods were developed partly in an attempt to overcome shortcomings related to earlier 

approaches involving the fitting of an Eulerian mesh to the moving interface boundary which 

has difficulty in handling highly deforming interfaces due to the necessity of remeshing the 
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entire computational domain.  

The numerical treatment of coupled fluid-solid motion has been the focus of research in 

the Fluid-Structure Interaction community.  Of particular interest are highly deformable solid 

structures such as thin membranes and modeling of cellular structures that play a key role in 

many biological applications. In general, an Eulerian mesh has the advantage of describing 

fluid motion and a Lagrangian approach has advantages for describing the motion of a solid. 

However, the two grid structures are usually not compatible. Various attempts have been 

made to overcome this difficulty and these can be categorized as the: (1) Lagrangian-

Lagrangian, (2) Lagrangian-Eulerian, (3) Eulerian-Eulerian approach for the solid and liquid, 

respectively. The Lagrangian-Lagrangian approach treats both the solid and fluid with 

Lagrangian elements which is conventional in the solid mechanics community.  The Finite 

Element Method (FEM) is widely used for solid stress analysis and similar formulations can 

be defined for the fluid flow outside the solid.  Since this approach can use existing and well-

verified FEM formulations for the structural analysis, it has been mainly used for short 

simulation times or where deformation is very small.  However, for larger solid deformation, 

the 3D grid structure has to be refreshed frequently and is thus costly and is still limited to 

relatively small deformations. Some variations such as the Arbitrary Lagrangian Eulerian 

(ALE) Finite Element Method5 have been developed but costly and difficult remeshing of the 

grid is still required for significantly large deformation.  

To cope with larger deformation, the Lagrangian-Eulerian approach is used. The solid 

deformation is treated within the regular Lagrangian framework but fluid motion is solved on 

an Eulerian grid which is the conventional approach in fluid dynamics. The fluid and solid 

problems are solved separately on their respective Eulerian and Lagrangian grids where they 

can be treated more effectively.  An accurate communication method is necessary for the 

interaction between fluid and solid motion.  For this the Fictitious Domain Method (FDM) or 
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the Immersed Boundary Method (IBM) are widely used, both of which enforce a body force 

due to the solid in the fluid momentum equation. For the FDM, the Navier-Stokes equations 

are applied to the entire simulation domain assuming that the moving solid behaves as 

another fluid.  The rigid body constraint is enforced by applying averaged velocities in the 

solid region. On the other hand, the IBM uses delta function source terms at the fluid-solid 

boundary to enforce the necessary boundary conditions.  

Baaijens6 proposed a fictitious domain/mortar element (FD/ME) approach which is 

based on the fictitious domain method by Glowinski et al 7 to solve thin membrane 

movement. The FDM was used for complex or moving geometry and the solid domain was 

solved similarly as for the fluid.  A Lagrange multiplier method, originally conceived by 

Glowinski et al 7 for deforming particulate flow, was used to enforce rigid body motion. This 

method has been modified by Yu8 in a general formulation which enforces the fluid to move 

at the same speed as the solid.  

Owing to advanced formulations of the Immersed Boundary Method (IBM), first 

introduced by Peskin9, great success has been achieved for complex fluid-structure 

interaction problems.  Zhao et al 10 successfully combined the Lagrangian approach for the 

solid and the Eulerian for the fluid by implementing the necessary body force term in the 

fluid momentum equation. The solid elastic stress is computed using a Finite Element method.  

Standard isoparametric finite-element interpolation was used to obtain the deformation tensor. 

To alleviate numerical instabilities arising from low order isoparametric interpolants, a super-

convergent patch recovery method was utilized.  Various formulations for the body force 

including immersed boundary or immersed interface were tested. They also formulated a 

force projection method to reduce the smearing effect near the interface.  Momentum forcing 

was performed inside the solid domain after multiple subdivisions.  To maintain the 

incompressibility condition of the solid, additional constraints were applied to the material 
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points.  A slight modification of the method of Zhao et al 10 was proposed by He et al 11.  To 

represent solid motion, the Level Set function was utilized.  Four types of Level Set field 

were generated to compute the deformation stress tensor at Eulerian grid locations.  Velocity 

extrapolation was necessary for proper transport of the solid.  The fall of a solid sphere 

covered by a shell of water on a horizontal pool was successfully simulated. 

More complex simulations were carried out by Huang et al 12.  Incompressible fluid 

motion was computed using a fractional step method on a staggered grid and solid 

deformation was calculated in moving curvilinear coordinates on top of the Eulerian grid for 

the velocity and pressure.  The energy method was used to derive the constitutive equation 

for the solid.  Interaction between solid and fluid is enforced by the immersed boundary 

technique.  Tian et al 13 combined existing immersed boundary methods with a general finite 

element method suitable for non-linear biological structures with large deformation.  Since 

the finite element formulation is well benchmarked for non-linear structural problems 

involving general shapes and complex material behavior, a combination of the existing 

methods with an enhanced numerical formulation for stability was implemented. Several 

benchmark tests were performed to generate baselines for future numerical studies.  Jiang et 

al 14 proposed a sharp-interface, immersed, smoothed finite element method (Sharp-ISFEM) 

which introduced a sharp interface technique into the immersed, smoothed finite element 

method (ISFEM) with the implementation of line normal reconstruction for unstructured 

grids.  Computational speed was also greatly increased using an advanced search algorithm.  

Various three-dimensional problems such as the hovering motion of deformable wings were 

tested. 

Several interesting variations of the IBM have also been developed.  Gil et al 15 proposed 

an immersed structural potential method for FSI.  The basic idea is to model the solid 

structure with a potential energy function.  Material points inside the solid are moved with the 
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underlying fluid velocity as in the general IBM with specific kernel functions.  Velocity 

gradient tensors are also interpolated directly from the Eulerian grid and computed structural 

stresses were distributed back to the fluid.  This can minimize diffusion of the interface 

caused by repeated interpolation and distribution in the IBM.  A more realistic viscoelastic 

constitutive equation was modeled for problems involving cardiovascular tissue.  To increase 

the order of accuracy of the computation of the deformation gradient tensor, a special 

integration procedure was devised which can maintain the incompressibility constraint of the 

deformation tensor field.  Some enhancements followed which utilize spline-based kernel 

functions and Gaussian quadrature for the interpolation/distribution procedure16. 

