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Bat coronavirus phylogeography in 
the Western indian ocean
Léa Joffrin1 ✉, Steven M. Goodman2,3, David A. Wilkinson1, Beza Ramasindrazana1,2,9, 
erwan Lagadec1, Yann Gomard1, Gildas Le Minter1, Andréa Dos Santos4, M. corrie Schoeman5, 
Rajendraprasad Sookhareea6, pablo tortosa1, Simon Julienne7, eduardo S. Gudo8, 
patrick Mavingui1 & camille Lebarbenchon1 ✉

Bats provide key ecosystem services such as crop pest regulation, pollination, seed dispersal, and 
soil fertilization. Bats are also major hosts for biological agents responsible for zoonoses, such as 
coronaviruses (CoVs). The islands of the Western Indian Ocean are identified as a major biodiversity 
hotspot, with more than 50 bat species. In this study, we tested 1,013 bats belonging to 36 species from 
Mozambique, Madagascar, Mauritius, Mayotte, Reunion island and Seychelles, based on molecular 
screening and partial sequencing of the RNA-dependent RNA polymerase gene. In total, 88 bats 
(8.7%) tested positive for coronaviruses, with higher prevalence in Mozambican bats (20.5% ± 4.9%) 
as compared to those sampled on islands (4.5% ± 1.5%). Phylogenetic analyses revealed a large 
diversity of α- and β-coVs and a strong signal of co-evolution between coVs and their bat host species, 
with limited evidence for host-switching, except for bat species sharing day roost sites. these results 
highlight that strong variation between islands does exist and is associated with the composition of 
the bat species community on each island. future studies should investigate whether coVs detected in 
these bats have a potential for spillover in other hosts.

The burden of emerging infectious diseases has significantly increased over the last decades and is recognized as a 
major global health concern. In 2018, the World Health Organization (WHO) established the “Blueprint priority 
disease list”, identifying viruses such as Ebola, Lassa fever, Middle East Respiratory Syndrome (MERS), and Nipah 
fever as significant threats to international biosecurity1. This list also highlights the potential pandemic risk from 
the emergence of currently unknown zoonotic pathogens, collectively referring to these unknown threats as “dis-
ease X″1. Investigation of the potential zoonotic pathogens in wild animals, particularly vertebrates, is thus critical 
for emerging infectious disease preparedness and responses.

Bats represent nearly 1,400 species and live on all continents except Antarctica2. They provide key ecosystem 
services such as crop pest regulation, pollination, seed dispersal, and soil fertilization3–10. Bats are also recognized 
as reservoirs of many zoonotic pathogens, including coronaviruses (CoVs)11–13. Indeed, several CoVs originating 
from bats have emerged in humans and livestock with sometimes major impacts to public health. For instance, 
in 2003, the Severe Acute Respiratory Syndrome (SARS) CoV emerged in humans, after spillover from bats to 
civets14–18, and led to the infection of 8,096 people and 774 deaths in less than a year19.

Our study area spans geographic locations across the islands of the Western Indian Ocean and southeastern 
continental Africa (SECA) (Fig. 1). These islands have diverse geological origins that have influenced the process 
of bat colonization and species distributions20. The ecological settings and species diversity on these islands for 
bats are notably different. On Madagascar, more than 45 bat species are known to occur, of which more than 
80% are endemic to the island21–23. The smaller studied islands of the Western Indian Ocean, Mauritius, Mayotte, 
Reunion Island, and Mahé (Seychelles), host reduced bat species diversity (e.g. three species on Reunion Island), 
whereas SECA supports a wide range of bat species. To date, several studies have identified bat-infecting CoVs 
in countries of continental Africa, including Zimbabwe24, South Africa25,26, Namibia27, and Kenya28,29. CoVs 
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have also been reported in fruit bats (Pteropodidae) in Madagascar, where β-coronaviruses belonging to the 
D-subgroup were identified in Eidolon dupreanum and Pteropus rufus30.