The methods above using IBM techniques can be very efficient since individual 

formulations for both fluid and solid can be utilized fully to their advantage in each phase 

domain.  However, this still generates additional difficulty for the solid when deformation 

becomes severe and mesh restructuring for the solid is necessary.  Usually, FEM type 

solutions are effective for relatively small deformation. Very recently, several attempts were 

made to simulate solid deformation in the full Eulerian approach.  Sugiyama et al 17 first 

proposed such an Eulerian approach for the solid stress using a one equation model for both 

phases.  The modified left Cauchy strain tensor field is advanced in time in the fully Eulerian 

frame.  The interface is tracked by the Volume-of-fluid method.  Then the Cauchy strain 

tensor field is filtered using the volume fraction of the solid.  Several hyper-elastic materials 

were chosen for benchmark tests to demonstrate the accuracy of the method.  Even though 

their method showed good performance with various hyper-elastic materials, most of their 

simulations were confined to cases with blunt objects where the aspect ratio in the major 

directions is relatively small.  The movement of the solid can be large but relative 

deformation from the initial shape is somewhat limited. The method has been extended to 

three-dimensions18 and a fully implicit formulation for the solid stress was also added to 
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increase the stability constraint during time advancement19.  Esmailzadeh et al 20 slightly 

modified the method of Sugiyama et al 17 by increasing solid viscosity to reduce nonphysical 

dynamic effects at the fluid-solid interface.  A modified procedure for the implicit solid stress 

was also introduced.  The benchmark experiment of a falling elastic ball on a flat surface was 

performed to check the accuracy of their method.  Numerical results showed good accuracy 

compared to experiment.  Extensive parallelization of the full Eulerian scheme based on the 

building cube method has recently been achieved21.  

Most of the numerical studies mentioned so far are confined to multiphase problems with 

a single phase boundary, i.e. liquid-gas or fluid-solid.  Recently, three phase problems where 

both liquid-gas and fluid-solid interfaces are present are being tested.  Meduri et al 22 

proposed a partitioned scheme for highly non-linear structural interaction problems.  The 

fluid flow is solved by a Particle Finite Element method which is basically fully Lagrangian 

and the commercial software (ABAQUS) was used for the solid deformation.  A domain 

decomposition method for non-overlapping domains was introduced.  The method can handle 

large deformations of the solid and was applied successfully to the complex fluid-structure 

interaction problem of a liquid filling an elastic chamber.  Yang et al 23 extended the 

Immersed Structural Potential Method (ISPM) of Gil et al 15 to include the additional liquid-

gas phase boundary by adding a Level Set function.  Several benchmark tests were performed 

to validate their method for two-fluid motion with large solid deformation.  The dam break 

problem with an elastic obstacle was also tested for three-phase interaction. 

In this paper, we are aiming at formulating an Eulerian description of deformable solid 

objects ensuring simple and natural coupling for the fluid and solid interface. An Eulerian 

transport equation for the solid strain has been implemented with a simple incompressibility 

constraint to prevent excessive dissipation of the solid strain. Treatment of the solid in an 

Eulerian fashion can provide valuable advantages since such an approach can be effectively 
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combined with the fluid solver through matching of the underlying grids.  Thus, inclusion of 

various numerical formulations for additional physics such as interfacial forces due to surface 

tension, contact modeling, etc. can be straightforward.  Most previous work in this area is 

confined to studies where surface tension effects are less important.  In the research presented 

here, we focus on an Eulerian based formulation for both liquid-gas and fluid-solid interface 

tracking in the simulation framework of an Eulerian grid for the transport equations with 

Lagrangian tracking for the interfaces.  Special attention is paid to cases where surface 

tension as well as contact line motion play an important role.  In the Eulerian formulation for 

solid deformation, the method of Sugiyama et al 19 is used.  Special conditions are also 

provided to prevent the dissipative loss of stress arising from Eulerian stress advection.  

Several benchmark tests are performed for droplets impacting on thin flexible membranes in 

order to demonstrate and investigate this complex three-phase interaction with contact 

dynamics.  Most of our tests are performed for two-dimensional geometries, since our 

primary objective in this work is to ascertain the applicability of the method for complex 

three-phase FSI problems.  To verify that this approach extends to three-dimensional 

geometries, we demonstrate a quantitative test of three-phase FSI interaction.  In this current 

paper we first discuss the general description of our interface tracking method, the Level 

Contour Reconstruction Method (LCRM).  Then the Eulerian based numerical scheme 

including both fluid and solid motion is described.  A detailed description for handling solid 

deformation in the Eulerian frame is presented.  Various benchmark tests to investigate the 

accuracy of this formulation are provided.  Finally, the complex three-phase interaction 

problem of a droplet impacting a flexible cantilever is demonstrated. 
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2. NUMERICAL FORMULATION 

2.1 Interface tracking method 

To track the evolving and deforming interfaces for both liquid-gas and fluid-solid, the 

Level Contour Reconstruction Method (LCRM) will be used24.  The LCRM takes advantage 

of concepts from both the Lagrangian Front Tracking and the Eulerian Level Set methods and 

thus constitutes a hybrid of the two approaches. Separately, the classic Front Tracking4 and 

Level Set2,3 methods have each seen success in applications to various problems in two-phase 

flow physics and engineering.  However, both of the original methods have their drawbacks 

such as computational complexity for 3D problems in the case of Front Tracking and 

maintaining mass conservation in the case of the Level Set method.  In LCRM, the interface 

movement is tracked by Lagrangian interface elements which are 1D line segments in 2D 

formulations or 2D triangular elements for 3D.  In this respect the LCRM retains the 

advantages for interface advection of the original Front Tracking method. Volume 

conservation in the LCRM is comparable to conventional Front Tracking4 or Volume of 

Fluid1 methods due to the Lagrangian interface tracking characteristics in the LCRM. A 

detailed study regarding volume conservation can be found in Shin and Juric26.  However, in 

our LCRM, the interface elements are implicitly connected, i.e. there is no need for logical 

connectivity information between neighboring elements which can be quite cumbersome for 

a 2D mesh of triangular elements in 3D problems.  As the interface is advected, its elements 

need to be regularized from time to time in order to avoid their distortion into overly large or 

small elements over time. 

Here is where the LCRM departs from the original Front Tracking approach and 

combines aspects of the Level Set method.  The LCRM makes use of a Level Set distance 

function during the operation of interface element regularization.  The elements are 
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regenerated from time to time by reconstructing the elements on the zero contour line of the 

distance function which is computed directly from the Lagrangian interface throughout the 

computation (see Fig. 1 for a general schematic).  Higher fidelity reconstructed interfaces can 

be obtained using a high order reconstruction technique25.  The LCRM method, with such a 

hybrid of Front Tracking and Level Set characteristics, enables simulations of general and 

challenging 3D multiphase flows which exhibit arbitrarily large deformations, coalescence 

and rupture.   Several subsequent improvements to the LCRM have been developed in order 

to essentially eliminate spurious currents (hybrid and compact curvature formulations) even 

in cases where capillary forces are significant26,27. A fully parallelized implementation in a 

three-dimensional code for high performance computing on massively parallel architectures 

is detailed in Shin et al 28. The performance of the numerical technique has been 

benchmarked through various studies24-29.  Additional features capturing complex interfacial 

motion have been included in the LCRM including contact line dynamics with contact angle 

hysteresis and the Fictitious Domain Method for ease of generation of complex solid 

geometries immersed in the multiphase flow.  More details on these extensions can be found 

in references24-29. 

 

2.2 Governing equations for the Eulerian based formulation 

The governing equations for deformable solid objects interacting with multiphase flows 

is described in an Eulerian form and here we present the Eulerian based formulation used in 

this study:  

 

  (1) 
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Here u is the velocity, P, the pressure and g, the gravitational acceleration. fs is the surface 

tension force for the liquid-gas interface which will be explained in detail in the next section. 

The total stress, , represents both the fluid viscous stresses ( ) and those due to solid 

deformation ( ). The total stress can be described as follows: 

 

  (3) 

 

Here, Hs(fs) denotes a Heaviside function whose value is zero in the fluid phase and one in 

the solid phase depending on the solid distance function (fs) as defined in Eq. (11) below. 

Here, we include the viscosity of the solid following the formulation of Sugiyama et al 17. For 

the test cases in this study, the stress from solid deformation ( ) is much higher than that 

due to viscosity of the solid inside the solid object. For simplicity, we assign the same values 

of viscosity for the liquid and solid. The stress tensor ( ) can be defined using the left 

Cauchy-Green strain tensor (B) for a Neo-Hookean material as 

 

  (4) 

 

where G is the shear modulus. 

The left Cauchy-Green strain tensor B is defined by the deformation tensor (F)  

 

  (5) 

 

For simplicity and without loss of generality we focus on the 2D formulation so that we 
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can write the deformation tensor, F, as  

 

  (6) 

 

where (x,y) is the current and (X,Y) is the reference or original location of the material.  The 

3D formulation is straightforward and key elements are provided in the appendix. Most Finite 

Element Methods evaluate the deformation tensor field, F, directly by tracking Lagrangian 

element motion.  

In this study, we evaluate the left Cauchy-Green strain tensor field directly without 

computing the deformation tensor field, B, using the transport equation provided by 

Sugiyama et al 17. First, we define a modified left Cauchy-Green strain tensor, C, instead of B 

in the same way as Sugiyama et al 17 for numerical stability as: 

  

  (7) 

 

The transport equation for the modified left Cauchy-Green strain tensor is time advanced 

according to: 

 

  (8) 

 

In this way, the stress field is confined to the solid region and provides a smoother 

transition from solid to fluid in order to prevent sudden changes in the stress evolution.  
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Using Eqs. (4) and (7), Eq. (3) is now: 

 

  (9) 

 

The material property fields can be described using two Heaviside functions as follows: 

 

  (10) 

 

where, b represents density or viscosity fields with the subscripts s, f, l, g standing for solid, 

fluid, liquid or gas, respectively.  The two Heaviside functions, Hs and Hf, can be computed 

from the two distance functions distinguishing the fluid-solid (fs) or the liquid-gas (ff) 

respectively. 

 

     (11) 

 

2.3 Solution procedure 

The detailed method for solving the Navier-Stokes equations for the fluid can be found 

in references24-28. Here we briefly describe the basic procedure for the fluid and then focus on 

the solution for solid deformation. We solve the fluid flow and solid motion separately.  For 

the fluid, the standard incompressible Navier-Stokes equations are: 
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  (13) 

 

where uf is the fluid velocity.  For the solid deformation, an additional stress field is included. 

 

  (14) 

  (15) 

 

here,  is the last term on the right side of Eq. (9) and us is the solid velocity field.  The 

solution for solid deformation follows a similar procedure to that for fluid motion.  The solid 

velocity field can be considered as an additional auxiliary field used to advance the solid 

motion in time in the Eulerian frame (i.e. updated using Eq. (23)). The coupling of the 

velocity between fluid and solid is forced by matching the boundary condition for the fluid 

velocity to the solid motion: 

 

  (16) 

 

The velocities inside the solid (fs > 0) are used to update the fluid velocities. The 

pressure will be solved separately for Eqs. (13) and (15) to enforce the divergence free 

condition (see Eq. 34). Thus we are basically solving the same Navier-Stokes equations (13) 

and (15) twice which adds to the computational cost. The only difference between the 

solution of uf and us is near the solid interface. The justification for this choice of separate 

computation for the fluid and the solid motion is that when only a single velocity field is 

computed for the entire domain (i.e. us) we observe that the smooth transition of the solid 
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stress at the fluid-solid boundary in the Eulerian description of the stress field can cause the 

appearance of an artificially high viscous fluid layer adjacent to the solid. This high viscosity 

fluid layer interferes with the motion of the liquid-gas interface in this region thus inhibiting 

the wetting behavior of the liquid-gas interface on the solid wall. With a separate computation 

of the solid velocity and stress field this artificial layer is avoided. The sharp transition of the 

fluid velocity near the solid object using Eq. (16) makes the phase interface of the fluid 

interact more smoothly with the solid surface.  

This smooth interaction between the fluid and solid interface is necessary for proper 

treatment of the contact line motion. We account for contact line hysteresis using constant 

advancing (qa) and receding (qr ) contact angles.  Implementation of the contact line 

dynamics is very straightforward since we are tracking the actual interface element motion 

with the LCRM.  In this study, we used a simple Navier-Slip model. The contact line velocity 

can be found via :  

 

  (17) 

 

Here, Ucl is the contact line speed,  ¶u/¶nçwall is the shear strain rate at the wall, and l is a 

proportionality slip constant which has been assigned to the size of a grid cell in this study. 

The interface contact angle is adjusted to match the hysteresis condition. If the apparent 

contact angle which is the angle between the fluid interface and the the solid interface at the 

contact line is greater than the advancing angle or less than the receding angle then the 

contact angle is fixed to either the advancing or the receding angle, respectively. Otherwise, 

the contact angle is free to move between the advancing and receding angle. A more detailed 

discussion of the contact line treatment can be found in Shin et al29 
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A hybrid formulation for the surface tension force term, fs, is used to minimize parasitic 

currents: 

 

  (18) 

 

Here g  represents the surface tension coefficient which is assumed to be constant in our 

current study and kH is the hybrid curvature. The term gkH can be computed as follows26, 27: 

 

  (19) 

 

where 

 

  (20) 

  (21) 

 

here xf is a parameterization of the interface and the geometric information, interface 

curvature, κf, unit normal, nf, and area of the interface element, dA are computed directly 

from the Lagrangian interface. d(x-xf) is the delta function that is non-zero only at the 

interface. 