In this study, we investigated the presence of CoVs in over 1,000 individual bats belonging to 36 species, 
sampled on five islands (Madagascar, Mauritius, Mayotte, Reunion Island, and Mahé) and one continental area 
(Mozambique). Based on molecular screening and partial sequencing of the RNA-dependent RNA polymerase 
gene, we (i) estimated CoV prevalence in the regional bat populations, (ii) assessed CoV genetic diversity, and 
(iii) identified associations between bat families and CoVs, as well as potential evolutionary drivers leading to 
these associations.

Results
prevalence of coV. A total of 1,013 bats were tested from Mozambique, Mayotte, Reunion Island, Seychelles, 
Mauritius and Madagascar (Fig. 1). In total, 88 of the 1,013 bat samples tested positive for CoV by Real-Time PCR 
(mean detection rate: 8.7%). The prevalence of positive bats was different according to the sampling locations 
(χ² = 77.0, df = 5; p < 0.001), with a higher prevalence in Mozambique (±95% confidence interval: 20.5% ± 
4.9%) than on all Western Indian Ocean islands (4.5% ± 1.5%) (Fig. 2). A significant difference in the prevalence 
of positive bats was also detected between families (χ² = 44.8, df = 8; p < 0.001; Supplementary Figure S1). 
The highest prevalence was observed in the families Nycteridae (28.6% ± 23.6%) and Rhinolophidae (26.2% ± 
11.0%). Bat species had a significant effect on the probability of CoVs detection (χ² = 147.9, df = 39; p < 0.001; 
Supplementary Figure S2). Finally, the prevalence of CoV positive bats in Mozambique was significantly different 
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Figure 1. Geographic distribution of the tested samples. N: number of bats sampled for each location. The 
open-source GIS software, QGIS v.3.6.1, was used to generate the map. http://qgis.osgeo.org (2019).
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Figure 2. Mean CoV prevalence (±95% confidence interval) in bats in the Western Indian Ocean. Pairwise 
test; ***p < 0.001; NS: p > 0.05, not significant.
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(N = 264, χ²= 22.8, df = 1; p < 0.001; Supplementary Figure S3) between February (37.4% ± 9.9%) and May 
(11.6% ± 4.8).

RdRp sequence diversity. Of the 88 positive samples, we obtained 77 partial RdRp sequences using the 
Real-Time PCR detection system (179 bp) and 51 longer partial RdRp sequences using a second PCR system 
(440 bp). Sequences generated with the second system were subsequently used for phylogenetic analyses. Details 
of the sequenced CoV-positive samples are provided in Supplementary Table S1. Pairwise comparison of these 
51 sequences revealed 28 unique sequences, and sequences similarities ranging from 60.2% to 99.8%. The low-
est sequence similarity was found in Mozambique (60.2% to 99.8%), then in Madagascar (64.0% to 99.8%). No 
genetic variation was observed for samples from Mayotte and Reunion Island.

phylogenetic structure of coVs. Sequence comparison indicated that Western Indian Ocean bats harbor 
a high diversity of both α and β-CoVs, with conserved groups clustering mostly by bat family (Fig. 3). Specifically, 
25 sequences were identified as α-CoVs, and three sequences were genetically related to the β-CoVs. For α-CoVs, 
all sequences detected in our tested Molossidae formed a highly supported monophyletic group, including CoV 
sequences from Molossidae bats previously detected in continental Africa (Fig. 4). CoVs detected in Mops condy-
lurus (Mozambique), Mormopterus francoismoutoui (Reunion Island), Chaerephon pusillus and Chaerephon sp. 
(Mayotte), and Mormopterus jugularis (Madagascar) shared 90%–98% nucleotide similarity with a CoV detected 
in Chaerephon sp. in Kenya (Supplementary Table S2). All CoVs found in Miniopteridae clustered in a monophy-
letic group, including Miniopteridae CoVs sequences from Africa, Asia, and Oceania (Supplementary Table S2). 
The great majority of α-CoVs detected in Rhinolophidae bats clustered in two monophyletic groups (Fig. 3); 
one with African Rhinolophidae CoVs and one with Asian Rhinolophidae CoVs. We also detected one CoV 
from Rhinolophus rhodesiae, which was 100% similar to a Miniopteridae CoV from this study. Rhinonycteridae 
CoVs formed a single monophyletic group with NL63 Human CoVs. The Rhinonycteridae CoVs detected clus-
tered with NL63-related bat sequences found in Triaenops afer in Kenya (Fig. 5) and showed 85% similarity to 
NL63 Human CoVs (Supplementary Table S2). Hipposideridae α-CoVs mainly clustered into a single monophy-
letic group, including 229E Human CoV-related bat sequence found in Hipposideros vittatus from Kenya (Fig. 6; 
Supplementary Table S2).

For β-CoVs, two sequences obtained from Nycteris thebaica clustered in the C-subgroup together with other 
CoVs previously reported in African Nycteris sp. bats (Fig. 7). The sequences showed 88% nucleotide identity to 
a β-C CoV found in Nycteris gambiensis in Ghana (Supplementary Table S2). Rousettus madagascariensis CoVs 
clustered with Pteropodidae CoVs belonging to the D-subgroup of β-CoVs (Fig. 8). BLAST queries against the 
NCBI database showed 98% nucleotide identity between CoV sequences from Rousettus madagascariensis and a 
β-D CoV sequence detected in Eidolon helvum from Kenya (Supplementary Table S2).

co-phylogeny between bats and coVs. Co-phylogeny tests were conducted using 11 Cyt b sequences 
obtained from the 11 CoVs positive bat species and 27 partial CoV RdRp sequences (440 bp). Results supported 
co-evolution between the Western Indian Ocean bats and their CoVs (ParaFitGlobal = 0.04; p = 0.001) and a high 
level of phylogenetic congruence (Fig. 9).

Discussion
We provide evidence for a high diversity of CoVs in bats on Western Indian Ocean islands. The overall prevalence 
of CoV positive bats was consistent with studies from continental Africa25 and from islands in the Australasian 
region31, although we detected significant variation in the prevalence of infected bats, according to their fam-
ily, species, sampling location and season. Our study is nevertheless affected by the strong heterogeneity of bat 
communities in the island of the Western Indian Ocean, in particular in term of species richness. The high CoV 
genetic diversity detected in bats from Mozambique and Madagascar is likely to be associated with the higher 
bat species diversity in the African mainland and in Madagascar, has compared to small oceanic islands20. In 
addition, CoV prevalence in bat populations may significantly vary across seasons, as found in Mozambique 
with higher prevalence during the wet season than in the dry season. Several studies on bat CoV have indeed 
shown significant variations in the temporal infection dynamic of CoV in bats, potentially associated with bat 
parturition32–34.

Host specificity is well known for some bat CoVs subgenera35–37. For example, β-C CoVs are largely associ-
ated with Vespertilionidae, whereas β-D CoVs are found mostly in Pteropodidae36,38. In our study, we showed 
that Western Indian Ocean bats harbor phylogenetically structured CoVs, of both α-CoV and β-CoV subclades, 
clustering mostly by bat family. In the new CoV taxonomy based on full genomes proposed by the International 
Committee of Taxonomy of Viruses (ICTV), α-CoVs and β-CoVs are split in subgenera mostly based on host 
families39, reflected in the subgenera names (e.g. Rhinacovirus for a Rhinolophidae α-CoV cluster, Minuacovirus 
for a Miniopteridae α-CoV cluster, Hibecovirus for an Hipposideridae β-CoV cluster). Although our classifi-
cation was based on a partial sequence of the RdRp region, we identified sequences from samples belonging to 
four of these subgenera (Minuacovirus, Duvinacovirus, Rhinacovirus, and Nobecovirus) and three that could 
not be classified according to this taxonomic scheme hence representing unclassified subgenera (we propose 
“Molacovirus”, “Nycbecovirus”, and “Rhinacovirus2”).