The interfacial elements for the liquid-gas and fluid-solid interfaces are advected in a 

Lagrangian fashion by integrating, respectively: 
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  (22) 

  (23) 

 

with a second order Runge-Kutta method where both interface velocities, Vf and Vs, are 

interpolated from the Eulerian field.  A detailed description of the interface method as well as 

the overall numerical procedure for the fluid solution can be found in references24-27. 

Here we focus on the solution procedure for the solid deformation.  Basically, the 

solution procedure for the solid motion (Eqs. (14) and (15)) is similar to that for the fluid 

motion.  The main difference is the inclusion of the left Cauchy-Green strain tensor.  The 

governing equation for the solid is solved using a conventional projection method on a 

staggered grid30,31. The pressure, property fields and distance function are located at the cell 

centers of the Cartesian mesh while velocity components are located at the cell faces as in Fig. 

2.  For the stress field, we place the diagonal components (Bxx, Byy) at cell centers and the off-

diagonal component (Bxy) at cell vertices following the work of Sugiyama et al 17 (see Fig. 2).   

Again, we point out that we will focus on the 2D formulation for simplicity.  The grid 

structure in 3D can be found in the appendix.  Grouping the advection, viscous diffusion, left 

Cauchy-Green strain, and gravitational terms into A, the discrete form of Eq. (15) can be 

written as follows: 
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here the subscript h implies a spatially discrete operator. The convection term is discretized 

with a second order ENO method32 and central differences are used for the diffusion term.  

The 2D transport equation for the left Cauchy-Green strain can be written as follows: 

 

  (25) 

 

Here, the right-hand side term can be computed using conventional centered differences (the 

full 3D formulation for the strain transport can be found in the appendix).  Since the strain 

field transport is computed in the Eulerian frame and since the convective nature is dominant, 

the strain field could become strongly dissipative unless an appropriate advection scheme for 

the convective terms is used.  In the work of Sugiyama et al 17, 5th order advection schemes 

are utilized to prevent high dissipation of the strain field.  Considering the Lagrangian nature 

of the solid motion we instead use a semi-Lagrangian method33 for the convective terms on 

the left-hand side of Eq. (25). 

In our current study, the method is formulated to avoid strain dissipation by ensuring the 

incompressibility constraint. For an incompressible, hyper-elastic material, the strain field 

should satisfy the following constraint, i.e. unity of the determinant of the left Cauchy strain 

tensor: 
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  (27) 

 

During the simulation, we calculate the left-hand side of Eq. (27) to find an Hc : 

 

  (28) 

 

which is not, in general, equal to Hs.  In order to ensure that Hc will be the same as Hs, we 

modify the C field by dividing by .  This technique for numerically enforcing the 

incompressibility constraint was used by Zhao et al 10.  The formulation for 3D geometry can 

be found in the appendix.  The above strain transport equation, Eq. (25), is integrated using a 

2nd order semi-Lagrangian method33 with initial strain free field as , where I 

represents the identity matrix. 

We implement semi-Lagrangian advection by considering the left-hand sides of Eq. (25) 

in a Lagrangian way.  For example, the Bxx term can be integrated in time as follows: 

 

  (29) 

  (30) 

 

here, Bxx@d represents the strain component Bxx at the departure location.  The subscript, a, 

denotes the arrival location of the advected quantity, which, in the semi-Lagrangian method, 
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at time n+1, Bxxn+1 is to be calculated.  Thus, the departure location, xd, can be computed from 

the initial location xn+1=xa using backward differences in time: 

 

  (31) 

  (32) 

 

Knowing the arrival location point (xa), we find an intermediate point ( ) using Eq. (31). 

Then the departure location (xd) can be obtained using Eq. (32) with velocity interpolated at 

the intermediate point . The explicit form of the semi-Lagrangian method was used. We did 

not find significant improvement using the implicit form which requires additional iterations. 

Time integration of Eq. (24) was performed in two sub-steps: 

 

  (33) 

and 

  (34) 

 

here the variable  is the new velocity while ignoring pressure. By enforcing  to be 

divergence free, the pressure can be found by solving 
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The updated velocity is 

 

  (36) 

 

Since this numerical approach for the solid velocity is exactly the same as that for the fluid 

flow24-27, the solution procedure for the solid motion is identical to the fluid movement except 

for the inclusion of the stress field.  

Recently, our interface tracking method, i.e. Level Contour Reconstruction Method, has 

been extended to fully three-dimensional simulations using a high-performance code on 

large-scale parallel computing architectures28.  The method can handle large property 

differences, where density and viscosity ratios are on the order of several thousand.  Owing to 

the Level Set characteristics of the LCRM, parallelization is relatively straightforward.  The 

program is built on a modular basis thus application of the code to a wide variety of physical 

scenarios is possible. Detailed parallel performance characteristics of the code can be found 

in reference28. However, in this work we mainly use a planar 2D formulation for various 

benchmark tests.  As described above, extension to 3D is straightforward since the solid 

motion can be treated identically to the fluid except for the addition of the left Cauchy-Green 

strain term in Eq. (15) which is coupled to the solution for strain transport (Eq. (25)).  The 

key elements for the 3D formulation including the grid structure, equation for the strain 

transport, and incompressibility constraint can be found in the appendix. We have 

implemented the full three-dimensional strain transport formulation and we provide 

qualitative results for several relatively simple test cases to demonstrate the applicability of 

the method in 3D. 
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3. RESULTS AND DISCUSSIONS 

3.1 Benchmark tests 

In this section we describe several benchmark tests which we have performed to verify 

the accuracy of the formulation for deformable solids described in the previous section. Our 

benchmark tests focus on 2D geometries primarily for ease of quantitative comparisons with 

existing data.  Since our procedures for the problem of interface motion in liquid-gas, i.e. 

fluid-fluid, systems have already been tested and validated in various applications24-29, we 

focus on the FSI problem of the motion of a deformable solid interacting with a fluid.   

First, we simulate the behavior of a hyper-elastic material in time varying shear flow. 

The simulation geometry is shown in Fig. 3. The size of the simulation domain is 2 m by 2 m. 

Initially a neo-Hookean solid (shear modulus G=0.2 Pa) of thickness 0.5 m is placed 

horizontally at the bottom of the simulation domain.  Both the density and viscosity of the 

liquid and solid are set to 1 kg/m3 and 0.2 N�s/m2, respectively.  Periodic boundary conditions 

are applied at the left and right boundaries and a no-slip, zero velocity condition is applied at 

the bottom boundary.  The top boundary is prescribed a time varying horizontal velocity (in 

m/s) as follows:  

 

  (37) 

 

Our simulation results are compared with an existing solution from Zhao et al 10.  As can 

be seen in Fig. 4(a), the current result with a grid resolution of 200´200 matches well with 

their existing solution.  We also performed a grid convergence test (see Fig. 4(b)).  The L2 
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norm defined by Eq. (38) is plotted for different grid resolutions.  

 

  (38) 

 

Here, yc represents the vertical position of the computed interface location corresponding to a 

reference location (i.e. ye) from the existing data of Zhao et al 10.  N is the number of data 

points used in the comparison. Our result demonstrates between 1st and 2nd order accuracy 

which is comparable to the existing solution10. 

As a second test, we simulate the movement of a deformable solid in a lid-driven cavity 

flow.  The domain size is 1 m by 1 m and the upper wall moves with a constant velocity of 1 

m/s as can be seen in Fig. 5.  No-slip wall conditions are placed at the remaining boundaries.  

Initially, a cylindrical solid object with radius of 0.2 m is placed at (xc = 0.6 m, yc = 0.5 m) in 

the simulation domain. Both the density and viscosity of the fluid and solid are 1 kg/m3 and 

0.01 N�s/m2, respectively. A neo-Hookean material with shear modulus G=0.1 Pa is used as 

the deformable solid.  The centroid of the deformable solid is traced in time (see Fig. 6(a)).  

As can be seen from the figure, our result shows grid convergent behavior and good 

comparison with existing data even with quite low resolution.  The convergence rate was 

computed in Fig. 6(b) using the L2 norm.  The distance between the computed position of the 

solid centroid and reference position from Sugiyama et al 17 is compared. The convergence 

rate shows between 1st and 2nd order accuracy.  More detailed snapshots in time of the 

interfacial shapes for the solid are plotted in Fig. 7.  The interface shapes at different times 

are compared to the highest resolution results from Sugiyama et al 17.  The interface shapes 

from our current simulation for a 400´400 grid are nearly comparable to the highest 

resolution results of Sugiyama et al 17 for their 1024´1024 grid.  
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A third benchmark test is for a vibrating flat plate attached to a blunt object (cylinder) in 

Poiseuille flow.  The detailed simulation geometry is shown in Fig. 8(a).  A parabolic velocity 

profile with U as 2 m/s is prescribed at the left boundary as shown in the figure.  An outflow 

condition (¶u/¶x = ¶v/¶x = 0) is placed at the right boundary and a no-slip wall condition is 

used at the top and bottom boundaries. Neumann conditions for pressure have been applied 

for all boundaries. The size of the simulation domain is 1.64 m ´ 0.41 m with a grid 

resolution of 400´100.  A cylindrical stationary object is located at (0.2 m, 0.2 m) with a 

diameter of D = 0.1 m. The Reynolds number with respect to cylindrical object (Re = rUD/µ) 

is 200. A thin flexible plate of length 0.35 m and thickness 0.02 m is attached at the 

downstream face of the cylinder.  Both the density and viscosity of the fluid and solid are 

1000 kg/m3 and 1 N�s/m2, respectively. For the deformable solid, a neo-Hookean material with 

shear modulus of G= 2´106 Pa is used.  A snapshot of the deformed solid with velocity 

magnitude contours is shown in Fig. 8(b).  Under these flow conditions, the cylindrical object 

sheds downstream vortices which act to bend the flexible plate, which fluctuates vertically 

with time due to the regular passage of fluid vortices.  One can clearly see the vortex 

shedding behind the cylinder resulting in deflection of the deformable solid plate.  We trace 

the motion of the right-hand tip of the membrane with time in Fig. 9.  At first, the amplitude 

of the vertical tip location fluctuation increases with time after which the fluctuation 

amplitude and frequency show a regular rhythmic oscillation in time.  This result is compared 

with the existing solution of Turek and Hron34.  The current simulation results match very 

well with their existing solution. 

Our final benchmark test is more challenging.  An initially vertical thin membrane is 

placed at the bottom center (4 m, 0 m) of an 8 m ´ 1 m simulation domain (see Fig. 10) of 

height 0.8 m and thickness 0.0212 m with a grid resolution of 800´100. An oscillating flow 

(period T=1 s) of u(y) = 1.5Uy(2-y)sin(2p/T) and v = 0 is imposed at the left inlet with an 
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outlet flow condition (¶u/¶x = ¶v/¶x = 0) at the right boundary. Neumann conditions for 

pressure have been applied for all boundaries. A symmetry condition is used at the top 

boundary and no-slip condition at the bottom boundary.  Both the density and viscosity of the 

fluid and solid are 1 kg/m3 and 0.01 N�s/m2, respectively.  A neo-Hookean material is used for 

the deformable solid membrane with a shear modulus G=1000 Pa.  Under these conditions, 

the thin membrane will deform severely due to the oscillatory flow.  Snapshots of the 

deformable membrane motion with time are plotted in Fig. 11.  The initially upright 

membrane is first deflected strongly to the right in the initial phase of the inlet flow of fluid.  

The upper portion of the membrane bends parallel to the flow direction and then, as the flow 

direction reverses, the membrane also reverses direction in a hook-shaped whipping motion.  

At non-dimensional time t/T=0.8 the thin membrane again becomes parallel to the flow but 

now pointing in the opposite direction.  Even with such large deformation, our solution 

method can maintain the narrow width of the membrane throughout the simulation.  The 

interface motion is very similar to other numerical results6,8,14,15. 