A strong geographical influence on CoVs diversity, with independent evolution of CoVs on each island, was 
expected in our study, because of spatial isolation and endemism of the tested bat species. Anthony et al.38 found 
that the dominant evolutionary mechanism for African CoVs was host switching. Congruence between host and 
viral phylogenies however suggests a strong signal for co-evolution between Western Indian Ocean bats and their 
associated CoVs. Geographical influence seems to occur within bat families, as for Molossidae. Endemism result-
ing from geographic isolation may thus have played a role in viral diversification within bat families.
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Although co-evolution could be the dominant mechanism in the Western Indian Ocean, host-switching 
may take place in certain situations. For example, in Mozambique, we found a potential Miniopteridae α-CoV 
in a Rhinolophidae bat co-roosting with Miniopteridae in the same cave. These host-switching events could 
be favored when several bat species roost in syntopy40. A similar scenario was described in Australia where 
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Figure 3. Maximum Likelihood (ML) consensus tree derived from 202 coronavirus (CoV) RNA-dependent 
RNA-polymerase partial nucleotide sequences (393 bp). Colored circles at the end of branches indicate bat 
family origin. Sequences in bold refer to bat CoVs detected in this study. Bootstrap values >0.7 are indicated on 
the tree. Scale bar indicates mean number of nucleotide substitutions per site. The tree was generated with the 
General Time Reversible evolutionary model (GTR + I + Г, I = 0.18, α = 0.64) and 1,000 bootstrap replicates.

https://doi.org/10.1038/s41598-020-63799-7


5Scientific RepoRtS |         (2020) 10:6873  | https://doi.org/10.1038/s41598-020-63799-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

Miniopteridae α-CoV was detected in Rhinolophidae bats31. These infrequent host-switching events show 
that spillovers can happen but suggest that viral transmission is not maintained in the receiver host species. 
The host-virus co-evolution might thus have resulted in strong adaptation of CoVs to each bat host species. In 
addition, viral factors (mutation rate, recombination propensity, replication ability in the cytoplasm, changes 
in the ability to bind host cells), environmental factors (climate variation, habitat degradation, decrease of bat 
preys), and phylogenetic relatedness of host species are also critical for the viral establishment in a novel host41–44. 
Nevertheless, apparent evidence of host switching as a dominant mechanism of CoV evolution could be an arti-
fact of a lack of data for some potential bat hosts, leading to incomplete phylogenetic reconstructions38.

Several bat CoVs we identified in Rhinonycteridae and Hipposideridae from Mozambique had between 85% 
and 93% nucleotide sequence similarity with NL63 Human CoVs and 229E Human CoVs, respectively. These 
two human viruses are widely distributed in the world and associated with mild to moderate respiratory infec-
tion in humans45. Tao et al. established that the NL63 Human CoVs and 229E Human CoVs have a zoonotic 
recombinant origin from their most recent common ancestor, estimated to be about 1,000 years ago46. During 
the past decade, they were both detected in bats in Kenya, and in Ghana, Gabon, Kenya, and Zimbabwe, respec-
tively24,28,47,48. Intermediate hosts are important in the spillover of CoVs, despite major knowledge gaps on the 
transmission routes of bat infectious agents to secondary hosts49. This hypothesis has been formulated for the 
229E Human CoV, with an evolutionary origin in Hipposideridae bats and with camelids as intermediate hosts48. 
The ancient spillover of NL63 from Rhinonycteridae bats to humans might have occurred through a currently 
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unidentified intermediate host28,50,51. Because receptor recognition by viruses is the first essential cellular step to 
infect host cells, CoVs may have spilt over into humans from bats through an intermediate host possibly due to 
mutations on spike genes13,28. Further investigations of CoVs in Kenyan and Mozambican livestock and hunted 
animals could potentially provide information on the complete evolutionary and emergence history of these two 
viruses before their establishment in humans.

MERS-like CoV, with high sequence similarity (>85%) to human and camel strains of MERS-CoV, have been 
detected in Neoromicia capensis in South Africa and Pipistrellus cf. hesperidus in Uganda, suggesting a possible origin 
of camel MERS-CoV in vespertilionid bats25,38,52. This family has been widely studied, with 30% of all reported bat 
CoVs sequences from the past 20 years coming from vespertilionids53. No members of this family were positive for 
CoV in our study, which may be associated with the low number of individuals tested; additional material is needed 
to explore potential MERS-like CoV in the Western Indian Ocean, in particular on Madagascar.