 

3.2 Three-phase interaction – droplet impact on a flexible cantilever in 2D 

We test our formulation for the case of a three-phase problem of a liquid droplet 

impacting a flexible solid cantilever.  All three phases, solid, liquid and surrounding gas as 

well as their complex liquid-gas and fluid-solid interface motions are included in the 

computation.  In this test, particular attention is paid to the effects of surface tension and 

three-phase contact line motion on the solid.  As can be seen in Fig. 12, we consider the case 

of a cantilever, initially positioned horizontally, as it is impacted by a water droplet falling 

due to gravity.  The simulation domain has a height of 0.08 m and length of 0.04 m with a 

grid resolution of 200´400. One side of the cantilever is fixed at the left boundary at a height 

of 0.06 m from the bottom boundary.  The length and width of the cantilever are 0.02 m and 



 

27 

 

0.0008 m, respectively.  A neo-Hookean material with shear modulus G=4´105 Pa is used for 

the solid.  The density of the solid material is 1500 kg/m3, for the liquid the density is 1000 

kg/m3 and for the gas the density is 1 kg/m3.  The viscosity of the solid and liquid are both 

0.001 N�s/m2.  The gas viscosity is 0.00001 N�s/m2.  The liquid-gas surface tension coefficient 

is set to 0.075 N/m.  An advancing contact angle (qa) of 100o and receding angle (qr) of 80o 

are selected (we will denote this angle configuration as the reference case for the contact 

angle study at the end of section 3.2).   The droplet with diameter of 0.012 m is initially 

placed at (x,y)= (0.02 m, 0.072 m).  

The first computation we perform is that of natural deflection of the cantilever due to 

gravity (no droplet).  Fig. 13 shows several snapshots of the cantilever with velocity vectors.  

In the inset to Fig. 13, the movement of the center of the right-side tip of the cantilever is 

plotted with time.  The position of the tip drops down at first but rebounds upward due to the 

elasticity of the cantilever.  The vertical position of the cantilever tip oscillates until reaching 

a steady position.  We also plot velocity vectors near the peak location of the tip position (Fig. 

13 (a)-(d)).  We can identify a circular vortex near the tip. As the right-side tip bends 

downward (Fig. 13 (a) and (c)), a counter-clock wise vortex is generated at the top of the 

cantilever.  A clockwise vortex can be observed below the cantilever during upward rebound 

(Fig. 13 (b) and (d)). 

Next, we place a water droplet slightly above the thin cantilever as shown in Fig. 12.  

The overall interface evolution of this three-phase interaction is shown in Fig. 14.  The 

liquid-gas interface is plotted with a red line and the deformable solid interface in blue.  The 

initially circular liquid-gas interface falls down to the cantilever (already deforming prior to 

droplet impact due to its own weight).   The liquid-gas interface maintains its original circular 

shape before impact due to its relatively high surface tension. At a time of about 0.05 s, the 

droplet hits and wets the bent solid surface.  Due to the sloping angle of the bent cantilever, 
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the droplet slips to the right.  Due to surface tension at the contact region, the droplet 

elongates with the elongation becoming larger and with one end of the droplet attached to the 

right tip of the cantilever.  Finally, the elongated droplet detaches from the solid surface 

trailing a liquid thread which breaks up into several satellite droplets.  

Before further analyzing the three-phase interaction more closely, we study the grid 

convergence for this case.  Deflections of the central tip at the free end of the cantilever are 

compared at four different mesh resolutions (see Fig. 15).  Due to the severe time restriction 

at the highest resolution, only the initial deflection stage is compared.  As can be seen in the 

figure, the amount of the tip deflection converges as the mesh size decreases. With a 

resolution of 200´400, the solution can be considered to be converged.  We note that the 

movement of the cantilever can be quantitatively well captured at all except the lowest 

50´100 resolution. 

In Fig. 16 we compare the amount of cantilever deflection with droplet impact to the 

amount of deflection due to gravity alone. With gravity alone (no droplet impact), the solid 

cantilever oscillates in time to reach a final steady position as already seen in Fig. 13.  With 

droplet impact at the tip of the cantilever the deflection becomes much larger.  In Fig. 16, we 

also include the interaction between the droplet and the thin cantilever when the density of 

the solid is reduced to 100 kg/m3.  We choose a much lower solid density in order to observe 

the droplet impact behavior more clearly without natural deflection due to gravity.  As can be 

seen in the figure, the droplet impacts the less dense cantilever slightly earlier in time since 

the less dense cantilever is deflected less by its own weight.  However, once the droplet 

impacts, the slope of the deflection vs. time curves are very similar for both cases, which 

indicates that the downward speed of the cantilever tip due to droplet impact is not influenced 

much by the solid density but is determined by the impact speed of the droplet alone.  After 

droplet impact the less massive cantilever can be seen to oscillate much more rapidly than the 
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more massive cantilever. This more rapid oscillation is in agreement with the expected higher 

natural frequency of a lower mass elastic body in free vibration.  

To investigate the effect of solid stiffness, three values of the solid shear modulus (G = 

4´105 Pa, 2´106 Pa, and 1´107 Pa) are used while we maintain the solid density equal to 100 

kg/m3.  We chose the lower density solid in order to more clearly observe the effect of droplet 

impact with minimal natural gravitational deflection of the cantilever before impact.  The 

evolution of the liquid-gas and fluid-solid interfaces are shown in Fig. 17 for G = 2´106 Pa 

and in Fig. 18 for G=1´107 Pa. (the case with G=4´105 Pa has already been shown in Fig. 

14). With increasing shear modulus, the solid cantilever becomes stiffer and thus exhibits less 

deflection.  The overall behavior is similar to that in Fig. 14.  However, the droplet slides and 

detaches from the stiffer, higher shear modulus and thus less-deflected cantilever farther to 

the right of the domain.  The motion of the right tip of the cantilever, i.e. deflection distance, 

vs solid stiffness is plotted in Fig. 19. With higher shear modulus, the deflection amplitude is 

very small and the frequency is high. When the shear modulus is 4´105 Pa (lowest), the right 

tip of the cantilever oscillates with a larger amplitude and lower frequency. We can also 

notice that the portion of the droplet remaining on top of the cantilever after droplet breakup 

is quite different. The volume of liquid remaining on the cantilever increases with increased 

stiffness.  The remaining liquid volume fraction after droplet detachment is plotted for 

varying shear moduli in Fig. 20 (An additional case with G=6´106 Pa is added for clarity. 

The remaining volume is very similar to that with G = 1´107 Pa).  The trend plotted in Fig. 

20 shows that the remaining droplet volume increases sharply at lower shear modulus but 

converges at higher moduli approaching a value for a rigid cantilever. 

Lastly, we study the effect of contact angle on the behavior of the impacting droplet.  

From the case shown in Fig. 12 and the reference contact angle configuration (qa=100o, 

qr=80o) used above for comparison, we modify the angles to observe the droplet behavior on 
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hydrophilic (qa=60o, qr=30o), hydrophobic (qa=160o, qr=120o), and super-hydrophobic 

(qa=165o, qr=160o) surfaces. Super-hydrophic surfaces which can maintain very high contact 

angles have been observed in natural environments and have drawn much attention recently 

for possible applications in various engineering fields35.  The evolution of the right-side tip of 

the cantilever is shown in Fig. 21. Although the magnitude of deflection is somewhat 

different, we can see that the behavior of the tip of the cantilever is qualitatively similar for 

the reference, hydrophilic, and hydrophobic cases. With increasing contact angle, the 

maximum initial deflection is slightly decreased but the subsequent deflection of the first 

rebound is increased.  This is mainly due to the increased surface tension force at the contact 

line pulling the droplet back to a more circular shape for higher contact angles.  At higher 

contact angles the droplet tends to slip off of the cantilever more easily and thus less of its 

vertical momentum is translated into cantilever deflection at initial impact. However, the 

droplet tends to pull the cantilever upward due to the increased contact angle thus the first 

rebound deflection distance is larger. Very interesting behavior can be observed for the super-

hydrophobic surface. When both the advancing and receding angles are very high, the 

cantilever can deflect upward during rebound. A more detailed interface plot is shown in Fig. 

22 (other interfaces for different contact angles have not been shown since their behavior is 

very similar to the reference case in Fig. 14). Up to t = 0.09 s the tip of the cantilever is 

deflected downward as expected due to the droplet impact.  The droplet then quickly slips 

and falls off of the super-hydrophobic cantilever surface.  Very little of the drop mass remains 

on the cantilever and thus this allows the cantilever to rebound a greater distance with the tip 

deflecting upward before subsequently oscillating.  In Fig. 21 we can clearly see the 

qualitative difference in the cantilever deflection dynamics due to the droplet impact on the 

super-hydrophobic surface.  
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3.3 Three phase interaction - droplet impact on a flexible cantilever in 3D 

Here we extend the above simulation of drop impact on a flexible cantilever to three-

dimensional geometry.  In this case the grid resolution is 128´128´256. The basic simulation 

geometry and physical parameters are the same as in the 2D counterpart (see Fig. 12) except 

that we now place a sphere above a horizontal plate which has a finite width w= 0.01 m as 

can be seen in Fig. 23(a).  The evolution of the liquid-gas interface as well as the solid 

interface is presented in Fig. 23 for the case with reference contact angle (qa=100o, qr=80o).  

The overall motion is very similar to the 2D case.  The droplet falls from its initial position 

and impacts the tip of the free end of the cantilever which deflects downward due to the 

impact.  At impact the droplet deforms with the portion of the droplet impacting the 

cantilever beginning to form the classic form of a droplet splash on a solid surface while the 

overhanging portion of the droplet is free to continue falling past the cantilever.  As the 

cantilever continues its downward deflection, the droplet elongates and begins to slide off of 

the cantilever.  Continuing its elongation even as the cantilever rebounds upward, the highly 

stretched droplet drips completely off of the cantilever tip and as it elongates, breaks up, with 

the formation of several satellite droplets as also observed in the 2D simulation. The left-right 

symmetry of the evolving droplet is not explicitly enforced but nevertheless observed 

throughout the simulation.   

In our final simulation we increase the contact angles to (qa=165o, qr=160o) to model a 

super-hydrophobic surface as in the counterpart 2D case in Fig. 22.  The interface evolution is 

shown in Fig. 24.  The initial progression of the droplet deformation is similar to the previous 

3D case in Fig 23. However, deflection is relatively small compared to the reference surface. 

As pointed out earlier, a higher contact angle makes the droplet more spherical thus the 

droplet tends to slip more on the cantilever. Due to the three-dimensional geometry with 

finite width of the cantilever, the droplet spreads in both the width and tip directions resulting 
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in a much smaller deflection of the cantilever. The finite and relatively short width of the 

cantilever induces early break up of droplet at the corners of the cantilever tip edge. In 

breaking up in this manner a small portion of the drop remains on top of the cantilever while 

the rest of the drop elongates in two branch ligaments from either side of the cantilever. 

These ligaments then further breakup forming several satellite droplets as the bulk of the 

main droplet falls. Again, the left-right symmetry of the evolving droplet is not explicitly 

enforced but nevertheless observed throughout the simulation.   

For the two 3D cases above, we compare the motion of the center of the free end of the 

cantilever tip with the 2D test case in Fig. 25. For a more proper comparison, we use the 

results from a relatively low resolution 100´200 2D simulation. (As shown in Fig. 15, the tip 

motion at this resolution was not much different than that at higher resolutions.) In general, 

the cantilever tip deflection is somewhat smaller in 3D for both the reference and super-

hydrophobic surface cases than it is in 2D. This can be expected since in 3D the spherical 

droplet has a relatively smaller mass impacting the cantilever compared with a cylindrical 

droplet in 2D.  The time to maximum cantilever deflection is shorter in 3D followed by 

higher frequency tip oscillations compared with the 2D case. We note that we present the 3D 

simulations here only as a qualitative demonstration of the capabilities of our LCRM based 

Eulerian model to capture the main features of the full fluid-structure interaction in a complex 

two-phase flow.   
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4. CONCLUSION 

We present an Eulerian based formulation for the interaction of two-phase flows with 

deformable solids in the framework of the Level Contour Reconstruction Method (LCRM). 

The solid stress tensor field is transported in the Eulerian frame and thus does not require a 

Lagrangian description for the stress as in conventional FEM methods. In this way, the solid 

interface motion can be numerically treated with existing interface tracking methods such as 

our LCRM.  Here we simulate Neo-Hookean materials but additional formulations for 

different hyper-elastic materials are possible.  The advantage of computing the stress field in 

the Eulerian frame is that the numerical formulation is closely compatible with existing fluid 

flow solvers. To prevent excessive dissipation due to the convective nature of the solid 

transport equation, a simple incompressibility constraint for the stress field is enforced.  The 

LCRM is used to track both the liquid-gas and the fluid-solid interfaces. The LCRM is a 

hybrid of Level Set and Front Tracking methods and adopts advantages of both Level Sets 

(natural topological change) and Front Tracking (volume conserving without smearing) and 

has been shown to perform well for many multiphase engineering and fluid physics 

applications.  