Knowledge on bat CoV ecology and epidemiology has significantly increased during the past decade. Anthony 
et al. estimated that there might be at least 3,204 bat CoVs worldwide38; however, direct bat-to-human transmission 
has not been demonstrated so far. As for most emerging zoonoses, CoV spillover and emergence may be associated 
to human activities and ecosystem changes such as habitat fragmentation, agricultural intensification and bushmeat 
consumption. The role of bats as epidemiological reservoir of infectious agents needs to be balanced with such 
human driven modifications on ecosystem functioning, in order to properly assess bat-borne CoV emergence risks.
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Materials and Methods
origin of the tested samples. Samples obtained from vouchered bat specimens during previous studies 
in Mozambique (February and May 2015), Mayotte (November to December 2014), Reunion Island (February 
2015), Seychelles (February to March 2014), Mauritius (November 2012) and Madagascar (October to November 
2014) were tested54–57 (Supplementary Information). We also collected additional swab samples from several 
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Figure 8. Detail of the β-D CoV. CoVs generated in the study are indicated in bold. This sub-tree is a zoom 
on β-D CoV clade from the tree depicted in Fig. 3. Bootstrap values >0.7 are indicated on the tree. Scale bar 
indicates mean number of nucleotide substitutions per site.

Figure 9. Tanglegram representing host-virus co-evolution between bats of the Western Indian Ocean and 
their associated CoVs. Phylogeny of bats (left) was constructed with an alignment of 11 Cyt b sequences of 
1,030 bp by Neighbor-Joining with 1,000 bootstrap iterations. Pruned phylogeny of Western Indian Ocean bats 
CoVs (right) was constructed with an alignment of 27 unique sequences of 393 bp from Western Indian Ocean 
bats CoVs, by Neighbor-Joining with 1,000 bootstrap iterations.
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synanthropic bat species on Madagascar, in January 2018 (Supplementary Information). Details on sample types, 
bat families, species, and locations are provided in Supplementary Table S3.

ethical statement. The ethical terms of these research protocols were approved by the CYROI Institutional 
Animal Care and Use Committee (Comité d’Ethique du CYROI no.114, IACUC certified by the French Ministry of 
Higher Education, of Research and Innovation). All protocols strictly followed the terms of research permits and reg-
ulations for the handling of wild mammals and were approved by licencing authorities (Supplementary Information).

Molecular detection. RNA was extracted from 140 μL of each sample using the QIAamp Viral RNA mini 
kit (QIAGEN, Valencia, California, USA), and eluted in 60 μL of Qiagen AVE elution buffer. For bat organs, 
approximately 1 mm3 of tissue (either lungs or intestines) was placed in 750 µL of DMEM medium and 
homogenized in a TissueLyser II (Qiagen, Hilden, Germany) for 2 min at 25 Hz using 3 mm tungsten beads, 
prior to the RNA extraction. Reverse transcription was performed on 10 μL of RNA using the ProtoScript II 
Reverse Transcriptase and Random Primer 6 (New England BioLabs, Ipswich, MA, USA) under the follow-
ing thermal conditions: 70 °C for 5 min, 25 °C for 10 min, 42 °C for 50 min, and 65 °C for 20 min58. cDNAs 
were tested for the presence of the RNA-dependent RNA-polymerase (RdRp) gene using a multi-probe 
Real-Time PCR59. The primer set with Locked Nucleic Acids (LNA; underlined position in probe sequences) 
was purchased from Eurogentec (Seraing, Belgium): 11-FW: 5′-TGA-TGA-TGS-NGT-TGT-NTG-YTA-YAA
-3 ′  and 13-RV:  5 ′ -GCA-T WG-TRT-GY T-GNG-ARC-ARA-AT T-C-3 ′ .  Three  probes  were 
u s e d :  p r o b e  I  ( R OX ) :  5 ′ - T T G - TAT- TAT- C AG - A AT- G G Y- G T S - T T Y- AT- 3 ′ ,  p r o b e  I I 
( FA M ) :  5 ′ - T G T- G T T- C AT- G T C - WG A- R G C - WA A- AT G - T T- 3 ′ ,  a n d  pro b e  I I I  ( H E X ) : 
5′-TCT-AAR-TGT-TGG-GTD-GA-3′. Real-Time PCR was performed with ABsolute Blue QPCR Mix low ROX 
1X(Thermo Fisher Scientific, Waltham, MA, USA) and 2.5 µL of cDNA under the following thermal conditions: 
95 °C for 15 min, 95 °C for 30 s, touchdowns from 56 °C to 50 °C for 1 min and 50 cycles with 95 °C for 30 s and 
50 °C for 1 min in a CFX96 Touch Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA).