Several 2D benchmark tests are performed in order to verify the accuracy of the 

formulation and numerical approaches developed in this article. The first test we present is 

for a horizontal solid surface placed at the bottom of the simulation domain subject to an 

overlying fluid flow with prescribed velocity field.  In the second test, we track the time 

evolution of a cylindrical solid in the canonical driven cavity problem. Both of these 

benchmark tests show good agreement with existing solutions and grid convergence behavior 

between 1st and 2nd order.  For the third test, we simulate fluid flow coupled to the free 

motion of a thin deformable solid membrane attached to the rear of a stationary solid cylinder. 
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Due to the generation of alternating vortices in the wake flow behind the blunt cylinder, the 

attached thin membrane is induced to oscillate vertically. The amplitude and frequency of the 

oscillating membrane match very well with an existing high-fidelity FEM solution. In the 

final test we subject an initially vertical thin solid membrane to very large horizontal 

deflections due to a horizontally pulsating channel flow. The thin membrane deflects and 

alternatingly whips to align with the current downstream flow direction.  The solid membrane 

motion is in good agreement with an existing solution even at such very large interface 

deformations.  

For the more complex problem of the interaction of two-phase flow with solid 

deformation, we test the three-phase interaction problem of a droplet impacting a flexible 

solid cantilever. This problem involves the complex interplay of liquid-gas interface motion, 

solid deformation, solid-fluid interface motion and surface tension including contact line 

dynamics. We include full contact angle hysteresis where advancing and receding angles play 

an important role. The simulations follow the detailed motion of the droplet impact (and 

subsequent deformation, breakup and fall trajectory) along with the motion of the deformable 

solid cantilever due to its own weight as well as due to the force of the droplet impact. We 

observe that as the droplet impacts and breaks up, a portion of it remains on top of the 

cantilever and that this remaining droplet fraction increases with higher cantilever stiffness.  

In order to study the effect of contact line dynamics, we test a variety of contact angle 

configurations corresponding to hydrophilic, hydrophobic, and super-hydrophobic surfaces. A 

strong influence of surface tension on the cantilever motion is observed especially for the 

super-hydrophobic surface which shows that, after the initial downward deflection, the 

cantilever could rebound to reverse its deflection and point upward. 

In extending the formulation and numerical method to three-dimensional geometry, we 

demonstrate several simulations in fully 3D geometries for the case of a droplet impacting a 
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cantilever. Although the overall behavior of the droplet and cantilever are generally similar in 

3D compared with 2D, certain differences in details of the droplet evolution and cantilever 

motion are described. The 3D simulations performed here serve only as a qualitative 

demonstration of the capabilities of our LCRM based Eulerian model to capture the main 

features of the full fluid-structure interaction in a complex two-phase flow.  An in-depth 

analysis and investigation of the detailed physics of droplet dynamics in such a complex 

three-phase interaction will be the subject of our future work. 
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FIGURE CAPTIONS 

Fig. 1 General description of the LCRM. 

Fig. 2 Grid structure for the 2D geometry. 

Fig. 3 Simulation schematics for the evolution of the horizontal Neo-Hookean material 

under an imposed velocity of the top wall of the channel. 

Fig. 4 Simulation results for the evolution of the horizontal Neo-Hookean material (a) final 

interface shape compared to the existing data (b) convergence behavior. 

Fig. 5 Simulation settings for the cylindrical Neo-Hookean material in a driven cavity. 

Fig. 6 (a) Evolution profile for the centroid location of the hyper-elastic material with 

varying grid resolution (b) convergence behavior. 

Fig. 7 Interface shape vs. time for the cylindrical Neo-Hookean material in driven cavity. 

Fig. 8 (a) Simulation geometry and settings for the thin flexible membrane attached to the 

blunt object in Poiseuille flow field (b) Interface shape of the deflecting solid with 

velocity magnitude contour. 

Fig. 9 Comparison of the trace point at the tip of the membrane with existing data for the 

flexible membrane attached to the circular object. 

Fig. 10 Simulation schematics for the vertical flexible membrane under pulsating flow. 

Fig. 11 Solid interface evolution vs time for the vertical flexible membrane under pulsating 

flow. 

Fig. 12 Simulation geometry and settings for the three-phase interaction problem (droplet 

impact on a flexible cantilever). 

Fig. 13 Natural deflection of the thin membrane under gravity with velocity vector field 

(motion of the right tip of the cantilever is shown at the top-right of the figure). 

Fig. 14 Interface evolution for the three-phase interaction problem with G = 4´105 Pa. 
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Fig. 15 Grid resolution test for the three-phase interaction problem with G = 4´105 Pa. Tip 

location of the flexible plate is traced. 

Fig. 16 Comparison of the tip movement with/without droplet impact. 

Fig. 17 Interface evolution for the three-phase interaction problem with G = 2´106 Pa. 

Fig. 18 Interface evolution for the three-phase interaction problem with G = 1´107 Pa. 

Fig. 19 Comparison of the tip movement with varying shear modulus of the solid. 

Fig. 20 Remaining volume fraction of the droplet after detachment with varying solid shear 

modulus. 

Fig. 21 Comparison of the tip movement with varying contact angles. 

Fig. 22 Interface evolution for the super-hydrophobic surface (qa=165o, qr=160o). 

Fig. 23 Interface evolution for the three-phase interaction problem with G = 4´105 Pa in 3D 

for the reference contact angles (qa=100o, qr=80o). 

Fig. 24 Interface evolution for the three-phase interaction problem with G = 4´105 Pa in 3D 

for the super-hydrophobic surface (qa=165o, qr=160o). 

Fig. 25 Comparison of the tip movement in 2D and 3D. 
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APPENDIX 
 

Our 3D grid structure shown in Fig. A1 uses a conventional staggered arrangement (as in 2D). 

The pressure, distance function, and diagonal terms for the strain field (Bxx, Byy, Bzz) are located at cell 

centers. The x, y, and z components of the velocity field are located at cell faces. Off-diagonal terms 

for the strain field (Bxy, Byz, Bxz) are placed at the grid node points in their corresponding cross-

sectional plane (see Fig. A1) 

 

 

Fig. A1   Grid structure for 3D variables 

 

The three-dimensional left Cauchy-Green strain tensor can be written as: 

 

  (A1) 
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are not computing the deformation tensor, F, instead we are evaluating the B field transport equation 

directly. In 3D, we define a modified left Cauchy-Green strain tensor, C, (slightly differently than is 

done in Eq. (7)) :  

 

  (A2) 

 

Thus Eq. (8) becomes: 

 

  (A3) 

 

The full 3D transport equation for the left Cauchy-Green strain field can be written as: 

 

 (A4) 

 

Equation (A4) can be solved using the semi-Lagrangian advection method as described in the 2D case. 

The incompressibility condition for 3D becomes: 
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Similar to the discussion for Eq. (25), this determinant, as calculated in the simulation, will in general 

not be equal to Hs but some other value Hc .  Thus, we modify the C field by dividing by .  

 

 

3 /s cH H