Because of the limited size of sequences generated from the Real-Time PCR, a second PCR targeting 440 bp 
of the RdRp gene was performed with 5 µL of cDNA of each positive sample, with the following primer set: IN-6: 
5′-GGT-TGG-GAC-TAT-CCT-AAG-TGT-GA-3′ and IN-7: 5′-CCA-TCA-TCA-GAT-AGA-ATC-ATC-ATA-3′60. 
PCRs were performed with the GoTaq G2 Hot Start Green Master Mix (Promega, Madison, WI, USA) in an Applied 
Biosystems 2720 Thermal Cycler (Thermo Fisher Scientific, Waltham, MA, USA), under the following thermal con-
ditions: 95 °C for 2 min, 45 cycles with 95 °C for 1 min, 54 °C for 1 min, 72 °C for 1 min, and a final elongation step at 
72 °C for 10 min. After electrophoresis in a 1.5% agarose gel stained with 2% GelRed (Biotium, Hayward, CA, USA), 
amplicons of the expected size were sequenced on both strands by Genoscreen (Lille, France).

Statistical analysis. We have performed Pearson χ² tests on all samples (1,013 bats) to explore the effect of 
(i) location, (ii) bat family, and (iii) bat species on the detection of coronavirus RNA. Two sampling campaigns, at 
two different season, in the same location, were available for Mozambique. We thus investigated the effect of the 
sampling season, between the wet (February) and dry (May) season, on CoV detection in Mozambique in 2015 
(264 bats). Analyses were conducted with R v3.5.1 software61.

phylogenetic analyses. Sequences obtained with the second PCR system60 were edited with the Chromas 
Lite Software package version 2.6.462. We explored CoV diversity of the sequences with pairwise identity val-
ues obtained from seqidentity function in R bio3d package v2.3-463 and identified the most similar CoV RdRp 
sequences referenced in GenBank using BLASTN 2.2.29 + . An alignment was then generated using the 51 nucle-
otide sequences obtained in this study and 151 reference CoV sequences representing a large diversity of hosts 
and geographic origins (Europe, Asia, Oceania, America and Africa), with CLC Sequence viewer 8.0 Software 
(CLC Bio, Aarhus, Denmark). A phylogenetic tree was obtained by maximum likelihood using MEGA Software 
v10.0.464, with 1,000 bootstrap iterations, and with the best evolutionary model for our dataset as selected by 
modelgenerator v0.8565.

Host-virus associations were investigated using the phylogeny of Western Indian Ocean bats and their asso-
ciated CoVs. Bat phylogeny was generated from an alignment of 1,030 bp of mitochondrial Cytochrome b (Cyt 
b) gene sequences (Supplementary Table S4), for each CoV positive bat species. Finally, bat and pruned CoV 
phylogenies based on each 393 bp RdRp unique sequence fragment were generated by Neighbor-Joining with 
1,000 bootstrap iterations, using CLC Sequence viewer 8.0 Software (CLC Bio, Aarhus, Denmark)66. Phylogenetic 
congruence was tested to assess the significance of the coevolutionary signal between bat host species and CoVs 
sequences, using ParaFit with 999 permutations in the ape package v5.0 in R 3.5.167,68. Tanglegram representa-
tions of the co-phylogeny were visualized using the Jane software v4.0169.

Data availability
DNA sequences: Genbank accessions MN183146 to MN183273.
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